perf_event.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781
  1. #undef DEBUG
  2. /*
  3. * ARM performance counter support.
  4. *
  5. * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
  6. * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
  7. *
  8. * This code is based on the sparc64 perf event code, which is in turn based
  9. * on the x86 code. Callchain code is based on the ARM OProfile backtrace
  10. * code.
  11. */
  12. #define pr_fmt(fmt) "hw perfevents: " fmt
  13. #include <linux/interrupt.h>
  14. #include <linux/kernel.h>
  15. #include <linux/module.h>
  16. #include <linux/perf_event.h>
  17. #include <linux/platform_device.h>
  18. #include <linux/spinlock.h>
  19. #include <linux/uaccess.h>
  20. #include <asm/cputype.h>
  21. #include <asm/irq.h>
  22. #include <asm/irq_regs.h>
  23. #include <asm/pmu.h>
  24. #include <asm/stacktrace.h>
  25. static struct platform_device *pmu_device;
  26. /*
  27. * Hardware lock to serialize accesses to PMU registers. Needed for the
  28. * read/modify/write sequences.
  29. */
  30. static DEFINE_RAW_SPINLOCK(pmu_lock);
  31. /*
  32. * ARMv6 supports a maximum of 3 events, starting from index 1. If we add
  33. * another platform that supports more, we need to increase this to be the
  34. * largest of all platforms.
  35. *
  36. * ARMv7 supports up to 32 events:
  37. * cycle counter CCNT + 31 events counters CNT0..30.
  38. * Cortex-A8 has 1+4 counters, Cortex-A9 has 1+6 counters.
  39. */
  40. #define ARMPMU_MAX_HWEVENTS 33
  41. /* The events for a given CPU. */
  42. struct cpu_hw_events {
  43. /*
  44. * The events that are active on the CPU for the given index. Index 0
  45. * is reserved.
  46. */
  47. struct perf_event *events[ARMPMU_MAX_HWEVENTS];
  48. /*
  49. * A 1 bit for an index indicates that the counter is being used for
  50. * an event. A 0 means that the counter can be used.
  51. */
  52. unsigned long used_mask[BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)];
  53. /*
  54. * A 1 bit for an index indicates that the counter is actively being
  55. * used.
  56. */
  57. unsigned long active_mask[BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)];
  58. };
  59. static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
  60. struct arm_pmu {
  61. enum arm_perf_pmu_ids id;
  62. const char *name;
  63. irqreturn_t (*handle_irq)(int irq_num, void *dev);
  64. void (*enable)(struct hw_perf_event *evt, int idx);
  65. void (*disable)(struct hw_perf_event *evt, int idx);
  66. int (*get_event_idx)(struct cpu_hw_events *cpuc,
  67. struct hw_perf_event *hwc);
  68. u32 (*read_counter)(int idx);
  69. void (*write_counter)(int idx, u32 val);
  70. void (*start)(void);
  71. void (*stop)(void);
  72. void (*reset)(void *);
  73. const unsigned (*cache_map)[PERF_COUNT_HW_CACHE_MAX]
  74. [PERF_COUNT_HW_CACHE_OP_MAX]
  75. [PERF_COUNT_HW_CACHE_RESULT_MAX];
  76. const unsigned (*event_map)[PERF_COUNT_HW_MAX];
  77. u32 raw_event_mask;
  78. int num_events;
  79. u64 max_period;
  80. };
  81. /* Set at runtime when we know what CPU type we are. */
  82. static const struct arm_pmu *armpmu;
  83. enum arm_perf_pmu_ids
  84. armpmu_get_pmu_id(void)
  85. {
  86. int id = -ENODEV;
  87. if (armpmu != NULL)
  88. id = armpmu->id;
  89. return id;
  90. }
  91. EXPORT_SYMBOL_GPL(armpmu_get_pmu_id);
  92. int
  93. armpmu_get_max_events(void)
  94. {
  95. int max_events = 0;
  96. if (armpmu != NULL)
  97. max_events = armpmu->num_events;
  98. return max_events;
  99. }
  100. EXPORT_SYMBOL_GPL(armpmu_get_max_events);
  101. int perf_num_counters(void)
  102. {
  103. return armpmu_get_max_events();
  104. }
  105. EXPORT_SYMBOL_GPL(perf_num_counters);
  106. #define HW_OP_UNSUPPORTED 0xFFFF
  107. #define C(_x) \
  108. PERF_COUNT_HW_CACHE_##_x
  109. #define CACHE_OP_UNSUPPORTED 0xFFFF
  110. static int
  111. armpmu_map_cache_event(u64 config)
  112. {
  113. unsigned int cache_type, cache_op, cache_result, ret;
  114. cache_type = (config >> 0) & 0xff;
  115. if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
  116. return -EINVAL;
  117. cache_op = (config >> 8) & 0xff;
  118. if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
  119. return -EINVAL;
  120. cache_result = (config >> 16) & 0xff;
  121. if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
  122. return -EINVAL;
  123. ret = (int)(*armpmu->cache_map)[cache_type][cache_op][cache_result];
  124. if (ret == CACHE_OP_UNSUPPORTED)
  125. return -ENOENT;
  126. return ret;
  127. }
  128. static int
  129. armpmu_map_event(u64 config)
  130. {
  131. int mapping = (*armpmu->event_map)[config];
  132. return mapping == HW_OP_UNSUPPORTED ? -EOPNOTSUPP : mapping;
  133. }
  134. static int
  135. armpmu_map_raw_event(u64 config)
  136. {
  137. return (int)(config & armpmu->raw_event_mask);
  138. }
  139. static int
  140. armpmu_event_set_period(struct perf_event *event,
  141. struct hw_perf_event *hwc,
  142. int idx)
  143. {
  144. s64 left = local64_read(&hwc->period_left);
  145. s64 period = hwc->sample_period;
  146. int ret = 0;
  147. if (unlikely(left <= -period)) {
  148. left = period;
  149. local64_set(&hwc->period_left, left);
  150. hwc->last_period = period;
  151. ret = 1;
  152. }
  153. if (unlikely(left <= 0)) {
  154. left += period;
  155. local64_set(&hwc->period_left, left);
  156. hwc->last_period = period;
  157. ret = 1;
  158. }
  159. if (left > (s64)armpmu->max_period)
  160. left = armpmu->max_period;
  161. local64_set(&hwc->prev_count, (u64)-left);
  162. armpmu->write_counter(idx, (u64)(-left) & 0xffffffff);
  163. perf_event_update_userpage(event);
  164. return ret;
  165. }
  166. static u64
  167. armpmu_event_update(struct perf_event *event,
  168. struct hw_perf_event *hwc,
  169. int idx, int overflow)
  170. {
  171. u64 delta, prev_raw_count, new_raw_count;
  172. again:
  173. prev_raw_count = local64_read(&hwc->prev_count);
  174. new_raw_count = armpmu->read_counter(idx);
  175. if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
  176. new_raw_count) != prev_raw_count)
  177. goto again;
  178. new_raw_count &= armpmu->max_period;
  179. prev_raw_count &= armpmu->max_period;
  180. if (overflow)
  181. delta = armpmu->max_period - prev_raw_count + new_raw_count + 1;
  182. else
  183. delta = new_raw_count - prev_raw_count;
  184. local64_add(delta, &event->count);
  185. local64_sub(delta, &hwc->period_left);
  186. return new_raw_count;
  187. }
  188. static void
  189. armpmu_read(struct perf_event *event)
  190. {
  191. struct hw_perf_event *hwc = &event->hw;
  192. /* Don't read disabled counters! */
  193. if (hwc->idx < 0)
  194. return;
  195. armpmu_event_update(event, hwc, hwc->idx, 0);
  196. }
  197. static void
  198. armpmu_stop(struct perf_event *event, int flags)
  199. {
  200. struct hw_perf_event *hwc = &event->hw;
  201. if (!armpmu)
  202. return;
  203. /*
  204. * ARM pmu always has to update the counter, so ignore
  205. * PERF_EF_UPDATE, see comments in armpmu_start().
  206. */
  207. if (!(hwc->state & PERF_HES_STOPPED)) {
  208. armpmu->disable(hwc, hwc->idx);
  209. barrier(); /* why? */
  210. armpmu_event_update(event, hwc, hwc->idx, 0);
  211. hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
  212. }
  213. }
  214. static void
  215. armpmu_start(struct perf_event *event, int flags)
  216. {
  217. struct hw_perf_event *hwc = &event->hw;
  218. if (!armpmu)
  219. return;
  220. /*
  221. * ARM pmu always has to reprogram the period, so ignore
  222. * PERF_EF_RELOAD, see the comment below.
  223. */
  224. if (flags & PERF_EF_RELOAD)
  225. WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
  226. hwc->state = 0;
  227. /*
  228. * Set the period again. Some counters can't be stopped, so when we
  229. * were stopped we simply disabled the IRQ source and the counter
  230. * may have been left counting. If we don't do this step then we may
  231. * get an interrupt too soon or *way* too late if the overflow has
  232. * happened since disabling.
  233. */
  234. armpmu_event_set_period(event, hwc, hwc->idx);
  235. armpmu->enable(hwc, hwc->idx);
  236. }
  237. static void
  238. armpmu_del(struct perf_event *event, int flags)
  239. {
  240. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  241. struct hw_perf_event *hwc = &event->hw;
  242. int idx = hwc->idx;
  243. WARN_ON(idx < 0);
  244. clear_bit(idx, cpuc->active_mask);
  245. armpmu_stop(event, PERF_EF_UPDATE);
  246. cpuc->events[idx] = NULL;
  247. clear_bit(idx, cpuc->used_mask);
  248. perf_event_update_userpage(event);
  249. }
  250. static int
  251. armpmu_add(struct perf_event *event, int flags)
  252. {
  253. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  254. struct hw_perf_event *hwc = &event->hw;
  255. int idx;
  256. int err = 0;
  257. perf_pmu_disable(event->pmu);
  258. /* If we don't have a space for the counter then finish early. */
  259. idx = armpmu->get_event_idx(cpuc, hwc);
  260. if (idx < 0) {
  261. err = idx;
  262. goto out;
  263. }
  264. /*
  265. * If there is an event in the counter we are going to use then make
  266. * sure it is disabled.
  267. */
  268. event->hw.idx = idx;
  269. armpmu->disable(hwc, idx);
  270. cpuc->events[idx] = event;
  271. set_bit(idx, cpuc->active_mask);
  272. hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
  273. if (flags & PERF_EF_START)
  274. armpmu_start(event, PERF_EF_RELOAD);
  275. /* Propagate our changes to the userspace mapping. */
  276. perf_event_update_userpage(event);
  277. out:
  278. perf_pmu_enable(event->pmu);
  279. return err;
  280. }
  281. static struct pmu pmu;
  282. static int
  283. validate_event(struct cpu_hw_events *cpuc,
  284. struct perf_event *event)
  285. {
  286. struct hw_perf_event fake_event = event->hw;
  287. if (event->pmu != &pmu || event->state <= PERF_EVENT_STATE_OFF)
  288. return 1;
  289. return armpmu->get_event_idx(cpuc, &fake_event) >= 0;
  290. }
  291. static int
  292. validate_group(struct perf_event *event)
  293. {
  294. struct perf_event *sibling, *leader = event->group_leader;
  295. struct cpu_hw_events fake_pmu;
  296. memset(&fake_pmu, 0, sizeof(fake_pmu));
  297. if (!validate_event(&fake_pmu, leader))
  298. return -ENOSPC;
  299. list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
  300. if (!validate_event(&fake_pmu, sibling))
  301. return -ENOSPC;
  302. }
  303. if (!validate_event(&fake_pmu, event))
  304. return -ENOSPC;
  305. return 0;
  306. }
  307. static irqreturn_t armpmu_platform_irq(int irq, void *dev)
  308. {
  309. struct arm_pmu_platdata *plat = dev_get_platdata(&pmu_device->dev);
  310. return plat->handle_irq(irq, dev, armpmu->handle_irq);
  311. }
  312. static int
  313. armpmu_reserve_hardware(void)
  314. {
  315. struct arm_pmu_platdata *plat;
  316. irq_handler_t handle_irq;
  317. int i, err = -ENODEV, irq;
  318. pmu_device = reserve_pmu(ARM_PMU_DEVICE_CPU);
  319. if (IS_ERR(pmu_device)) {
  320. pr_warning("unable to reserve pmu\n");
  321. return PTR_ERR(pmu_device);
  322. }
  323. init_pmu(ARM_PMU_DEVICE_CPU);
  324. plat = dev_get_platdata(&pmu_device->dev);
  325. if (plat && plat->handle_irq)
  326. handle_irq = armpmu_platform_irq;
  327. else
  328. handle_irq = armpmu->handle_irq;
  329. if (pmu_device->num_resources < 1) {
  330. pr_err("no irqs for PMUs defined\n");
  331. return -ENODEV;
  332. }
  333. for (i = 0; i < pmu_device->num_resources; ++i) {
  334. irq = platform_get_irq(pmu_device, i);
  335. if (irq < 0)
  336. continue;
  337. err = request_irq(irq, handle_irq,
  338. IRQF_DISABLED | IRQF_NOBALANCING,
  339. "armpmu", NULL);
  340. if (err) {
  341. pr_warning("unable to request IRQ%d for ARM perf "
  342. "counters\n", irq);
  343. break;
  344. }
  345. }
  346. if (err) {
  347. for (i = i - 1; i >= 0; --i) {
  348. irq = platform_get_irq(pmu_device, i);
  349. if (irq >= 0)
  350. free_irq(irq, NULL);
  351. }
  352. release_pmu(ARM_PMU_DEVICE_CPU);
  353. pmu_device = NULL;
  354. }
  355. return err;
  356. }
  357. static void
  358. armpmu_release_hardware(void)
  359. {
  360. int i, irq;
  361. for (i = pmu_device->num_resources - 1; i >= 0; --i) {
  362. irq = platform_get_irq(pmu_device, i);
  363. if (irq >= 0)
  364. free_irq(irq, NULL);
  365. }
  366. armpmu->stop();
  367. release_pmu(ARM_PMU_DEVICE_CPU);
  368. pmu_device = NULL;
  369. }
  370. static atomic_t active_events = ATOMIC_INIT(0);
  371. static DEFINE_MUTEX(pmu_reserve_mutex);
  372. static void
  373. hw_perf_event_destroy(struct perf_event *event)
  374. {
  375. if (atomic_dec_and_mutex_lock(&active_events, &pmu_reserve_mutex)) {
  376. armpmu_release_hardware();
  377. mutex_unlock(&pmu_reserve_mutex);
  378. }
  379. }
  380. static int
  381. __hw_perf_event_init(struct perf_event *event)
  382. {
  383. struct hw_perf_event *hwc = &event->hw;
  384. int mapping, err;
  385. /* Decode the generic type into an ARM event identifier. */
  386. if (PERF_TYPE_HARDWARE == event->attr.type) {
  387. mapping = armpmu_map_event(event->attr.config);
  388. } else if (PERF_TYPE_HW_CACHE == event->attr.type) {
  389. mapping = armpmu_map_cache_event(event->attr.config);
  390. } else if (PERF_TYPE_RAW == event->attr.type) {
  391. mapping = armpmu_map_raw_event(event->attr.config);
  392. } else {
  393. pr_debug("event type %x not supported\n", event->attr.type);
  394. return -EOPNOTSUPP;
  395. }
  396. if (mapping < 0) {
  397. pr_debug("event %x:%llx not supported\n", event->attr.type,
  398. event->attr.config);
  399. return mapping;
  400. }
  401. /*
  402. * Check whether we need to exclude the counter from certain modes.
  403. * The ARM performance counters are on all of the time so if someone
  404. * has asked us for some excludes then we have to fail.
  405. */
  406. if (event->attr.exclude_kernel || event->attr.exclude_user ||
  407. event->attr.exclude_hv || event->attr.exclude_idle) {
  408. pr_debug("ARM performance counters do not support "
  409. "mode exclusion\n");
  410. return -EPERM;
  411. }
  412. /*
  413. * We don't assign an index until we actually place the event onto
  414. * hardware. Use -1 to signify that we haven't decided where to put it
  415. * yet. For SMP systems, each core has it's own PMU so we can't do any
  416. * clever allocation or constraints checking at this point.
  417. */
  418. hwc->idx = -1;
  419. /*
  420. * Store the event encoding into the config_base field. config and
  421. * event_base are unused as the only 2 things we need to know are
  422. * the event mapping and the counter to use. The counter to use is
  423. * also the indx and the config_base is the event type.
  424. */
  425. hwc->config_base = (unsigned long)mapping;
  426. hwc->config = 0;
  427. hwc->event_base = 0;
  428. if (!hwc->sample_period) {
  429. hwc->sample_period = armpmu->max_period;
  430. hwc->last_period = hwc->sample_period;
  431. local64_set(&hwc->period_left, hwc->sample_period);
  432. }
  433. err = 0;
  434. if (event->group_leader != event) {
  435. err = validate_group(event);
  436. if (err)
  437. return -EINVAL;
  438. }
  439. return err;
  440. }
  441. static int armpmu_event_init(struct perf_event *event)
  442. {
  443. int err = 0;
  444. switch (event->attr.type) {
  445. case PERF_TYPE_RAW:
  446. case PERF_TYPE_HARDWARE:
  447. case PERF_TYPE_HW_CACHE:
  448. break;
  449. default:
  450. return -ENOENT;
  451. }
  452. if (!armpmu)
  453. return -ENODEV;
  454. event->destroy = hw_perf_event_destroy;
  455. if (!atomic_inc_not_zero(&active_events)) {
  456. mutex_lock(&pmu_reserve_mutex);
  457. if (atomic_read(&active_events) == 0) {
  458. err = armpmu_reserve_hardware();
  459. }
  460. if (!err)
  461. atomic_inc(&active_events);
  462. mutex_unlock(&pmu_reserve_mutex);
  463. }
  464. if (err)
  465. return err;
  466. err = __hw_perf_event_init(event);
  467. if (err)
  468. hw_perf_event_destroy(event);
  469. return err;
  470. }
  471. static void armpmu_enable(struct pmu *pmu)
  472. {
  473. /* Enable all of the perf events on hardware. */
  474. int idx, enabled = 0;
  475. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  476. if (!armpmu)
  477. return;
  478. for (idx = 0; idx <= armpmu->num_events; ++idx) {
  479. struct perf_event *event = cpuc->events[idx];
  480. if (!event)
  481. continue;
  482. armpmu->enable(&event->hw, idx);
  483. enabled = 1;
  484. }
  485. if (enabled)
  486. armpmu->start();
  487. }
  488. static void armpmu_disable(struct pmu *pmu)
  489. {
  490. if (armpmu)
  491. armpmu->stop();
  492. }
  493. static struct pmu pmu = {
  494. .pmu_enable = armpmu_enable,
  495. .pmu_disable = armpmu_disable,
  496. .event_init = armpmu_event_init,
  497. .add = armpmu_add,
  498. .del = armpmu_del,
  499. .start = armpmu_start,
  500. .stop = armpmu_stop,
  501. .read = armpmu_read,
  502. };
  503. /* Include the PMU-specific implementations. */
  504. #include "perf_event_xscale.c"
  505. #include "perf_event_v6.c"
  506. #include "perf_event_v7.c"
  507. /*
  508. * Ensure the PMU has sane values out of reset.
  509. * This requires SMP to be available, so exists as a separate initcall.
  510. */
  511. static int __init
  512. armpmu_reset(void)
  513. {
  514. if (armpmu && armpmu->reset)
  515. return on_each_cpu(armpmu->reset, NULL, 1);
  516. return 0;
  517. }
  518. arch_initcall(armpmu_reset);
  519. static int __init
  520. init_hw_perf_events(void)
  521. {
  522. unsigned long cpuid = read_cpuid_id();
  523. unsigned long implementor = (cpuid & 0xFF000000) >> 24;
  524. unsigned long part_number = (cpuid & 0xFFF0);
  525. /* ARM Ltd CPUs. */
  526. if (0x41 == implementor) {
  527. switch (part_number) {
  528. case 0xB360: /* ARM1136 */
  529. case 0xB560: /* ARM1156 */
  530. case 0xB760: /* ARM1176 */
  531. armpmu = armv6pmu_init();
  532. break;
  533. case 0xB020: /* ARM11mpcore */
  534. armpmu = armv6mpcore_pmu_init();
  535. break;
  536. case 0xC080: /* Cortex-A8 */
  537. armpmu = armv7_a8_pmu_init();
  538. break;
  539. case 0xC090: /* Cortex-A9 */
  540. armpmu = armv7_a9_pmu_init();
  541. break;
  542. case 0xC050: /* Cortex-A5 */
  543. armpmu = armv7_a5_pmu_init();
  544. break;
  545. case 0xC0F0: /* Cortex-A15 */
  546. armpmu = armv7_a15_pmu_init();
  547. break;
  548. }
  549. /* Intel CPUs [xscale]. */
  550. } else if (0x69 == implementor) {
  551. part_number = (cpuid >> 13) & 0x7;
  552. switch (part_number) {
  553. case 1:
  554. armpmu = xscale1pmu_init();
  555. break;
  556. case 2:
  557. armpmu = xscale2pmu_init();
  558. break;
  559. }
  560. }
  561. if (armpmu) {
  562. pr_info("enabled with %s PMU driver, %d counters available\n",
  563. armpmu->name, armpmu->num_events);
  564. } else {
  565. pr_info("no hardware support available\n");
  566. }
  567. perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
  568. return 0;
  569. }
  570. early_initcall(init_hw_perf_events);
  571. /*
  572. * Callchain handling code.
  573. */
  574. /*
  575. * The registers we're interested in are at the end of the variable
  576. * length saved register structure. The fp points at the end of this
  577. * structure so the address of this struct is:
  578. * (struct frame_tail *)(xxx->fp)-1
  579. *
  580. * This code has been adapted from the ARM OProfile support.
  581. */
  582. struct frame_tail {
  583. struct frame_tail __user *fp;
  584. unsigned long sp;
  585. unsigned long lr;
  586. } __attribute__((packed));
  587. /*
  588. * Get the return address for a single stackframe and return a pointer to the
  589. * next frame tail.
  590. */
  591. static struct frame_tail __user *
  592. user_backtrace(struct frame_tail __user *tail,
  593. struct perf_callchain_entry *entry)
  594. {
  595. struct frame_tail buftail;
  596. /* Also check accessibility of one struct frame_tail beyond */
  597. if (!access_ok(VERIFY_READ, tail, sizeof(buftail)))
  598. return NULL;
  599. if (__copy_from_user_inatomic(&buftail, tail, sizeof(buftail)))
  600. return NULL;
  601. perf_callchain_store(entry, buftail.lr);
  602. /*
  603. * Frame pointers should strictly progress back up the stack
  604. * (towards higher addresses).
  605. */
  606. if (tail + 1 >= buftail.fp)
  607. return NULL;
  608. return buftail.fp - 1;
  609. }
  610. void
  611. perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
  612. {
  613. struct frame_tail __user *tail;
  614. tail = (struct frame_tail __user *)regs->ARM_fp - 1;
  615. while ((entry->nr < PERF_MAX_STACK_DEPTH) &&
  616. tail && !((unsigned long)tail & 0x3))
  617. tail = user_backtrace(tail, entry);
  618. }
  619. /*
  620. * Gets called by walk_stackframe() for every stackframe. This will be called
  621. * whist unwinding the stackframe and is like a subroutine return so we use
  622. * the PC.
  623. */
  624. static int
  625. callchain_trace(struct stackframe *fr,
  626. void *data)
  627. {
  628. struct perf_callchain_entry *entry = data;
  629. perf_callchain_store(entry, fr->pc);
  630. return 0;
  631. }
  632. void
  633. perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
  634. {
  635. struct stackframe fr;
  636. fr.fp = regs->ARM_fp;
  637. fr.sp = regs->ARM_sp;
  638. fr.lr = regs->ARM_lr;
  639. fr.pc = regs->ARM_pc;
  640. walk_stackframe(&fr, callchain_trace, entry);
  641. }