oxygen_mixer.c 31 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097
  1. /*
  2. * C-Media CMI8788 driver - mixer code
  3. *
  4. * Copyright (c) Clemens Ladisch <clemens@ladisch.de>
  5. *
  6. *
  7. * This driver is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License, version 2.
  9. *
  10. * This driver is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this driver; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. */
  19. #include <linux/mutex.h>
  20. #include <sound/ac97_codec.h>
  21. #include <sound/asoundef.h>
  22. #include <sound/control.h>
  23. #include <sound/tlv.h>
  24. #include "oxygen.h"
  25. #include "cm9780.h"
  26. static int dac_volume_info(struct snd_kcontrol *ctl,
  27. struct snd_ctl_elem_info *info)
  28. {
  29. struct oxygen *chip = ctl->private_data;
  30. info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
  31. info->count = chip->model.dac_channels_mixer;
  32. info->value.integer.min = chip->model.dac_volume_min;
  33. info->value.integer.max = chip->model.dac_volume_max;
  34. return 0;
  35. }
  36. static int dac_volume_get(struct snd_kcontrol *ctl,
  37. struct snd_ctl_elem_value *value)
  38. {
  39. struct oxygen *chip = ctl->private_data;
  40. unsigned int i;
  41. mutex_lock(&chip->mutex);
  42. for (i = 0; i < chip->model.dac_channels_mixer; ++i)
  43. value->value.integer.value[i] = chip->dac_volume[i];
  44. mutex_unlock(&chip->mutex);
  45. return 0;
  46. }
  47. static int dac_volume_put(struct snd_kcontrol *ctl,
  48. struct snd_ctl_elem_value *value)
  49. {
  50. struct oxygen *chip = ctl->private_data;
  51. unsigned int i;
  52. int changed;
  53. changed = 0;
  54. mutex_lock(&chip->mutex);
  55. for (i = 0; i < chip->model.dac_channels_mixer; ++i)
  56. if (value->value.integer.value[i] != chip->dac_volume[i]) {
  57. chip->dac_volume[i] = value->value.integer.value[i];
  58. changed = 1;
  59. }
  60. if (changed)
  61. chip->model.update_dac_volume(chip);
  62. mutex_unlock(&chip->mutex);
  63. return changed;
  64. }
  65. static int dac_mute_get(struct snd_kcontrol *ctl,
  66. struct snd_ctl_elem_value *value)
  67. {
  68. struct oxygen *chip = ctl->private_data;
  69. mutex_lock(&chip->mutex);
  70. value->value.integer.value[0] = !chip->dac_mute;
  71. mutex_unlock(&chip->mutex);
  72. return 0;
  73. }
  74. static int dac_mute_put(struct snd_kcontrol *ctl,
  75. struct snd_ctl_elem_value *value)
  76. {
  77. struct oxygen *chip = ctl->private_data;
  78. int changed;
  79. mutex_lock(&chip->mutex);
  80. changed = !value->value.integer.value[0] != chip->dac_mute;
  81. if (changed) {
  82. chip->dac_mute = !value->value.integer.value[0];
  83. chip->model.update_dac_mute(chip);
  84. }
  85. mutex_unlock(&chip->mutex);
  86. return changed;
  87. }
  88. static unsigned int upmix_item_count(struct oxygen *chip)
  89. {
  90. if (chip->model.dac_channels_pcm < 8)
  91. return 2;
  92. else if (chip->model.update_center_lfe_mix)
  93. return 5;
  94. else
  95. return 3;
  96. }
  97. static int upmix_info(struct snd_kcontrol *ctl, struct snd_ctl_elem_info *info)
  98. {
  99. static const char *const names[5] = {
  100. "Front",
  101. "Front+Surround",
  102. "Front+Surround+Back",
  103. "Front+Surround+Center/LFE",
  104. "Front+Surround+Center/LFE+Back",
  105. };
  106. struct oxygen *chip = ctl->private_data;
  107. unsigned int count = upmix_item_count(chip);
  108. return snd_ctl_enum_info(info, 1, count, names);
  109. }
  110. static int upmix_get(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value)
  111. {
  112. struct oxygen *chip = ctl->private_data;
  113. mutex_lock(&chip->mutex);
  114. value->value.enumerated.item[0] = chip->dac_routing;
  115. mutex_unlock(&chip->mutex);
  116. return 0;
  117. }
  118. void oxygen_update_dac_routing(struct oxygen *chip)
  119. {
  120. /* DAC 0: front, DAC 1: surround, DAC 2: center/LFE, DAC 3: back */
  121. static const unsigned int reg_values[5] = {
  122. /* stereo -> front */
  123. (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
  124. (1 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
  125. (2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
  126. (3 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT),
  127. /* stereo -> front+surround */
  128. (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
  129. (0 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
  130. (2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
  131. (3 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT),
  132. /* stereo -> front+surround+back */
  133. (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
  134. (0 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
  135. (2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
  136. (0 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT),
  137. /* stereo -> front+surround+center/LFE */
  138. (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
  139. (0 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
  140. (0 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
  141. (3 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT),
  142. /* stereo -> front+surround+center/LFE+back */
  143. (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
  144. (0 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
  145. (0 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
  146. (0 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT),
  147. };
  148. u8 channels;
  149. unsigned int reg_value;
  150. channels = oxygen_read8(chip, OXYGEN_PLAY_CHANNELS) &
  151. OXYGEN_PLAY_CHANNELS_MASK;
  152. if (channels == OXYGEN_PLAY_CHANNELS_2)
  153. reg_value = reg_values[chip->dac_routing];
  154. else if (channels == OXYGEN_PLAY_CHANNELS_8)
  155. /* in 7.1 mode, "rear" channels go to the "back" jack */
  156. reg_value = (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
  157. (3 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
  158. (2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
  159. (1 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT);
  160. else
  161. reg_value = (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
  162. (1 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
  163. (2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
  164. (3 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT);
  165. oxygen_write16_masked(chip, OXYGEN_PLAY_ROUTING, reg_value,
  166. OXYGEN_PLAY_DAC0_SOURCE_MASK |
  167. OXYGEN_PLAY_DAC1_SOURCE_MASK |
  168. OXYGEN_PLAY_DAC2_SOURCE_MASK |
  169. OXYGEN_PLAY_DAC3_SOURCE_MASK);
  170. if (chip->model.update_center_lfe_mix)
  171. chip->model.update_center_lfe_mix(chip, chip->dac_routing > 2);
  172. }
  173. static int upmix_put(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value)
  174. {
  175. struct oxygen *chip = ctl->private_data;
  176. unsigned int count = upmix_item_count(chip);
  177. int changed;
  178. if (value->value.enumerated.item[0] >= count)
  179. return -EINVAL;
  180. mutex_lock(&chip->mutex);
  181. changed = value->value.enumerated.item[0] != chip->dac_routing;
  182. if (changed) {
  183. chip->dac_routing = value->value.enumerated.item[0];
  184. oxygen_update_dac_routing(chip);
  185. }
  186. mutex_unlock(&chip->mutex);
  187. return changed;
  188. }
  189. static int spdif_switch_get(struct snd_kcontrol *ctl,
  190. struct snd_ctl_elem_value *value)
  191. {
  192. struct oxygen *chip = ctl->private_data;
  193. mutex_lock(&chip->mutex);
  194. value->value.integer.value[0] = chip->spdif_playback_enable;
  195. mutex_unlock(&chip->mutex);
  196. return 0;
  197. }
  198. static unsigned int oxygen_spdif_rate(unsigned int oxygen_rate)
  199. {
  200. switch (oxygen_rate) {
  201. case OXYGEN_RATE_32000:
  202. return IEC958_AES3_CON_FS_32000 << OXYGEN_SPDIF_CS_RATE_SHIFT;
  203. case OXYGEN_RATE_44100:
  204. return IEC958_AES3_CON_FS_44100 << OXYGEN_SPDIF_CS_RATE_SHIFT;
  205. default: /* OXYGEN_RATE_48000 */
  206. return IEC958_AES3_CON_FS_48000 << OXYGEN_SPDIF_CS_RATE_SHIFT;
  207. case OXYGEN_RATE_64000:
  208. return 0xb << OXYGEN_SPDIF_CS_RATE_SHIFT;
  209. case OXYGEN_RATE_88200:
  210. return IEC958_AES3_CON_FS_88200 << OXYGEN_SPDIF_CS_RATE_SHIFT;
  211. case OXYGEN_RATE_96000:
  212. return IEC958_AES3_CON_FS_96000 << OXYGEN_SPDIF_CS_RATE_SHIFT;
  213. case OXYGEN_RATE_176400:
  214. return IEC958_AES3_CON_FS_176400 << OXYGEN_SPDIF_CS_RATE_SHIFT;
  215. case OXYGEN_RATE_192000:
  216. return IEC958_AES3_CON_FS_192000 << OXYGEN_SPDIF_CS_RATE_SHIFT;
  217. }
  218. }
  219. void oxygen_update_spdif_source(struct oxygen *chip)
  220. {
  221. u32 old_control, new_control;
  222. u16 old_routing, new_routing;
  223. unsigned int oxygen_rate;
  224. old_control = oxygen_read32(chip, OXYGEN_SPDIF_CONTROL);
  225. old_routing = oxygen_read16(chip, OXYGEN_PLAY_ROUTING);
  226. if (chip->pcm_active & (1 << PCM_SPDIF)) {
  227. new_control = old_control | OXYGEN_SPDIF_OUT_ENABLE;
  228. new_routing = (old_routing & ~OXYGEN_PLAY_SPDIF_MASK)
  229. | OXYGEN_PLAY_SPDIF_SPDIF;
  230. oxygen_rate = (old_control >> OXYGEN_SPDIF_OUT_RATE_SHIFT)
  231. & OXYGEN_I2S_RATE_MASK;
  232. /* S/PDIF rate was already set by the caller */
  233. } else if ((chip->pcm_active & (1 << PCM_MULTICH)) &&
  234. chip->spdif_playback_enable) {
  235. new_routing = (old_routing & ~OXYGEN_PLAY_SPDIF_MASK)
  236. | OXYGEN_PLAY_SPDIF_MULTICH_01;
  237. oxygen_rate = oxygen_read16(chip, OXYGEN_I2S_MULTICH_FORMAT)
  238. & OXYGEN_I2S_RATE_MASK;
  239. new_control = (old_control & ~OXYGEN_SPDIF_OUT_RATE_MASK) |
  240. (oxygen_rate << OXYGEN_SPDIF_OUT_RATE_SHIFT) |
  241. OXYGEN_SPDIF_OUT_ENABLE;
  242. } else {
  243. new_control = old_control & ~OXYGEN_SPDIF_OUT_ENABLE;
  244. new_routing = old_routing;
  245. oxygen_rate = OXYGEN_RATE_44100;
  246. }
  247. if (old_routing != new_routing) {
  248. oxygen_write32(chip, OXYGEN_SPDIF_CONTROL,
  249. new_control & ~OXYGEN_SPDIF_OUT_ENABLE);
  250. oxygen_write16(chip, OXYGEN_PLAY_ROUTING, new_routing);
  251. }
  252. if (new_control & OXYGEN_SPDIF_OUT_ENABLE)
  253. oxygen_write32(chip, OXYGEN_SPDIF_OUTPUT_BITS,
  254. oxygen_spdif_rate(oxygen_rate) |
  255. ((chip->pcm_active & (1 << PCM_SPDIF)) ?
  256. chip->spdif_pcm_bits : chip->spdif_bits));
  257. oxygen_write32(chip, OXYGEN_SPDIF_CONTROL, new_control);
  258. }
  259. static int spdif_switch_put(struct snd_kcontrol *ctl,
  260. struct snd_ctl_elem_value *value)
  261. {
  262. struct oxygen *chip = ctl->private_data;
  263. int changed;
  264. mutex_lock(&chip->mutex);
  265. changed = value->value.integer.value[0] != chip->spdif_playback_enable;
  266. if (changed) {
  267. chip->spdif_playback_enable = !!value->value.integer.value[0];
  268. spin_lock_irq(&chip->reg_lock);
  269. oxygen_update_spdif_source(chip);
  270. spin_unlock_irq(&chip->reg_lock);
  271. }
  272. mutex_unlock(&chip->mutex);
  273. return changed;
  274. }
  275. static int spdif_info(struct snd_kcontrol *ctl, struct snd_ctl_elem_info *info)
  276. {
  277. info->type = SNDRV_CTL_ELEM_TYPE_IEC958;
  278. info->count = 1;
  279. return 0;
  280. }
  281. static void oxygen_to_iec958(u32 bits, struct snd_ctl_elem_value *value)
  282. {
  283. value->value.iec958.status[0] =
  284. bits & (OXYGEN_SPDIF_NONAUDIO | OXYGEN_SPDIF_C |
  285. OXYGEN_SPDIF_PREEMPHASIS);
  286. value->value.iec958.status[1] = /* category and original */
  287. bits >> OXYGEN_SPDIF_CATEGORY_SHIFT;
  288. }
  289. static u32 iec958_to_oxygen(struct snd_ctl_elem_value *value)
  290. {
  291. u32 bits;
  292. bits = value->value.iec958.status[0] &
  293. (OXYGEN_SPDIF_NONAUDIO | OXYGEN_SPDIF_C |
  294. OXYGEN_SPDIF_PREEMPHASIS);
  295. bits |= value->value.iec958.status[1] << OXYGEN_SPDIF_CATEGORY_SHIFT;
  296. if (bits & OXYGEN_SPDIF_NONAUDIO)
  297. bits |= OXYGEN_SPDIF_V;
  298. return bits;
  299. }
  300. static inline void write_spdif_bits(struct oxygen *chip, u32 bits)
  301. {
  302. oxygen_write32_masked(chip, OXYGEN_SPDIF_OUTPUT_BITS, bits,
  303. OXYGEN_SPDIF_NONAUDIO |
  304. OXYGEN_SPDIF_C |
  305. OXYGEN_SPDIF_PREEMPHASIS |
  306. OXYGEN_SPDIF_CATEGORY_MASK |
  307. OXYGEN_SPDIF_ORIGINAL |
  308. OXYGEN_SPDIF_V);
  309. }
  310. static int spdif_default_get(struct snd_kcontrol *ctl,
  311. struct snd_ctl_elem_value *value)
  312. {
  313. struct oxygen *chip = ctl->private_data;
  314. mutex_lock(&chip->mutex);
  315. oxygen_to_iec958(chip->spdif_bits, value);
  316. mutex_unlock(&chip->mutex);
  317. return 0;
  318. }
  319. static int spdif_default_put(struct snd_kcontrol *ctl,
  320. struct snd_ctl_elem_value *value)
  321. {
  322. struct oxygen *chip = ctl->private_data;
  323. u32 new_bits;
  324. int changed;
  325. new_bits = iec958_to_oxygen(value);
  326. mutex_lock(&chip->mutex);
  327. changed = new_bits != chip->spdif_bits;
  328. if (changed) {
  329. chip->spdif_bits = new_bits;
  330. if (!(chip->pcm_active & (1 << PCM_SPDIF)))
  331. write_spdif_bits(chip, new_bits);
  332. }
  333. mutex_unlock(&chip->mutex);
  334. return changed;
  335. }
  336. static int spdif_mask_get(struct snd_kcontrol *ctl,
  337. struct snd_ctl_elem_value *value)
  338. {
  339. value->value.iec958.status[0] = IEC958_AES0_NONAUDIO |
  340. IEC958_AES0_CON_NOT_COPYRIGHT | IEC958_AES0_CON_EMPHASIS;
  341. value->value.iec958.status[1] =
  342. IEC958_AES1_CON_CATEGORY | IEC958_AES1_CON_ORIGINAL;
  343. return 0;
  344. }
  345. static int spdif_pcm_get(struct snd_kcontrol *ctl,
  346. struct snd_ctl_elem_value *value)
  347. {
  348. struct oxygen *chip = ctl->private_data;
  349. mutex_lock(&chip->mutex);
  350. oxygen_to_iec958(chip->spdif_pcm_bits, value);
  351. mutex_unlock(&chip->mutex);
  352. return 0;
  353. }
  354. static int spdif_pcm_put(struct snd_kcontrol *ctl,
  355. struct snd_ctl_elem_value *value)
  356. {
  357. struct oxygen *chip = ctl->private_data;
  358. u32 new_bits;
  359. int changed;
  360. new_bits = iec958_to_oxygen(value);
  361. mutex_lock(&chip->mutex);
  362. changed = new_bits != chip->spdif_pcm_bits;
  363. if (changed) {
  364. chip->spdif_pcm_bits = new_bits;
  365. if (chip->pcm_active & (1 << PCM_SPDIF))
  366. write_spdif_bits(chip, new_bits);
  367. }
  368. mutex_unlock(&chip->mutex);
  369. return changed;
  370. }
  371. static int spdif_input_mask_get(struct snd_kcontrol *ctl,
  372. struct snd_ctl_elem_value *value)
  373. {
  374. value->value.iec958.status[0] = 0xff;
  375. value->value.iec958.status[1] = 0xff;
  376. value->value.iec958.status[2] = 0xff;
  377. value->value.iec958.status[3] = 0xff;
  378. return 0;
  379. }
  380. static int spdif_input_default_get(struct snd_kcontrol *ctl,
  381. struct snd_ctl_elem_value *value)
  382. {
  383. struct oxygen *chip = ctl->private_data;
  384. u32 bits;
  385. bits = oxygen_read32(chip, OXYGEN_SPDIF_INPUT_BITS);
  386. value->value.iec958.status[0] = bits;
  387. value->value.iec958.status[1] = bits >> 8;
  388. value->value.iec958.status[2] = bits >> 16;
  389. value->value.iec958.status[3] = bits >> 24;
  390. return 0;
  391. }
  392. static int spdif_bit_switch_get(struct snd_kcontrol *ctl,
  393. struct snd_ctl_elem_value *value)
  394. {
  395. struct oxygen *chip = ctl->private_data;
  396. u32 bit = ctl->private_value;
  397. value->value.integer.value[0] =
  398. !!(oxygen_read32(chip, OXYGEN_SPDIF_CONTROL) & bit);
  399. return 0;
  400. }
  401. static int spdif_bit_switch_put(struct snd_kcontrol *ctl,
  402. struct snd_ctl_elem_value *value)
  403. {
  404. struct oxygen *chip = ctl->private_data;
  405. u32 bit = ctl->private_value;
  406. u32 oldreg, newreg;
  407. int changed;
  408. spin_lock_irq(&chip->reg_lock);
  409. oldreg = oxygen_read32(chip, OXYGEN_SPDIF_CONTROL);
  410. if (value->value.integer.value[0])
  411. newreg = oldreg | bit;
  412. else
  413. newreg = oldreg & ~bit;
  414. changed = newreg != oldreg;
  415. if (changed)
  416. oxygen_write32(chip, OXYGEN_SPDIF_CONTROL, newreg);
  417. spin_unlock_irq(&chip->reg_lock);
  418. return changed;
  419. }
  420. static int monitor_volume_info(struct snd_kcontrol *ctl,
  421. struct snd_ctl_elem_info *info)
  422. {
  423. info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
  424. info->count = 1;
  425. info->value.integer.min = 0;
  426. info->value.integer.max = 1;
  427. return 0;
  428. }
  429. static int monitor_get(struct snd_kcontrol *ctl,
  430. struct snd_ctl_elem_value *value)
  431. {
  432. struct oxygen *chip = ctl->private_data;
  433. u8 bit = ctl->private_value;
  434. int invert = ctl->private_value & (1 << 8);
  435. value->value.integer.value[0] =
  436. !!invert ^ !!(oxygen_read8(chip, OXYGEN_ADC_MONITOR) & bit);
  437. return 0;
  438. }
  439. static int monitor_put(struct snd_kcontrol *ctl,
  440. struct snd_ctl_elem_value *value)
  441. {
  442. struct oxygen *chip = ctl->private_data;
  443. u8 bit = ctl->private_value;
  444. int invert = ctl->private_value & (1 << 8);
  445. u8 oldreg, newreg;
  446. int changed;
  447. spin_lock_irq(&chip->reg_lock);
  448. oldreg = oxygen_read8(chip, OXYGEN_ADC_MONITOR);
  449. if ((!!value->value.integer.value[0] ^ !!invert) != 0)
  450. newreg = oldreg | bit;
  451. else
  452. newreg = oldreg & ~bit;
  453. changed = newreg != oldreg;
  454. if (changed)
  455. oxygen_write8(chip, OXYGEN_ADC_MONITOR, newreg);
  456. spin_unlock_irq(&chip->reg_lock);
  457. return changed;
  458. }
  459. static int ac97_switch_get(struct snd_kcontrol *ctl,
  460. struct snd_ctl_elem_value *value)
  461. {
  462. struct oxygen *chip = ctl->private_data;
  463. unsigned int codec = (ctl->private_value >> 24) & 1;
  464. unsigned int index = ctl->private_value & 0xff;
  465. unsigned int bitnr = (ctl->private_value >> 8) & 0xff;
  466. int invert = ctl->private_value & (1 << 16);
  467. u16 reg;
  468. mutex_lock(&chip->mutex);
  469. reg = oxygen_read_ac97(chip, codec, index);
  470. mutex_unlock(&chip->mutex);
  471. if (!(reg & (1 << bitnr)) ^ !invert)
  472. value->value.integer.value[0] = 1;
  473. else
  474. value->value.integer.value[0] = 0;
  475. return 0;
  476. }
  477. static void mute_ac97_ctl(struct oxygen *chip, unsigned int control)
  478. {
  479. unsigned int priv_idx;
  480. u16 value;
  481. if (!chip->controls[control])
  482. return;
  483. priv_idx = chip->controls[control]->private_value & 0xff;
  484. value = oxygen_read_ac97(chip, 0, priv_idx);
  485. if (!(value & 0x8000)) {
  486. oxygen_write_ac97(chip, 0, priv_idx, value | 0x8000);
  487. if (chip->model.ac97_switch)
  488. chip->model.ac97_switch(chip, priv_idx, 0x8000);
  489. snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE,
  490. &chip->controls[control]->id);
  491. }
  492. }
  493. static int ac97_switch_put(struct snd_kcontrol *ctl,
  494. struct snd_ctl_elem_value *value)
  495. {
  496. struct oxygen *chip = ctl->private_data;
  497. unsigned int codec = (ctl->private_value >> 24) & 1;
  498. unsigned int index = ctl->private_value & 0xff;
  499. unsigned int bitnr = (ctl->private_value >> 8) & 0xff;
  500. int invert = ctl->private_value & (1 << 16);
  501. u16 oldreg, newreg;
  502. int change;
  503. mutex_lock(&chip->mutex);
  504. oldreg = oxygen_read_ac97(chip, codec, index);
  505. newreg = oldreg;
  506. if (!value->value.integer.value[0] ^ !invert)
  507. newreg |= 1 << bitnr;
  508. else
  509. newreg &= ~(1 << bitnr);
  510. change = newreg != oldreg;
  511. if (change) {
  512. oxygen_write_ac97(chip, codec, index, newreg);
  513. if (codec == 0 && chip->model.ac97_switch)
  514. chip->model.ac97_switch(chip, index, newreg & 0x8000);
  515. if (index == AC97_LINE) {
  516. oxygen_write_ac97_masked(chip, 0, CM9780_GPIO_STATUS,
  517. newreg & 0x8000 ?
  518. CM9780_GPO0 : 0, CM9780_GPO0);
  519. if (!(newreg & 0x8000)) {
  520. mute_ac97_ctl(chip, CONTROL_MIC_CAPTURE_SWITCH);
  521. mute_ac97_ctl(chip, CONTROL_CD_CAPTURE_SWITCH);
  522. mute_ac97_ctl(chip, CONTROL_AUX_CAPTURE_SWITCH);
  523. }
  524. } else if ((index == AC97_MIC || index == AC97_CD ||
  525. index == AC97_VIDEO || index == AC97_AUX) &&
  526. bitnr == 15 && !(newreg & 0x8000)) {
  527. mute_ac97_ctl(chip, CONTROL_LINE_CAPTURE_SWITCH);
  528. oxygen_write_ac97_masked(chip, 0, CM9780_GPIO_STATUS,
  529. CM9780_GPO0, CM9780_GPO0);
  530. }
  531. }
  532. mutex_unlock(&chip->mutex);
  533. return change;
  534. }
  535. static int ac97_volume_info(struct snd_kcontrol *ctl,
  536. struct snd_ctl_elem_info *info)
  537. {
  538. int stereo = (ctl->private_value >> 16) & 1;
  539. info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
  540. info->count = stereo ? 2 : 1;
  541. info->value.integer.min = 0;
  542. info->value.integer.max = 0x1f;
  543. return 0;
  544. }
  545. static int ac97_volume_get(struct snd_kcontrol *ctl,
  546. struct snd_ctl_elem_value *value)
  547. {
  548. struct oxygen *chip = ctl->private_data;
  549. unsigned int codec = (ctl->private_value >> 24) & 1;
  550. int stereo = (ctl->private_value >> 16) & 1;
  551. unsigned int index = ctl->private_value & 0xff;
  552. u16 reg;
  553. mutex_lock(&chip->mutex);
  554. reg = oxygen_read_ac97(chip, codec, index);
  555. mutex_unlock(&chip->mutex);
  556. value->value.integer.value[0] = 31 - (reg & 0x1f);
  557. if (stereo)
  558. value->value.integer.value[1] = 31 - ((reg >> 8) & 0x1f);
  559. return 0;
  560. }
  561. static int ac97_volume_put(struct snd_kcontrol *ctl,
  562. struct snd_ctl_elem_value *value)
  563. {
  564. struct oxygen *chip = ctl->private_data;
  565. unsigned int codec = (ctl->private_value >> 24) & 1;
  566. int stereo = (ctl->private_value >> 16) & 1;
  567. unsigned int index = ctl->private_value & 0xff;
  568. u16 oldreg, newreg;
  569. int change;
  570. mutex_lock(&chip->mutex);
  571. oldreg = oxygen_read_ac97(chip, codec, index);
  572. newreg = oldreg;
  573. newreg = (newreg & ~0x1f) |
  574. (31 - (value->value.integer.value[0] & 0x1f));
  575. if (stereo)
  576. newreg = (newreg & ~0x1f00) |
  577. ((31 - (value->value.integer.value[1] & 0x1f)) << 8);
  578. else
  579. newreg = (newreg & ~0x1f00) | ((newreg & 0x1f) << 8);
  580. change = newreg != oldreg;
  581. if (change)
  582. oxygen_write_ac97(chip, codec, index, newreg);
  583. mutex_unlock(&chip->mutex);
  584. return change;
  585. }
  586. static int mic_fmic_source_info(struct snd_kcontrol *ctl,
  587. struct snd_ctl_elem_info *info)
  588. {
  589. static const char *const names[] = { "Mic Jack", "Front Panel" };
  590. return snd_ctl_enum_info(info, 1, 2, names);
  591. }
  592. static int mic_fmic_source_get(struct snd_kcontrol *ctl,
  593. struct snd_ctl_elem_value *value)
  594. {
  595. struct oxygen *chip = ctl->private_data;
  596. mutex_lock(&chip->mutex);
  597. value->value.enumerated.item[0] =
  598. !!(oxygen_read_ac97(chip, 0, CM9780_JACK) & CM9780_FMIC2MIC);
  599. mutex_unlock(&chip->mutex);
  600. return 0;
  601. }
  602. static int mic_fmic_source_put(struct snd_kcontrol *ctl,
  603. struct snd_ctl_elem_value *value)
  604. {
  605. struct oxygen *chip = ctl->private_data;
  606. u16 oldreg, newreg;
  607. int change;
  608. mutex_lock(&chip->mutex);
  609. oldreg = oxygen_read_ac97(chip, 0, CM9780_JACK);
  610. if (value->value.enumerated.item[0])
  611. newreg = oldreg | CM9780_FMIC2MIC;
  612. else
  613. newreg = oldreg & ~CM9780_FMIC2MIC;
  614. change = newreg != oldreg;
  615. if (change)
  616. oxygen_write_ac97(chip, 0, CM9780_JACK, newreg);
  617. mutex_unlock(&chip->mutex);
  618. return change;
  619. }
  620. static int ac97_fp_rec_volume_info(struct snd_kcontrol *ctl,
  621. struct snd_ctl_elem_info *info)
  622. {
  623. info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
  624. info->count = 2;
  625. info->value.integer.min = 0;
  626. info->value.integer.max = 7;
  627. return 0;
  628. }
  629. static int ac97_fp_rec_volume_get(struct snd_kcontrol *ctl,
  630. struct snd_ctl_elem_value *value)
  631. {
  632. struct oxygen *chip = ctl->private_data;
  633. u16 reg;
  634. mutex_lock(&chip->mutex);
  635. reg = oxygen_read_ac97(chip, 1, AC97_REC_GAIN);
  636. mutex_unlock(&chip->mutex);
  637. value->value.integer.value[0] = reg & 7;
  638. value->value.integer.value[1] = (reg >> 8) & 7;
  639. return 0;
  640. }
  641. static int ac97_fp_rec_volume_put(struct snd_kcontrol *ctl,
  642. struct snd_ctl_elem_value *value)
  643. {
  644. struct oxygen *chip = ctl->private_data;
  645. u16 oldreg, newreg;
  646. int change;
  647. mutex_lock(&chip->mutex);
  648. oldreg = oxygen_read_ac97(chip, 1, AC97_REC_GAIN);
  649. newreg = oldreg & ~0x0707;
  650. newreg = newreg | (value->value.integer.value[0] & 7);
  651. newreg = newreg | ((value->value.integer.value[0] & 7) << 8);
  652. change = newreg != oldreg;
  653. if (change)
  654. oxygen_write_ac97(chip, 1, AC97_REC_GAIN, newreg);
  655. mutex_unlock(&chip->mutex);
  656. return change;
  657. }
  658. #define AC97_SWITCH(xname, codec, index, bitnr, invert) { \
  659. .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
  660. .name = xname, \
  661. .info = snd_ctl_boolean_mono_info, \
  662. .get = ac97_switch_get, \
  663. .put = ac97_switch_put, \
  664. .private_value = ((codec) << 24) | ((invert) << 16) | \
  665. ((bitnr) << 8) | (index), \
  666. }
  667. #define AC97_VOLUME(xname, codec, index, stereo) { \
  668. .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
  669. .name = xname, \
  670. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | \
  671. SNDRV_CTL_ELEM_ACCESS_TLV_READ, \
  672. .info = ac97_volume_info, \
  673. .get = ac97_volume_get, \
  674. .put = ac97_volume_put, \
  675. .tlv = { .p = ac97_db_scale, }, \
  676. .private_value = ((codec) << 24) | ((stereo) << 16) | (index), \
  677. }
  678. static DECLARE_TLV_DB_SCALE(monitor_db_scale, -600, 600, 0);
  679. static DECLARE_TLV_DB_SCALE(ac97_db_scale, -3450, 150, 0);
  680. static DECLARE_TLV_DB_SCALE(ac97_rec_db_scale, 0, 150, 0);
  681. static const struct snd_kcontrol_new controls[] = {
  682. {
  683. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  684. .name = "Master Playback Volume",
  685. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
  686. .info = dac_volume_info,
  687. .get = dac_volume_get,
  688. .put = dac_volume_put,
  689. },
  690. {
  691. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  692. .name = "Master Playback Switch",
  693. .info = snd_ctl_boolean_mono_info,
  694. .get = dac_mute_get,
  695. .put = dac_mute_put,
  696. },
  697. {
  698. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  699. .name = "Stereo Upmixing",
  700. .info = upmix_info,
  701. .get = upmix_get,
  702. .put = upmix_put,
  703. },
  704. {
  705. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  706. .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, SWITCH),
  707. .info = snd_ctl_boolean_mono_info,
  708. .get = spdif_switch_get,
  709. .put = spdif_switch_put,
  710. },
  711. {
  712. .iface = SNDRV_CTL_ELEM_IFACE_PCM,
  713. .device = 1,
  714. .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
  715. .info = spdif_info,
  716. .get = spdif_default_get,
  717. .put = spdif_default_put,
  718. },
  719. {
  720. .iface = SNDRV_CTL_ELEM_IFACE_PCM,
  721. .device = 1,
  722. .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, CON_MASK),
  723. .access = SNDRV_CTL_ELEM_ACCESS_READ,
  724. .info = spdif_info,
  725. .get = spdif_mask_get,
  726. },
  727. {
  728. .iface = SNDRV_CTL_ELEM_IFACE_PCM,
  729. .device = 1,
  730. .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, PCM_STREAM),
  731. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
  732. SNDRV_CTL_ELEM_ACCESS_INACTIVE,
  733. .info = spdif_info,
  734. .get = spdif_pcm_get,
  735. .put = spdif_pcm_put,
  736. },
  737. };
  738. static const struct snd_kcontrol_new spdif_input_controls[] = {
  739. {
  740. .iface = SNDRV_CTL_ELEM_IFACE_PCM,
  741. .device = 1,
  742. .name = SNDRV_CTL_NAME_IEC958("", CAPTURE, MASK),
  743. .access = SNDRV_CTL_ELEM_ACCESS_READ,
  744. .info = spdif_info,
  745. .get = spdif_input_mask_get,
  746. },
  747. {
  748. .iface = SNDRV_CTL_ELEM_IFACE_PCM,
  749. .device = 1,
  750. .name = SNDRV_CTL_NAME_IEC958("", CAPTURE, DEFAULT),
  751. .access = SNDRV_CTL_ELEM_ACCESS_READ,
  752. .info = spdif_info,
  753. .get = spdif_input_default_get,
  754. },
  755. {
  756. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  757. .name = SNDRV_CTL_NAME_IEC958("Loopback ", NONE, SWITCH),
  758. .info = snd_ctl_boolean_mono_info,
  759. .get = spdif_bit_switch_get,
  760. .put = spdif_bit_switch_put,
  761. .private_value = OXYGEN_SPDIF_LOOPBACK,
  762. },
  763. {
  764. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  765. .name = SNDRV_CTL_NAME_IEC958("Validity Check ",CAPTURE,SWITCH),
  766. .info = snd_ctl_boolean_mono_info,
  767. .get = spdif_bit_switch_get,
  768. .put = spdif_bit_switch_put,
  769. .private_value = OXYGEN_SPDIF_SPDVALID,
  770. },
  771. };
  772. static const struct {
  773. unsigned int pcm_dev;
  774. struct snd_kcontrol_new controls[2];
  775. } monitor_controls[] = {
  776. {
  777. .pcm_dev = CAPTURE_0_FROM_I2S_1,
  778. .controls = {
  779. {
  780. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  781. .name = "Analog Input Monitor Playback Switch",
  782. .info = snd_ctl_boolean_mono_info,
  783. .get = monitor_get,
  784. .put = monitor_put,
  785. .private_value = OXYGEN_ADC_MONITOR_A,
  786. },
  787. {
  788. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  789. .name = "Analog Input Monitor Playback Volume",
  790. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
  791. SNDRV_CTL_ELEM_ACCESS_TLV_READ,
  792. .info = monitor_volume_info,
  793. .get = monitor_get,
  794. .put = monitor_put,
  795. .private_value = OXYGEN_ADC_MONITOR_A_HALF_VOL
  796. | (1 << 8),
  797. .tlv = { .p = monitor_db_scale, },
  798. },
  799. },
  800. },
  801. {
  802. .pcm_dev = CAPTURE_0_FROM_I2S_2,
  803. .controls = {
  804. {
  805. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  806. .name = "Analog Input Monitor Playback Switch",
  807. .info = snd_ctl_boolean_mono_info,
  808. .get = monitor_get,
  809. .put = monitor_put,
  810. .private_value = OXYGEN_ADC_MONITOR_B,
  811. },
  812. {
  813. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  814. .name = "Analog Input Monitor Playback Volume",
  815. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
  816. SNDRV_CTL_ELEM_ACCESS_TLV_READ,
  817. .info = monitor_volume_info,
  818. .get = monitor_get,
  819. .put = monitor_put,
  820. .private_value = OXYGEN_ADC_MONITOR_B_HALF_VOL
  821. | (1 << 8),
  822. .tlv = { .p = monitor_db_scale, },
  823. },
  824. },
  825. },
  826. {
  827. .pcm_dev = CAPTURE_2_FROM_I2S_2,
  828. .controls = {
  829. {
  830. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  831. .name = "Analog Input Monitor Playback Switch",
  832. .index = 1,
  833. .info = snd_ctl_boolean_mono_info,
  834. .get = monitor_get,
  835. .put = monitor_put,
  836. .private_value = OXYGEN_ADC_MONITOR_B,
  837. },
  838. {
  839. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  840. .name = "Analog Input Monitor Playback Volume",
  841. .index = 1,
  842. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
  843. SNDRV_CTL_ELEM_ACCESS_TLV_READ,
  844. .info = monitor_volume_info,
  845. .get = monitor_get,
  846. .put = monitor_put,
  847. .private_value = OXYGEN_ADC_MONITOR_B_HALF_VOL
  848. | (1 << 8),
  849. .tlv = { .p = monitor_db_scale, },
  850. },
  851. },
  852. },
  853. {
  854. .pcm_dev = CAPTURE_1_FROM_SPDIF,
  855. .controls = {
  856. {
  857. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  858. .name = "Digital Input Monitor Playback Switch",
  859. .info = snd_ctl_boolean_mono_info,
  860. .get = monitor_get,
  861. .put = monitor_put,
  862. .private_value = OXYGEN_ADC_MONITOR_C,
  863. },
  864. {
  865. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  866. .name = "Digital Input Monitor Playback Volume",
  867. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
  868. SNDRV_CTL_ELEM_ACCESS_TLV_READ,
  869. .info = monitor_volume_info,
  870. .get = monitor_get,
  871. .put = monitor_put,
  872. .private_value = OXYGEN_ADC_MONITOR_C_HALF_VOL
  873. | (1 << 8),
  874. .tlv = { .p = monitor_db_scale, },
  875. },
  876. },
  877. },
  878. };
  879. static const struct snd_kcontrol_new ac97_controls[] = {
  880. AC97_VOLUME("Mic Capture Volume", 0, AC97_MIC, 0),
  881. AC97_SWITCH("Mic Capture Switch", 0, AC97_MIC, 15, 1),
  882. AC97_SWITCH("Mic Boost (+20dB)", 0, AC97_MIC, 6, 0),
  883. {
  884. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  885. .name = "Mic Source Capture Enum",
  886. .info = mic_fmic_source_info,
  887. .get = mic_fmic_source_get,
  888. .put = mic_fmic_source_put,
  889. },
  890. AC97_SWITCH("Line Capture Switch", 0, AC97_LINE, 15, 1),
  891. AC97_VOLUME("CD Capture Volume", 0, AC97_CD, 1),
  892. AC97_SWITCH("CD Capture Switch", 0, AC97_CD, 15, 1),
  893. AC97_VOLUME("Aux Capture Volume", 0, AC97_AUX, 1),
  894. AC97_SWITCH("Aux Capture Switch", 0, AC97_AUX, 15, 1),
  895. };
  896. static const struct snd_kcontrol_new ac97_fp_controls[] = {
  897. AC97_VOLUME("Front Panel Playback Volume", 1, AC97_HEADPHONE, 1),
  898. AC97_SWITCH("Front Panel Playback Switch", 1, AC97_HEADPHONE, 15, 1),
  899. {
  900. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  901. .name = "Front Panel Capture Volume",
  902. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
  903. SNDRV_CTL_ELEM_ACCESS_TLV_READ,
  904. .info = ac97_fp_rec_volume_info,
  905. .get = ac97_fp_rec_volume_get,
  906. .put = ac97_fp_rec_volume_put,
  907. .tlv = { .p = ac97_rec_db_scale, },
  908. },
  909. AC97_SWITCH("Front Panel Capture Switch", 1, AC97_REC_GAIN, 15, 1),
  910. };
  911. static void oxygen_any_ctl_free(struct snd_kcontrol *ctl)
  912. {
  913. struct oxygen *chip = ctl->private_data;
  914. unsigned int i;
  915. /* I'm too lazy to write a function for each control :-) */
  916. for (i = 0; i < ARRAY_SIZE(chip->controls); ++i)
  917. chip->controls[i] = NULL;
  918. }
  919. static int add_controls(struct oxygen *chip,
  920. const struct snd_kcontrol_new controls[],
  921. unsigned int count)
  922. {
  923. static const char *const known_ctl_names[CONTROL_COUNT] = {
  924. [CONTROL_SPDIF_PCM] =
  925. SNDRV_CTL_NAME_IEC958("", PLAYBACK, PCM_STREAM),
  926. [CONTROL_SPDIF_INPUT_BITS] =
  927. SNDRV_CTL_NAME_IEC958("", CAPTURE, DEFAULT),
  928. [CONTROL_MIC_CAPTURE_SWITCH] = "Mic Capture Switch",
  929. [CONTROL_LINE_CAPTURE_SWITCH] = "Line Capture Switch",
  930. [CONTROL_CD_CAPTURE_SWITCH] = "CD Capture Switch",
  931. [CONTROL_AUX_CAPTURE_SWITCH] = "Aux Capture Switch",
  932. };
  933. unsigned int i, j;
  934. struct snd_kcontrol_new template;
  935. struct snd_kcontrol *ctl;
  936. int err;
  937. for (i = 0; i < count; ++i) {
  938. template = controls[i];
  939. if (chip->model.control_filter) {
  940. err = chip->model.control_filter(&template);
  941. if (err < 0)
  942. return err;
  943. if (err == 1)
  944. continue;
  945. }
  946. if (!strcmp(template.name, "Stereo Upmixing") &&
  947. chip->model.dac_channels_pcm == 2)
  948. continue;
  949. if (!strcmp(template.name, "Mic Source Capture Enum") &&
  950. !(chip->model.device_config & AC97_FMIC_SWITCH))
  951. continue;
  952. if (!strncmp(template.name, "CD Capture ", 11) &&
  953. !(chip->model.device_config & AC97_CD_INPUT))
  954. continue;
  955. if (!strcmp(template.name, "Master Playback Volume") &&
  956. chip->model.dac_tlv) {
  957. template.tlv.p = chip->model.dac_tlv;
  958. template.access |= SNDRV_CTL_ELEM_ACCESS_TLV_READ;
  959. }
  960. ctl = snd_ctl_new1(&template, chip);
  961. if (!ctl)
  962. return -ENOMEM;
  963. err = snd_ctl_add(chip->card, ctl);
  964. if (err < 0)
  965. return err;
  966. for (j = 0; j < CONTROL_COUNT; ++j)
  967. if (!strcmp(ctl->id.name, known_ctl_names[j])) {
  968. chip->controls[j] = ctl;
  969. ctl->private_free = oxygen_any_ctl_free;
  970. }
  971. }
  972. return 0;
  973. }
  974. int oxygen_mixer_init(struct oxygen *chip)
  975. {
  976. unsigned int i;
  977. int err;
  978. err = add_controls(chip, controls, ARRAY_SIZE(controls));
  979. if (err < 0)
  980. return err;
  981. if (chip->model.device_config & CAPTURE_1_FROM_SPDIF) {
  982. err = add_controls(chip, spdif_input_controls,
  983. ARRAY_SIZE(spdif_input_controls));
  984. if (err < 0)
  985. return err;
  986. }
  987. for (i = 0; i < ARRAY_SIZE(monitor_controls); ++i) {
  988. if (!(chip->model.device_config & monitor_controls[i].pcm_dev))
  989. continue;
  990. err = add_controls(chip, monitor_controls[i].controls,
  991. ARRAY_SIZE(monitor_controls[i].controls));
  992. if (err < 0)
  993. return err;
  994. }
  995. if (chip->has_ac97_0) {
  996. err = add_controls(chip, ac97_controls,
  997. ARRAY_SIZE(ac97_controls));
  998. if (err < 0)
  999. return err;
  1000. }
  1001. if (chip->has_ac97_1) {
  1002. err = add_controls(chip, ac97_fp_controls,
  1003. ARRAY_SIZE(ac97_fp_controls));
  1004. if (err < 0)
  1005. return err;
  1006. }
  1007. return chip->model.mixer_init ? chip->model.mixer_init(chip) : 0;
  1008. }