slub.c 88 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799
  1. /*
  2. * SLUB: A slab allocator that limits cache line use instead of queuing
  3. * objects in per cpu and per node lists.
  4. *
  5. * The allocator synchronizes using per slab locks and only
  6. * uses a centralized lock to manage a pool of partial slabs.
  7. *
  8. * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
  9. */
  10. #include <linux/mm.h>
  11. #include <linux/module.h>
  12. #include <linux/bit_spinlock.h>
  13. #include <linux/interrupt.h>
  14. #include <linux/bitops.h>
  15. #include <linux/slab.h>
  16. #include <linux/seq_file.h>
  17. #include <linux/cpu.h>
  18. #include <linux/cpuset.h>
  19. #include <linux/mempolicy.h>
  20. #include <linux/ctype.h>
  21. #include <linux/kallsyms.h>
  22. /*
  23. * Lock order:
  24. * 1. slab_lock(page)
  25. * 2. slab->list_lock
  26. *
  27. * The slab_lock protects operations on the object of a particular
  28. * slab and its metadata in the page struct. If the slab lock
  29. * has been taken then no allocations nor frees can be performed
  30. * on the objects in the slab nor can the slab be added or removed
  31. * from the partial or full lists since this would mean modifying
  32. * the page_struct of the slab.
  33. *
  34. * The list_lock protects the partial and full list on each node and
  35. * the partial slab counter. If taken then no new slabs may be added or
  36. * removed from the lists nor make the number of partial slabs be modified.
  37. * (Note that the total number of slabs is an atomic value that may be
  38. * modified without taking the list lock).
  39. *
  40. * The list_lock is a centralized lock and thus we avoid taking it as
  41. * much as possible. As long as SLUB does not have to handle partial
  42. * slabs, operations can continue without any centralized lock. F.e.
  43. * allocating a long series of objects that fill up slabs does not require
  44. * the list lock.
  45. *
  46. * The lock order is sometimes inverted when we are trying to get a slab
  47. * off a list. We take the list_lock and then look for a page on the list
  48. * to use. While we do that objects in the slabs may be freed. We can
  49. * only operate on the slab if we have also taken the slab_lock. So we use
  50. * a slab_trylock() on the slab. If trylock was successful then no frees
  51. * can occur anymore and we can use the slab for allocations etc. If the
  52. * slab_trylock() does not succeed then frees are in progress in the slab and
  53. * we must stay away from it for a while since we may cause a bouncing
  54. * cacheline if we try to acquire the lock. So go onto the next slab.
  55. * If all pages are busy then we may allocate a new slab instead of reusing
  56. * a partial slab. A new slab has noone operating on it and thus there is
  57. * no danger of cacheline contention.
  58. *
  59. * Interrupts are disabled during allocation and deallocation in order to
  60. * make the slab allocator safe to use in the context of an irq. In addition
  61. * interrupts are disabled to ensure that the processor does not change
  62. * while handling per_cpu slabs, due to kernel preemption.
  63. *
  64. * SLUB assigns one slab for allocation to each processor.
  65. * Allocations only occur from these slabs called cpu slabs.
  66. *
  67. * Slabs with free elements are kept on a partial list and during regular
  68. * operations no list for full slabs is used. If an object in a full slab is
  69. * freed then the slab will show up again on the partial lists.
  70. * We track full slabs for debugging purposes though because otherwise we
  71. * cannot scan all objects.
  72. *
  73. * Slabs are freed when they become empty. Teardown and setup is
  74. * minimal so we rely on the page allocators per cpu caches for
  75. * fast frees and allocs.
  76. *
  77. * Overloading of page flags that are otherwise used for LRU management.
  78. *
  79. * PageActive The slab is frozen and exempt from list processing.
  80. * This means that the slab is dedicated to a purpose
  81. * such as satisfying allocations for a specific
  82. * processor. Objects may be freed in the slab while
  83. * it is frozen but slab_free will then skip the usual
  84. * list operations. It is up to the processor holding
  85. * the slab to integrate the slab into the slab lists
  86. * when the slab is no longer needed.
  87. *
  88. * One use of this flag is to mark slabs that are
  89. * used for allocations. Then such a slab becomes a cpu
  90. * slab. The cpu slab may be equipped with an additional
  91. * lockless_freelist that allows lockless access to
  92. * free objects in addition to the regular freelist
  93. * that requires the slab lock.
  94. *
  95. * PageError Slab requires special handling due to debug
  96. * options set. This moves slab handling out of
  97. * the fast path and disables lockless freelists.
  98. */
  99. #define FROZEN (1 << PG_active)
  100. #ifdef CONFIG_SLUB_DEBUG
  101. #define SLABDEBUG (1 << PG_error)
  102. #else
  103. #define SLABDEBUG 0
  104. #endif
  105. static inline int SlabFrozen(struct page *page)
  106. {
  107. return page->flags & FROZEN;
  108. }
  109. static inline void SetSlabFrozen(struct page *page)
  110. {
  111. page->flags |= FROZEN;
  112. }
  113. static inline void ClearSlabFrozen(struct page *page)
  114. {
  115. page->flags &= ~FROZEN;
  116. }
  117. static inline int SlabDebug(struct page *page)
  118. {
  119. return page->flags & SLABDEBUG;
  120. }
  121. static inline void SetSlabDebug(struct page *page)
  122. {
  123. page->flags |= SLABDEBUG;
  124. }
  125. static inline void ClearSlabDebug(struct page *page)
  126. {
  127. page->flags &= ~SLABDEBUG;
  128. }
  129. /*
  130. * Issues still to be resolved:
  131. *
  132. * - The per cpu array is updated for each new slab and and is a remote
  133. * cacheline for most nodes. This could become a bouncing cacheline given
  134. * enough frequent updates. There are 16 pointers in a cacheline, so at
  135. * max 16 cpus could compete for the cacheline which may be okay.
  136. *
  137. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  138. *
  139. * - Variable sizing of the per node arrays
  140. */
  141. /* Enable to test recovery from slab corruption on boot */
  142. #undef SLUB_RESILIENCY_TEST
  143. #if PAGE_SHIFT <= 12
  144. /*
  145. * Small page size. Make sure that we do not fragment memory
  146. */
  147. #define DEFAULT_MAX_ORDER 1
  148. #define DEFAULT_MIN_OBJECTS 4
  149. #else
  150. /*
  151. * Large page machines are customarily able to handle larger
  152. * page orders.
  153. */
  154. #define DEFAULT_MAX_ORDER 2
  155. #define DEFAULT_MIN_OBJECTS 8
  156. #endif
  157. /*
  158. * Mininum number of partial slabs. These will be left on the partial
  159. * lists even if they are empty. kmem_cache_shrink may reclaim them.
  160. */
  161. #define MIN_PARTIAL 2
  162. /*
  163. * Maximum number of desirable partial slabs.
  164. * The existence of more partial slabs makes kmem_cache_shrink
  165. * sort the partial list by the number of objects in the.
  166. */
  167. #define MAX_PARTIAL 10
  168. #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
  169. SLAB_POISON | SLAB_STORE_USER)
  170. /*
  171. * Set of flags that will prevent slab merging
  172. */
  173. #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  174. SLAB_TRACE | SLAB_DESTROY_BY_RCU)
  175. #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
  176. SLAB_CACHE_DMA)
  177. #ifndef ARCH_KMALLOC_MINALIGN
  178. #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
  179. #endif
  180. #ifndef ARCH_SLAB_MINALIGN
  181. #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
  182. #endif
  183. /*
  184. * The page->inuse field is 16 bit thus we have this limitation
  185. */
  186. #define MAX_OBJECTS_PER_SLAB 65535
  187. /* Internal SLUB flags */
  188. #define __OBJECT_POISON 0x80000000 /* Poison object */
  189. /* Not all arches define cache_line_size */
  190. #ifndef cache_line_size
  191. #define cache_line_size() L1_CACHE_BYTES
  192. #endif
  193. static int kmem_size = sizeof(struct kmem_cache);
  194. #ifdef CONFIG_SMP
  195. static struct notifier_block slab_notifier;
  196. #endif
  197. static enum {
  198. DOWN, /* No slab functionality available */
  199. PARTIAL, /* kmem_cache_open() works but kmalloc does not */
  200. UP, /* Everything works but does not show up in sysfs */
  201. SYSFS /* Sysfs up */
  202. } slab_state = DOWN;
  203. /* A list of all slab caches on the system */
  204. static DECLARE_RWSEM(slub_lock);
  205. static LIST_HEAD(slab_caches);
  206. /*
  207. * Tracking user of a slab.
  208. */
  209. struct track {
  210. void *addr; /* Called from address */
  211. int cpu; /* Was running on cpu */
  212. int pid; /* Pid context */
  213. unsigned long when; /* When did the operation occur */
  214. };
  215. enum track_item { TRACK_ALLOC, TRACK_FREE };
  216. #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
  217. static int sysfs_slab_add(struct kmem_cache *);
  218. static int sysfs_slab_alias(struct kmem_cache *, const char *);
  219. static void sysfs_slab_remove(struct kmem_cache *);
  220. #else
  221. static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
  222. static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
  223. { return 0; }
  224. static inline void sysfs_slab_remove(struct kmem_cache *s) {}
  225. #endif
  226. /********************************************************************
  227. * Core slab cache functions
  228. *******************************************************************/
  229. int slab_is_available(void)
  230. {
  231. return slab_state >= UP;
  232. }
  233. static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
  234. {
  235. #ifdef CONFIG_NUMA
  236. return s->node[node];
  237. #else
  238. return &s->local_node;
  239. #endif
  240. }
  241. static inline int check_valid_pointer(struct kmem_cache *s,
  242. struct page *page, const void *object)
  243. {
  244. void *base;
  245. if (!object)
  246. return 1;
  247. base = page_address(page);
  248. if (object < base || object >= base + s->objects * s->size ||
  249. (object - base) % s->size) {
  250. return 0;
  251. }
  252. return 1;
  253. }
  254. /*
  255. * Slow version of get and set free pointer.
  256. *
  257. * This version requires touching the cache lines of kmem_cache which
  258. * we avoid to do in the fast alloc free paths. There we obtain the offset
  259. * from the page struct.
  260. */
  261. static inline void *get_freepointer(struct kmem_cache *s, void *object)
  262. {
  263. return *(void **)(object + s->offset);
  264. }
  265. static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
  266. {
  267. *(void **)(object + s->offset) = fp;
  268. }
  269. /* Loop over all objects in a slab */
  270. #define for_each_object(__p, __s, __addr) \
  271. for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
  272. __p += (__s)->size)
  273. /* Scan freelist */
  274. #define for_each_free_object(__p, __s, __free) \
  275. for (__p = (__free); __p; __p = get_freepointer((__s), __p))
  276. /* Determine object index from a given position */
  277. static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
  278. {
  279. return (p - addr) / s->size;
  280. }
  281. #ifdef CONFIG_SLUB_DEBUG
  282. /*
  283. * Debug settings:
  284. */
  285. #ifdef CONFIG_SLUB_DEBUG_ON
  286. static int slub_debug = DEBUG_DEFAULT_FLAGS;
  287. #else
  288. static int slub_debug;
  289. #endif
  290. static char *slub_debug_slabs;
  291. /*
  292. * Object debugging
  293. */
  294. static void print_section(char *text, u8 *addr, unsigned int length)
  295. {
  296. int i, offset;
  297. int newline = 1;
  298. char ascii[17];
  299. ascii[16] = 0;
  300. for (i = 0; i < length; i++) {
  301. if (newline) {
  302. printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
  303. newline = 0;
  304. }
  305. printk(" %02x", addr[i]);
  306. offset = i % 16;
  307. ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
  308. if (offset == 15) {
  309. printk(" %s\n",ascii);
  310. newline = 1;
  311. }
  312. }
  313. if (!newline) {
  314. i %= 16;
  315. while (i < 16) {
  316. printk(" ");
  317. ascii[i] = ' ';
  318. i++;
  319. }
  320. printk(" %s\n", ascii);
  321. }
  322. }
  323. static struct track *get_track(struct kmem_cache *s, void *object,
  324. enum track_item alloc)
  325. {
  326. struct track *p;
  327. if (s->offset)
  328. p = object + s->offset + sizeof(void *);
  329. else
  330. p = object + s->inuse;
  331. return p + alloc;
  332. }
  333. static void set_track(struct kmem_cache *s, void *object,
  334. enum track_item alloc, void *addr)
  335. {
  336. struct track *p;
  337. if (s->offset)
  338. p = object + s->offset + sizeof(void *);
  339. else
  340. p = object + s->inuse;
  341. p += alloc;
  342. if (addr) {
  343. p->addr = addr;
  344. p->cpu = smp_processor_id();
  345. p->pid = current ? current->pid : -1;
  346. p->when = jiffies;
  347. } else
  348. memset(p, 0, sizeof(struct track));
  349. }
  350. static void init_tracking(struct kmem_cache *s, void *object)
  351. {
  352. if (!(s->flags & SLAB_STORE_USER))
  353. return;
  354. set_track(s, object, TRACK_FREE, NULL);
  355. set_track(s, object, TRACK_ALLOC, NULL);
  356. }
  357. static void print_track(const char *s, struct track *t)
  358. {
  359. if (!t->addr)
  360. return;
  361. printk(KERN_ERR "INFO: %s in ", s);
  362. __print_symbol("%s", (unsigned long)t->addr);
  363. printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
  364. }
  365. static void print_tracking(struct kmem_cache *s, void *object)
  366. {
  367. if (!(s->flags & SLAB_STORE_USER))
  368. return;
  369. print_track("Allocated", get_track(s, object, TRACK_ALLOC));
  370. print_track("Freed", get_track(s, object, TRACK_FREE));
  371. }
  372. static void print_page_info(struct page *page)
  373. {
  374. printk(KERN_ERR "INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n",
  375. page, page->inuse, page->freelist, page->flags);
  376. }
  377. static void slab_bug(struct kmem_cache *s, char *fmt, ...)
  378. {
  379. va_list args;
  380. char buf[100];
  381. va_start(args, fmt);
  382. vsnprintf(buf, sizeof(buf), fmt, args);
  383. va_end(args);
  384. printk(KERN_ERR "========================================"
  385. "=====================================\n");
  386. printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
  387. printk(KERN_ERR "----------------------------------------"
  388. "-------------------------------------\n\n");
  389. }
  390. static void slab_fix(struct kmem_cache *s, char *fmt, ...)
  391. {
  392. va_list args;
  393. char buf[100];
  394. va_start(args, fmt);
  395. vsnprintf(buf, sizeof(buf), fmt, args);
  396. va_end(args);
  397. printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
  398. }
  399. static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
  400. {
  401. unsigned int off; /* Offset of last byte */
  402. u8 *addr = page_address(page);
  403. print_tracking(s, p);
  404. print_page_info(page);
  405. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
  406. p, p - addr, get_freepointer(s, p));
  407. if (p > addr + 16)
  408. print_section("Bytes b4", p - 16, 16);
  409. print_section("Object", p, min(s->objsize, 128));
  410. if (s->flags & SLAB_RED_ZONE)
  411. print_section("Redzone", p + s->objsize,
  412. s->inuse - s->objsize);
  413. if (s->offset)
  414. off = s->offset + sizeof(void *);
  415. else
  416. off = s->inuse;
  417. if (s->flags & SLAB_STORE_USER)
  418. off += 2 * sizeof(struct track);
  419. if (off != s->size)
  420. /* Beginning of the filler is the free pointer */
  421. print_section("Padding", p + off, s->size - off);
  422. dump_stack();
  423. }
  424. static void object_err(struct kmem_cache *s, struct page *page,
  425. u8 *object, char *reason)
  426. {
  427. slab_bug(s, reason);
  428. print_trailer(s, page, object);
  429. }
  430. static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
  431. {
  432. va_list args;
  433. char buf[100];
  434. va_start(args, fmt);
  435. vsnprintf(buf, sizeof(buf), fmt, args);
  436. va_end(args);
  437. slab_bug(s, fmt);
  438. print_page_info(page);
  439. dump_stack();
  440. }
  441. static void init_object(struct kmem_cache *s, void *object, int active)
  442. {
  443. u8 *p = object;
  444. if (s->flags & __OBJECT_POISON) {
  445. memset(p, POISON_FREE, s->objsize - 1);
  446. p[s->objsize -1] = POISON_END;
  447. }
  448. if (s->flags & SLAB_RED_ZONE)
  449. memset(p + s->objsize,
  450. active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
  451. s->inuse - s->objsize);
  452. }
  453. static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
  454. {
  455. while (bytes) {
  456. if (*start != (u8)value)
  457. return start;
  458. start++;
  459. bytes--;
  460. }
  461. return NULL;
  462. }
  463. static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
  464. void *from, void *to)
  465. {
  466. slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
  467. memset(from, data, to - from);
  468. }
  469. static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  470. u8 *object, char *what,
  471. u8* start, unsigned int value, unsigned int bytes)
  472. {
  473. u8 *fault;
  474. u8 *end;
  475. fault = check_bytes(start, value, bytes);
  476. if (!fault)
  477. return 1;
  478. end = start + bytes;
  479. while (end > fault && end[-1] == value)
  480. end--;
  481. slab_bug(s, "%s overwritten", what);
  482. printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
  483. fault, end - 1, fault[0], value);
  484. print_trailer(s, page, object);
  485. restore_bytes(s, what, value, fault, end);
  486. return 0;
  487. }
  488. /*
  489. * Object layout:
  490. *
  491. * object address
  492. * Bytes of the object to be managed.
  493. * If the freepointer may overlay the object then the free
  494. * pointer is the first word of the object.
  495. *
  496. * Poisoning uses 0x6b (POISON_FREE) and the last byte is
  497. * 0xa5 (POISON_END)
  498. *
  499. * object + s->objsize
  500. * Padding to reach word boundary. This is also used for Redzoning.
  501. * Padding is extended by another word if Redzoning is enabled and
  502. * objsize == inuse.
  503. *
  504. * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
  505. * 0xcc (RED_ACTIVE) for objects in use.
  506. *
  507. * object + s->inuse
  508. * Meta data starts here.
  509. *
  510. * A. Free pointer (if we cannot overwrite object on free)
  511. * B. Tracking data for SLAB_STORE_USER
  512. * C. Padding to reach required alignment boundary or at mininum
  513. * one word if debuggin is on to be able to detect writes
  514. * before the word boundary.
  515. *
  516. * Padding is done using 0x5a (POISON_INUSE)
  517. *
  518. * object + s->size
  519. * Nothing is used beyond s->size.
  520. *
  521. * If slabcaches are merged then the objsize and inuse boundaries are mostly
  522. * ignored. And therefore no slab options that rely on these boundaries
  523. * may be used with merged slabcaches.
  524. */
  525. static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
  526. {
  527. unsigned long off = s->inuse; /* The end of info */
  528. if (s->offset)
  529. /* Freepointer is placed after the object. */
  530. off += sizeof(void *);
  531. if (s->flags & SLAB_STORE_USER)
  532. /* We also have user information there */
  533. off += 2 * sizeof(struct track);
  534. if (s->size == off)
  535. return 1;
  536. return check_bytes_and_report(s, page, p, "Object padding",
  537. p + off, POISON_INUSE, s->size - off);
  538. }
  539. static int slab_pad_check(struct kmem_cache *s, struct page *page)
  540. {
  541. u8 *start;
  542. u8 *fault;
  543. u8 *end;
  544. int length;
  545. int remainder;
  546. if (!(s->flags & SLAB_POISON))
  547. return 1;
  548. start = page_address(page);
  549. end = start + (PAGE_SIZE << s->order);
  550. length = s->objects * s->size;
  551. remainder = end - (start + length);
  552. if (!remainder)
  553. return 1;
  554. fault = check_bytes(start + length, POISON_INUSE, remainder);
  555. if (!fault)
  556. return 1;
  557. while (end > fault && end[-1] == POISON_INUSE)
  558. end--;
  559. slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
  560. print_section("Padding", start, length);
  561. restore_bytes(s, "slab padding", POISON_INUSE, start, end);
  562. return 0;
  563. }
  564. static int check_object(struct kmem_cache *s, struct page *page,
  565. void *object, int active)
  566. {
  567. u8 *p = object;
  568. u8 *endobject = object + s->objsize;
  569. if (s->flags & SLAB_RED_ZONE) {
  570. unsigned int red =
  571. active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
  572. if (!check_bytes_and_report(s, page, object, "Redzone",
  573. endobject, red, s->inuse - s->objsize))
  574. return 0;
  575. } else {
  576. if ((s->flags & SLAB_POISON) && s->objsize < s->inuse)
  577. check_bytes_and_report(s, page, p, "Alignment padding", endobject,
  578. POISON_INUSE, s->inuse - s->objsize);
  579. }
  580. if (s->flags & SLAB_POISON) {
  581. if (!active && (s->flags & __OBJECT_POISON) &&
  582. (!check_bytes_and_report(s, page, p, "Poison", p,
  583. POISON_FREE, s->objsize - 1) ||
  584. !check_bytes_and_report(s, page, p, "Poison",
  585. p + s->objsize -1, POISON_END, 1)))
  586. return 0;
  587. /*
  588. * check_pad_bytes cleans up on its own.
  589. */
  590. check_pad_bytes(s, page, p);
  591. }
  592. if (!s->offset && active)
  593. /*
  594. * Object and freepointer overlap. Cannot check
  595. * freepointer while object is allocated.
  596. */
  597. return 1;
  598. /* Check free pointer validity */
  599. if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
  600. object_err(s, page, p, "Freepointer corrupt");
  601. /*
  602. * No choice but to zap it and thus loose the remainder
  603. * of the free objects in this slab. May cause
  604. * another error because the object count is now wrong.
  605. */
  606. set_freepointer(s, p, NULL);
  607. return 0;
  608. }
  609. return 1;
  610. }
  611. static int check_slab(struct kmem_cache *s, struct page *page)
  612. {
  613. VM_BUG_ON(!irqs_disabled());
  614. if (!PageSlab(page)) {
  615. slab_err(s, page, "Not a valid slab page");
  616. return 0;
  617. }
  618. if (page->offset * sizeof(void *) != s->offset) {
  619. slab_err(s, page, "Corrupted offset %lu",
  620. (unsigned long)(page->offset * sizeof(void *)));
  621. return 0;
  622. }
  623. if (page->inuse > s->objects) {
  624. slab_err(s, page, "inuse %u > max %u",
  625. s->name, page->inuse, s->objects);
  626. return 0;
  627. }
  628. /* Slab_pad_check fixes things up after itself */
  629. slab_pad_check(s, page);
  630. return 1;
  631. }
  632. /*
  633. * Determine if a certain object on a page is on the freelist. Must hold the
  634. * slab lock to guarantee that the chains are in a consistent state.
  635. */
  636. static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
  637. {
  638. int nr = 0;
  639. void *fp = page->freelist;
  640. void *object = NULL;
  641. while (fp && nr <= s->objects) {
  642. if (fp == search)
  643. return 1;
  644. if (!check_valid_pointer(s, page, fp)) {
  645. if (object) {
  646. object_err(s, page, object,
  647. "Freechain corrupt");
  648. set_freepointer(s, object, NULL);
  649. break;
  650. } else {
  651. slab_err(s, page, "Freepointer corrupt");
  652. page->freelist = NULL;
  653. page->inuse = s->objects;
  654. slab_fix(s, "Freelist cleared");
  655. return 0;
  656. }
  657. break;
  658. }
  659. object = fp;
  660. fp = get_freepointer(s, object);
  661. nr++;
  662. }
  663. if (page->inuse != s->objects - nr) {
  664. slab_err(s, page, "Wrong object count. Counter is %d but "
  665. "counted were %d", page->inuse, s->objects - nr);
  666. page->inuse = s->objects - nr;
  667. slab_fix(s, "Object count adjusted.");
  668. }
  669. return search == NULL;
  670. }
  671. static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
  672. {
  673. if (s->flags & SLAB_TRACE) {
  674. printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
  675. s->name,
  676. alloc ? "alloc" : "free",
  677. object, page->inuse,
  678. page->freelist);
  679. if (!alloc)
  680. print_section("Object", (void *)object, s->objsize);
  681. dump_stack();
  682. }
  683. }
  684. /*
  685. * Tracking of fully allocated slabs for debugging purposes.
  686. */
  687. static void add_full(struct kmem_cache_node *n, struct page *page)
  688. {
  689. spin_lock(&n->list_lock);
  690. list_add(&page->lru, &n->full);
  691. spin_unlock(&n->list_lock);
  692. }
  693. static void remove_full(struct kmem_cache *s, struct page *page)
  694. {
  695. struct kmem_cache_node *n;
  696. if (!(s->flags & SLAB_STORE_USER))
  697. return;
  698. n = get_node(s, page_to_nid(page));
  699. spin_lock(&n->list_lock);
  700. list_del(&page->lru);
  701. spin_unlock(&n->list_lock);
  702. }
  703. static void setup_object_debug(struct kmem_cache *s, struct page *page,
  704. void *object)
  705. {
  706. if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
  707. return;
  708. init_object(s, object, 0);
  709. init_tracking(s, object);
  710. }
  711. static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
  712. void *object, void *addr)
  713. {
  714. if (!check_slab(s, page))
  715. goto bad;
  716. if (object && !on_freelist(s, page, object)) {
  717. object_err(s, page, object, "Object already allocated");
  718. goto bad;
  719. }
  720. if (!check_valid_pointer(s, page, object)) {
  721. object_err(s, page, object, "Freelist Pointer check fails");
  722. goto bad;
  723. }
  724. if (object && !check_object(s, page, object, 0))
  725. goto bad;
  726. /* Success perform special debug activities for allocs */
  727. if (s->flags & SLAB_STORE_USER)
  728. set_track(s, object, TRACK_ALLOC, addr);
  729. trace(s, page, object, 1);
  730. init_object(s, object, 1);
  731. return 1;
  732. bad:
  733. if (PageSlab(page)) {
  734. /*
  735. * If this is a slab page then lets do the best we can
  736. * to avoid issues in the future. Marking all objects
  737. * as used avoids touching the remaining objects.
  738. */
  739. slab_fix(s, "Marking all objects used");
  740. page->inuse = s->objects;
  741. page->freelist = NULL;
  742. /* Fix up fields that may be corrupted */
  743. page->offset = s->offset / sizeof(void *);
  744. }
  745. return 0;
  746. }
  747. static int free_debug_processing(struct kmem_cache *s, struct page *page,
  748. void *object, void *addr)
  749. {
  750. if (!check_slab(s, page))
  751. goto fail;
  752. if (!check_valid_pointer(s, page, object)) {
  753. slab_err(s, page, "Invalid object pointer 0x%p", object);
  754. goto fail;
  755. }
  756. if (on_freelist(s, page, object)) {
  757. object_err(s, page, object, "Object already free");
  758. goto fail;
  759. }
  760. if (!check_object(s, page, object, 1))
  761. return 0;
  762. if (unlikely(s != page->slab)) {
  763. if (!PageSlab(page))
  764. slab_err(s, page, "Attempt to free object(0x%p) "
  765. "outside of slab", object);
  766. else
  767. if (!page->slab) {
  768. printk(KERN_ERR
  769. "SLUB <none>: no slab for object 0x%p.\n",
  770. object);
  771. dump_stack();
  772. }
  773. else
  774. object_err(s, page, object,
  775. "page slab pointer corrupt.");
  776. goto fail;
  777. }
  778. /* Special debug activities for freeing objects */
  779. if (!SlabFrozen(page) && !page->freelist)
  780. remove_full(s, page);
  781. if (s->flags & SLAB_STORE_USER)
  782. set_track(s, object, TRACK_FREE, addr);
  783. trace(s, page, object, 0);
  784. init_object(s, object, 0);
  785. return 1;
  786. fail:
  787. slab_fix(s, "Object at 0x%p not freed", object);
  788. return 0;
  789. }
  790. static int __init setup_slub_debug(char *str)
  791. {
  792. slub_debug = DEBUG_DEFAULT_FLAGS;
  793. if (*str++ != '=' || !*str)
  794. /*
  795. * No options specified. Switch on full debugging.
  796. */
  797. goto out;
  798. if (*str == ',')
  799. /*
  800. * No options but restriction on slabs. This means full
  801. * debugging for slabs matching a pattern.
  802. */
  803. goto check_slabs;
  804. slub_debug = 0;
  805. if (*str == '-')
  806. /*
  807. * Switch off all debugging measures.
  808. */
  809. goto out;
  810. /*
  811. * Determine which debug features should be switched on
  812. */
  813. for ( ;*str && *str != ','; str++) {
  814. switch (tolower(*str)) {
  815. case 'f':
  816. slub_debug |= SLAB_DEBUG_FREE;
  817. break;
  818. case 'z':
  819. slub_debug |= SLAB_RED_ZONE;
  820. break;
  821. case 'p':
  822. slub_debug |= SLAB_POISON;
  823. break;
  824. case 'u':
  825. slub_debug |= SLAB_STORE_USER;
  826. break;
  827. case 't':
  828. slub_debug |= SLAB_TRACE;
  829. break;
  830. default:
  831. printk(KERN_ERR "slub_debug option '%c' "
  832. "unknown. skipped\n",*str);
  833. }
  834. }
  835. check_slabs:
  836. if (*str == ',')
  837. slub_debug_slabs = str + 1;
  838. out:
  839. return 1;
  840. }
  841. __setup("slub_debug", setup_slub_debug);
  842. static void kmem_cache_open_debug_check(struct kmem_cache *s)
  843. {
  844. /*
  845. * The page->offset field is only 16 bit wide. This is an offset
  846. * in units of words from the beginning of an object. If the slab
  847. * size is bigger then we cannot move the free pointer behind the
  848. * object anymore.
  849. *
  850. * On 32 bit platforms the limit is 256k. On 64bit platforms
  851. * the limit is 512k.
  852. *
  853. * Debugging or ctor may create a need to move the free
  854. * pointer. Fail if this happens.
  855. */
  856. if (s->objsize >= 65535 * sizeof(void *)) {
  857. BUG_ON(s->flags & (SLAB_RED_ZONE | SLAB_POISON |
  858. SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
  859. BUG_ON(s->ctor);
  860. }
  861. else
  862. /*
  863. * Enable debugging if selected on the kernel commandline.
  864. */
  865. if (slub_debug && (!slub_debug_slabs ||
  866. strncmp(slub_debug_slabs, s->name,
  867. strlen(slub_debug_slabs)) == 0))
  868. s->flags |= slub_debug;
  869. }
  870. #else
  871. static inline void setup_object_debug(struct kmem_cache *s,
  872. struct page *page, void *object) {}
  873. static inline int alloc_debug_processing(struct kmem_cache *s,
  874. struct page *page, void *object, void *addr) { return 0; }
  875. static inline int free_debug_processing(struct kmem_cache *s,
  876. struct page *page, void *object, void *addr) { return 0; }
  877. static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
  878. { return 1; }
  879. static inline int check_object(struct kmem_cache *s, struct page *page,
  880. void *object, int active) { return 1; }
  881. static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
  882. static inline void kmem_cache_open_debug_check(struct kmem_cache *s) {}
  883. #define slub_debug 0
  884. #endif
  885. /*
  886. * Slab allocation and freeing
  887. */
  888. static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
  889. {
  890. struct page * page;
  891. int pages = 1 << s->order;
  892. if (s->order)
  893. flags |= __GFP_COMP;
  894. if (s->flags & SLAB_CACHE_DMA)
  895. flags |= SLUB_DMA;
  896. if (node == -1)
  897. page = alloc_pages(flags, s->order);
  898. else
  899. page = alloc_pages_node(node, flags, s->order);
  900. if (!page)
  901. return NULL;
  902. mod_zone_page_state(page_zone(page),
  903. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  904. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  905. pages);
  906. return page;
  907. }
  908. static void setup_object(struct kmem_cache *s, struct page *page,
  909. void *object)
  910. {
  911. setup_object_debug(s, page, object);
  912. if (unlikely(s->ctor))
  913. s->ctor(object, s, 0);
  914. }
  915. static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
  916. {
  917. struct page *page;
  918. struct kmem_cache_node *n;
  919. void *start;
  920. void *end;
  921. void *last;
  922. void *p;
  923. BUG_ON(flags & ~(GFP_DMA | __GFP_ZERO | GFP_LEVEL_MASK));
  924. if (flags & __GFP_WAIT)
  925. local_irq_enable();
  926. page = allocate_slab(s, flags & GFP_LEVEL_MASK, node);
  927. if (!page)
  928. goto out;
  929. n = get_node(s, page_to_nid(page));
  930. if (n)
  931. atomic_long_inc(&n->nr_slabs);
  932. page->offset = s->offset / sizeof(void *);
  933. page->slab = s;
  934. page->flags |= 1 << PG_slab;
  935. if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
  936. SLAB_STORE_USER | SLAB_TRACE))
  937. SetSlabDebug(page);
  938. start = page_address(page);
  939. end = start + s->objects * s->size;
  940. if (unlikely(s->flags & SLAB_POISON))
  941. memset(start, POISON_INUSE, PAGE_SIZE << s->order);
  942. last = start;
  943. for_each_object(p, s, start) {
  944. setup_object(s, page, last);
  945. set_freepointer(s, last, p);
  946. last = p;
  947. }
  948. setup_object(s, page, last);
  949. set_freepointer(s, last, NULL);
  950. page->freelist = start;
  951. page->lockless_freelist = NULL;
  952. page->inuse = 0;
  953. out:
  954. if (flags & __GFP_WAIT)
  955. local_irq_disable();
  956. return page;
  957. }
  958. static void __free_slab(struct kmem_cache *s, struct page *page)
  959. {
  960. int pages = 1 << s->order;
  961. if (unlikely(SlabDebug(page))) {
  962. void *p;
  963. slab_pad_check(s, page);
  964. for_each_object(p, s, page_address(page))
  965. check_object(s, page, p, 0);
  966. }
  967. mod_zone_page_state(page_zone(page),
  968. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  969. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  970. - pages);
  971. page->mapping = NULL;
  972. __free_pages(page, s->order);
  973. }
  974. static void rcu_free_slab(struct rcu_head *h)
  975. {
  976. struct page *page;
  977. page = container_of((struct list_head *)h, struct page, lru);
  978. __free_slab(page->slab, page);
  979. }
  980. static void free_slab(struct kmem_cache *s, struct page *page)
  981. {
  982. if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
  983. /*
  984. * RCU free overloads the RCU head over the LRU
  985. */
  986. struct rcu_head *head = (void *)&page->lru;
  987. call_rcu(head, rcu_free_slab);
  988. } else
  989. __free_slab(s, page);
  990. }
  991. static void discard_slab(struct kmem_cache *s, struct page *page)
  992. {
  993. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  994. atomic_long_dec(&n->nr_slabs);
  995. reset_page_mapcount(page);
  996. ClearSlabDebug(page);
  997. __ClearPageSlab(page);
  998. free_slab(s, page);
  999. }
  1000. /*
  1001. * Per slab locking using the pagelock
  1002. */
  1003. static __always_inline void slab_lock(struct page *page)
  1004. {
  1005. bit_spin_lock(PG_locked, &page->flags);
  1006. }
  1007. static __always_inline void slab_unlock(struct page *page)
  1008. {
  1009. bit_spin_unlock(PG_locked, &page->flags);
  1010. }
  1011. static __always_inline int slab_trylock(struct page *page)
  1012. {
  1013. int rc = 1;
  1014. rc = bit_spin_trylock(PG_locked, &page->flags);
  1015. return rc;
  1016. }
  1017. /*
  1018. * Management of partially allocated slabs
  1019. */
  1020. static void add_partial_tail(struct kmem_cache_node *n, struct page *page)
  1021. {
  1022. spin_lock(&n->list_lock);
  1023. n->nr_partial++;
  1024. list_add_tail(&page->lru, &n->partial);
  1025. spin_unlock(&n->list_lock);
  1026. }
  1027. static void add_partial(struct kmem_cache_node *n, struct page *page)
  1028. {
  1029. spin_lock(&n->list_lock);
  1030. n->nr_partial++;
  1031. list_add(&page->lru, &n->partial);
  1032. spin_unlock(&n->list_lock);
  1033. }
  1034. static void remove_partial(struct kmem_cache *s,
  1035. struct page *page)
  1036. {
  1037. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1038. spin_lock(&n->list_lock);
  1039. list_del(&page->lru);
  1040. n->nr_partial--;
  1041. spin_unlock(&n->list_lock);
  1042. }
  1043. /*
  1044. * Lock slab and remove from the partial list.
  1045. *
  1046. * Must hold list_lock.
  1047. */
  1048. static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
  1049. {
  1050. if (slab_trylock(page)) {
  1051. list_del(&page->lru);
  1052. n->nr_partial--;
  1053. SetSlabFrozen(page);
  1054. return 1;
  1055. }
  1056. return 0;
  1057. }
  1058. /*
  1059. * Try to allocate a partial slab from a specific node.
  1060. */
  1061. static struct page *get_partial_node(struct kmem_cache_node *n)
  1062. {
  1063. struct page *page;
  1064. /*
  1065. * Racy check. If we mistakenly see no partial slabs then we
  1066. * just allocate an empty slab. If we mistakenly try to get a
  1067. * partial slab and there is none available then get_partials()
  1068. * will return NULL.
  1069. */
  1070. if (!n || !n->nr_partial)
  1071. return NULL;
  1072. spin_lock(&n->list_lock);
  1073. list_for_each_entry(page, &n->partial, lru)
  1074. if (lock_and_freeze_slab(n, page))
  1075. goto out;
  1076. page = NULL;
  1077. out:
  1078. spin_unlock(&n->list_lock);
  1079. return page;
  1080. }
  1081. /*
  1082. * Get a page from somewhere. Search in increasing NUMA distances.
  1083. */
  1084. static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
  1085. {
  1086. #ifdef CONFIG_NUMA
  1087. struct zonelist *zonelist;
  1088. struct zone **z;
  1089. struct page *page;
  1090. /*
  1091. * The defrag ratio allows a configuration of the tradeoffs between
  1092. * inter node defragmentation and node local allocations. A lower
  1093. * defrag_ratio increases the tendency to do local allocations
  1094. * instead of attempting to obtain partial slabs from other nodes.
  1095. *
  1096. * If the defrag_ratio is set to 0 then kmalloc() always
  1097. * returns node local objects. If the ratio is higher then kmalloc()
  1098. * may return off node objects because partial slabs are obtained
  1099. * from other nodes and filled up.
  1100. *
  1101. * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
  1102. * defrag_ratio = 1000) then every (well almost) allocation will
  1103. * first attempt to defrag slab caches on other nodes. This means
  1104. * scanning over all nodes to look for partial slabs which may be
  1105. * expensive if we do it every time we are trying to find a slab
  1106. * with available objects.
  1107. */
  1108. if (!s->defrag_ratio || get_cycles() % 1024 > s->defrag_ratio)
  1109. return NULL;
  1110. zonelist = &NODE_DATA(slab_node(current->mempolicy))
  1111. ->node_zonelists[gfp_zone(flags)];
  1112. for (z = zonelist->zones; *z; z++) {
  1113. struct kmem_cache_node *n;
  1114. n = get_node(s, zone_to_nid(*z));
  1115. if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
  1116. n->nr_partial > MIN_PARTIAL) {
  1117. page = get_partial_node(n);
  1118. if (page)
  1119. return page;
  1120. }
  1121. }
  1122. #endif
  1123. return NULL;
  1124. }
  1125. /*
  1126. * Get a partial page, lock it and return it.
  1127. */
  1128. static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
  1129. {
  1130. struct page *page;
  1131. int searchnode = (node == -1) ? numa_node_id() : node;
  1132. page = get_partial_node(get_node(s, searchnode));
  1133. if (page || (flags & __GFP_THISNODE))
  1134. return page;
  1135. return get_any_partial(s, flags);
  1136. }
  1137. /*
  1138. * Move a page back to the lists.
  1139. *
  1140. * Must be called with the slab lock held.
  1141. *
  1142. * On exit the slab lock will have been dropped.
  1143. */
  1144. static void unfreeze_slab(struct kmem_cache *s, struct page *page)
  1145. {
  1146. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1147. ClearSlabFrozen(page);
  1148. if (page->inuse) {
  1149. if (page->freelist)
  1150. add_partial(n, page);
  1151. else if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
  1152. add_full(n, page);
  1153. slab_unlock(page);
  1154. } else {
  1155. if (n->nr_partial < MIN_PARTIAL) {
  1156. /*
  1157. * Adding an empty slab to the partial slabs in order
  1158. * to avoid page allocator overhead. This slab needs
  1159. * to come after the other slabs with objects in
  1160. * order to fill them up. That way the size of the
  1161. * partial list stays small. kmem_cache_shrink can
  1162. * reclaim empty slabs from the partial list.
  1163. */
  1164. add_partial_tail(n, page);
  1165. slab_unlock(page);
  1166. } else {
  1167. slab_unlock(page);
  1168. discard_slab(s, page);
  1169. }
  1170. }
  1171. }
  1172. /*
  1173. * Remove the cpu slab
  1174. */
  1175. static void deactivate_slab(struct kmem_cache *s, struct page *page, int cpu)
  1176. {
  1177. /*
  1178. * Merge cpu freelist into freelist. Typically we get here
  1179. * because both freelists are empty. So this is unlikely
  1180. * to occur.
  1181. */
  1182. while (unlikely(page->lockless_freelist)) {
  1183. void **object;
  1184. /* Retrieve object from cpu_freelist */
  1185. object = page->lockless_freelist;
  1186. page->lockless_freelist = page->lockless_freelist[page->offset];
  1187. /* And put onto the regular freelist */
  1188. object[page->offset] = page->freelist;
  1189. page->freelist = object;
  1190. page->inuse--;
  1191. }
  1192. s->cpu_slab[cpu] = NULL;
  1193. unfreeze_slab(s, page);
  1194. }
  1195. static inline void flush_slab(struct kmem_cache *s, struct page *page, int cpu)
  1196. {
  1197. slab_lock(page);
  1198. deactivate_slab(s, page, cpu);
  1199. }
  1200. /*
  1201. * Flush cpu slab.
  1202. * Called from IPI handler with interrupts disabled.
  1203. */
  1204. static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
  1205. {
  1206. struct page *page = s->cpu_slab[cpu];
  1207. if (likely(page))
  1208. flush_slab(s, page, cpu);
  1209. }
  1210. static void flush_cpu_slab(void *d)
  1211. {
  1212. struct kmem_cache *s = d;
  1213. int cpu = smp_processor_id();
  1214. __flush_cpu_slab(s, cpu);
  1215. }
  1216. static void flush_all(struct kmem_cache *s)
  1217. {
  1218. #ifdef CONFIG_SMP
  1219. on_each_cpu(flush_cpu_slab, s, 1, 1);
  1220. #else
  1221. unsigned long flags;
  1222. local_irq_save(flags);
  1223. flush_cpu_slab(s);
  1224. local_irq_restore(flags);
  1225. #endif
  1226. }
  1227. /*
  1228. * Slow path. The lockless freelist is empty or we need to perform
  1229. * debugging duties.
  1230. *
  1231. * Interrupts are disabled.
  1232. *
  1233. * Processing is still very fast if new objects have been freed to the
  1234. * regular freelist. In that case we simply take over the regular freelist
  1235. * as the lockless freelist and zap the regular freelist.
  1236. *
  1237. * If that is not working then we fall back to the partial lists. We take the
  1238. * first element of the freelist as the object to allocate now and move the
  1239. * rest of the freelist to the lockless freelist.
  1240. *
  1241. * And if we were unable to get a new slab from the partial slab lists then
  1242. * we need to allocate a new slab. This is slowest path since we may sleep.
  1243. */
  1244. static void *__slab_alloc(struct kmem_cache *s,
  1245. gfp_t gfpflags, int node, void *addr, struct page *page)
  1246. {
  1247. void **object;
  1248. int cpu = smp_processor_id();
  1249. if (!page)
  1250. goto new_slab;
  1251. slab_lock(page);
  1252. if (unlikely(node != -1 && page_to_nid(page) != node))
  1253. goto another_slab;
  1254. load_freelist:
  1255. object = page->freelist;
  1256. if (unlikely(!object))
  1257. goto another_slab;
  1258. if (unlikely(SlabDebug(page)))
  1259. goto debug;
  1260. object = page->freelist;
  1261. page->lockless_freelist = object[page->offset];
  1262. page->inuse = s->objects;
  1263. page->freelist = NULL;
  1264. slab_unlock(page);
  1265. return object;
  1266. another_slab:
  1267. deactivate_slab(s, page, cpu);
  1268. new_slab:
  1269. page = get_partial(s, gfpflags, node);
  1270. if (page) {
  1271. s->cpu_slab[cpu] = page;
  1272. goto load_freelist;
  1273. }
  1274. page = new_slab(s, gfpflags, node);
  1275. if (page) {
  1276. cpu = smp_processor_id();
  1277. if (s->cpu_slab[cpu]) {
  1278. /*
  1279. * Someone else populated the cpu_slab while we
  1280. * enabled interrupts, or we have gotten scheduled
  1281. * on another cpu. The page may not be on the
  1282. * requested node even if __GFP_THISNODE was
  1283. * specified. So we need to recheck.
  1284. */
  1285. if (node == -1 ||
  1286. page_to_nid(s->cpu_slab[cpu]) == node) {
  1287. /*
  1288. * Current cpuslab is acceptable and we
  1289. * want the current one since its cache hot
  1290. */
  1291. discard_slab(s, page);
  1292. page = s->cpu_slab[cpu];
  1293. slab_lock(page);
  1294. goto load_freelist;
  1295. }
  1296. /* New slab does not fit our expectations */
  1297. flush_slab(s, s->cpu_slab[cpu], cpu);
  1298. }
  1299. slab_lock(page);
  1300. SetSlabFrozen(page);
  1301. s->cpu_slab[cpu] = page;
  1302. goto load_freelist;
  1303. }
  1304. return NULL;
  1305. debug:
  1306. object = page->freelist;
  1307. if (!alloc_debug_processing(s, page, object, addr))
  1308. goto another_slab;
  1309. page->inuse++;
  1310. page->freelist = object[page->offset];
  1311. slab_unlock(page);
  1312. return object;
  1313. }
  1314. /*
  1315. * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
  1316. * have the fastpath folded into their functions. So no function call
  1317. * overhead for requests that can be satisfied on the fastpath.
  1318. *
  1319. * The fastpath works by first checking if the lockless freelist can be used.
  1320. * If not then __slab_alloc is called for slow processing.
  1321. *
  1322. * Otherwise we can simply pick the next object from the lockless free list.
  1323. */
  1324. static void __always_inline *slab_alloc(struct kmem_cache *s,
  1325. gfp_t gfpflags, int node, void *addr)
  1326. {
  1327. struct page *page;
  1328. void **object;
  1329. unsigned long flags;
  1330. local_irq_save(flags);
  1331. page = s->cpu_slab[smp_processor_id()];
  1332. if (unlikely(!page || !page->lockless_freelist ||
  1333. (node != -1 && page_to_nid(page) != node)))
  1334. object = __slab_alloc(s, gfpflags, node, addr, page);
  1335. else {
  1336. object = page->lockless_freelist;
  1337. page->lockless_freelist = object[page->offset];
  1338. }
  1339. local_irq_restore(flags);
  1340. if (unlikely((gfpflags & __GFP_ZERO) && object))
  1341. memset(object, 0, s->objsize);
  1342. return object;
  1343. }
  1344. void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
  1345. {
  1346. return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
  1347. }
  1348. EXPORT_SYMBOL(kmem_cache_alloc);
  1349. #ifdef CONFIG_NUMA
  1350. void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
  1351. {
  1352. return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
  1353. }
  1354. EXPORT_SYMBOL(kmem_cache_alloc_node);
  1355. #endif
  1356. /*
  1357. * Slow patch handling. This may still be called frequently since objects
  1358. * have a longer lifetime than the cpu slabs in most processing loads.
  1359. *
  1360. * So we still attempt to reduce cache line usage. Just take the slab
  1361. * lock and free the item. If there is no additional partial page
  1362. * handling required then we can return immediately.
  1363. */
  1364. static void __slab_free(struct kmem_cache *s, struct page *page,
  1365. void *x, void *addr)
  1366. {
  1367. void *prior;
  1368. void **object = (void *)x;
  1369. slab_lock(page);
  1370. if (unlikely(SlabDebug(page)))
  1371. goto debug;
  1372. checks_ok:
  1373. prior = object[page->offset] = page->freelist;
  1374. page->freelist = object;
  1375. page->inuse--;
  1376. if (unlikely(SlabFrozen(page)))
  1377. goto out_unlock;
  1378. if (unlikely(!page->inuse))
  1379. goto slab_empty;
  1380. /*
  1381. * Objects left in the slab. If it
  1382. * was not on the partial list before
  1383. * then add it.
  1384. */
  1385. if (unlikely(!prior))
  1386. add_partial(get_node(s, page_to_nid(page)), page);
  1387. out_unlock:
  1388. slab_unlock(page);
  1389. return;
  1390. slab_empty:
  1391. if (prior)
  1392. /*
  1393. * Slab still on the partial list.
  1394. */
  1395. remove_partial(s, page);
  1396. slab_unlock(page);
  1397. discard_slab(s, page);
  1398. return;
  1399. debug:
  1400. if (!free_debug_processing(s, page, x, addr))
  1401. goto out_unlock;
  1402. goto checks_ok;
  1403. }
  1404. /*
  1405. * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
  1406. * can perform fastpath freeing without additional function calls.
  1407. *
  1408. * The fastpath is only possible if we are freeing to the current cpu slab
  1409. * of this processor. This typically the case if we have just allocated
  1410. * the item before.
  1411. *
  1412. * If fastpath is not possible then fall back to __slab_free where we deal
  1413. * with all sorts of special processing.
  1414. */
  1415. static void __always_inline slab_free(struct kmem_cache *s,
  1416. struct page *page, void *x, void *addr)
  1417. {
  1418. void **object = (void *)x;
  1419. unsigned long flags;
  1420. local_irq_save(flags);
  1421. if (likely(page == s->cpu_slab[smp_processor_id()] &&
  1422. !SlabDebug(page))) {
  1423. object[page->offset] = page->lockless_freelist;
  1424. page->lockless_freelist = object;
  1425. } else
  1426. __slab_free(s, page, x, addr);
  1427. local_irq_restore(flags);
  1428. }
  1429. void kmem_cache_free(struct kmem_cache *s, void *x)
  1430. {
  1431. struct page *page;
  1432. page = virt_to_head_page(x);
  1433. slab_free(s, page, x, __builtin_return_address(0));
  1434. }
  1435. EXPORT_SYMBOL(kmem_cache_free);
  1436. /* Figure out on which slab object the object resides */
  1437. static struct page *get_object_page(const void *x)
  1438. {
  1439. struct page *page = virt_to_head_page(x);
  1440. if (!PageSlab(page))
  1441. return NULL;
  1442. return page;
  1443. }
  1444. /*
  1445. * Object placement in a slab is made very easy because we always start at
  1446. * offset 0. If we tune the size of the object to the alignment then we can
  1447. * get the required alignment by putting one properly sized object after
  1448. * another.
  1449. *
  1450. * Notice that the allocation order determines the sizes of the per cpu
  1451. * caches. Each processor has always one slab available for allocations.
  1452. * Increasing the allocation order reduces the number of times that slabs
  1453. * must be moved on and off the partial lists and is therefore a factor in
  1454. * locking overhead.
  1455. */
  1456. /*
  1457. * Mininum / Maximum order of slab pages. This influences locking overhead
  1458. * and slab fragmentation. A higher order reduces the number of partial slabs
  1459. * and increases the number of allocations possible without having to
  1460. * take the list_lock.
  1461. */
  1462. static int slub_min_order;
  1463. static int slub_max_order = DEFAULT_MAX_ORDER;
  1464. static int slub_min_objects = DEFAULT_MIN_OBJECTS;
  1465. /*
  1466. * Merge control. If this is set then no merging of slab caches will occur.
  1467. * (Could be removed. This was introduced to pacify the merge skeptics.)
  1468. */
  1469. static int slub_nomerge;
  1470. /*
  1471. * Calculate the order of allocation given an slab object size.
  1472. *
  1473. * The order of allocation has significant impact on performance and other
  1474. * system components. Generally order 0 allocations should be preferred since
  1475. * order 0 does not cause fragmentation in the page allocator. Larger objects
  1476. * be problematic to put into order 0 slabs because there may be too much
  1477. * unused space left. We go to a higher order if more than 1/8th of the slab
  1478. * would be wasted.
  1479. *
  1480. * In order to reach satisfactory performance we must ensure that a minimum
  1481. * number of objects is in one slab. Otherwise we may generate too much
  1482. * activity on the partial lists which requires taking the list_lock. This is
  1483. * less a concern for large slabs though which are rarely used.
  1484. *
  1485. * slub_max_order specifies the order where we begin to stop considering the
  1486. * number of objects in a slab as critical. If we reach slub_max_order then
  1487. * we try to keep the page order as low as possible. So we accept more waste
  1488. * of space in favor of a small page order.
  1489. *
  1490. * Higher order allocations also allow the placement of more objects in a
  1491. * slab and thereby reduce object handling overhead. If the user has
  1492. * requested a higher mininum order then we start with that one instead of
  1493. * the smallest order which will fit the object.
  1494. */
  1495. static inline int slab_order(int size, int min_objects,
  1496. int max_order, int fract_leftover)
  1497. {
  1498. int order;
  1499. int rem;
  1500. int min_order = slub_min_order;
  1501. /*
  1502. * If we would create too many object per slab then reduce
  1503. * the slab order even if it goes below slub_min_order.
  1504. */
  1505. while (min_order > 0 &&
  1506. (PAGE_SIZE << min_order) >= MAX_OBJECTS_PER_SLAB * size)
  1507. min_order--;
  1508. for (order = max(min_order,
  1509. fls(min_objects * size - 1) - PAGE_SHIFT);
  1510. order <= max_order; order++) {
  1511. unsigned long slab_size = PAGE_SIZE << order;
  1512. if (slab_size < min_objects * size)
  1513. continue;
  1514. rem = slab_size % size;
  1515. if (rem <= slab_size / fract_leftover)
  1516. break;
  1517. /* If the next size is too high then exit now */
  1518. if (slab_size * 2 >= MAX_OBJECTS_PER_SLAB * size)
  1519. break;
  1520. }
  1521. return order;
  1522. }
  1523. static inline int calculate_order(int size)
  1524. {
  1525. int order;
  1526. int min_objects;
  1527. int fraction;
  1528. /*
  1529. * Attempt to find best configuration for a slab. This
  1530. * works by first attempting to generate a layout with
  1531. * the best configuration and backing off gradually.
  1532. *
  1533. * First we reduce the acceptable waste in a slab. Then
  1534. * we reduce the minimum objects required in a slab.
  1535. */
  1536. min_objects = slub_min_objects;
  1537. while (min_objects > 1) {
  1538. fraction = 8;
  1539. while (fraction >= 4) {
  1540. order = slab_order(size, min_objects,
  1541. slub_max_order, fraction);
  1542. if (order <= slub_max_order)
  1543. return order;
  1544. fraction /= 2;
  1545. }
  1546. min_objects /= 2;
  1547. }
  1548. /*
  1549. * We were unable to place multiple objects in a slab. Now
  1550. * lets see if we can place a single object there.
  1551. */
  1552. order = slab_order(size, 1, slub_max_order, 1);
  1553. if (order <= slub_max_order)
  1554. return order;
  1555. /*
  1556. * Doh this slab cannot be placed using slub_max_order.
  1557. */
  1558. order = slab_order(size, 1, MAX_ORDER, 1);
  1559. if (order <= MAX_ORDER)
  1560. return order;
  1561. return -ENOSYS;
  1562. }
  1563. /*
  1564. * Figure out what the alignment of the objects will be.
  1565. */
  1566. static unsigned long calculate_alignment(unsigned long flags,
  1567. unsigned long align, unsigned long size)
  1568. {
  1569. /*
  1570. * If the user wants hardware cache aligned objects then
  1571. * follow that suggestion if the object is sufficiently
  1572. * large.
  1573. *
  1574. * The hardware cache alignment cannot override the
  1575. * specified alignment though. If that is greater
  1576. * then use it.
  1577. */
  1578. if ((flags & SLAB_HWCACHE_ALIGN) &&
  1579. size > cache_line_size() / 2)
  1580. return max_t(unsigned long, align, cache_line_size());
  1581. if (align < ARCH_SLAB_MINALIGN)
  1582. return ARCH_SLAB_MINALIGN;
  1583. return ALIGN(align, sizeof(void *));
  1584. }
  1585. static void init_kmem_cache_node(struct kmem_cache_node *n)
  1586. {
  1587. n->nr_partial = 0;
  1588. atomic_long_set(&n->nr_slabs, 0);
  1589. spin_lock_init(&n->list_lock);
  1590. INIT_LIST_HEAD(&n->partial);
  1591. #ifdef CONFIG_SLUB_DEBUG
  1592. INIT_LIST_HEAD(&n->full);
  1593. #endif
  1594. }
  1595. #ifdef CONFIG_NUMA
  1596. /*
  1597. * No kmalloc_node yet so do it by hand. We know that this is the first
  1598. * slab on the node for this slabcache. There are no concurrent accesses
  1599. * possible.
  1600. *
  1601. * Note that this function only works on the kmalloc_node_cache
  1602. * when allocating for the kmalloc_node_cache.
  1603. */
  1604. static struct kmem_cache_node * __init early_kmem_cache_node_alloc(gfp_t gfpflags,
  1605. int node)
  1606. {
  1607. struct page *page;
  1608. struct kmem_cache_node *n;
  1609. BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
  1610. page = new_slab(kmalloc_caches, gfpflags | GFP_THISNODE, node);
  1611. BUG_ON(!page);
  1612. n = page->freelist;
  1613. BUG_ON(!n);
  1614. page->freelist = get_freepointer(kmalloc_caches, n);
  1615. page->inuse++;
  1616. kmalloc_caches->node[node] = n;
  1617. #ifdef CONFIG_SLUB_DEBUG
  1618. init_object(kmalloc_caches, n, 1);
  1619. init_tracking(kmalloc_caches, n);
  1620. #endif
  1621. init_kmem_cache_node(n);
  1622. atomic_long_inc(&n->nr_slabs);
  1623. add_partial(n, page);
  1624. /*
  1625. * new_slab() disables interupts. If we do not reenable interrupts here
  1626. * then bootup would continue with interrupts disabled.
  1627. */
  1628. local_irq_enable();
  1629. return n;
  1630. }
  1631. static void free_kmem_cache_nodes(struct kmem_cache *s)
  1632. {
  1633. int node;
  1634. for_each_online_node(node) {
  1635. struct kmem_cache_node *n = s->node[node];
  1636. if (n && n != &s->local_node)
  1637. kmem_cache_free(kmalloc_caches, n);
  1638. s->node[node] = NULL;
  1639. }
  1640. }
  1641. static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
  1642. {
  1643. int node;
  1644. int local_node;
  1645. if (slab_state >= UP)
  1646. local_node = page_to_nid(virt_to_page(s));
  1647. else
  1648. local_node = 0;
  1649. for_each_online_node(node) {
  1650. struct kmem_cache_node *n;
  1651. if (local_node == node)
  1652. n = &s->local_node;
  1653. else {
  1654. if (slab_state == DOWN) {
  1655. n = early_kmem_cache_node_alloc(gfpflags,
  1656. node);
  1657. continue;
  1658. }
  1659. n = kmem_cache_alloc_node(kmalloc_caches,
  1660. gfpflags, node);
  1661. if (!n) {
  1662. free_kmem_cache_nodes(s);
  1663. return 0;
  1664. }
  1665. }
  1666. s->node[node] = n;
  1667. init_kmem_cache_node(n);
  1668. }
  1669. return 1;
  1670. }
  1671. #else
  1672. static void free_kmem_cache_nodes(struct kmem_cache *s)
  1673. {
  1674. }
  1675. static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
  1676. {
  1677. init_kmem_cache_node(&s->local_node);
  1678. return 1;
  1679. }
  1680. #endif
  1681. /*
  1682. * calculate_sizes() determines the order and the distribution of data within
  1683. * a slab object.
  1684. */
  1685. static int calculate_sizes(struct kmem_cache *s)
  1686. {
  1687. unsigned long flags = s->flags;
  1688. unsigned long size = s->objsize;
  1689. unsigned long align = s->align;
  1690. /*
  1691. * Determine if we can poison the object itself. If the user of
  1692. * the slab may touch the object after free or before allocation
  1693. * then we should never poison the object itself.
  1694. */
  1695. if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
  1696. !s->ctor)
  1697. s->flags |= __OBJECT_POISON;
  1698. else
  1699. s->flags &= ~__OBJECT_POISON;
  1700. /*
  1701. * Round up object size to the next word boundary. We can only
  1702. * place the free pointer at word boundaries and this determines
  1703. * the possible location of the free pointer.
  1704. */
  1705. size = ALIGN(size, sizeof(void *));
  1706. #ifdef CONFIG_SLUB_DEBUG
  1707. /*
  1708. * If we are Redzoning then check if there is some space between the
  1709. * end of the object and the free pointer. If not then add an
  1710. * additional word to have some bytes to store Redzone information.
  1711. */
  1712. if ((flags & SLAB_RED_ZONE) && size == s->objsize)
  1713. size += sizeof(void *);
  1714. #endif
  1715. /*
  1716. * With that we have determined the number of bytes in actual use
  1717. * by the object. This is the potential offset to the free pointer.
  1718. */
  1719. s->inuse = size;
  1720. if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
  1721. s->ctor)) {
  1722. /*
  1723. * Relocate free pointer after the object if it is not
  1724. * permitted to overwrite the first word of the object on
  1725. * kmem_cache_free.
  1726. *
  1727. * This is the case if we do RCU, have a constructor or
  1728. * destructor or are poisoning the objects.
  1729. */
  1730. s->offset = size;
  1731. size += sizeof(void *);
  1732. }
  1733. #ifdef CONFIG_SLUB_DEBUG
  1734. if (flags & SLAB_STORE_USER)
  1735. /*
  1736. * Need to store information about allocs and frees after
  1737. * the object.
  1738. */
  1739. size += 2 * sizeof(struct track);
  1740. if (flags & SLAB_RED_ZONE)
  1741. /*
  1742. * Add some empty padding so that we can catch
  1743. * overwrites from earlier objects rather than let
  1744. * tracking information or the free pointer be
  1745. * corrupted if an user writes before the start
  1746. * of the object.
  1747. */
  1748. size += sizeof(void *);
  1749. #endif
  1750. /*
  1751. * Determine the alignment based on various parameters that the
  1752. * user specified and the dynamic determination of cache line size
  1753. * on bootup.
  1754. */
  1755. align = calculate_alignment(flags, align, s->objsize);
  1756. /*
  1757. * SLUB stores one object immediately after another beginning from
  1758. * offset 0. In order to align the objects we have to simply size
  1759. * each object to conform to the alignment.
  1760. */
  1761. size = ALIGN(size, align);
  1762. s->size = size;
  1763. s->order = calculate_order(size);
  1764. if (s->order < 0)
  1765. return 0;
  1766. /*
  1767. * Determine the number of objects per slab
  1768. */
  1769. s->objects = (PAGE_SIZE << s->order) / size;
  1770. /*
  1771. * Verify that the number of objects is within permitted limits.
  1772. * The page->inuse field is only 16 bit wide! So we cannot have
  1773. * more than 64k objects per slab.
  1774. */
  1775. if (!s->objects || s->objects > MAX_OBJECTS_PER_SLAB)
  1776. return 0;
  1777. return 1;
  1778. }
  1779. static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
  1780. const char *name, size_t size,
  1781. size_t align, unsigned long flags,
  1782. void (*ctor)(void *, struct kmem_cache *, unsigned long))
  1783. {
  1784. memset(s, 0, kmem_size);
  1785. s->name = name;
  1786. s->ctor = ctor;
  1787. s->objsize = size;
  1788. s->flags = flags;
  1789. s->align = align;
  1790. kmem_cache_open_debug_check(s);
  1791. if (!calculate_sizes(s))
  1792. goto error;
  1793. s->refcount = 1;
  1794. #ifdef CONFIG_NUMA
  1795. s->defrag_ratio = 100;
  1796. #endif
  1797. if (init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
  1798. return 1;
  1799. error:
  1800. if (flags & SLAB_PANIC)
  1801. panic("Cannot create slab %s size=%lu realsize=%u "
  1802. "order=%u offset=%u flags=%lx\n",
  1803. s->name, (unsigned long)size, s->size, s->order,
  1804. s->offset, flags);
  1805. return 0;
  1806. }
  1807. /*
  1808. * Check if a given pointer is valid
  1809. */
  1810. int kmem_ptr_validate(struct kmem_cache *s, const void *object)
  1811. {
  1812. struct page * page;
  1813. page = get_object_page(object);
  1814. if (!page || s != page->slab)
  1815. /* No slab or wrong slab */
  1816. return 0;
  1817. if (!check_valid_pointer(s, page, object))
  1818. return 0;
  1819. /*
  1820. * We could also check if the object is on the slabs freelist.
  1821. * But this would be too expensive and it seems that the main
  1822. * purpose of kmem_ptr_valid is to check if the object belongs
  1823. * to a certain slab.
  1824. */
  1825. return 1;
  1826. }
  1827. EXPORT_SYMBOL(kmem_ptr_validate);
  1828. /*
  1829. * Determine the size of a slab object
  1830. */
  1831. unsigned int kmem_cache_size(struct kmem_cache *s)
  1832. {
  1833. return s->objsize;
  1834. }
  1835. EXPORT_SYMBOL(kmem_cache_size);
  1836. const char *kmem_cache_name(struct kmem_cache *s)
  1837. {
  1838. return s->name;
  1839. }
  1840. EXPORT_SYMBOL(kmem_cache_name);
  1841. /*
  1842. * Attempt to free all slabs on a node. Return the number of slabs we
  1843. * were unable to free.
  1844. */
  1845. static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
  1846. struct list_head *list)
  1847. {
  1848. int slabs_inuse = 0;
  1849. unsigned long flags;
  1850. struct page *page, *h;
  1851. spin_lock_irqsave(&n->list_lock, flags);
  1852. list_for_each_entry_safe(page, h, list, lru)
  1853. if (!page->inuse) {
  1854. list_del(&page->lru);
  1855. discard_slab(s, page);
  1856. } else
  1857. slabs_inuse++;
  1858. spin_unlock_irqrestore(&n->list_lock, flags);
  1859. return slabs_inuse;
  1860. }
  1861. /*
  1862. * Release all resources used by a slab cache.
  1863. */
  1864. static inline int kmem_cache_close(struct kmem_cache *s)
  1865. {
  1866. int node;
  1867. flush_all(s);
  1868. /* Attempt to free all objects */
  1869. for_each_online_node(node) {
  1870. struct kmem_cache_node *n = get_node(s, node);
  1871. n->nr_partial -= free_list(s, n, &n->partial);
  1872. if (atomic_long_read(&n->nr_slabs))
  1873. return 1;
  1874. }
  1875. free_kmem_cache_nodes(s);
  1876. return 0;
  1877. }
  1878. /*
  1879. * Close a cache and release the kmem_cache structure
  1880. * (must be used for caches created using kmem_cache_create)
  1881. */
  1882. void kmem_cache_destroy(struct kmem_cache *s)
  1883. {
  1884. down_write(&slub_lock);
  1885. s->refcount--;
  1886. if (!s->refcount) {
  1887. list_del(&s->list);
  1888. up_write(&slub_lock);
  1889. if (kmem_cache_close(s))
  1890. WARN_ON(1);
  1891. sysfs_slab_remove(s);
  1892. kfree(s);
  1893. } else
  1894. up_write(&slub_lock);
  1895. }
  1896. EXPORT_SYMBOL(kmem_cache_destroy);
  1897. /********************************************************************
  1898. * Kmalloc subsystem
  1899. *******************************************************************/
  1900. struct kmem_cache kmalloc_caches[KMALLOC_SHIFT_HIGH + 1] __cacheline_aligned;
  1901. EXPORT_SYMBOL(kmalloc_caches);
  1902. #ifdef CONFIG_ZONE_DMA
  1903. static struct kmem_cache *kmalloc_caches_dma[KMALLOC_SHIFT_HIGH + 1];
  1904. #endif
  1905. static int __init setup_slub_min_order(char *str)
  1906. {
  1907. get_option (&str, &slub_min_order);
  1908. return 1;
  1909. }
  1910. __setup("slub_min_order=", setup_slub_min_order);
  1911. static int __init setup_slub_max_order(char *str)
  1912. {
  1913. get_option (&str, &slub_max_order);
  1914. return 1;
  1915. }
  1916. __setup("slub_max_order=", setup_slub_max_order);
  1917. static int __init setup_slub_min_objects(char *str)
  1918. {
  1919. get_option (&str, &slub_min_objects);
  1920. return 1;
  1921. }
  1922. __setup("slub_min_objects=", setup_slub_min_objects);
  1923. static int __init setup_slub_nomerge(char *str)
  1924. {
  1925. slub_nomerge = 1;
  1926. return 1;
  1927. }
  1928. __setup("slub_nomerge", setup_slub_nomerge);
  1929. static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
  1930. const char *name, int size, gfp_t gfp_flags)
  1931. {
  1932. unsigned int flags = 0;
  1933. if (gfp_flags & SLUB_DMA)
  1934. flags = SLAB_CACHE_DMA;
  1935. down_write(&slub_lock);
  1936. if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
  1937. flags, NULL))
  1938. goto panic;
  1939. list_add(&s->list, &slab_caches);
  1940. up_write(&slub_lock);
  1941. if (sysfs_slab_add(s))
  1942. goto panic;
  1943. return s;
  1944. panic:
  1945. panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
  1946. }
  1947. #ifdef CONFIG_ZONE_DMA
  1948. static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
  1949. {
  1950. struct kmem_cache *s;
  1951. struct kmem_cache *x;
  1952. char *text;
  1953. size_t realsize;
  1954. s = kmalloc_caches_dma[index];
  1955. if (s)
  1956. return s;
  1957. /* Dynamically create dma cache */
  1958. x = kmalloc(kmem_size, flags & ~SLUB_DMA);
  1959. if (!x)
  1960. panic("Unable to allocate memory for dma cache\n");
  1961. realsize = kmalloc_caches[index].objsize;
  1962. text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
  1963. (unsigned int)realsize);
  1964. s = create_kmalloc_cache(x, text, realsize, flags);
  1965. down_write(&slub_lock);
  1966. if (!kmalloc_caches_dma[index]) {
  1967. kmalloc_caches_dma[index] = s;
  1968. up_write(&slub_lock);
  1969. return s;
  1970. }
  1971. up_write(&slub_lock);
  1972. kmem_cache_destroy(s);
  1973. return kmalloc_caches_dma[index];
  1974. }
  1975. #endif
  1976. /*
  1977. * Conversion table for small slabs sizes / 8 to the index in the
  1978. * kmalloc array. This is necessary for slabs < 192 since we have non power
  1979. * of two cache sizes there. The size of larger slabs can be determined using
  1980. * fls.
  1981. */
  1982. static s8 size_index[24] = {
  1983. 3, /* 8 */
  1984. 4, /* 16 */
  1985. 5, /* 24 */
  1986. 5, /* 32 */
  1987. 6, /* 40 */
  1988. 6, /* 48 */
  1989. 6, /* 56 */
  1990. 6, /* 64 */
  1991. 1, /* 72 */
  1992. 1, /* 80 */
  1993. 1, /* 88 */
  1994. 1, /* 96 */
  1995. 7, /* 104 */
  1996. 7, /* 112 */
  1997. 7, /* 120 */
  1998. 7, /* 128 */
  1999. 2, /* 136 */
  2000. 2, /* 144 */
  2001. 2, /* 152 */
  2002. 2, /* 160 */
  2003. 2, /* 168 */
  2004. 2, /* 176 */
  2005. 2, /* 184 */
  2006. 2 /* 192 */
  2007. };
  2008. static struct kmem_cache *get_slab(size_t size, gfp_t flags)
  2009. {
  2010. int index;
  2011. if (size <= 192) {
  2012. if (!size)
  2013. return ZERO_SIZE_PTR;
  2014. index = size_index[(size - 1) / 8];
  2015. } else {
  2016. if (size > KMALLOC_MAX_SIZE)
  2017. return NULL;
  2018. index = fls(size - 1);
  2019. }
  2020. #ifdef CONFIG_ZONE_DMA
  2021. if (unlikely((flags & SLUB_DMA)))
  2022. return dma_kmalloc_cache(index, flags);
  2023. #endif
  2024. return &kmalloc_caches[index];
  2025. }
  2026. void *__kmalloc(size_t size, gfp_t flags)
  2027. {
  2028. struct kmem_cache *s = get_slab(size, flags);
  2029. if (ZERO_OR_NULL_PTR(s))
  2030. return s;
  2031. return slab_alloc(s, flags, -1, __builtin_return_address(0));
  2032. }
  2033. EXPORT_SYMBOL(__kmalloc);
  2034. #ifdef CONFIG_NUMA
  2035. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  2036. {
  2037. struct kmem_cache *s = get_slab(size, flags);
  2038. if (ZERO_OR_NULL_PTR(s))
  2039. return s;
  2040. return slab_alloc(s, flags, node, __builtin_return_address(0));
  2041. }
  2042. EXPORT_SYMBOL(__kmalloc_node);
  2043. #endif
  2044. size_t ksize(const void *object)
  2045. {
  2046. struct page *page;
  2047. struct kmem_cache *s;
  2048. if (ZERO_OR_NULL_PTR(object))
  2049. return 0;
  2050. page = get_object_page(object);
  2051. BUG_ON(!page);
  2052. s = page->slab;
  2053. BUG_ON(!s);
  2054. /*
  2055. * Debugging requires use of the padding between object
  2056. * and whatever may come after it.
  2057. */
  2058. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  2059. return s->objsize;
  2060. /*
  2061. * If we have the need to store the freelist pointer
  2062. * back there or track user information then we can
  2063. * only use the space before that information.
  2064. */
  2065. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  2066. return s->inuse;
  2067. /*
  2068. * Else we can use all the padding etc for the allocation
  2069. */
  2070. return s->size;
  2071. }
  2072. EXPORT_SYMBOL(ksize);
  2073. void kfree(const void *x)
  2074. {
  2075. struct kmem_cache *s;
  2076. struct page *page;
  2077. /*
  2078. * This has to be an unsigned comparison. According to Linus
  2079. * some gcc version treat a pointer as a signed entity. Then
  2080. * this comparison would be true for all "negative" pointers
  2081. * (which would cover the whole upper half of the address space).
  2082. */
  2083. if (ZERO_OR_NULL_PTR(x))
  2084. return;
  2085. page = virt_to_head_page(x);
  2086. s = page->slab;
  2087. slab_free(s, page, (void *)x, __builtin_return_address(0));
  2088. }
  2089. EXPORT_SYMBOL(kfree);
  2090. /*
  2091. * kmem_cache_shrink removes empty slabs from the partial lists and sorts
  2092. * the remaining slabs by the number of items in use. The slabs with the
  2093. * most items in use come first. New allocations will then fill those up
  2094. * and thus they can be removed from the partial lists.
  2095. *
  2096. * The slabs with the least items are placed last. This results in them
  2097. * being allocated from last increasing the chance that the last objects
  2098. * are freed in them.
  2099. */
  2100. int kmem_cache_shrink(struct kmem_cache *s)
  2101. {
  2102. int node;
  2103. int i;
  2104. struct kmem_cache_node *n;
  2105. struct page *page;
  2106. struct page *t;
  2107. struct list_head *slabs_by_inuse =
  2108. kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
  2109. unsigned long flags;
  2110. if (!slabs_by_inuse)
  2111. return -ENOMEM;
  2112. flush_all(s);
  2113. for_each_online_node(node) {
  2114. n = get_node(s, node);
  2115. if (!n->nr_partial)
  2116. continue;
  2117. for (i = 0; i < s->objects; i++)
  2118. INIT_LIST_HEAD(slabs_by_inuse + i);
  2119. spin_lock_irqsave(&n->list_lock, flags);
  2120. /*
  2121. * Build lists indexed by the items in use in each slab.
  2122. *
  2123. * Note that concurrent frees may occur while we hold the
  2124. * list_lock. page->inuse here is the upper limit.
  2125. */
  2126. list_for_each_entry_safe(page, t, &n->partial, lru) {
  2127. if (!page->inuse && slab_trylock(page)) {
  2128. /*
  2129. * Must hold slab lock here because slab_free
  2130. * may have freed the last object and be
  2131. * waiting to release the slab.
  2132. */
  2133. list_del(&page->lru);
  2134. n->nr_partial--;
  2135. slab_unlock(page);
  2136. discard_slab(s, page);
  2137. } else {
  2138. if (n->nr_partial > MAX_PARTIAL)
  2139. list_move(&page->lru,
  2140. slabs_by_inuse + page->inuse);
  2141. }
  2142. }
  2143. if (n->nr_partial <= MAX_PARTIAL)
  2144. goto out;
  2145. /*
  2146. * Rebuild the partial list with the slabs filled up most
  2147. * first and the least used slabs at the end.
  2148. */
  2149. for (i = s->objects - 1; i >= 0; i--)
  2150. list_splice(slabs_by_inuse + i, n->partial.prev);
  2151. out:
  2152. spin_unlock_irqrestore(&n->list_lock, flags);
  2153. }
  2154. kfree(slabs_by_inuse);
  2155. return 0;
  2156. }
  2157. EXPORT_SYMBOL(kmem_cache_shrink);
  2158. /********************************************************************
  2159. * Basic setup of slabs
  2160. *******************************************************************/
  2161. void __init kmem_cache_init(void)
  2162. {
  2163. int i;
  2164. int caches = 0;
  2165. #ifdef CONFIG_NUMA
  2166. /*
  2167. * Must first have the slab cache available for the allocations of the
  2168. * struct kmem_cache_node's. There is special bootstrap code in
  2169. * kmem_cache_open for slab_state == DOWN.
  2170. */
  2171. create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
  2172. sizeof(struct kmem_cache_node), GFP_KERNEL);
  2173. kmalloc_caches[0].refcount = -1;
  2174. caches++;
  2175. #endif
  2176. /* Able to allocate the per node structures */
  2177. slab_state = PARTIAL;
  2178. /* Caches that are not of the two-to-the-power-of size */
  2179. if (KMALLOC_MIN_SIZE <= 64) {
  2180. create_kmalloc_cache(&kmalloc_caches[1],
  2181. "kmalloc-96", 96, GFP_KERNEL);
  2182. caches++;
  2183. }
  2184. if (KMALLOC_MIN_SIZE <= 128) {
  2185. create_kmalloc_cache(&kmalloc_caches[2],
  2186. "kmalloc-192", 192, GFP_KERNEL);
  2187. caches++;
  2188. }
  2189. for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
  2190. create_kmalloc_cache(&kmalloc_caches[i],
  2191. "kmalloc", 1 << i, GFP_KERNEL);
  2192. caches++;
  2193. }
  2194. /*
  2195. * Patch up the size_index table if we have strange large alignment
  2196. * requirements for the kmalloc array. This is only the case for
  2197. * mips it seems. The standard arches will not generate any code here.
  2198. *
  2199. * Largest permitted alignment is 256 bytes due to the way we
  2200. * handle the index determination for the smaller caches.
  2201. *
  2202. * Make sure that nothing crazy happens if someone starts tinkering
  2203. * around with ARCH_KMALLOC_MINALIGN
  2204. */
  2205. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
  2206. (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
  2207. for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
  2208. size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
  2209. slab_state = UP;
  2210. /* Provide the correct kmalloc names now that the caches are up */
  2211. for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
  2212. kmalloc_caches[i]. name =
  2213. kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
  2214. #ifdef CONFIG_SMP
  2215. register_cpu_notifier(&slab_notifier);
  2216. #endif
  2217. kmem_size = offsetof(struct kmem_cache, cpu_slab) +
  2218. nr_cpu_ids * sizeof(struct page *);
  2219. printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
  2220. " CPUs=%d, Nodes=%d\n",
  2221. caches, cache_line_size(),
  2222. slub_min_order, slub_max_order, slub_min_objects,
  2223. nr_cpu_ids, nr_node_ids);
  2224. }
  2225. /*
  2226. * Find a mergeable slab cache
  2227. */
  2228. static int slab_unmergeable(struct kmem_cache *s)
  2229. {
  2230. if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
  2231. return 1;
  2232. if (s->ctor)
  2233. return 1;
  2234. /*
  2235. * We may have set a slab to be unmergeable during bootstrap.
  2236. */
  2237. if (s->refcount < 0)
  2238. return 1;
  2239. return 0;
  2240. }
  2241. static struct kmem_cache *find_mergeable(size_t size,
  2242. size_t align, unsigned long flags,
  2243. void (*ctor)(void *, struct kmem_cache *, unsigned long))
  2244. {
  2245. struct kmem_cache *s;
  2246. if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
  2247. return NULL;
  2248. if (ctor)
  2249. return NULL;
  2250. size = ALIGN(size, sizeof(void *));
  2251. align = calculate_alignment(flags, align, size);
  2252. size = ALIGN(size, align);
  2253. list_for_each_entry(s, &slab_caches, list) {
  2254. if (slab_unmergeable(s))
  2255. continue;
  2256. if (size > s->size)
  2257. continue;
  2258. if (((flags | slub_debug) & SLUB_MERGE_SAME) !=
  2259. (s->flags & SLUB_MERGE_SAME))
  2260. continue;
  2261. /*
  2262. * Check if alignment is compatible.
  2263. * Courtesy of Adrian Drzewiecki
  2264. */
  2265. if ((s->size & ~(align -1)) != s->size)
  2266. continue;
  2267. if (s->size - size >= sizeof(void *))
  2268. continue;
  2269. return s;
  2270. }
  2271. return NULL;
  2272. }
  2273. struct kmem_cache *kmem_cache_create(const char *name, size_t size,
  2274. size_t align, unsigned long flags,
  2275. void (*ctor)(void *, struct kmem_cache *, unsigned long))
  2276. {
  2277. struct kmem_cache *s;
  2278. down_write(&slub_lock);
  2279. s = find_mergeable(size, align, flags, ctor);
  2280. if (s) {
  2281. s->refcount++;
  2282. /*
  2283. * Adjust the object sizes so that we clear
  2284. * the complete object on kzalloc.
  2285. */
  2286. s->objsize = max(s->objsize, (int)size);
  2287. s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
  2288. up_write(&slub_lock);
  2289. if (sysfs_slab_alias(s, name))
  2290. goto err;
  2291. return s;
  2292. }
  2293. s = kmalloc(kmem_size, GFP_KERNEL);
  2294. if (s) {
  2295. if (kmem_cache_open(s, GFP_KERNEL, name,
  2296. size, align, flags, ctor)) {
  2297. list_add(&s->list, &slab_caches);
  2298. up_write(&slub_lock);
  2299. if (sysfs_slab_add(s))
  2300. goto err;
  2301. return s;
  2302. }
  2303. kfree(s);
  2304. }
  2305. up_write(&slub_lock);
  2306. err:
  2307. if (flags & SLAB_PANIC)
  2308. panic("Cannot create slabcache %s\n", name);
  2309. else
  2310. s = NULL;
  2311. return s;
  2312. }
  2313. EXPORT_SYMBOL(kmem_cache_create);
  2314. #ifdef CONFIG_SMP
  2315. /*
  2316. * Use the cpu notifier to insure that the cpu slabs are flushed when
  2317. * necessary.
  2318. */
  2319. static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
  2320. unsigned long action, void *hcpu)
  2321. {
  2322. long cpu = (long)hcpu;
  2323. struct kmem_cache *s;
  2324. unsigned long flags;
  2325. switch (action) {
  2326. case CPU_UP_CANCELED:
  2327. case CPU_UP_CANCELED_FROZEN:
  2328. case CPU_DEAD:
  2329. case CPU_DEAD_FROZEN:
  2330. down_read(&slub_lock);
  2331. list_for_each_entry(s, &slab_caches, list) {
  2332. local_irq_save(flags);
  2333. __flush_cpu_slab(s, cpu);
  2334. local_irq_restore(flags);
  2335. }
  2336. up_read(&slub_lock);
  2337. break;
  2338. default:
  2339. break;
  2340. }
  2341. return NOTIFY_OK;
  2342. }
  2343. static struct notifier_block __cpuinitdata slab_notifier =
  2344. { &slab_cpuup_callback, NULL, 0 };
  2345. #endif
  2346. void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
  2347. {
  2348. struct kmem_cache *s = get_slab(size, gfpflags);
  2349. if (ZERO_OR_NULL_PTR(s))
  2350. return s;
  2351. return slab_alloc(s, gfpflags, -1, caller);
  2352. }
  2353. void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
  2354. int node, void *caller)
  2355. {
  2356. struct kmem_cache *s = get_slab(size, gfpflags);
  2357. if (ZERO_OR_NULL_PTR(s))
  2358. return s;
  2359. return slab_alloc(s, gfpflags, node, caller);
  2360. }
  2361. #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
  2362. static int validate_slab(struct kmem_cache *s, struct page *page,
  2363. unsigned long *map)
  2364. {
  2365. void *p;
  2366. void *addr = page_address(page);
  2367. if (!check_slab(s, page) ||
  2368. !on_freelist(s, page, NULL))
  2369. return 0;
  2370. /* Now we know that a valid freelist exists */
  2371. bitmap_zero(map, s->objects);
  2372. for_each_free_object(p, s, page->freelist) {
  2373. set_bit(slab_index(p, s, addr), map);
  2374. if (!check_object(s, page, p, 0))
  2375. return 0;
  2376. }
  2377. for_each_object(p, s, addr)
  2378. if (!test_bit(slab_index(p, s, addr), map))
  2379. if (!check_object(s, page, p, 1))
  2380. return 0;
  2381. return 1;
  2382. }
  2383. static void validate_slab_slab(struct kmem_cache *s, struct page *page,
  2384. unsigned long *map)
  2385. {
  2386. if (slab_trylock(page)) {
  2387. validate_slab(s, page, map);
  2388. slab_unlock(page);
  2389. } else
  2390. printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
  2391. s->name, page);
  2392. if (s->flags & DEBUG_DEFAULT_FLAGS) {
  2393. if (!SlabDebug(page))
  2394. printk(KERN_ERR "SLUB %s: SlabDebug not set "
  2395. "on slab 0x%p\n", s->name, page);
  2396. } else {
  2397. if (SlabDebug(page))
  2398. printk(KERN_ERR "SLUB %s: SlabDebug set on "
  2399. "slab 0x%p\n", s->name, page);
  2400. }
  2401. }
  2402. static int validate_slab_node(struct kmem_cache *s,
  2403. struct kmem_cache_node *n, unsigned long *map)
  2404. {
  2405. unsigned long count = 0;
  2406. struct page *page;
  2407. unsigned long flags;
  2408. spin_lock_irqsave(&n->list_lock, flags);
  2409. list_for_each_entry(page, &n->partial, lru) {
  2410. validate_slab_slab(s, page, map);
  2411. count++;
  2412. }
  2413. if (count != n->nr_partial)
  2414. printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
  2415. "counter=%ld\n", s->name, count, n->nr_partial);
  2416. if (!(s->flags & SLAB_STORE_USER))
  2417. goto out;
  2418. list_for_each_entry(page, &n->full, lru) {
  2419. validate_slab_slab(s, page, map);
  2420. count++;
  2421. }
  2422. if (count != atomic_long_read(&n->nr_slabs))
  2423. printk(KERN_ERR "SLUB: %s %ld slabs counted but "
  2424. "counter=%ld\n", s->name, count,
  2425. atomic_long_read(&n->nr_slabs));
  2426. out:
  2427. spin_unlock_irqrestore(&n->list_lock, flags);
  2428. return count;
  2429. }
  2430. static long validate_slab_cache(struct kmem_cache *s)
  2431. {
  2432. int node;
  2433. unsigned long count = 0;
  2434. unsigned long *map = kmalloc(BITS_TO_LONGS(s->objects) *
  2435. sizeof(unsigned long), GFP_KERNEL);
  2436. if (!map)
  2437. return -ENOMEM;
  2438. flush_all(s);
  2439. for_each_online_node(node) {
  2440. struct kmem_cache_node *n = get_node(s, node);
  2441. count += validate_slab_node(s, n, map);
  2442. }
  2443. kfree(map);
  2444. return count;
  2445. }
  2446. #ifdef SLUB_RESILIENCY_TEST
  2447. static void resiliency_test(void)
  2448. {
  2449. u8 *p;
  2450. printk(KERN_ERR "SLUB resiliency testing\n");
  2451. printk(KERN_ERR "-----------------------\n");
  2452. printk(KERN_ERR "A. Corruption after allocation\n");
  2453. p = kzalloc(16, GFP_KERNEL);
  2454. p[16] = 0x12;
  2455. printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
  2456. " 0x12->0x%p\n\n", p + 16);
  2457. validate_slab_cache(kmalloc_caches + 4);
  2458. /* Hmmm... The next two are dangerous */
  2459. p = kzalloc(32, GFP_KERNEL);
  2460. p[32 + sizeof(void *)] = 0x34;
  2461. printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
  2462. " 0x34 -> -0x%p\n", p);
  2463. printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
  2464. validate_slab_cache(kmalloc_caches + 5);
  2465. p = kzalloc(64, GFP_KERNEL);
  2466. p += 64 + (get_cycles() & 0xff) * sizeof(void *);
  2467. *p = 0x56;
  2468. printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
  2469. p);
  2470. printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
  2471. validate_slab_cache(kmalloc_caches + 6);
  2472. printk(KERN_ERR "\nB. Corruption after free\n");
  2473. p = kzalloc(128, GFP_KERNEL);
  2474. kfree(p);
  2475. *p = 0x78;
  2476. printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
  2477. validate_slab_cache(kmalloc_caches + 7);
  2478. p = kzalloc(256, GFP_KERNEL);
  2479. kfree(p);
  2480. p[50] = 0x9a;
  2481. printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
  2482. validate_slab_cache(kmalloc_caches + 8);
  2483. p = kzalloc(512, GFP_KERNEL);
  2484. kfree(p);
  2485. p[512] = 0xab;
  2486. printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
  2487. validate_slab_cache(kmalloc_caches + 9);
  2488. }
  2489. #else
  2490. static void resiliency_test(void) {};
  2491. #endif
  2492. /*
  2493. * Generate lists of code addresses where slabcache objects are allocated
  2494. * and freed.
  2495. */
  2496. struct location {
  2497. unsigned long count;
  2498. void *addr;
  2499. long long sum_time;
  2500. long min_time;
  2501. long max_time;
  2502. long min_pid;
  2503. long max_pid;
  2504. cpumask_t cpus;
  2505. nodemask_t nodes;
  2506. };
  2507. struct loc_track {
  2508. unsigned long max;
  2509. unsigned long count;
  2510. struct location *loc;
  2511. };
  2512. static void free_loc_track(struct loc_track *t)
  2513. {
  2514. if (t->max)
  2515. free_pages((unsigned long)t->loc,
  2516. get_order(sizeof(struct location) * t->max));
  2517. }
  2518. static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
  2519. {
  2520. struct location *l;
  2521. int order;
  2522. order = get_order(sizeof(struct location) * max);
  2523. l = (void *)__get_free_pages(flags, order);
  2524. if (!l)
  2525. return 0;
  2526. if (t->count) {
  2527. memcpy(l, t->loc, sizeof(struct location) * t->count);
  2528. free_loc_track(t);
  2529. }
  2530. t->max = max;
  2531. t->loc = l;
  2532. return 1;
  2533. }
  2534. static int add_location(struct loc_track *t, struct kmem_cache *s,
  2535. const struct track *track)
  2536. {
  2537. long start, end, pos;
  2538. struct location *l;
  2539. void *caddr;
  2540. unsigned long age = jiffies - track->when;
  2541. start = -1;
  2542. end = t->count;
  2543. for ( ; ; ) {
  2544. pos = start + (end - start + 1) / 2;
  2545. /*
  2546. * There is nothing at "end". If we end up there
  2547. * we need to add something to before end.
  2548. */
  2549. if (pos == end)
  2550. break;
  2551. caddr = t->loc[pos].addr;
  2552. if (track->addr == caddr) {
  2553. l = &t->loc[pos];
  2554. l->count++;
  2555. if (track->when) {
  2556. l->sum_time += age;
  2557. if (age < l->min_time)
  2558. l->min_time = age;
  2559. if (age > l->max_time)
  2560. l->max_time = age;
  2561. if (track->pid < l->min_pid)
  2562. l->min_pid = track->pid;
  2563. if (track->pid > l->max_pid)
  2564. l->max_pid = track->pid;
  2565. cpu_set(track->cpu, l->cpus);
  2566. }
  2567. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  2568. return 1;
  2569. }
  2570. if (track->addr < caddr)
  2571. end = pos;
  2572. else
  2573. start = pos;
  2574. }
  2575. /*
  2576. * Not found. Insert new tracking element.
  2577. */
  2578. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
  2579. return 0;
  2580. l = t->loc + pos;
  2581. if (pos < t->count)
  2582. memmove(l + 1, l,
  2583. (t->count - pos) * sizeof(struct location));
  2584. t->count++;
  2585. l->count = 1;
  2586. l->addr = track->addr;
  2587. l->sum_time = age;
  2588. l->min_time = age;
  2589. l->max_time = age;
  2590. l->min_pid = track->pid;
  2591. l->max_pid = track->pid;
  2592. cpus_clear(l->cpus);
  2593. cpu_set(track->cpu, l->cpus);
  2594. nodes_clear(l->nodes);
  2595. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  2596. return 1;
  2597. }
  2598. static void process_slab(struct loc_track *t, struct kmem_cache *s,
  2599. struct page *page, enum track_item alloc)
  2600. {
  2601. void *addr = page_address(page);
  2602. DECLARE_BITMAP(map, s->objects);
  2603. void *p;
  2604. bitmap_zero(map, s->objects);
  2605. for_each_free_object(p, s, page->freelist)
  2606. set_bit(slab_index(p, s, addr), map);
  2607. for_each_object(p, s, addr)
  2608. if (!test_bit(slab_index(p, s, addr), map))
  2609. add_location(t, s, get_track(s, p, alloc));
  2610. }
  2611. static int list_locations(struct kmem_cache *s, char *buf,
  2612. enum track_item alloc)
  2613. {
  2614. int n = 0;
  2615. unsigned long i;
  2616. struct loc_track t = { 0, 0, NULL };
  2617. int node;
  2618. if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  2619. GFP_KERNEL))
  2620. return sprintf(buf, "Out of memory\n");
  2621. /* Push back cpu slabs */
  2622. flush_all(s);
  2623. for_each_online_node(node) {
  2624. struct kmem_cache_node *n = get_node(s, node);
  2625. unsigned long flags;
  2626. struct page *page;
  2627. if (!atomic_read(&n->nr_slabs))
  2628. continue;
  2629. spin_lock_irqsave(&n->list_lock, flags);
  2630. list_for_each_entry(page, &n->partial, lru)
  2631. process_slab(&t, s, page, alloc);
  2632. list_for_each_entry(page, &n->full, lru)
  2633. process_slab(&t, s, page, alloc);
  2634. spin_unlock_irqrestore(&n->list_lock, flags);
  2635. }
  2636. for (i = 0; i < t.count; i++) {
  2637. struct location *l = &t.loc[i];
  2638. if (n > PAGE_SIZE - 100)
  2639. break;
  2640. n += sprintf(buf + n, "%7ld ", l->count);
  2641. if (l->addr)
  2642. n += sprint_symbol(buf + n, (unsigned long)l->addr);
  2643. else
  2644. n += sprintf(buf + n, "<not-available>");
  2645. if (l->sum_time != l->min_time) {
  2646. unsigned long remainder;
  2647. n += sprintf(buf + n, " age=%ld/%ld/%ld",
  2648. l->min_time,
  2649. div_long_long_rem(l->sum_time, l->count, &remainder),
  2650. l->max_time);
  2651. } else
  2652. n += sprintf(buf + n, " age=%ld",
  2653. l->min_time);
  2654. if (l->min_pid != l->max_pid)
  2655. n += sprintf(buf + n, " pid=%ld-%ld",
  2656. l->min_pid, l->max_pid);
  2657. else
  2658. n += sprintf(buf + n, " pid=%ld",
  2659. l->min_pid);
  2660. if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
  2661. n < PAGE_SIZE - 60) {
  2662. n += sprintf(buf + n, " cpus=");
  2663. n += cpulist_scnprintf(buf + n, PAGE_SIZE - n - 50,
  2664. l->cpus);
  2665. }
  2666. if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
  2667. n < PAGE_SIZE - 60) {
  2668. n += sprintf(buf + n, " nodes=");
  2669. n += nodelist_scnprintf(buf + n, PAGE_SIZE - n - 50,
  2670. l->nodes);
  2671. }
  2672. n += sprintf(buf + n, "\n");
  2673. }
  2674. free_loc_track(&t);
  2675. if (!t.count)
  2676. n += sprintf(buf, "No data\n");
  2677. return n;
  2678. }
  2679. static unsigned long count_partial(struct kmem_cache_node *n)
  2680. {
  2681. unsigned long flags;
  2682. unsigned long x = 0;
  2683. struct page *page;
  2684. spin_lock_irqsave(&n->list_lock, flags);
  2685. list_for_each_entry(page, &n->partial, lru)
  2686. x += page->inuse;
  2687. spin_unlock_irqrestore(&n->list_lock, flags);
  2688. return x;
  2689. }
  2690. enum slab_stat_type {
  2691. SL_FULL,
  2692. SL_PARTIAL,
  2693. SL_CPU,
  2694. SL_OBJECTS
  2695. };
  2696. #define SO_FULL (1 << SL_FULL)
  2697. #define SO_PARTIAL (1 << SL_PARTIAL)
  2698. #define SO_CPU (1 << SL_CPU)
  2699. #define SO_OBJECTS (1 << SL_OBJECTS)
  2700. static unsigned long slab_objects(struct kmem_cache *s,
  2701. char *buf, unsigned long flags)
  2702. {
  2703. unsigned long total = 0;
  2704. int cpu;
  2705. int node;
  2706. int x;
  2707. unsigned long *nodes;
  2708. unsigned long *per_cpu;
  2709. nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
  2710. per_cpu = nodes + nr_node_ids;
  2711. for_each_possible_cpu(cpu) {
  2712. struct page *page = s->cpu_slab[cpu];
  2713. int node;
  2714. if (page) {
  2715. node = page_to_nid(page);
  2716. if (flags & SO_CPU) {
  2717. int x = 0;
  2718. if (flags & SO_OBJECTS)
  2719. x = page->inuse;
  2720. else
  2721. x = 1;
  2722. total += x;
  2723. nodes[node] += x;
  2724. }
  2725. per_cpu[node]++;
  2726. }
  2727. }
  2728. for_each_online_node(node) {
  2729. struct kmem_cache_node *n = get_node(s, node);
  2730. if (flags & SO_PARTIAL) {
  2731. if (flags & SO_OBJECTS)
  2732. x = count_partial(n);
  2733. else
  2734. x = n->nr_partial;
  2735. total += x;
  2736. nodes[node] += x;
  2737. }
  2738. if (flags & SO_FULL) {
  2739. int full_slabs = atomic_read(&n->nr_slabs)
  2740. - per_cpu[node]
  2741. - n->nr_partial;
  2742. if (flags & SO_OBJECTS)
  2743. x = full_slabs * s->objects;
  2744. else
  2745. x = full_slabs;
  2746. total += x;
  2747. nodes[node] += x;
  2748. }
  2749. }
  2750. x = sprintf(buf, "%lu", total);
  2751. #ifdef CONFIG_NUMA
  2752. for_each_online_node(node)
  2753. if (nodes[node])
  2754. x += sprintf(buf + x, " N%d=%lu",
  2755. node, nodes[node]);
  2756. #endif
  2757. kfree(nodes);
  2758. return x + sprintf(buf + x, "\n");
  2759. }
  2760. static int any_slab_objects(struct kmem_cache *s)
  2761. {
  2762. int node;
  2763. int cpu;
  2764. for_each_possible_cpu(cpu)
  2765. if (s->cpu_slab[cpu])
  2766. return 1;
  2767. for_each_node(node) {
  2768. struct kmem_cache_node *n = get_node(s, node);
  2769. if (n->nr_partial || atomic_read(&n->nr_slabs))
  2770. return 1;
  2771. }
  2772. return 0;
  2773. }
  2774. #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
  2775. #define to_slab(n) container_of(n, struct kmem_cache, kobj);
  2776. struct slab_attribute {
  2777. struct attribute attr;
  2778. ssize_t (*show)(struct kmem_cache *s, char *buf);
  2779. ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
  2780. };
  2781. #define SLAB_ATTR_RO(_name) \
  2782. static struct slab_attribute _name##_attr = __ATTR_RO(_name)
  2783. #define SLAB_ATTR(_name) \
  2784. static struct slab_attribute _name##_attr = \
  2785. __ATTR(_name, 0644, _name##_show, _name##_store)
  2786. static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
  2787. {
  2788. return sprintf(buf, "%d\n", s->size);
  2789. }
  2790. SLAB_ATTR_RO(slab_size);
  2791. static ssize_t align_show(struct kmem_cache *s, char *buf)
  2792. {
  2793. return sprintf(buf, "%d\n", s->align);
  2794. }
  2795. SLAB_ATTR_RO(align);
  2796. static ssize_t object_size_show(struct kmem_cache *s, char *buf)
  2797. {
  2798. return sprintf(buf, "%d\n", s->objsize);
  2799. }
  2800. SLAB_ATTR_RO(object_size);
  2801. static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
  2802. {
  2803. return sprintf(buf, "%d\n", s->objects);
  2804. }
  2805. SLAB_ATTR_RO(objs_per_slab);
  2806. static ssize_t order_show(struct kmem_cache *s, char *buf)
  2807. {
  2808. return sprintf(buf, "%d\n", s->order);
  2809. }
  2810. SLAB_ATTR_RO(order);
  2811. static ssize_t ctor_show(struct kmem_cache *s, char *buf)
  2812. {
  2813. if (s->ctor) {
  2814. int n = sprint_symbol(buf, (unsigned long)s->ctor);
  2815. return n + sprintf(buf + n, "\n");
  2816. }
  2817. return 0;
  2818. }
  2819. SLAB_ATTR_RO(ctor);
  2820. static ssize_t aliases_show(struct kmem_cache *s, char *buf)
  2821. {
  2822. return sprintf(buf, "%d\n", s->refcount - 1);
  2823. }
  2824. SLAB_ATTR_RO(aliases);
  2825. static ssize_t slabs_show(struct kmem_cache *s, char *buf)
  2826. {
  2827. return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
  2828. }
  2829. SLAB_ATTR_RO(slabs);
  2830. static ssize_t partial_show(struct kmem_cache *s, char *buf)
  2831. {
  2832. return slab_objects(s, buf, SO_PARTIAL);
  2833. }
  2834. SLAB_ATTR_RO(partial);
  2835. static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
  2836. {
  2837. return slab_objects(s, buf, SO_CPU);
  2838. }
  2839. SLAB_ATTR_RO(cpu_slabs);
  2840. static ssize_t objects_show(struct kmem_cache *s, char *buf)
  2841. {
  2842. return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
  2843. }
  2844. SLAB_ATTR_RO(objects);
  2845. static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
  2846. {
  2847. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
  2848. }
  2849. static ssize_t sanity_checks_store(struct kmem_cache *s,
  2850. const char *buf, size_t length)
  2851. {
  2852. s->flags &= ~SLAB_DEBUG_FREE;
  2853. if (buf[0] == '1')
  2854. s->flags |= SLAB_DEBUG_FREE;
  2855. return length;
  2856. }
  2857. SLAB_ATTR(sanity_checks);
  2858. static ssize_t trace_show(struct kmem_cache *s, char *buf)
  2859. {
  2860. return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
  2861. }
  2862. static ssize_t trace_store(struct kmem_cache *s, const char *buf,
  2863. size_t length)
  2864. {
  2865. s->flags &= ~SLAB_TRACE;
  2866. if (buf[0] == '1')
  2867. s->flags |= SLAB_TRACE;
  2868. return length;
  2869. }
  2870. SLAB_ATTR(trace);
  2871. static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
  2872. {
  2873. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
  2874. }
  2875. static ssize_t reclaim_account_store(struct kmem_cache *s,
  2876. const char *buf, size_t length)
  2877. {
  2878. s->flags &= ~SLAB_RECLAIM_ACCOUNT;
  2879. if (buf[0] == '1')
  2880. s->flags |= SLAB_RECLAIM_ACCOUNT;
  2881. return length;
  2882. }
  2883. SLAB_ATTR(reclaim_account);
  2884. static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
  2885. {
  2886. return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
  2887. }
  2888. SLAB_ATTR_RO(hwcache_align);
  2889. #ifdef CONFIG_ZONE_DMA
  2890. static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
  2891. {
  2892. return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
  2893. }
  2894. SLAB_ATTR_RO(cache_dma);
  2895. #endif
  2896. static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
  2897. {
  2898. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
  2899. }
  2900. SLAB_ATTR_RO(destroy_by_rcu);
  2901. static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
  2902. {
  2903. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
  2904. }
  2905. static ssize_t red_zone_store(struct kmem_cache *s,
  2906. const char *buf, size_t length)
  2907. {
  2908. if (any_slab_objects(s))
  2909. return -EBUSY;
  2910. s->flags &= ~SLAB_RED_ZONE;
  2911. if (buf[0] == '1')
  2912. s->flags |= SLAB_RED_ZONE;
  2913. calculate_sizes(s);
  2914. return length;
  2915. }
  2916. SLAB_ATTR(red_zone);
  2917. static ssize_t poison_show(struct kmem_cache *s, char *buf)
  2918. {
  2919. return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
  2920. }
  2921. static ssize_t poison_store(struct kmem_cache *s,
  2922. const char *buf, size_t length)
  2923. {
  2924. if (any_slab_objects(s))
  2925. return -EBUSY;
  2926. s->flags &= ~SLAB_POISON;
  2927. if (buf[0] == '1')
  2928. s->flags |= SLAB_POISON;
  2929. calculate_sizes(s);
  2930. return length;
  2931. }
  2932. SLAB_ATTR(poison);
  2933. static ssize_t store_user_show(struct kmem_cache *s, char *buf)
  2934. {
  2935. return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
  2936. }
  2937. static ssize_t store_user_store(struct kmem_cache *s,
  2938. const char *buf, size_t length)
  2939. {
  2940. if (any_slab_objects(s))
  2941. return -EBUSY;
  2942. s->flags &= ~SLAB_STORE_USER;
  2943. if (buf[0] == '1')
  2944. s->flags |= SLAB_STORE_USER;
  2945. calculate_sizes(s);
  2946. return length;
  2947. }
  2948. SLAB_ATTR(store_user);
  2949. static ssize_t validate_show(struct kmem_cache *s, char *buf)
  2950. {
  2951. return 0;
  2952. }
  2953. static ssize_t validate_store(struct kmem_cache *s,
  2954. const char *buf, size_t length)
  2955. {
  2956. int ret = -EINVAL;
  2957. if (buf[0] == '1') {
  2958. ret = validate_slab_cache(s);
  2959. if (ret >= 0)
  2960. ret = length;
  2961. }
  2962. return ret;
  2963. }
  2964. SLAB_ATTR(validate);
  2965. static ssize_t shrink_show(struct kmem_cache *s, char *buf)
  2966. {
  2967. return 0;
  2968. }
  2969. static ssize_t shrink_store(struct kmem_cache *s,
  2970. const char *buf, size_t length)
  2971. {
  2972. if (buf[0] == '1') {
  2973. int rc = kmem_cache_shrink(s);
  2974. if (rc)
  2975. return rc;
  2976. } else
  2977. return -EINVAL;
  2978. return length;
  2979. }
  2980. SLAB_ATTR(shrink);
  2981. static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
  2982. {
  2983. if (!(s->flags & SLAB_STORE_USER))
  2984. return -ENOSYS;
  2985. return list_locations(s, buf, TRACK_ALLOC);
  2986. }
  2987. SLAB_ATTR_RO(alloc_calls);
  2988. static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
  2989. {
  2990. if (!(s->flags & SLAB_STORE_USER))
  2991. return -ENOSYS;
  2992. return list_locations(s, buf, TRACK_FREE);
  2993. }
  2994. SLAB_ATTR_RO(free_calls);
  2995. #ifdef CONFIG_NUMA
  2996. static ssize_t defrag_ratio_show(struct kmem_cache *s, char *buf)
  2997. {
  2998. return sprintf(buf, "%d\n", s->defrag_ratio / 10);
  2999. }
  3000. static ssize_t defrag_ratio_store(struct kmem_cache *s,
  3001. const char *buf, size_t length)
  3002. {
  3003. int n = simple_strtoul(buf, NULL, 10);
  3004. if (n < 100)
  3005. s->defrag_ratio = n * 10;
  3006. return length;
  3007. }
  3008. SLAB_ATTR(defrag_ratio);
  3009. #endif
  3010. static struct attribute * slab_attrs[] = {
  3011. &slab_size_attr.attr,
  3012. &object_size_attr.attr,
  3013. &objs_per_slab_attr.attr,
  3014. &order_attr.attr,
  3015. &objects_attr.attr,
  3016. &slabs_attr.attr,
  3017. &partial_attr.attr,
  3018. &cpu_slabs_attr.attr,
  3019. &ctor_attr.attr,
  3020. &aliases_attr.attr,
  3021. &align_attr.attr,
  3022. &sanity_checks_attr.attr,
  3023. &trace_attr.attr,
  3024. &hwcache_align_attr.attr,
  3025. &reclaim_account_attr.attr,
  3026. &destroy_by_rcu_attr.attr,
  3027. &red_zone_attr.attr,
  3028. &poison_attr.attr,
  3029. &store_user_attr.attr,
  3030. &validate_attr.attr,
  3031. &shrink_attr.attr,
  3032. &alloc_calls_attr.attr,
  3033. &free_calls_attr.attr,
  3034. #ifdef CONFIG_ZONE_DMA
  3035. &cache_dma_attr.attr,
  3036. #endif
  3037. #ifdef CONFIG_NUMA
  3038. &defrag_ratio_attr.attr,
  3039. #endif
  3040. NULL
  3041. };
  3042. static struct attribute_group slab_attr_group = {
  3043. .attrs = slab_attrs,
  3044. };
  3045. static ssize_t slab_attr_show(struct kobject *kobj,
  3046. struct attribute *attr,
  3047. char *buf)
  3048. {
  3049. struct slab_attribute *attribute;
  3050. struct kmem_cache *s;
  3051. int err;
  3052. attribute = to_slab_attr(attr);
  3053. s = to_slab(kobj);
  3054. if (!attribute->show)
  3055. return -EIO;
  3056. err = attribute->show(s, buf);
  3057. return err;
  3058. }
  3059. static ssize_t slab_attr_store(struct kobject *kobj,
  3060. struct attribute *attr,
  3061. const char *buf, size_t len)
  3062. {
  3063. struct slab_attribute *attribute;
  3064. struct kmem_cache *s;
  3065. int err;
  3066. attribute = to_slab_attr(attr);
  3067. s = to_slab(kobj);
  3068. if (!attribute->store)
  3069. return -EIO;
  3070. err = attribute->store(s, buf, len);
  3071. return err;
  3072. }
  3073. static struct sysfs_ops slab_sysfs_ops = {
  3074. .show = slab_attr_show,
  3075. .store = slab_attr_store,
  3076. };
  3077. static struct kobj_type slab_ktype = {
  3078. .sysfs_ops = &slab_sysfs_ops,
  3079. };
  3080. static int uevent_filter(struct kset *kset, struct kobject *kobj)
  3081. {
  3082. struct kobj_type *ktype = get_ktype(kobj);
  3083. if (ktype == &slab_ktype)
  3084. return 1;
  3085. return 0;
  3086. }
  3087. static struct kset_uevent_ops slab_uevent_ops = {
  3088. .filter = uevent_filter,
  3089. };
  3090. static decl_subsys(slab, &slab_ktype, &slab_uevent_ops);
  3091. #define ID_STR_LENGTH 64
  3092. /* Create a unique string id for a slab cache:
  3093. * format
  3094. * :[flags-]size:[memory address of kmemcache]
  3095. */
  3096. static char *create_unique_id(struct kmem_cache *s)
  3097. {
  3098. char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
  3099. char *p = name;
  3100. BUG_ON(!name);
  3101. *p++ = ':';
  3102. /*
  3103. * First flags affecting slabcache operations. We will only
  3104. * get here for aliasable slabs so we do not need to support
  3105. * too many flags. The flags here must cover all flags that
  3106. * are matched during merging to guarantee that the id is
  3107. * unique.
  3108. */
  3109. if (s->flags & SLAB_CACHE_DMA)
  3110. *p++ = 'd';
  3111. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  3112. *p++ = 'a';
  3113. if (s->flags & SLAB_DEBUG_FREE)
  3114. *p++ = 'F';
  3115. if (p != name + 1)
  3116. *p++ = '-';
  3117. p += sprintf(p, "%07d", s->size);
  3118. BUG_ON(p > name + ID_STR_LENGTH - 1);
  3119. return name;
  3120. }
  3121. static int sysfs_slab_add(struct kmem_cache *s)
  3122. {
  3123. int err;
  3124. const char *name;
  3125. int unmergeable;
  3126. if (slab_state < SYSFS)
  3127. /* Defer until later */
  3128. return 0;
  3129. unmergeable = slab_unmergeable(s);
  3130. if (unmergeable) {
  3131. /*
  3132. * Slabcache can never be merged so we can use the name proper.
  3133. * This is typically the case for debug situations. In that
  3134. * case we can catch duplicate names easily.
  3135. */
  3136. sysfs_remove_link(&slab_subsys.kobj, s->name);
  3137. name = s->name;
  3138. } else {
  3139. /*
  3140. * Create a unique name for the slab as a target
  3141. * for the symlinks.
  3142. */
  3143. name = create_unique_id(s);
  3144. }
  3145. kobj_set_kset_s(s, slab_subsys);
  3146. kobject_set_name(&s->kobj, name);
  3147. kobject_init(&s->kobj);
  3148. err = kobject_add(&s->kobj);
  3149. if (err)
  3150. return err;
  3151. err = sysfs_create_group(&s->kobj, &slab_attr_group);
  3152. if (err)
  3153. return err;
  3154. kobject_uevent(&s->kobj, KOBJ_ADD);
  3155. if (!unmergeable) {
  3156. /* Setup first alias */
  3157. sysfs_slab_alias(s, s->name);
  3158. kfree(name);
  3159. }
  3160. return 0;
  3161. }
  3162. static void sysfs_slab_remove(struct kmem_cache *s)
  3163. {
  3164. kobject_uevent(&s->kobj, KOBJ_REMOVE);
  3165. kobject_del(&s->kobj);
  3166. }
  3167. /*
  3168. * Need to buffer aliases during bootup until sysfs becomes
  3169. * available lest we loose that information.
  3170. */
  3171. struct saved_alias {
  3172. struct kmem_cache *s;
  3173. const char *name;
  3174. struct saved_alias *next;
  3175. };
  3176. static struct saved_alias *alias_list;
  3177. static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
  3178. {
  3179. struct saved_alias *al;
  3180. if (slab_state == SYSFS) {
  3181. /*
  3182. * If we have a leftover link then remove it.
  3183. */
  3184. sysfs_remove_link(&slab_subsys.kobj, name);
  3185. return sysfs_create_link(&slab_subsys.kobj,
  3186. &s->kobj, name);
  3187. }
  3188. al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
  3189. if (!al)
  3190. return -ENOMEM;
  3191. al->s = s;
  3192. al->name = name;
  3193. al->next = alias_list;
  3194. alias_list = al;
  3195. return 0;
  3196. }
  3197. static int __init slab_sysfs_init(void)
  3198. {
  3199. struct kmem_cache *s;
  3200. int err;
  3201. err = subsystem_register(&slab_subsys);
  3202. if (err) {
  3203. printk(KERN_ERR "Cannot register slab subsystem.\n");
  3204. return -ENOSYS;
  3205. }
  3206. slab_state = SYSFS;
  3207. list_for_each_entry(s, &slab_caches, list) {
  3208. err = sysfs_slab_add(s);
  3209. BUG_ON(err);
  3210. }
  3211. while (alias_list) {
  3212. struct saved_alias *al = alias_list;
  3213. alias_list = alias_list->next;
  3214. err = sysfs_slab_alias(al->s, al->name);
  3215. BUG_ON(err);
  3216. kfree(al);
  3217. }
  3218. resiliency_test();
  3219. return 0;
  3220. }
  3221. __initcall(slab_sysfs_init);
  3222. #endif