m25p80.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780
  1. /*
  2. * MTD SPI driver for ST M25Pxx (and similar) serial flash chips
  3. *
  4. * Author: Mike Lavender, mike@steroidmicros.com
  5. *
  6. * Copyright (c) 2005, Intec Automation Inc.
  7. *
  8. * Some parts are based on lart.c by Abraham Van Der Merwe
  9. *
  10. * Cleaned up and generalized based on mtd_dataflash.c
  11. *
  12. * This code is free software; you can redistribute it and/or modify
  13. * it under the terms of the GNU General Public License version 2 as
  14. * published by the Free Software Foundation.
  15. *
  16. */
  17. #include <linux/init.h>
  18. #include <linux/module.h>
  19. #include <linux/device.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/mutex.h>
  22. #include <linux/mtd/mtd.h>
  23. #include <linux/mtd/partitions.h>
  24. #include <linux/spi/spi.h>
  25. #include <linux/spi/flash.h>
  26. #define FLASH_PAGESIZE 256
  27. /* Flash opcodes. */
  28. #define OPCODE_WREN 0x06 /* Write enable */
  29. #define OPCODE_RDSR 0x05 /* Read status register */
  30. #define OPCODE_WRSR 0x01 /* Write status register 1 byte */
  31. #define OPCODE_NORM_READ 0x03 /* Read data bytes (low frequency) */
  32. #define OPCODE_FAST_READ 0x0b /* Read data bytes (high frequency) */
  33. #define OPCODE_PP 0x02 /* Page program (up to 256 bytes) */
  34. #define OPCODE_BE_4K 0x20 /* Erase 4KiB block */
  35. #define OPCODE_BE_32K 0x52 /* Erase 32KiB block */
  36. #define OPCODE_BE 0xc7 /* Erase whole flash block */
  37. #define OPCODE_SE 0xd8 /* Sector erase (usually 64KiB) */
  38. #define OPCODE_RDID 0x9f /* Read JEDEC ID */
  39. /* Status Register bits. */
  40. #define SR_WIP 1 /* Write in progress */
  41. #define SR_WEL 2 /* Write enable latch */
  42. /* meaning of other SR_* bits may differ between vendors */
  43. #define SR_BP0 4 /* Block protect 0 */
  44. #define SR_BP1 8 /* Block protect 1 */
  45. #define SR_BP2 0x10 /* Block protect 2 */
  46. #define SR_SRWD 0x80 /* SR write protect */
  47. /* Define max times to check status register before we give up. */
  48. #define MAX_READY_WAIT_COUNT 100000
  49. #define CMD_SIZE 4
  50. #ifdef CONFIG_M25PXX_USE_FAST_READ
  51. #define OPCODE_READ OPCODE_FAST_READ
  52. #define FAST_READ_DUMMY_BYTE 1
  53. #else
  54. #define OPCODE_READ OPCODE_NORM_READ
  55. #define FAST_READ_DUMMY_BYTE 0
  56. #endif
  57. #ifdef CONFIG_MTD_PARTITIONS
  58. #define mtd_has_partitions() (1)
  59. #else
  60. #define mtd_has_partitions() (0)
  61. #endif
  62. /****************************************************************************/
  63. struct m25p {
  64. struct spi_device *spi;
  65. struct mutex lock;
  66. struct mtd_info mtd;
  67. unsigned partitioned:1;
  68. u8 erase_opcode;
  69. u8 command[CMD_SIZE + FAST_READ_DUMMY_BYTE];
  70. };
  71. static inline struct m25p *mtd_to_m25p(struct mtd_info *mtd)
  72. {
  73. return container_of(mtd, struct m25p, mtd);
  74. }
  75. /****************************************************************************/
  76. /*
  77. * Internal helper functions
  78. */
  79. /*
  80. * Read the status register, returning its value in the location
  81. * Return the status register value.
  82. * Returns negative if error occurred.
  83. */
  84. static int read_sr(struct m25p *flash)
  85. {
  86. ssize_t retval;
  87. u8 code = OPCODE_RDSR;
  88. u8 val;
  89. retval = spi_write_then_read(flash->spi, &code, 1, &val, 1);
  90. if (retval < 0) {
  91. dev_err(&flash->spi->dev, "error %d reading SR\n",
  92. (int) retval);
  93. return retval;
  94. }
  95. return val;
  96. }
  97. /*
  98. * Write status register 1 byte
  99. * Returns negative if error occurred.
  100. */
  101. static int write_sr(struct m25p *flash, u8 val)
  102. {
  103. flash->command[0] = OPCODE_WRSR;
  104. flash->command[1] = val;
  105. return spi_write(flash->spi, flash->command, 2);
  106. }
  107. /*
  108. * Set write enable latch with Write Enable command.
  109. * Returns negative if error occurred.
  110. */
  111. static inline int write_enable(struct m25p *flash)
  112. {
  113. u8 code = OPCODE_WREN;
  114. return spi_write(flash->spi, &code, 1);
  115. }
  116. /*
  117. * Service routine to read status register until ready, or timeout occurs.
  118. * Returns non-zero if error.
  119. */
  120. static int wait_till_ready(struct m25p *flash)
  121. {
  122. int count;
  123. int sr;
  124. /* one chip guarantees max 5 msec wait here after page writes,
  125. * but potentially three seconds (!) after page erase.
  126. */
  127. for (count = 0; count < MAX_READY_WAIT_COUNT; count++) {
  128. if ((sr = read_sr(flash)) < 0)
  129. break;
  130. else if (!(sr & SR_WIP))
  131. return 0;
  132. /* REVISIT sometimes sleeping would be best */
  133. }
  134. return 1;
  135. }
  136. /*
  137. * Erase the whole flash memory
  138. *
  139. * Returns 0 if successful, non-zero otherwise.
  140. */
  141. static int erase_block(struct m25p *flash)
  142. {
  143. DEBUG(MTD_DEBUG_LEVEL3, "%s: %s %dKiB\n",
  144. flash->spi->dev.bus_id, __func__,
  145. flash->mtd.size / 1024);
  146. /* Wait until finished previous write command. */
  147. if (wait_till_ready(flash))
  148. return 1;
  149. /* Send write enable, then erase commands. */
  150. write_enable(flash);
  151. /* Set up command buffer. */
  152. flash->command[0] = OPCODE_BE;
  153. spi_write(flash->spi, flash->command, 1);
  154. return 0;
  155. }
  156. /*
  157. * Erase one sector of flash memory at offset ``offset'' which is any
  158. * address within the sector which should be erased.
  159. *
  160. * Returns 0 if successful, non-zero otherwise.
  161. */
  162. static int erase_sector(struct m25p *flash, u32 offset)
  163. {
  164. DEBUG(MTD_DEBUG_LEVEL3, "%s: %s %dKiB at 0x%08x\n",
  165. flash->spi->dev.bus_id, __func__,
  166. flash->mtd.erasesize / 1024, offset);
  167. /* Wait until finished previous write command. */
  168. if (wait_till_ready(flash))
  169. return 1;
  170. /* Send write enable, then erase commands. */
  171. write_enable(flash);
  172. /* Set up command buffer. */
  173. flash->command[0] = flash->erase_opcode;
  174. flash->command[1] = offset >> 16;
  175. flash->command[2] = offset >> 8;
  176. flash->command[3] = offset;
  177. spi_write(flash->spi, flash->command, CMD_SIZE);
  178. return 0;
  179. }
  180. /****************************************************************************/
  181. /*
  182. * MTD implementation
  183. */
  184. /*
  185. * Erase an address range on the flash chip. The address range may extend
  186. * one or more erase sectors. Return an error is there is a problem erasing.
  187. */
  188. static int m25p80_erase(struct mtd_info *mtd, struct erase_info *instr)
  189. {
  190. struct m25p *flash = mtd_to_m25p(mtd);
  191. u32 addr,len;
  192. DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %d\n",
  193. flash->spi->dev.bus_id, __func__, "at",
  194. (u32)instr->addr, instr->len);
  195. /* sanity checks */
  196. if (instr->addr + instr->len > flash->mtd.size)
  197. return -EINVAL;
  198. if ((instr->addr % mtd->erasesize) != 0
  199. || (instr->len % mtd->erasesize) != 0) {
  200. return -EINVAL;
  201. }
  202. addr = instr->addr;
  203. len = instr->len;
  204. mutex_lock(&flash->lock);
  205. /* REVISIT in some cases we could speed up erasing large regions
  206. * by using OPCODE_SE instead of OPCODE_BE_4K
  207. */
  208. /* now erase those sectors */
  209. if (len == flash->mtd.size && erase_block(flash)) {
  210. instr->state = MTD_ERASE_FAILED;
  211. mutex_unlock(&flash->lock);
  212. return -EIO;
  213. } else {
  214. while (len) {
  215. if (erase_sector(flash, addr)) {
  216. instr->state = MTD_ERASE_FAILED;
  217. mutex_unlock(&flash->lock);
  218. return -EIO;
  219. }
  220. addr += mtd->erasesize;
  221. len -= mtd->erasesize;
  222. }
  223. }
  224. mutex_unlock(&flash->lock);
  225. instr->state = MTD_ERASE_DONE;
  226. mtd_erase_callback(instr);
  227. return 0;
  228. }
  229. /*
  230. * Read an address range from the flash chip. The address range
  231. * may be any size provided it is within the physical boundaries.
  232. */
  233. static int m25p80_read(struct mtd_info *mtd, loff_t from, size_t len,
  234. size_t *retlen, u_char *buf)
  235. {
  236. struct m25p *flash = mtd_to_m25p(mtd);
  237. struct spi_transfer t[2];
  238. struct spi_message m;
  239. DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %zd\n",
  240. flash->spi->dev.bus_id, __func__, "from",
  241. (u32)from, len);
  242. /* sanity checks */
  243. if (!len)
  244. return 0;
  245. if (from + len > flash->mtd.size)
  246. return -EINVAL;
  247. spi_message_init(&m);
  248. memset(t, 0, (sizeof t));
  249. /* NOTE:
  250. * OPCODE_FAST_READ (if available) is faster.
  251. * Should add 1 byte DUMMY_BYTE.
  252. */
  253. t[0].tx_buf = flash->command;
  254. t[0].len = CMD_SIZE + FAST_READ_DUMMY_BYTE;
  255. spi_message_add_tail(&t[0], &m);
  256. t[1].rx_buf = buf;
  257. t[1].len = len;
  258. spi_message_add_tail(&t[1], &m);
  259. /* Byte count starts at zero. */
  260. if (retlen)
  261. *retlen = 0;
  262. mutex_lock(&flash->lock);
  263. /* Wait till previous write/erase is done. */
  264. if (wait_till_ready(flash)) {
  265. /* REVISIT status return?? */
  266. mutex_unlock(&flash->lock);
  267. return 1;
  268. }
  269. /* FIXME switch to OPCODE_FAST_READ. It's required for higher
  270. * clocks; and at this writing, every chip this driver handles
  271. * supports that opcode.
  272. */
  273. /* Set up the write data buffer. */
  274. flash->command[0] = OPCODE_READ;
  275. flash->command[1] = from >> 16;
  276. flash->command[2] = from >> 8;
  277. flash->command[3] = from;
  278. spi_sync(flash->spi, &m);
  279. *retlen = m.actual_length - CMD_SIZE - FAST_READ_DUMMY_BYTE;
  280. mutex_unlock(&flash->lock);
  281. return 0;
  282. }
  283. /*
  284. * Write an address range to the flash chip. Data must be written in
  285. * FLASH_PAGESIZE chunks. The address range may be any size provided
  286. * it is within the physical boundaries.
  287. */
  288. static int m25p80_write(struct mtd_info *mtd, loff_t to, size_t len,
  289. size_t *retlen, const u_char *buf)
  290. {
  291. struct m25p *flash = mtd_to_m25p(mtd);
  292. u32 page_offset, page_size;
  293. struct spi_transfer t[2];
  294. struct spi_message m;
  295. DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %zd\n",
  296. flash->spi->dev.bus_id, __func__, "to",
  297. (u32)to, len);
  298. if (retlen)
  299. *retlen = 0;
  300. /* sanity checks */
  301. if (!len)
  302. return(0);
  303. if (to + len > flash->mtd.size)
  304. return -EINVAL;
  305. spi_message_init(&m);
  306. memset(t, 0, (sizeof t));
  307. t[0].tx_buf = flash->command;
  308. t[0].len = CMD_SIZE;
  309. spi_message_add_tail(&t[0], &m);
  310. t[1].tx_buf = buf;
  311. spi_message_add_tail(&t[1], &m);
  312. mutex_lock(&flash->lock);
  313. /* Wait until finished previous write command. */
  314. if (wait_till_ready(flash)) {
  315. mutex_unlock(&flash->lock);
  316. return 1;
  317. }
  318. write_enable(flash);
  319. /* Set up the opcode in the write buffer. */
  320. flash->command[0] = OPCODE_PP;
  321. flash->command[1] = to >> 16;
  322. flash->command[2] = to >> 8;
  323. flash->command[3] = to;
  324. /* what page do we start with? */
  325. page_offset = to % FLASH_PAGESIZE;
  326. /* do all the bytes fit onto one page? */
  327. if (page_offset + len <= FLASH_PAGESIZE) {
  328. t[1].len = len;
  329. spi_sync(flash->spi, &m);
  330. *retlen = m.actual_length - CMD_SIZE;
  331. } else {
  332. u32 i;
  333. /* the size of data remaining on the first page */
  334. page_size = FLASH_PAGESIZE - page_offset;
  335. t[1].len = page_size;
  336. spi_sync(flash->spi, &m);
  337. *retlen = m.actual_length - CMD_SIZE;
  338. /* write everything in PAGESIZE chunks */
  339. for (i = page_size; i < len; i += page_size) {
  340. page_size = len - i;
  341. if (page_size > FLASH_PAGESIZE)
  342. page_size = FLASH_PAGESIZE;
  343. /* write the next page to flash */
  344. flash->command[1] = (to + i) >> 16;
  345. flash->command[2] = (to + i) >> 8;
  346. flash->command[3] = (to + i);
  347. t[1].tx_buf = buf + i;
  348. t[1].len = page_size;
  349. wait_till_ready(flash);
  350. write_enable(flash);
  351. spi_sync(flash->spi, &m);
  352. if (retlen)
  353. *retlen += m.actual_length - CMD_SIZE;
  354. }
  355. }
  356. mutex_unlock(&flash->lock);
  357. return 0;
  358. }
  359. /****************************************************************************/
  360. /*
  361. * SPI device driver setup and teardown
  362. */
  363. struct flash_info {
  364. char *name;
  365. /* JEDEC id zero means "no ID" (most older chips); otherwise it has
  366. * a high byte of zero plus three data bytes: the manufacturer id,
  367. * then a two byte device id.
  368. */
  369. u32 jedec_id;
  370. /* The size listed here is what works with OPCODE_SE, which isn't
  371. * necessarily called a "sector" by the vendor.
  372. */
  373. unsigned sector_size;
  374. u16 n_sectors;
  375. u16 flags;
  376. #define SECT_4K 0x01 /* OPCODE_BE_4K works uniformly */
  377. };
  378. /* NOTE: double check command sets and memory organization when you add
  379. * more flash chips. This current list focusses on newer chips, which
  380. * have been converging on command sets which including JEDEC ID.
  381. */
  382. static struct flash_info __devinitdata m25p_data [] = {
  383. /* Atmel -- some are (confusingly) marketed as "DataFlash" */
  384. { "at25fs010", 0x1f6601, 32 * 1024, 4, SECT_4K, },
  385. { "at25fs040", 0x1f6604, 64 * 1024, 8, SECT_4K, },
  386. { "at25df041a", 0x1f4401, 64 * 1024, 8, SECT_4K, },
  387. { "at25df641", 0x1f4800, 64 * 1024, 128, SECT_4K, },
  388. { "at26f004", 0x1f0400, 64 * 1024, 8, SECT_4K, },
  389. { "at26df081a", 0x1f4501, 64 * 1024, 16, SECT_4K, },
  390. { "at26df161a", 0x1f4601, 64 * 1024, 32, SECT_4K, },
  391. { "at26df321", 0x1f4701, 64 * 1024, 64, SECT_4K, },
  392. /* Spansion -- single (large) sector size only, at least
  393. * for the chips listed here (without boot sectors).
  394. */
  395. { "s25sl004a", 0x010212, 64 * 1024, 8, },
  396. { "s25sl008a", 0x010213, 64 * 1024, 16, },
  397. { "s25sl016a", 0x010214, 64 * 1024, 32, },
  398. { "s25sl032a", 0x010215, 64 * 1024, 64, },
  399. { "s25sl064a", 0x010216, 64 * 1024, 128, },
  400. /* SST -- large erase sizes are "overlays", "sectors" are 4K */
  401. { "sst25vf040b", 0xbf258d, 64 * 1024, 8, SECT_4K, },
  402. { "sst25vf080b", 0xbf258e, 64 * 1024, 16, SECT_4K, },
  403. { "sst25vf016b", 0xbf2541, 64 * 1024, 32, SECT_4K, },
  404. { "sst25vf032b", 0xbf254a, 64 * 1024, 64, SECT_4K, },
  405. /* ST Microelectronics -- newer production may have feature updates */
  406. { "m25p05", 0x202010, 32 * 1024, 2, },
  407. { "m25p10", 0x202011, 32 * 1024, 4, },
  408. { "m25p20", 0x202012, 64 * 1024, 4, },
  409. { "m25p40", 0x202013, 64 * 1024, 8, },
  410. { "m25p80", 0, 64 * 1024, 16, },
  411. { "m25p16", 0x202015, 64 * 1024, 32, },
  412. { "m25p32", 0x202016, 64 * 1024, 64, },
  413. { "m25p64", 0x202017, 64 * 1024, 128, },
  414. { "m25p128", 0x202018, 256 * 1024, 64, },
  415. { "m45pe80", 0x204014, 64 * 1024, 16, },
  416. { "m45pe16", 0x204015, 64 * 1024, 32, },
  417. { "m25pe80", 0x208014, 64 * 1024, 16, },
  418. { "m25pe16", 0x208015, 64 * 1024, 32, SECT_4K, },
  419. /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
  420. { "w25x10", 0xef3011, 64 * 1024, 2, SECT_4K, },
  421. { "w25x20", 0xef3012, 64 * 1024, 4, SECT_4K, },
  422. { "w25x40", 0xef3013, 64 * 1024, 8, SECT_4K, },
  423. { "w25x80", 0xef3014, 64 * 1024, 16, SECT_4K, },
  424. { "w25x16", 0xef3015, 64 * 1024, 32, SECT_4K, },
  425. { "w25x32", 0xef3016, 64 * 1024, 64, SECT_4K, },
  426. { "w25x64", 0xef3017, 64 * 1024, 128, SECT_4K, },
  427. };
  428. static struct flash_info *__devinit jedec_probe(struct spi_device *spi)
  429. {
  430. int tmp;
  431. u8 code = OPCODE_RDID;
  432. u8 id[3];
  433. u32 jedec;
  434. struct flash_info *info;
  435. /* JEDEC also defines an optional "extended device information"
  436. * string for after vendor-specific data, after the three bytes
  437. * we use here. Supporting some chips might require using it.
  438. */
  439. tmp = spi_write_then_read(spi, &code, 1, id, 3);
  440. if (tmp < 0) {
  441. DEBUG(MTD_DEBUG_LEVEL0, "%s: error %d reading JEDEC ID\n",
  442. spi->dev.bus_id, tmp);
  443. return NULL;
  444. }
  445. jedec = id[0];
  446. jedec = jedec << 8;
  447. jedec |= id[1];
  448. jedec = jedec << 8;
  449. jedec |= id[2];
  450. for (tmp = 0, info = m25p_data;
  451. tmp < ARRAY_SIZE(m25p_data);
  452. tmp++, info++) {
  453. if (info->jedec_id == jedec)
  454. return info;
  455. }
  456. dev_err(&spi->dev, "unrecognized JEDEC id %06x\n", jedec);
  457. return NULL;
  458. }
  459. /*
  460. * board specific setup should have ensured the SPI clock used here
  461. * matches what the READ command supports, at least until this driver
  462. * understands FAST_READ (for clocks over 25 MHz).
  463. */
  464. static int __devinit m25p_probe(struct spi_device *spi)
  465. {
  466. struct flash_platform_data *data;
  467. struct m25p *flash;
  468. struct flash_info *info;
  469. unsigned i;
  470. /* Platform data helps sort out which chip type we have, as
  471. * well as how this board partitions it. If we don't have
  472. * a chip ID, try the JEDEC id commands; they'll work for most
  473. * newer chips, even if we don't recognize the particular chip.
  474. */
  475. data = spi->dev.platform_data;
  476. if (data && data->type) {
  477. for (i = 0, info = m25p_data;
  478. i < ARRAY_SIZE(m25p_data);
  479. i++, info++) {
  480. if (strcmp(data->type, info->name) == 0)
  481. break;
  482. }
  483. /* unrecognized chip? */
  484. if (i == ARRAY_SIZE(m25p_data)) {
  485. DEBUG(MTD_DEBUG_LEVEL0, "%s: unrecognized id %s\n",
  486. spi->dev.bus_id, data->type);
  487. info = NULL;
  488. /* recognized; is that chip really what's there? */
  489. } else if (info->jedec_id) {
  490. struct flash_info *chip = jedec_probe(spi);
  491. if (!chip || chip != info) {
  492. dev_warn(&spi->dev, "found %s, expected %s\n",
  493. chip ? chip->name : "UNKNOWN",
  494. info->name);
  495. info = NULL;
  496. }
  497. }
  498. } else
  499. info = jedec_probe(spi);
  500. if (!info)
  501. return -ENODEV;
  502. flash = kzalloc(sizeof *flash, GFP_KERNEL);
  503. if (!flash)
  504. return -ENOMEM;
  505. flash->spi = spi;
  506. mutex_init(&flash->lock);
  507. dev_set_drvdata(&spi->dev, flash);
  508. /*
  509. * Atmel serial flash tend to power up
  510. * with the software protection bits set
  511. */
  512. if (info->jedec_id >> 16 == 0x1f) {
  513. write_enable(flash);
  514. write_sr(flash, 0);
  515. }
  516. if (data && data->name)
  517. flash->mtd.name = data->name;
  518. else
  519. flash->mtd.name = spi->dev.bus_id;
  520. flash->mtd.type = MTD_NORFLASH;
  521. flash->mtd.writesize = 1;
  522. flash->mtd.flags = MTD_CAP_NORFLASH;
  523. flash->mtd.size = info->sector_size * info->n_sectors;
  524. flash->mtd.erase = m25p80_erase;
  525. flash->mtd.read = m25p80_read;
  526. flash->mtd.write = m25p80_write;
  527. /* prefer "small sector" erase if possible */
  528. if (info->flags & SECT_4K) {
  529. flash->erase_opcode = OPCODE_BE_4K;
  530. flash->mtd.erasesize = 4096;
  531. } else {
  532. flash->erase_opcode = OPCODE_SE;
  533. flash->mtd.erasesize = info->sector_size;
  534. }
  535. dev_info(&spi->dev, "%s (%d Kbytes)\n", info->name,
  536. flash->mtd.size / 1024);
  537. DEBUG(MTD_DEBUG_LEVEL2,
  538. "mtd .name = %s, .size = 0x%.8x (%uMiB) "
  539. ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
  540. flash->mtd.name,
  541. flash->mtd.size, flash->mtd.size / (1024*1024),
  542. flash->mtd.erasesize, flash->mtd.erasesize / 1024,
  543. flash->mtd.numeraseregions);
  544. if (flash->mtd.numeraseregions)
  545. for (i = 0; i < flash->mtd.numeraseregions; i++)
  546. DEBUG(MTD_DEBUG_LEVEL2,
  547. "mtd.eraseregions[%d] = { .offset = 0x%.8x, "
  548. ".erasesize = 0x%.8x (%uKiB), "
  549. ".numblocks = %d }\n",
  550. i, flash->mtd.eraseregions[i].offset,
  551. flash->mtd.eraseregions[i].erasesize,
  552. flash->mtd.eraseregions[i].erasesize / 1024,
  553. flash->mtd.eraseregions[i].numblocks);
  554. /* partitions should match sector boundaries; and it may be good to
  555. * use readonly partitions for writeprotected sectors (BP2..BP0).
  556. */
  557. if (mtd_has_partitions()) {
  558. struct mtd_partition *parts = NULL;
  559. int nr_parts = 0;
  560. #ifdef CONFIG_MTD_CMDLINE_PARTS
  561. static const char *part_probes[] = { "cmdlinepart", NULL, };
  562. nr_parts = parse_mtd_partitions(&flash->mtd,
  563. part_probes, &parts, 0);
  564. #endif
  565. if (nr_parts <= 0 && data && data->parts) {
  566. parts = data->parts;
  567. nr_parts = data->nr_parts;
  568. }
  569. if (nr_parts > 0) {
  570. for (i = 0; i < nr_parts; i++) {
  571. DEBUG(MTD_DEBUG_LEVEL2, "partitions[%d] = "
  572. "{.name = %s, .offset = 0x%.8x, "
  573. ".size = 0x%.8x (%uKiB) }\n",
  574. i, parts[i].name,
  575. parts[i].offset,
  576. parts[i].size,
  577. parts[i].size / 1024);
  578. }
  579. flash->partitioned = 1;
  580. return add_mtd_partitions(&flash->mtd, parts, nr_parts);
  581. }
  582. } else if (data->nr_parts)
  583. dev_warn(&spi->dev, "ignoring %d default partitions on %s\n",
  584. data->nr_parts, data->name);
  585. return add_mtd_device(&flash->mtd) == 1 ? -ENODEV : 0;
  586. }
  587. static int __devexit m25p_remove(struct spi_device *spi)
  588. {
  589. struct m25p *flash = dev_get_drvdata(&spi->dev);
  590. int status;
  591. /* Clean up MTD stuff. */
  592. if (mtd_has_partitions() && flash->partitioned)
  593. status = del_mtd_partitions(&flash->mtd);
  594. else
  595. status = del_mtd_device(&flash->mtd);
  596. if (status == 0)
  597. kfree(flash);
  598. return 0;
  599. }
  600. static struct spi_driver m25p80_driver = {
  601. .driver = {
  602. .name = "m25p80",
  603. .bus = &spi_bus_type,
  604. .owner = THIS_MODULE,
  605. },
  606. .probe = m25p_probe,
  607. .remove = __devexit_p(m25p_remove),
  608. /* REVISIT: many of these chips have deep power-down modes, which
  609. * should clearly be entered on suspend() to minimize power use.
  610. * And also when they're otherwise idle...
  611. */
  612. };
  613. static int m25p80_init(void)
  614. {
  615. return spi_register_driver(&m25p80_driver);
  616. }
  617. static void m25p80_exit(void)
  618. {
  619. spi_unregister_driver(&m25p80_driver);
  620. }
  621. module_init(m25p80_init);
  622. module_exit(m25p80_exit);
  623. MODULE_LICENSE("GPL");
  624. MODULE_AUTHOR("Mike Lavender");
  625. MODULE_DESCRIPTION("MTD SPI driver for ST M25Pxx flash chips");