ptrace.c 9.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337
  1. /* ptrace.c */
  2. /* By Ross Biro 1/23/92 */
  3. /* edited by Linus Torvalds */
  4. /* mangled further by Bob Manson (manson@santafe.edu) */
  5. /* more mutilation by David Mosberger (davidm@azstarnet.com) */
  6. #include <linux/kernel.h>
  7. #include <linux/sched.h>
  8. #include <linux/mm.h>
  9. #include <linux/smp.h>
  10. #include <linux/errno.h>
  11. #include <linux/ptrace.h>
  12. #include <linux/user.h>
  13. #include <linux/security.h>
  14. #include <linux/signal.h>
  15. #include <asm/uaccess.h>
  16. #include <asm/pgtable.h>
  17. #include <asm/system.h>
  18. #include <asm/fpu.h>
  19. #include "proto.h"
  20. #define DEBUG DBG_MEM
  21. #undef DEBUG
  22. #ifdef DEBUG
  23. enum {
  24. DBG_MEM = (1<<0),
  25. DBG_BPT = (1<<1),
  26. DBG_MEM_ALL = (1<<2)
  27. };
  28. #define DBG(fac,args) {if ((fac) & DEBUG) printk args;}
  29. #else
  30. #define DBG(fac,args)
  31. #endif
  32. #define BREAKINST 0x00000080 /* call_pal bpt */
  33. /*
  34. * does not yet catch signals sent when the child dies.
  35. * in exit.c or in signal.c.
  36. */
  37. /*
  38. * Processes always block with the following stack-layout:
  39. *
  40. * +================================+ <---- task + 2*PAGE_SIZE
  41. * | PALcode saved frame (ps, pc, | ^
  42. * | gp, a0, a1, a2) | |
  43. * +================================+ | struct pt_regs
  44. * | | |
  45. * | frame generated by SAVE_ALL | |
  46. * | | v
  47. * +================================+
  48. * | | ^
  49. * | frame saved by do_switch_stack | | struct switch_stack
  50. * | | v
  51. * +================================+
  52. */
  53. /*
  54. * The following table maps a register index into the stack offset at
  55. * which the register is saved. Register indices are 0-31 for integer
  56. * regs, 32-63 for fp regs, and 64 for the pc. Notice that sp and
  57. * zero have no stack-slot and need to be treated specially (see
  58. * get_reg/put_reg below).
  59. */
  60. enum {
  61. REG_R0 = 0, REG_F0 = 32, REG_FPCR = 63, REG_PC = 64
  62. };
  63. #define PT_REG(reg) \
  64. (PAGE_SIZE*2 - sizeof(struct pt_regs) + offsetof(struct pt_regs, reg))
  65. #define SW_REG(reg) \
  66. (PAGE_SIZE*2 - sizeof(struct pt_regs) - sizeof(struct switch_stack) \
  67. + offsetof(struct switch_stack, reg))
  68. static int regoff[] = {
  69. PT_REG( r0), PT_REG( r1), PT_REG( r2), PT_REG( r3),
  70. PT_REG( r4), PT_REG( r5), PT_REG( r6), PT_REG( r7),
  71. PT_REG( r8), SW_REG( r9), SW_REG( r10), SW_REG( r11),
  72. SW_REG( r12), SW_REG( r13), SW_REG( r14), SW_REG( r15),
  73. PT_REG( r16), PT_REG( r17), PT_REG( r18), PT_REG( r19),
  74. PT_REG( r20), PT_REG( r21), PT_REG( r22), PT_REG( r23),
  75. PT_REG( r24), PT_REG( r25), PT_REG( r26), PT_REG( r27),
  76. PT_REG( r28), PT_REG( gp), -1, -1,
  77. SW_REG(fp[ 0]), SW_REG(fp[ 1]), SW_REG(fp[ 2]), SW_REG(fp[ 3]),
  78. SW_REG(fp[ 4]), SW_REG(fp[ 5]), SW_REG(fp[ 6]), SW_REG(fp[ 7]),
  79. SW_REG(fp[ 8]), SW_REG(fp[ 9]), SW_REG(fp[10]), SW_REG(fp[11]),
  80. SW_REG(fp[12]), SW_REG(fp[13]), SW_REG(fp[14]), SW_REG(fp[15]),
  81. SW_REG(fp[16]), SW_REG(fp[17]), SW_REG(fp[18]), SW_REG(fp[19]),
  82. SW_REG(fp[20]), SW_REG(fp[21]), SW_REG(fp[22]), SW_REG(fp[23]),
  83. SW_REG(fp[24]), SW_REG(fp[25]), SW_REG(fp[26]), SW_REG(fp[27]),
  84. SW_REG(fp[28]), SW_REG(fp[29]), SW_REG(fp[30]), SW_REG(fp[31]),
  85. PT_REG( pc)
  86. };
  87. static unsigned long zero;
  88. /*
  89. * Get address of register REGNO in task TASK.
  90. */
  91. static unsigned long *
  92. get_reg_addr(struct task_struct * task, unsigned long regno)
  93. {
  94. unsigned long *addr;
  95. if (regno == 30) {
  96. addr = &task_thread_info(task)->pcb.usp;
  97. } else if (regno == 65) {
  98. addr = &task_thread_info(task)->pcb.unique;
  99. } else if (regno == 31 || regno > 65) {
  100. zero = 0;
  101. addr = &zero;
  102. } else {
  103. addr = task_stack_page(task) + regoff[regno];
  104. }
  105. return addr;
  106. }
  107. /*
  108. * Get contents of register REGNO in task TASK.
  109. */
  110. static unsigned long
  111. get_reg(struct task_struct * task, unsigned long regno)
  112. {
  113. /* Special hack for fpcr -- combine hardware and software bits. */
  114. if (regno == 63) {
  115. unsigned long fpcr = *get_reg_addr(task, regno);
  116. unsigned long swcr
  117. = task_thread_info(task)->ieee_state & IEEE_SW_MASK;
  118. swcr = swcr_update_status(swcr, fpcr);
  119. return fpcr | swcr;
  120. }
  121. return *get_reg_addr(task, regno);
  122. }
  123. /*
  124. * Write contents of register REGNO in task TASK.
  125. */
  126. static int
  127. put_reg(struct task_struct *task, unsigned long regno, unsigned long data)
  128. {
  129. if (regno == 63) {
  130. task_thread_info(task)->ieee_state
  131. = ((task_thread_info(task)->ieee_state & ~IEEE_SW_MASK)
  132. | (data & IEEE_SW_MASK));
  133. data = (data & FPCR_DYN_MASK) | ieee_swcr_to_fpcr(data);
  134. }
  135. *get_reg_addr(task, regno) = data;
  136. return 0;
  137. }
  138. static inline int
  139. read_int(struct task_struct *task, unsigned long addr, int * data)
  140. {
  141. int copied = access_process_vm(task, addr, data, sizeof(int), 0);
  142. return (copied == sizeof(int)) ? 0 : -EIO;
  143. }
  144. static inline int
  145. write_int(struct task_struct *task, unsigned long addr, int data)
  146. {
  147. int copied = access_process_vm(task, addr, &data, sizeof(int), 1);
  148. return (copied == sizeof(int)) ? 0 : -EIO;
  149. }
  150. /*
  151. * Set breakpoint.
  152. */
  153. int
  154. ptrace_set_bpt(struct task_struct * child)
  155. {
  156. int displ, i, res, reg_b, nsaved = 0;
  157. unsigned int insn, op_code;
  158. unsigned long pc;
  159. pc = get_reg(child, REG_PC);
  160. res = read_int(child, pc, (int *) &insn);
  161. if (res < 0)
  162. return res;
  163. op_code = insn >> 26;
  164. if (op_code >= 0x30) {
  165. /*
  166. * It's a branch: instead of trying to figure out
  167. * whether the branch will be taken or not, we'll put
  168. * a breakpoint at either location. This is simpler,
  169. * more reliable, and probably not a whole lot slower
  170. * than the alternative approach of emulating the
  171. * branch (emulation can be tricky for fp branches).
  172. */
  173. displ = ((s32)(insn << 11)) >> 9;
  174. task_thread_info(child)->bpt_addr[nsaved++] = pc + 4;
  175. if (displ) /* guard against unoptimized code */
  176. task_thread_info(child)->bpt_addr[nsaved++]
  177. = pc + 4 + displ;
  178. DBG(DBG_BPT, ("execing branch\n"));
  179. } else if (op_code == 0x1a) {
  180. reg_b = (insn >> 16) & 0x1f;
  181. task_thread_info(child)->bpt_addr[nsaved++] = get_reg(child, reg_b);
  182. DBG(DBG_BPT, ("execing jump\n"));
  183. } else {
  184. task_thread_info(child)->bpt_addr[nsaved++] = pc + 4;
  185. DBG(DBG_BPT, ("execing normal insn\n"));
  186. }
  187. /* install breakpoints: */
  188. for (i = 0; i < nsaved; ++i) {
  189. res = read_int(child, task_thread_info(child)->bpt_addr[i],
  190. (int *) &insn);
  191. if (res < 0)
  192. return res;
  193. task_thread_info(child)->bpt_insn[i] = insn;
  194. DBG(DBG_BPT, (" -> next_pc=%lx\n",
  195. task_thread_info(child)->bpt_addr[i]));
  196. res = write_int(child, task_thread_info(child)->bpt_addr[i],
  197. BREAKINST);
  198. if (res < 0)
  199. return res;
  200. }
  201. task_thread_info(child)->bpt_nsaved = nsaved;
  202. return 0;
  203. }
  204. /*
  205. * Ensure no single-step breakpoint is pending. Returns non-zero
  206. * value if child was being single-stepped.
  207. */
  208. int
  209. ptrace_cancel_bpt(struct task_struct * child)
  210. {
  211. int i, nsaved = task_thread_info(child)->bpt_nsaved;
  212. task_thread_info(child)->bpt_nsaved = 0;
  213. if (nsaved > 2) {
  214. printk("ptrace_cancel_bpt: bogus nsaved: %d!\n", nsaved);
  215. nsaved = 2;
  216. }
  217. for (i = 0; i < nsaved; ++i) {
  218. write_int(child, task_thread_info(child)->bpt_addr[i],
  219. task_thread_info(child)->bpt_insn[i]);
  220. }
  221. return (nsaved != 0);
  222. }
  223. void user_enable_single_step(struct task_struct *child)
  224. {
  225. /* Mark single stepping. */
  226. task_thread_info(child)->bpt_nsaved = -1;
  227. }
  228. void user_disable_single_step(struct task_struct *child)
  229. {
  230. ptrace_cancel_bpt(child);
  231. }
  232. /*
  233. * Called by kernel/ptrace.c when detaching..
  234. *
  235. * Make sure the single step bit is not set.
  236. */
  237. void ptrace_disable(struct task_struct *child)
  238. {
  239. user_disable_single_step(child);
  240. }
  241. long arch_ptrace(struct task_struct *child, long request,
  242. unsigned long addr, unsigned long data)
  243. {
  244. unsigned long tmp;
  245. size_t copied;
  246. long ret;
  247. switch (request) {
  248. /* When I and D space are separate, these will need to be fixed. */
  249. case PTRACE_PEEKTEXT: /* read word at location addr. */
  250. case PTRACE_PEEKDATA:
  251. copied = access_process_vm(child, addr, &tmp, sizeof(tmp), 0);
  252. ret = -EIO;
  253. if (copied != sizeof(tmp))
  254. break;
  255. force_successful_syscall_return();
  256. ret = tmp;
  257. break;
  258. /* Read register number ADDR. */
  259. case PTRACE_PEEKUSR:
  260. force_successful_syscall_return();
  261. ret = get_reg(child, addr);
  262. DBG(DBG_MEM, ("peek $%lu->%#lx\n", addr, ret));
  263. break;
  264. /* When I and D space are separate, this will have to be fixed. */
  265. case PTRACE_POKETEXT: /* write the word at location addr. */
  266. case PTRACE_POKEDATA:
  267. ret = generic_ptrace_pokedata(child, addr, data);
  268. break;
  269. case PTRACE_POKEUSR: /* write the specified register */
  270. DBG(DBG_MEM, ("poke $%lu<-%#lx\n", addr, data));
  271. ret = put_reg(child, addr, data);
  272. break;
  273. default:
  274. ret = ptrace_request(child, request, addr, data);
  275. break;
  276. }
  277. return ret;
  278. }
  279. asmlinkage void
  280. syscall_trace(void)
  281. {
  282. if (!test_thread_flag(TIF_SYSCALL_TRACE))
  283. return;
  284. if (!(current->ptrace & PT_PTRACED))
  285. return;
  286. /* The 0x80 provides a way for the tracing parent to distinguish
  287. between a syscall stop and SIGTRAP delivery */
  288. ptrace_notify(SIGTRAP | ((current->ptrace & PT_TRACESYSGOOD)
  289. ? 0x80 : 0));
  290. /*
  291. * This isn't the same as continuing with a signal, but it will do
  292. * for normal use. strace only continues with a signal if the
  293. * stopping signal is not SIGTRAP. -brl
  294. */
  295. if (current->exit_code) {
  296. send_sig(current->exit_code, current, 1);
  297. current->exit_code = 0;
  298. }
  299. }