123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120 |
- /*
- * sched_clock.h: support for extending counters to full 64-bit ns counter
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- */
- #ifndef ASM_SCHED_CLOCK
- #define ASM_SCHED_CLOCK
- #include <linux/kernel.h>
- #include <linux/types.h>
- struct clock_data {
- u64 epoch_ns;
- u32 epoch_cyc;
- u32 epoch_cyc_copy;
- u32 mult;
- u32 shift;
- };
- #define DEFINE_CLOCK_DATA(name) struct clock_data name
- static inline u64 cyc_to_ns(u64 cyc, u32 mult, u32 shift)
- {
- return (cyc * mult) >> shift;
- }
- /*
- * Atomically update the sched_clock epoch. Your update callback will
- * be called from a timer before the counter wraps - read the current
- * counter value, and call this function to safely move the epochs
- * forward. Only use this from the update callback.
- */
- static inline void update_sched_clock(struct clock_data *cd, u32 cyc, u32 mask)
- {
- unsigned long flags;
- u64 ns = cd->epoch_ns +
- cyc_to_ns((cyc - cd->epoch_cyc) & mask, cd->mult, cd->shift);
- /*
- * Write epoch_cyc and epoch_ns in a way that the update is
- * detectable in cyc_to_fixed_sched_clock().
- */
- raw_local_irq_save(flags);
- cd->epoch_cyc = cyc;
- smp_wmb();
- cd->epoch_ns = ns;
- smp_wmb();
- cd->epoch_cyc_copy = cyc;
- raw_local_irq_restore(flags);
- }
- /*
- * If your clock rate is known at compile time, using this will allow
- * you to optimize the mult/shift loads away. This is paired with
- * init_fixed_sched_clock() to ensure that your mult/shift are correct.
- */
- static inline unsigned long long cyc_to_fixed_sched_clock(struct clock_data *cd,
- u32 cyc, u32 mask, u32 mult, u32 shift)
- {
- u64 epoch_ns;
- u32 epoch_cyc;
- /*
- * Load the epoch_cyc and epoch_ns atomically. We do this by
- * ensuring that we always write epoch_cyc, epoch_ns and
- * epoch_cyc_copy in strict order, and read them in strict order.
- * If epoch_cyc and epoch_cyc_copy are not equal, then we're in
- * the middle of an update, and we should repeat the load.
- */
- do {
- epoch_cyc = cd->epoch_cyc;
- smp_rmb();
- epoch_ns = cd->epoch_ns;
- smp_rmb();
- } while (epoch_cyc != cd->epoch_cyc_copy);
- return epoch_ns + cyc_to_ns((cyc - epoch_cyc) & mask, mult, shift);
- }
- /*
- * Otherwise, you need to use this, which will obtain the mult/shift
- * from the clock_data structure. Use init_sched_clock() with this.
- */
- static inline unsigned long long cyc_to_sched_clock(struct clock_data *cd,
- u32 cyc, u32 mask)
- {
- return cyc_to_fixed_sched_clock(cd, cyc, mask, cd->mult, cd->shift);
- }
- /*
- * Initialize the clock data - calculate the appropriate multiplier
- * and shift. Also setup a timer to ensure that the epoch is refreshed
- * at the appropriate time interval, which will call your update
- * handler.
- */
- void init_sched_clock(struct clock_data *, void (*)(void),
- unsigned int, unsigned long);
- /*
- * Use this initialization function rather than init_sched_clock() if
- * you're using cyc_to_fixed_sched_clock, which will warn if your
- * constants are incorrect.
- */
- static inline void init_fixed_sched_clock(struct clock_data *cd,
- void (*update)(void), unsigned int bits, unsigned long rate,
- u32 mult, u32 shift)
- {
- init_sched_clock(cd, update, bits, rate);
- if (cd->mult != mult || cd->shift != shift) {
- pr_crit("sched_clock: wrong multiply/shift: %u>>%u vs calculated %u>>%u\n"
- "sched_clock: fix multiply/shift to avoid scheduler hiccups\n",
- mult, shift, cd->mult, cd->shift);
- }
- }
- extern void sched_clock_postinit(void);
- #endif
|