page_alloc.c 154 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/memblock.h>
  24. #include <linux/compiler.h>
  25. #include <linux/kernel.h>
  26. #include <linux/kmemcheck.h>
  27. #include <linux/module.h>
  28. #include <linux/suspend.h>
  29. #include <linux/pagevec.h>
  30. #include <linux/blkdev.h>
  31. #include <linux/slab.h>
  32. #include <linux/oom.h>
  33. #include <linux/notifier.h>
  34. #include <linux/topology.h>
  35. #include <linux/sysctl.h>
  36. #include <linux/cpu.h>
  37. #include <linux/cpuset.h>
  38. #include <linux/memory_hotplug.h>
  39. #include <linux/nodemask.h>
  40. #include <linux/vmalloc.h>
  41. #include <linux/mempolicy.h>
  42. #include <linux/stop_machine.h>
  43. #include <linux/sort.h>
  44. #include <linux/pfn.h>
  45. #include <linux/backing-dev.h>
  46. #include <linux/fault-inject.h>
  47. #include <linux/page-isolation.h>
  48. #include <linux/page_cgroup.h>
  49. #include <linux/debugobjects.h>
  50. #include <linux/kmemleak.h>
  51. #include <linux/memory.h>
  52. #include <linux/compaction.h>
  53. #include <trace/events/kmem.h>
  54. #include <linux/ftrace_event.h>
  55. #include <asm/tlbflush.h>
  56. #include <asm/div64.h>
  57. #include "internal.h"
  58. #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
  59. DEFINE_PER_CPU(int, numa_node);
  60. EXPORT_PER_CPU_SYMBOL(numa_node);
  61. #endif
  62. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  63. /*
  64. * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
  65. * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
  66. * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
  67. * defined in <linux/topology.h>.
  68. */
  69. DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
  70. EXPORT_PER_CPU_SYMBOL(_numa_mem_);
  71. #endif
  72. /*
  73. * Array of node states.
  74. */
  75. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  76. [N_POSSIBLE] = NODE_MASK_ALL,
  77. [N_ONLINE] = { { [0] = 1UL } },
  78. #ifndef CONFIG_NUMA
  79. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  80. #ifdef CONFIG_HIGHMEM
  81. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  82. #endif
  83. [N_CPU] = { { [0] = 1UL } },
  84. #endif /* NUMA */
  85. };
  86. EXPORT_SYMBOL(node_states);
  87. unsigned long totalram_pages __read_mostly;
  88. unsigned long totalreserve_pages __read_mostly;
  89. int percpu_pagelist_fraction;
  90. gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
  91. #ifdef CONFIG_PM_SLEEP
  92. /*
  93. * The following functions are used by the suspend/hibernate code to temporarily
  94. * change gfp_allowed_mask in order to avoid using I/O during memory allocations
  95. * while devices are suspended. To avoid races with the suspend/hibernate code,
  96. * they should always be called with pm_mutex held (gfp_allowed_mask also should
  97. * only be modified with pm_mutex held, unless the suspend/hibernate code is
  98. * guaranteed not to run in parallel with that modification).
  99. */
  100. static gfp_t saved_gfp_mask;
  101. void pm_restore_gfp_mask(void)
  102. {
  103. WARN_ON(!mutex_is_locked(&pm_mutex));
  104. if (saved_gfp_mask) {
  105. gfp_allowed_mask = saved_gfp_mask;
  106. saved_gfp_mask = 0;
  107. }
  108. }
  109. void pm_restrict_gfp_mask(void)
  110. {
  111. WARN_ON(!mutex_is_locked(&pm_mutex));
  112. WARN_ON(saved_gfp_mask);
  113. saved_gfp_mask = gfp_allowed_mask;
  114. gfp_allowed_mask &= ~GFP_IOFS;
  115. }
  116. #endif /* CONFIG_PM_SLEEP */
  117. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  118. int pageblock_order __read_mostly;
  119. #endif
  120. static void __free_pages_ok(struct page *page, unsigned int order);
  121. /*
  122. * results with 256, 32 in the lowmem_reserve sysctl:
  123. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  124. * 1G machine -> (16M dma, 784M normal, 224M high)
  125. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  126. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  127. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  128. *
  129. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  130. * don't need any ZONE_NORMAL reservation
  131. */
  132. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  133. #ifdef CONFIG_ZONE_DMA
  134. 256,
  135. #endif
  136. #ifdef CONFIG_ZONE_DMA32
  137. 256,
  138. #endif
  139. #ifdef CONFIG_HIGHMEM
  140. 32,
  141. #endif
  142. 32,
  143. };
  144. EXPORT_SYMBOL(totalram_pages);
  145. static char * const zone_names[MAX_NR_ZONES] = {
  146. #ifdef CONFIG_ZONE_DMA
  147. "DMA",
  148. #endif
  149. #ifdef CONFIG_ZONE_DMA32
  150. "DMA32",
  151. #endif
  152. "Normal",
  153. #ifdef CONFIG_HIGHMEM
  154. "HighMem",
  155. #endif
  156. "Movable",
  157. };
  158. int min_free_kbytes = 1024;
  159. static unsigned long __meminitdata nr_kernel_pages;
  160. static unsigned long __meminitdata nr_all_pages;
  161. static unsigned long __meminitdata dma_reserve;
  162. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  163. /*
  164. * MAX_ACTIVE_REGIONS determines the maximum number of distinct
  165. * ranges of memory (RAM) that may be registered with add_active_range().
  166. * Ranges passed to add_active_range() will be merged if possible
  167. * so the number of times add_active_range() can be called is
  168. * related to the number of nodes and the number of holes
  169. */
  170. #ifdef CONFIG_MAX_ACTIVE_REGIONS
  171. /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
  172. #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
  173. #else
  174. #if MAX_NUMNODES >= 32
  175. /* If there can be many nodes, allow up to 50 holes per node */
  176. #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
  177. #else
  178. /* By default, allow up to 256 distinct regions */
  179. #define MAX_ACTIVE_REGIONS 256
  180. #endif
  181. #endif
  182. static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
  183. static int __meminitdata nr_nodemap_entries;
  184. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  185. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  186. static unsigned long __initdata required_kernelcore;
  187. static unsigned long __initdata required_movablecore;
  188. static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  189. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  190. int movable_zone;
  191. EXPORT_SYMBOL(movable_zone);
  192. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  193. #if MAX_NUMNODES > 1
  194. int nr_node_ids __read_mostly = MAX_NUMNODES;
  195. int nr_online_nodes __read_mostly = 1;
  196. EXPORT_SYMBOL(nr_node_ids);
  197. EXPORT_SYMBOL(nr_online_nodes);
  198. #endif
  199. int page_group_by_mobility_disabled __read_mostly;
  200. static void set_pageblock_migratetype(struct page *page, int migratetype)
  201. {
  202. if (unlikely(page_group_by_mobility_disabled))
  203. migratetype = MIGRATE_UNMOVABLE;
  204. set_pageblock_flags_group(page, (unsigned long)migratetype,
  205. PB_migrate, PB_migrate_end);
  206. }
  207. bool oom_killer_disabled __read_mostly;
  208. #ifdef CONFIG_DEBUG_VM
  209. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  210. {
  211. int ret = 0;
  212. unsigned seq;
  213. unsigned long pfn = page_to_pfn(page);
  214. do {
  215. seq = zone_span_seqbegin(zone);
  216. if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
  217. ret = 1;
  218. else if (pfn < zone->zone_start_pfn)
  219. ret = 1;
  220. } while (zone_span_seqretry(zone, seq));
  221. return ret;
  222. }
  223. static int page_is_consistent(struct zone *zone, struct page *page)
  224. {
  225. if (!pfn_valid_within(page_to_pfn(page)))
  226. return 0;
  227. if (zone != page_zone(page))
  228. return 0;
  229. return 1;
  230. }
  231. /*
  232. * Temporary debugging check for pages not lying within a given zone.
  233. */
  234. static int bad_range(struct zone *zone, struct page *page)
  235. {
  236. if (page_outside_zone_boundaries(zone, page))
  237. return 1;
  238. if (!page_is_consistent(zone, page))
  239. return 1;
  240. return 0;
  241. }
  242. #else
  243. static inline int bad_range(struct zone *zone, struct page *page)
  244. {
  245. return 0;
  246. }
  247. #endif
  248. static void bad_page(struct page *page)
  249. {
  250. static unsigned long resume;
  251. static unsigned long nr_shown;
  252. static unsigned long nr_unshown;
  253. /* Don't complain about poisoned pages */
  254. if (PageHWPoison(page)) {
  255. __ClearPageBuddy(page);
  256. return;
  257. }
  258. /*
  259. * Allow a burst of 60 reports, then keep quiet for that minute;
  260. * or allow a steady drip of one report per second.
  261. */
  262. if (nr_shown == 60) {
  263. if (time_before(jiffies, resume)) {
  264. nr_unshown++;
  265. goto out;
  266. }
  267. if (nr_unshown) {
  268. printk(KERN_ALERT
  269. "BUG: Bad page state: %lu messages suppressed\n",
  270. nr_unshown);
  271. nr_unshown = 0;
  272. }
  273. nr_shown = 0;
  274. }
  275. if (nr_shown++ == 0)
  276. resume = jiffies + 60 * HZ;
  277. printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
  278. current->comm, page_to_pfn(page));
  279. dump_page(page);
  280. dump_stack();
  281. out:
  282. /* Leave bad fields for debug, except PageBuddy could make trouble */
  283. __ClearPageBuddy(page);
  284. add_taint(TAINT_BAD_PAGE);
  285. }
  286. /*
  287. * Higher-order pages are called "compound pages". They are structured thusly:
  288. *
  289. * The first PAGE_SIZE page is called the "head page".
  290. *
  291. * The remaining PAGE_SIZE pages are called "tail pages".
  292. *
  293. * All pages have PG_compound set. All pages have their ->private pointing at
  294. * the head page (even the head page has this).
  295. *
  296. * The first tail page's ->lru.next holds the address of the compound page's
  297. * put_page() function. Its ->lru.prev holds the order of allocation.
  298. * This usage means that zero-order pages may not be compound.
  299. */
  300. static void free_compound_page(struct page *page)
  301. {
  302. __free_pages_ok(page, compound_order(page));
  303. }
  304. void prep_compound_page(struct page *page, unsigned long order)
  305. {
  306. int i;
  307. int nr_pages = 1 << order;
  308. set_compound_page_dtor(page, free_compound_page);
  309. set_compound_order(page, order);
  310. __SetPageHead(page);
  311. for (i = 1; i < nr_pages; i++) {
  312. struct page *p = page + i;
  313. __SetPageTail(p);
  314. p->first_page = page;
  315. }
  316. }
  317. /* update __split_huge_page_refcount if you change this function */
  318. static int destroy_compound_page(struct page *page, unsigned long order)
  319. {
  320. int i;
  321. int nr_pages = 1 << order;
  322. int bad = 0;
  323. if (unlikely(compound_order(page) != order) ||
  324. unlikely(!PageHead(page))) {
  325. bad_page(page);
  326. bad++;
  327. }
  328. __ClearPageHead(page);
  329. for (i = 1; i < nr_pages; i++) {
  330. struct page *p = page + i;
  331. if (unlikely(!PageTail(p) || (p->first_page != page))) {
  332. bad_page(page);
  333. bad++;
  334. }
  335. __ClearPageTail(p);
  336. }
  337. return bad;
  338. }
  339. static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
  340. {
  341. int i;
  342. /*
  343. * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
  344. * and __GFP_HIGHMEM from hard or soft interrupt context.
  345. */
  346. VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
  347. for (i = 0; i < (1 << order); i++)
  348. clear_highpage(page + i);
  349. }
  350. static inline void set_page_order(struct page *page, int order)
  351. {
  352. set_page_private(page, order);
  353. __SetPageBuddy(page);
  354. }
  355. static inline void rmv_page_order(struct page *page)
  356. {
  357. __ClearPageBuddy(page);
  358. set_page_private(page, 0);
  359. }
  360. /*
  361. * Locate the struct page for both the matching buddy in our
  362. * pair (buddy1) and the combined O(n+1) page they form (page).
  363. *
  364. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  365. * the following equation:
  366. * B2 = B1 ^ (1 << O)
  367. * For example, if the starting buddy (buddy2) is #8 its order
  368. * 1 buddy is #10:
  369. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  370. *
  371. * 2) Any buddy B will have an order O+1 parent P which
  372. * satisfies the following equation:
  373. * P = B & ~(1 << O)
  374. *
  375. * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
  376. */
  377. static inline unsigned long
  378. __find_buddy_index(unsigned long page_idx, unsigned int order)
  379. {
  380. return page_idx ^ (1 << order);
  381. }
  382. /*
  383. * This function checks whether a page is free && is the buddy
  384. * we can do coalesce a page and its buddy if
  385. * (a) the buddy is not in a hole &&
  386. * (b) the buddy is in the buddy system &&
  387. * (c) a page and its buddy have the same order &&
  388. * (d) a page and its buddy are in the same zone.
  389. *
  390. * For recording whether a page is in the buddy system, we set ->_mapcount -2.
  391. * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
  392. *
  393. * For recording page's order, we use page_private(page).
  394. */
  395. static inline int page_is_buddy(struct page *page, struct page *buddy,
  396. int order)
  397. {
  398. if (!pfn_valid_within(page_to_pfn(buddy)))
  399. return 0;
  400. if (page_zone_id(page) != page_zone_id(buddy))
  401. return 0;
  402. if (PageBuddy(buddy) && page_order(buddy) == order) {
  403. VM_BUG_ON(page_count(buddy) != 0);
  404. return 1;
  405. }
  406. return 0;
  407. }
  408. /*
  409. * Freeing function for a buddy system allocator.
  410. *
  411. * The concept of a buddy system is to maintain direct-mapped table
  412. * (containing bit values) for memory blocks of various "orders".
  413. * The bottom level table contains the map for the smallest allocatable
  414. * units of memory (here, pages), and each level above it describes
  415. * pairs of units from the levels below, hence, "buddies".
  416. * At a high level, all that happens here is marking the table entry
  417. * at the bottom level available, and propagating the changes upward
  418. * as necessary, plus some accounting needed to play nicely with other
  419. * parts of the VM system.
  420. * At each level, we keep a list of pages, which are heads of continuous
  421. * free pages of length of (1 << order) and marked with _mapcount -2. Page's
  422. * order is recorded in page_private(page) field.
  423. * So when we are allocating or freeing one, we can derive the state of the
  424. * other. That is, if we allocate a small block, and both were
  425. * free, the remainder of the region must be split into blocks.
  426. * If a block is freed, and its buddy is also free, then this
  427. * triggers coalescing into a block of larger size.
  428. *
  429. * -- wli
  430. */
  431. static inline void __free_one_page(struct page *page,
  432. struct zone *zone, unsigned int order,
  433. int migratetype)
  434. {
  435. unsigned long page_idx;
  436. unsigned long combined_idx;
  437. unsigned long uninitialized_var(buddy_idx);
  438. struct page *buddy;
  439. if (unlikely(PageCompound(page)))
  440. if (unlikely(destroy_compound_page(page, order)))
  441. return;
  442. VM_BUG_ON(migratetype == -1);
  443. page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
  444. VM_BUG_ON(page_idx & ((1 << order) - 1));
  445. VM_BUG_ON(bad_range(zone, page));
  446. while (order < MAX_ORDER-1) {
  447. buddy_idx = __find_buddy_index(page_idx, order);
  448. buddy = page + (buddy_idx - page_idx);
  449. if (!page_is_buddy(page, buddy, order))
  450. break;
  451. /* Our buddy is free, merge with it and move up one order. */
  452. list_del(&buddy->lru);
  453. zone->free_area[order].nr_free--;
  454. rmv_page_order(buddy);
  455. combined_idx = buddy_idx & page_idx;
  456. page = page + (combined_idx - page_idx);
  457. page_idx = combined_idx;
  458. order++;
  459. }
  460. set_page_order(page, order);
  461. /*
  462. * If this is not the largest possible page, check if the buddy
  463. * of the next-highest order is free. If it is, it's possible
  464. * that pages are being freed that will coalesce soon. In case,
  465. * that is happening, add the free page to the tail of the list
  466. * so it's less likely to be used soon and more likely to be merged
  467. * as a higher order page
  468. */
  469. if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
  470. struct page *higher_page, *higher_buddy;
  471. combined_idx = buddy_idx & page_idx;
  472. higher_page = page + (combined_idx - page_idx);
  473. buddy_idx = __find_buddy_index(combined_idx, order + 1);
  474. higher_buddy = page + (buddy_idx - combined_idx);
  475. if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
  476. list_add_tail(&page->lru,
  477. &zone->free_area[order].free_list[migratetype]);
  478. goto out;
  479. }
  480. }
  481. list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
  482. out:
  483. zone->free_area[order].nr_free++;
  484. }
  485. /*
  486. * free_page_mlock() -- clean up attempts to free and mlocked() page.
  487. * Page should not be on lru, so no need to fix that up.
  488. * free_pages_check() will verify...
  489. */
  490. static inline void free_page_mlock(struct page *page)
  491. {
  492. __dec_zone_page_state(page, NR_MLOCK);
  493. __count_vm_event(UNEVICTABLE_MLOCKFREED);
  494. }
  495. static inline int free_pages_check(struct page *page)
  496. {
  497. if (unlikely(page_mapcount(page) |
  498. (page->mapping != NULL) |
  499. (atomic_read(&page->_count) != 0) |
  500. (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
  501. bad_page(page);
  502. return 1;
  503. }
  504. if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
  505. page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  506. return 0;
  507. }
  508. /*
  509. * Frees a number of pages from the PCP lists
  510. * Assumes all pages on list are in same zone, and of same order.
  511. * count is the number of pages to free.
  512. *
  513. * If the zone was previously in an "all pages pinned" state then look to
  514. * see if this freeing clears that state.
  515. *
  516. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  517. * pinned" detection logic.
  518. */
  519. static void free_pcppages_bulk(struct zone *zone, int count,
  520. struct per_cpu_pages *pcp)
  521. {
  522. int migratetype = 0;
  523. int batch_free = 0;
  524. int to_free = count;
  525. spin_lock(&zone->lock);
  526. zone->all_unreclaimable = 0;
  527. zone->pages_scanned = 0;
  528. while (to_free) {
  529. struct page *page;
  530. struct list_head *list;
  531. /*
  532. * Remove pages from lists in a round-robin fashion. A
  533. * batch_free count is maintained that is incremented when an
  534. * empty list is encountered. This is so more pages are freed
  535. * off fuller lists instead of spinning excessively around empty
  536. * lists
  537. */
  538. do {
  539. batch_free++;
  540. if (++migratetype == MIGRATE_PCPTYPES)
  541. migratetype = 0;
  542. list = &pcp->lists[migratetype];
  543. } while (list_empty(list));
  544. do {
  545. page = list_entry(list->prev, struct page, lru);
  546. /* must delete as __free_one_page list manipulates */
  547. list_del(&page->lru);
  548. /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
  549. __free_one_page(page, zone, 0, page_private(page));
  550. trace_mm_page_pcpu_drain(page, 0, page_private(page));
  551. } while (--to_free && --batch_free && !list_empty(list));
  552. }
  553. __mod_zone_page_state(zone, NR_FREE_PAGES, count);
  554. spin_unlock(&zone->lock);
  555. }
  556. static void free_one_page(struct zone *zone, struct page *page, int order,
  557. int migratetype)
  558. {
  559. spin_lock(&zone->lock);
  560. zone->all_unreclaimable = 0;
  561. zone->pages_scanned = 0;
  562. __free_one_page(page, zone, order, migratetype);
  563. __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
  564. spin_unlock(&zone->lock);
  565. }
  566. static bool free_pages_prepare(struct page *page, unsigned int order)
  567. {
  568. int i;
  569. int bad = 0;
  570. trace_mm_page_free_direct(page, order);
  571. kmemcheck_free_shadow(page, order);
  572. if (PageAnon(page))
  573. page->mapping = NULL;
  574. for (i = 0; i < (1 << order); i++)
  575. bad += free_pages_check(page + i);
  576. if (bad)
  577. return false;
  578. if (!PageHighMem(page)) {
  579. debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
  580. debug_check_no_obj_freed(page_address(page),
  581. PAGE_SIZE << order);
  582. }
  583. arch_free_page(page, order);
  584. kernel_map_pages(page, 1 << order, 0);
  585. return true;
  586. }
  587. static void __free_pages_ok(struct page *page, unsigned int order)
  588. {
  589. unsigned long flags;
  590. int wasMlocked = __TestClearPageMlocked(page);
  591. if (!free_pages_prepare(page, order))
  592. return;
  593. local_irq_save(flags);
  594. if (unlikely(wasMlocked))
  595. free_page_mlock(page);
  596. __count_vm_events(PGFREE, 1 << order);
  597. free_one_page(page_zone(page), page, order,
  598. get_pageblock_migratetype(page));
  599. local_irq_restore(flags);
  600. }
  601. /*
  602. * permit the bootmem allocator to evade page validation on high-order frees
  603. */
  604. void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
  605. {
  606. if (order == 0) {
  607. __ClearPageReserved(page);
  608. set_page_count(page, 0);
  609. set_page_refcounted(page);
  610. __free_page(page);
  611. } else {
  612. int loop;
  613. prefetchw(page);
  614. for (loop = 0; loop < BITS_PER_LONG; loop++) {
  615. struct page *p = &page[loop];
  616. if (loop + 1 < BITS_PER_LONG)
  617. prefetchw(p + 1);
  618. __ClearPageReserved(p);
  619. set_page_count(p, 0);
  620. }
  621. set_page_refcounted(page);
  622. __free_pages(page, order);
  623. }
  624. }
  625. /*
  626. * The order of subdivision here is critical for the IO subsystem.
  627. * Please do not alter this order without good reasons and regression
  628. * testing. Specifically, as large blocks of memory are subdivided,
  629. * the order in which smaller blocks are delivered depends on the order
  630. * they're subdivided in this function. This is the primary factor
  631. * influencing the order in which pages are delivered to the IO
  632. * subsystem according to empirical testing, and this is also justified
  633. * by considering the behavior of a buddy system containing a single
  634. * large block of memory acted on by a series of small allocations.
  635. * This behavior is a critical factor in sglist merging's success.
  636. *
  637. * -- wli
  638. */
  639. static inline void expand(struct zone *zone, struct page *page,
  640. int low, int high, struct free_area *area,
  641. int migratetype)
  642. {
  643. unsigned long size = 1 << high;
  644. while (high > low) {
  645. area--;
  646. high--;
  647. size >>= 1;
  648. VM_BUG_ON(bad_range(zone, &page[size]));
  649. list_add(&page[size].lru, &area->free_list[migratetype]);
  650. area->nr_free++;
  651. set_page_order(&page[size], high);
  652. }
  653. }
  654. /*
  655. * This page is about to be returned from the page allocator
  656. */
  657. static inline int check_new_page(struct page *page)
  658. {
  659. if (unlikely(page_mapcount(page) |
  660. (page->mapping != NULL) |
  661. (atomic_read(&page->_count) != 0) |
  662. (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
  663. bad_page(page);
  664. return 1;
  665. }
  666. return 0;
  667. }
  668. static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
  669. {
  670. int i;
  671. for (i = 0; i < (1 << order); i++) {
  672. struct page *p = page + i;
  673. if (unlikely(check_new_page(p)))
  674. return 1;
  675. }
  676. set_page_private(page, 0);
  677. set_page_refcounted(page);
  678. arch_alloc_page(page, order);
  679. kernel_map_pages(page, 1 << order, 1);
  680. if (gfp_flags & __GFP_ZERO)
  681. prep_zero_page(page, order, gfp_flags);
  682. if (order && (gfp_flags & __GFP_COMP))
  683. prep_compound_page(page, order);
  684. return 0;
  685. }
  686. /*
  687. * Go through the free lists for the given migratetype and remove
  688. * the smallest available page from the freelists
  689. */
  690. static inline
  691. struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  692. int migratetype)
  693. {
  694. unsigned int current_order;
  695. struct free_area * area;
  696. struct page *page;
  697. /* Find a page of the appropriate size in the preferred list */
  698. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  699. area = &(zone->free_area[current_order]);
  700. if (list_empty(&area->free_list[migratetype]))
  701. continue;
  702. page = list_entry(area->free_list[migratetype].next,
  703. struct page, lru);
  704. list_del(&page->lru);
  705. rmv_page_order(page);
  706. area->nr_free--;
  707. expand(zone, page, order, current_order, area, migratetype);
  708. return page;
  709. }
  710. return NULL;
  711. }
  712. /*
  713. * This array describes the order lists are fallen back to when
  714. * the free lists for the desirable migrate type are depleted
  715. */
  716. static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
  717. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  718. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  719. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  720. [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
  721. };
  722. /*
  723. * Move the free pages in a range to the free lists of the requested type.
  724. * Note that start_page and end_pages are not aligned on a pageblock
  725. * boundary. If alignment is required, use move_freepages_block()
  726. */
  727. static int move_freepages(struct zone *zone,
  728. struct page *start_page, struct page *end_page,
  729. int migratetype)
  730. {
  731. struct page *page;
  732. unsigned long order;
  733. int pages_moved = 0;
  734. #ifndef CONFIG_HOLES_IN_ZONE
  735. /*
  736. * page_zone is not safe to call in this context when
  737. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  738. * anyway as we check zone boundaries in move_freepages_block().
  739. * Remove at a later date when no bug reports exist related to
  740. * grouping pages by mobility
  741. */
  742. BUG_ON(page_zone(start_page) != page_zone(end_page));
  743. #endif
  744. for (page = start_page; page <= end_page;) {
  745. /* Make sure we are not inadvertently changing nodes */
  746. VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
  747. if (!pfn_valid_within(page_to_pfn(page))) {
  748. page++;
  749. continue;
  750. }
  751. if (!PageBuddy(page)) {
  752. page++;
  753. continue;
  754. }
  755. order = page_order(page);
  756. list_del(&page->lru);
  757. list_add(&page->lru,
  758. &zone->free_area[order].free_list[migratetype]);
  759. page += 1 << order;
  760. pages_moved += 1 << order;
  761. }
  762. return pages_moved;
  763. }
  764. static int move_freepages_block(struct zone *zone, struct page *page,
  765. int migratetype)
  766. {
  767. unsigned long start_pfn, end_pfn;
  768. struct page *start_page, *end_page;
  769. start_pfn = page_to_pfn(page);
  770. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  771. start_page = pfn_to_page(start_pfn);
  772. end_page = start_page + pageblock_nr_pages - 1;
  773. end_pfn = start_pfn + pageblock_nr_pages - 1;
  774. /* Do not cross zone boundaries */
  775. if (start_pfn < zone->zone_start_pfn)
  776. start_page = page;
  777. if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
  778. return 0;
  779. return move_freepages(zone, start_page, end_page, migratetype);
  780. }
  781. static void change_pageblock_range(struct page *pageblock_page,
  782. int start_order, int migratetype)
  783. {
  784. int nr_pageblocks = 1 << (start_order - pageblock_order);
  785. while (nr_pageblocks--) {
  786. set_pageblock_migratetype(pageblock_page, migratetype);
  787. pageblock_page += pageblock_nr_pages;
  788. }
  789. }
  790. /* Remove an element from the buddy allocator from the fallback list */
  791. static inline struct page *
  792. __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
  793. {
  794. struct free_area * area;
  795. int current_order;
  796. struct page *page;
  797. int migratetype, i;
  798. /* Find the largest possible block of pages in the other list */
  799. for (current_order = MAX_ORDER-1; current_order >= order;
  800. --current_order) {
  801. for (i = 0; i < MIGRATE_TYPES - 1; i++) {
  802. migratetype = fallbacks[start_migratetype][i];
  803. /* MIGRATE_RESERVE handled later if necessary */
  804. if (migratetype == MIGRATE_RESERVE)
  805. continue;
  806. area = &(zone->free_area[current_order]);
  807. if (list_empty(&area->free_list[migratetype]))
  808. continue;
  809. page = list_entry(area->free_list[migratetype].next,
  810. struct page, lru);
  811. area->nr_free--;
  812. /*
  813. * If breaking a large block of pages, move all free
  814. * pages to the preferred allocation list. If falling
  815. * back for a reclaimable kernel allocation, be more
  816. * agressive about taking ownership of free pages
  817. */
  818. if (unlikely(current_order >= (pageblock_order >> 1)) ||
  819. start_migratetype == MIGRATE_RECLAIMABLE ||
  820. page_group_by_mobility_disabled) {
  821. unsigned long pages;
  822. pages = move_freepages_block(zone, page,
  823. start_migratetype);
  824. /* Claim the whole block if over half of it is free */
  825. if (pages >= (1 << (pageblock_order-1)) ||
  826. page_group_by_mobility_disabled)
  827. set_pageblock_migratetype(page,
  828. start_migratetype);
  829. migratetype = start_migratetype;
  830. }
  831. /* Remove the page from the freelists */
  832. list_del(&page->lru);
  833. rmv_page_order(page);
  834. /* Take ownership for orders >= pageblock_order */
  835. if (current_order >= pageblock_order)
  836. change_pageblock_range(page, current_order,
  837. start_migratetype);
  838. expand(zone, page, order, current_order, area, migratetype);
  839. trace_mm_page_alloc_extfrag(page, order, current_order,
  840. start_migratetype, migratetype);
  841. return page;
  842. }
  843. }
  844. return NULL;
  845. }
  846. /*
  847. * Do the hard work of removing an element from the buddy allocator.
  848. * Call me with the zone->lock already held.
  849. */
  850. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  851. int migratetype)
  852. {
  853. struct page *page;
  854. retry_reserve:
  855. page = __rmqueue_smallest(zone, order, migratetype);
  856. if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
  857. page = __rmqueue_fallback(zone, order, migratetype);
  858. /*
  859. * Use MIGRATE_RESERVE rather than fail an allocation. goto
  860. * is used because __rmqueue_smallest is an inline function
  861. * and we want just one call site
  862. */
  863. if (!page) {
  864. migratetype = MIGRATE_RESERVE;
  865. goto retry_reserve;
  866. }
  867. }
  868. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  869. return page;
  870. }
  871. /*
  872. * Obtain a specified number of elements from the buddy allocator, all under
  873. * a single hold of the lock, for efficiency. Add them to the supplied list.
  874. * Returns the number of new pages which were placed at *list.
  875. */
  876. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  877. unsigned long count, struct list_head *list,
  878. int migratetype, int cold)
  879. {
  880. int i;
  881. spin_lock(&zone->lock);
  882. for (i = 0; i < count; ++i) {
  883. struct page *page = __rmqueue(zone, order, migratetype);
  884. if (unlikely(page == NULL))
  885. break;
  886. /*
  887. * Split buddy pages returned by expand() are received here
  888. * in physical page order. The page is added to the callers and
  889. * list and the list head then moves forward. From the callers
  890. * perspective, the linked list is ordered by page number in
  891. * some conditions. This is useful for IO devices that can
  892. * merge IO requests if the physical pages are ordered
  893. * properly.
  894. */
  895. if (likely(cold == 0))
  896. list_add(&page->lru, list);
  897. else
  898. list_add_tail(&page->lru, list);
  899. set_page_private(page, migratetype);
  900. list = &page->lru;
  901. }
  902. __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
  903. spin_unlock(&zone->lock);
  904. return i;
  905. }
  906. #ifdef CONFIG_NUMA
  907. /*
  908. * Called from the vmstat counter updater to drain pagesets of this
  909. * currently executing processor on remote nodes after they have
  910. * expired.
  911. *
  912. * Note that this function must be called with the thread pinned to
  913. * a single processor.
  914. */
  915. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  916. {
  917. unsigned long flags;
  918. int to_drain;
  919. local_irq_save(flags);
  920. if (pcp->count >= pcp->batch)
  921. to_drain = pcp->batch;
  922. else
  923. to_drain = pcp->count;
  924. free_pcppages_bulk(zone, to_drain, pcp);
  925. pcp->count -= to_drain;
  926. local_irq_restore(flags);
  927. }
  928. #endif
  929. /*
  930. * Drain pages of the indicated processor.
  931. *
  932. * The processor must either be the current processor and the
  933. * thread pinned to the current processor or a processor that
  934. * is not online.
  935. */
  936. static void drain_pages(unsigned int cpu)
  937. {
  938. unsigned long flags;
  939. struct zone *zone;
  940. for_each_populated_zone(zone) {
  941. struct per_cpu_pageset *pset;
  942. struct per_cpu_pages *pcp;
  943. local_irq_save(flags);
  944. pset = per_cpu_ptr(zone->pageset, cpu);
  945. pcp = &pset->pcp;
  946. free_pcppages_bulk(zone, pcp->count, pcp);
  947. pcp->count = 0;
  948. local_irq_restore(flags);
  949. }
  950. }
  951. /*
  952. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  953. */
  954. void drain_local_pages(void *arg)
  955. {
  956. drain_pages(smp_processor_id());
  957. }
  958. /*
  959. * Spill all the per-cpu pages from all CPUs back into the buddy allocator
  960. */
  961. void drain_all_pages(void)
  962. {
  963. on_each_cpu(drain_local_pages, NULL, 1);
  964. }
  965. #ifdef CONFIG_HIBERNATION
  966. void mark_free_pages(struct zone *zone)
  967. {
  968. unsigned long pfn, max_zone_pfn;
  969. unsigned long flags;
  970. int order, t;
  971. struct list_head *curr;
  972. if (!zone->spanned_pages)
  973. return;
  974. spin_lock_irqsave(&zone->lock, flags);
  975. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  976. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  977. if (pfn_valid(pfn)) {
  978. struct page *page = pfn_to_page(pfn);
  979. if (!swsusp_page_is_forbidden(page))
  980. swsusp_unset_page_free(page);
  981. }
  982. for_each_migratetype_order(order, t) {
  983. list_for_each(curr, &zone->free_area[order].free_list[t]) {
  984. unsigned long i;
  985. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  986. for (i = 0; i < (1UL << order); i++)
  987. swsusp_set_page_free(pfn_to_page(pfn + i));
  988. }
  989. }
  990. spin_unlock_irqrestore(&zone->lock, flags);
  991. }
  992. #endif /* CONFIG_PM */
  993. /*
  994. * Free a 0-order page
  995. * cold == 1 ? free a cold page : free a hot page
  996. */
  997. void free_hot_cold_page(struct page *page, int cold)
  998. {
  999. struct zone *zone = page_zone(page);
  1000. struct per_cpu_pages *pcp;
  1001. unsigned long flags;
  1002. int migratetype;
  1003. int wasMlocked = __TestClearPageMlocked(page);
  1004. if (!free_pages_prepare(page, 0))
  1005. return;
  1006. migratetype = get_pageblock_migratetype(page);
  1007. set_page_private(page, migratetype);
  1008. local_irq_save(flags);
  1009. if (unlikely(wasMlocked))
  1010. free_page_mlock(page);
  1011. __count_vm_event(PGFREE);
  1012. /*
  1013. * We only track unmovable, reclaimable and movable on pcp lists.
  1014. * Free ISOLATE pages back to the allocator because they are being
  1015. * offlined but treat RESERVE as movable pages so we can get those
  1016. * areas back if necessary. Otherwise, we may have to free
  1017. * excessively into the page allocator
  1018. */
  1019. if (migratetype >= MIGRATE_PCPTYPES) {
  1020. if (unlikely(migratetype == MIGRATE_ISOLATE)) {
  1021. free_one_page(zone, page, 0, migratetype);
  1022. goto out;
  1023. }
  1024. migratetype = MIGRATE_MOVABLE;
  1025. }
  1026. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  1027. if (cold)
  1028. list_add_tail(&page->lru, &pcp->lists[migratetype]);
  1029. else
  1030. list_add(&page->lru, &pcp->lists[migratetype]);
  1031. pcp->count++;
  1032. if (pcp->count >= pcp->high) {
  1033. free_pcppages_bulk(zone, pcp->batch, pcp);
  1034. pcp->count -= pcp->batch;
  1035. }
  1036. out:
  1037. local_irq_restore(flags);
  1038. }
  1039. /*
  1040. * split_page takes a non-compound higher-order page, and splits it into
  1041. * n (1<<order) sub-pages: page[0..n]
  1042. * Each sub-page must be freed individually.
  1043. *
  1044. * Note: this is probably too low level an operation for use in drivers.
  1045. * Please consult with lkml before using this in your driver.
  1046. */
  1047. void split_page(struct page *page, unsigned int order)
  1048. {
  1049. int i;
  1050. VM_BUG_ON(PageCompound(page));
  1051. VM_BUG_ON(!page_count(page));
  1052. #ifdef CONFIG_KMEMCHECK
  1053. /*
  1054. * Split shadow pages too, because free(page[0]) would
  1055. * otherwise free the whole shadow.
  1056. */
  1057. if (kmemcheck_page_is_tracked(page))
  1058. split_page(virt_to_page(page[0].shadow), order);
  1059. #endif
  1060. for (i = 1; i < (1 << order); i++)
  1061. set_page_refcounted(page + i);
  1062. }
  1063. /*
  1064. * Similar to split_page except the page is already free. As this is only
  1065. * being used for migration, the migratetype of the block also changes.
  1066. * As this is called with interrupts disabled, the caller is responsible
  1067. * for calling arch_alloc_page() and kernel_map_page() after interrupts
  1068. * are enabled.
  1069. *
  1070. * Note: this is probably too low level an operation for use in drivers.
  1071. * Please consult with lkml before using this in your driver.
  1072. */
  1073. int split_free_page(struct page *page)
  1074. {
  1075. unsigned int order;
  1076. unsigned long watermark;
  1077. struct zone *zone;
  1078. BUG_ON(!PageBuddy(page));
  1079. zone = page_zone(page);
  1080. order = page_order(page);
  1081. /* Obey watermarks as if the page was being allocated */
  1082. watermark = low_wmark_pages(zone) + (1 << order);
  1083. if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
  1084. return 0;
  1085. /* Remove page from free list */
  1086. list_del(&page->lru);
  1087. zone->free_area[order].nr_free--;
  1088. rmv_page_order(page);
  1089. __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
  1090. /* Split into individual pages */
  1091. set_page_refcounted(page);
  1092. split_page(page, order);
  1093. if (order >= pageblock_order - 1) {
  1094. struct page *endpage = page + (1 << order) - 1;
  1095. for (; page < endpage; page += pageblock_nr_pages)
  1096. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  1097. }
  1098. return 1 << order;
  1099. }
  1100. /*
  1101. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  1102. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  1103. * or two.
  1104. */
  1105. static inline
  1106. struct page *buffered_rmqueue(struct zone *preferred_zone,
  1107. struct zone *zone, int order, gfp_t gfp_flags,
  1108. int migratetype)
  1109. {
  1110. unsigned long flags;
  1111. struct page *page;
  1112. int cold = !!(gfp_flags & __GFP_COLD);
  1113. again:
  1114. if (likely(order == 0)) {
  1115. struct per_cpu_pages *pcp;
  1116. struct list_head *list;
  1117. local_irq_save(flags);
  1118. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  1119. list = &pcp->lists[migratetype];
  1120. if (list_empty(list)) {
  1121. pcp->count += rmqueue_bulk(zone, 0,
  1122. pcp->batch, list,
  1123. migratetype, cold);
  1124. if (unlikely(list_empty(list)))
  1125. goto failed;
  1126. }
  1127. if (cold)
  1128. page = list_entry(list->prev, struct page, lru);
  1129. else
  1130. page = list_entry(list->next, struct page, lru);
  1131. list_del(&page->lru);
  1132. pcp->count--;
  1133. } else {
  1134. if (unlikely(gfp_flags & __GFP_NOFAIL)) {
  1135. /*
  1136. * __GFP_NOFAIL is not to be used in new code.
  1137. *
  1138. * All __GFP_NOFAIL callers should be fixed so that they
  1139. * properly detect and handle allocation failures.
  1140. *
  1141. * We most definitely don't want callers attempting to
  1142. * allocate greater than order-1 page units with
  1143. * __GFP_NOFAIL.
  1144. */
  1145. WARN_ON_ONCE(order > 1);
  1146. }
  1147. spin_lock_irqsave(&zone->lock, flags);
  1148. page = __rmqueue(zone, order, migratetype);
  1149. spin_unlock(&zone->lock);
  1150. if (!page)
  1151. goto failed;
  1152. __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
  1153. }
  1154. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  1155. zone_statistics(preferred_zone, zone);
  1156. local_irq_restore(flags);
  1157. VM_BUG_ON(bad_range(zone, page));
  1158. if (prep_new_page(page, order, gfp_flags))
  1159. goto again;
  1160. return page;
  1161. failed:
  1162. local_irq_restore(flags);
  1163. return NULL;
  1164. }
  1165. /* The ALLOC_WMARK bits are used as an index to zone->watermark */
  1166. #define ALLOC_WMARK_MIN WMARK_MIN
  1167. #define ALLOC_WMARK_LOW WMARK_LOW
  1168. #define ALLOC_WMARK_HIGH WMARK_HIGH
  1169. #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
  1170. /* Mask to get the watermark bits */
  1171. #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
  1172. #define ALLOC_HARDER 0x10 /* try to alloc harder */
  1173. #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
  1174. #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
  1175. #ifdef CONFIG_FAIL_PAGE_ALLOC
  1176. static struct fail_page_alloc_attr {
  1177. struct fault_attr attr;
  1178. u32 ignore_gfp_highmem;
  1179. u32 ignore_gfp_wait;
  1180. u32 min_order;
  1181. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1182. struct dentry *ignore_gfp_highmem_file;
  1183. struct dentry *ignore_gfp_wait_file;
  1184. struct dentry *min_order_file;
  1185. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1186. } fail_page_alloc = {
  1187. .attr = FAULT_ATTR_INITIALIZER,
  1188. .ignore_gfp_wait = 1,
  1189. .ignore_gfp_highmem = 1,
  1190. .min_order = 1,
  1191. };
  1192. static int __init setup_fail_page_alloc(char *str)
  1193. {
  1194. return setup_fault_attr(&fail_page_alloc.attr, str);
  1195. }
  1196. __setup("fail_page_alloc=", setup_fail_page_alloc);
  1197. static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1198. {
  1199. if (order < fail_page_alloc.min_order)
  1200. return 0;
  1201. if (gfp_mask & __GFP_NOFAIL)
  1202. return 0;
  1203. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  1204. return 0;
  1205. if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
  1206. return 0;
  1207. return should_fail(&fail_page_alloc.attr, 1 << order);
  1208. }
  1209. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1210. static int __init fail_page_alloc_debugfs(void)
  1211. {
  1212. mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  1213. struct dentry *dir;
  1214. int err;
  1215. err = init_fault_attr_dentries(&fail_page_alloc.attr,
  1216. "fail_page_alloc");
  1217. if (err)
  1218. return err;
  1219. dir = fail_page_alloc.attr.dentries.dir;
  1220. fail_page_alloc.ignore_gfp_wait_file =
  1221. debugfs_create_bool("ignore-gfp-wait", mode, dir,
  1222. &fail_page_alloc.ignore_gfp_wait);
  1223. fail_page_alloc.ignore_gfp_highmem_file =
  1224. debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  1225. &fail_page_alloc.ignore_gfp_highmem);
  1226. fail_page_alloc.min_order_file =
  1227. debugfs_create_u32("min-order", mode, dir,
  1228. &fail_page_alloc.min_order);
  1229. if (!fail_page_alloc.ignore_gfp_wait_file ||
  1230. !fail_page_alloc.ignore_gfp_highmem_file ||
  1231. !fail_page_alloc.min_order_file) {
  1232. err = -ENOMEM;
  1233. debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
  1234. debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
  1235. debugfs_remove(fail_page_alloc.min_order_file);
  1236. cleanup_fault_attr_dentries(&fail_page_alloc.attr);
  1237. }
  1238. return err;
  1239. }
  1240. late_initcall(fail_page_alloc_debugfs);
  1241. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1242. #else /* CONFIG_FAIL_PAGE_ALLOC */
  1243. static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1244. {
  1245. return 0;
  1246. }
  1247. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  1248. /*
  1249. * Return true if free pages are above 'mark'. This takes into account the order
  1250. * of the allocation.
  1251. */
  1252. static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1253. int classzone_idx, int alloc_flags, long free_pages)
  1254. {
  1255. /* free_pages my go negative - that's OK */
  1256. long min = mark;
  1257. int o;
  1258. free_pages -= (1 << order) + 1;
  1259. if (alloc_flags & ALLOC_HIGH)
  1260. min -= min / 2;
  1261. if (alloc_flags & ALLOC_HARDER)
  1262. min -= min / 4;
  1263. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  1264. return false;
  1265. for (o = 0; o < order; o++) {
  1266. /* At the next order, this order's pages become unavailable */
  1267. free_pages -= z->free_area[o].nr_free << o;
  1268. /* Require fewer higher order pages to be free */
  1269. min >>= 1;
  1270. if (free_pages <= min)
  1271. return false;
  1272. }
  1273. return true;
  1274. }
  1275. bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1276. int classzone_idx, int alloc_flags)
  1277. {
  1278. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  1279. zone_page_state(z, NR_FREE_PAGES));
  1280. }
  1281. bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
  1282. int classzone_idx, int alloc_flags)
  1283. {
  1284. long free_pages = zone_page_state(z, NR_FREE_PAGES);
  1285. if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
  1286. free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
  1287. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  1288. free_pages);
  1289. }
  1290. #ifdef CONFIG_NUMA
  1291. /*
  1292. * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
  1293. * skip over zones that are not allowed by the cpuset, or that have
  1294. * been recently (in last second) found to be nearly full. See further
  1295. * comments in mmzone.h. Reduces cache footprint of zonelist scans
  1296. * that have to skip over a lot of full or unallowed zones.
  1297. *
  1298. * If the zonelist cache is present in the passed in zonelist, then
  1299. * returns a pointer to the allowed node mask (either the current
  1300. * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
  1301. *
  1302. * If the zonelist cache is not available for this zonelist, does
  1303. * nothing and returns NULL.
  1304. *
  1305. * If the fullzones BITMAP in the zonelist cache is stale (more than
  1306. * a second since last zap'd) then we zap it out (clear its bits.)
  1307. *
  1308. * We hold off even calling zlc_setup, until after we've checked the
  1309. * first zone in the zonelist, on the theory that most allocations will
  1310. * be satisfied from that first zone, so best to examine that zone as
  1311. * quickly as we can.
  1312. */
  1313. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1314. {
  1315. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1316. nodemask_t *allowednodes; /* zonelist_cache approximation */
  1317. zlc = zonelist->zlcache_ptr;
  1318. if (!zlc)
  1319. return NULL;
  1320. if (time_after(jiffies, zlc->last_full_zap + HZ)) {
  1321. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1322. zlc->last_full_zap = jiffies;
  1323. }
  1324. allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
  1325. &cpuset_current_mems_allowed :
  1326. &node_states[N_HIGH_MEMORY];
  1327. return allowednodes;
  1328. }
  1329. /*
  1330. * Given 'z' scanning a zonelist, run a couple of quick checks to see
  1331. * if it is worth looking at further for free memory:
  1332. * 1) Check that the zone isn't thought to be full (doesn't have its
  1333. * bit set in the zonelist_cache fullzones BITMAP).
  1334. * 2) Check that the zones node (obtained from the zonelist_cache
  1335. * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
  1336. * Return true (non-zero) if zone is worth looking at further, or
  1337. * else return false (zero) if it is not.
  1338. *
  1339. * This check -ignores- the distinction between various watermarks,
  1340. * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
  1341. * found to be full for any variation of these watermarks, it will
  1342. * be considered full for up to one second by all requests, unless
  1343. * we are so low on memory on all allowed nodes that we are forced
  1344. * into the second scan of the zonelist.
  1345. *
  1346. * In the second scan we ignore this zonelist cache and exactly
  1347. * apply the watermarks to all zones, even it is slower to do so.
  1348. * We are low on memory in the second scan, and should leave no stone
  1349. * unturned looking for a free page.
  1350. */
  1351. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1352. nodemask_t *allowednodes)
  1353. {
  1354. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1355. int i; /* index of *z in zonelist zones */
  1356. int n; /* node that zone *z is on */
  1357. zlc = zonelist->zlcache_ptr;
  1358. if (!zlc)
  1359. return 1;
  1360. i = z - zonelist->_zonerefs;
  1361. n = zlc->z_to_n[i];
  1362. /* This zone is worth trying if it is allowed but not full */
  1363. return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
  1364. }
  1365. /*
  1366. * Given 'z' scanning a zonelist, set the corresponding bit in
  1367. * zlc->fullzones, so that subsequent attempts to allocate a page
  1368. * from that zone don't waste time re-examining it.
  1369. */
  1370. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1371. {
  1372. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1373. int i; /* index of *z in zonelist zones */
  1374. zlc = zonelist->zlcache_ptr;
  1375. if (!zlc)
  1376. return;
  1377. i = z - zonelist->_zonerefs;
  1378. set_bit(i, zlc->fullzones);
  1379. }
  1380. #else /* CONFIG_NUMA */
  1381. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1382. {
  1383. return NULL;
  1384. }
  1385. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1386. nodemask_t *allowednodes)
  1387. {
  1388. return 1;
  1389. }
  1390. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1391. {
  1392. }
  1393. #endif /* CONFIG_NUMA */
  1394. /*
  1395. * get_page_from_freelist goes through the zonelist trying to allocate
  1396. * a page.
  1397. */
  1398. static struct page *
  1399. get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
  1400. struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
  1401. struct zone *preferred_zone, int migratetype)
  1402. {
  1403. struct zoneref *z;
  1404. struct page *page = NULL;
  1405. int classzone_idx;
  1406. struct zone *zone;
  1407. nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
  1408. int zlc_active = 0; /* set if using zonelist_cache */
  1409. int did_zlc_setup = 0; /* just call zlc_setup() one time */
  1410. classzone_idx = zone_idx(preferred_zone);
  1411. zonelist_scan:
  1412. /*
  1413. * Scan zonelist, looking for a zone with enough free.
  1414. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1415. */
  1416. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  1417. high_zoneidx, nodemask) {
  1418. if (NUMA_BUILD && zlc_active &&
  1419. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1420. continue;
  1421. if ((alloc_flags & ALLOC_CPUSET) &&
  1422. !cpuset_zone_allowed_softwall(zone, gfp_mask))
  1423. goto try_next_zone;
  1424. BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
  1425. if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
  1426. unsigned long mark;
  1427. int ret;
  1428. mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
  1429. if (zone_watermark_ok(zone, order, mark,
  1430. classzone_idx, alloc_flags))
  1431. goto try_this_zone;
  1432. if (zone_reclaim_mode == 0)
  1433. goto this_zone_full;
  1434. ret = zone_reclaim(zone, gfp_mask, order);
  1435. switch (ret) {
  1436. case ZONE_RECLAIM_NOSCAN:
  1437. /* did not scan */
  1438. goto try_next_zone;
  1439. case ZONE_RECLAIM_FULL:
  1440. /* scanned but unreclaimable */
  1441. goto this_zone_full;
  1442. default:
  1443. /* did we reclaim enough */
  1444. if (!zone_watermark_ok(zone, order, mark,
  1445. classzone_idx, alloc_flags))
  1446. goto this_zone_full;
  1447. }
  1448. }
  1449. try_this_zone:
  1450. page = buffered_rmqueue(preferred_zone, zone, order,
  1451. gfp_mask, migratetype);
  1452. if (page)
  1453. break;
  1454. this_zone_full:
  1455. if (NUMA_BUILD)
  1456. zlc_mark_zone_full(zonelist, z);
  1457. try_next_zone:
  1458. if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
  1459. /*
  1460. * we do zlc_setup after the first zone is tried but only
  1461. * if there are multiple nodes make it worthwhile
  1462. */
  1463. allowednodes = zlc_setup(zonelist, alloc_flags);
  1464. zlc_active = 1;
  1465. did_zlc_setup = 1;
  1466. }
  1467. }
  1468. if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
  1469. /* Disable zlc cache for second zonelist scan */
  1470. zlc_active = 0;
  1471. goto zonelist_scan;
  1472. }
  1473. return page;
  1474. }
  1475. static inline int
  1476. should_alloc_retry(gfp_t gfp_mask, unsigned int order,
  1477. unsigned long pages_reclaimed)
  1478. {
  1479. /* Do not loop if specifically requested */
  1480. if (gfp_mask & __GFP_NORETRY)
  1481. return 0;
  1482. /*
  1483. * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
  1484. * means __GFP_NOFAIL, but that may not be true in other
  1485. * implementations.
  1486. */
  1487. if (order <= PAGE_ALLOC_COSTLY_ORDER)
  1488. return 1;
  1489. /*
  1490. * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
  1491. * specified, then we retry until we no longer reclaim any pages
  1492. * (above), or we've reclaimed an order of pages at least as
  1493. * large as the allocation's order. In both cases, if the
  1494. * allocation still fails, we stop retrying.
  1495. */
  1496. if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
  1497. return 1;
  1498. /*
  1499. * Don't let big-order allocations loop unless the caller
  1500. * explicitly requests that.
  1501. */
  1502. if (gfp_mask & __GFP_NOFAIL)
  1503. return 1;
  1504. return 0;
  1505. }
  1506. static inline struct page *
  1507. __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
  1508. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1509. nodemask_t *nodemask, struct zone *preferred_zone,
  1510. int migratetype)
  1511. {
  1512. struct page *page;
  1513. /* Acquire the OOM killer lock for the zones in zonelist */
  1514. if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
  1515. schedule_timeout_uninterruptible(1);
  1516. return NULL;
  1517. }
  1518. /*
  1519. * Go through the zonelist yet one more time, keep very high watermark
  1520. * here, this is only to catch a parallel oom killing, we must fail if
  1521. * we're still under heavy pressure.
  1522. */
  1523. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
  1524. order, zonelist, high_zoneidx,
  1525. ALLOC_WMARK_HIGH|ALLOC_CPUSET,
  1526. preferred_zone, migratetype);
  1527. if (page)
  1528. goto out;
  1529. if (!(gfp_mask & __GFP_NOFAIL)) {
  1530. /* The OOM killer will not help higher order allocs */
  1531. if (order > PAGE_ALLOC_COSTLY_ORDER)
  1532. goto out;
  1533. /* The OOM killer does not needlessly kill tasks for lowmem */
  1534. if (high_zoneidx < ZONE_NORMAL)
  1535. goto out;
  1536. /*
  1537. * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
  1538. * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
  1539. * The caller should handle page allocation failure by itself if
  1540. * it specifies __GFP_THISNODE.
  1541. * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
  1542. */
  1543. if (gfp_mask & __GFP_THISNODE)
  1544. goto out;
  1545. }
  1546. /* Exhausted what can be done so it's blamo time */
  1547. out_of_memory(zonelist, gfp_mask, order, nodemask);
  1548. out:
  1549. clear_zonelist_oom(zonelist, gfp_mask);
  1550. return page;
  1551. }
  1552. #ifdef CONFIG_COMPACTION
  1553. /* Try memory compaction for high-order allocations before reclaim */
  1554. static struct page *
  1555. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  1556. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1557. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1558. int migratetype, unsigned long *did_some_progress,
  1559. bool sync_migration)
  1560. {
  1561. struct page *page;
  1562. if (!order || compaction_deferred(preferred_zone))
  1563. return NULL;
  1564. current->flags |= PF_MEMALLOC;
  1565. *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
  1566. nodemask, sync_migration);
  1567. current->flags &= ~PF_MEMALLOC;
  1568. if (*did_some_progress != COMPACT_SKIPPED) {
  1569. /* Page migration frees to the PCP lists but we want merging */
  1570. drain_pages(get_cpu());
  1571. put_cpu();
  1572. page = get_page_from_freelist(gfp_mask, nodemask,
  1573. order, zonelist, high_zoneidx,
  1574. alloc_flags, preferred_zone,
  1575. migratetype);
  1576. if (page) {
  1577. preferred_zone->compact_considered = 0;
  1578. preferred_zone->compact_defer_shift = 0;
  1579. count_vm_event(COMPACTSUCCESS);
  1580. return page;
  1581. }
  1582. /*
  1583. * It's bad if compaction run occurs and fails.
  1584. * The most likely reason is that pages exist,
  1585. * but not enough to satisfy watermarks.
  1586. */
  1587. count_vm_event(COMPACTFAIL);
  1588. defer_compaction(preferred_zone);
  1589. cond_resched();
  1590. }
  1591. return NULL;
  1592. }
  1593. #else
  1594. static inline struct page *
  1595. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  1596. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1597. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1598. int migratetype, unsigned long *did_some_progress,
  1599. bool sync_migration)
  1600. {
  1601. return NULL;
  1602. }
  1603. #endif /* CONFIG_COMPACTION */
  1604. /* The really slow allocator path where we enter direct reclaim */
  1605. static inline struct page *
  1606. __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
  1607. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1608. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1609. int migratetype, unsigned long *did_some_progress)
  1610. {
  1611. struct page *page = NULL;
  1612. struct reclaim_state reclaim_state;
  1613. bool drained = false;
  1614. cond_resched();
  1615. /* We now go into synchronous reclaim */
  1616. cpuset_memory_pressure_bump();
  1617. current->flags |= PF_MEMALLOC;
  1618. lockdep_set_current_reclaim_state(gfp_mask);
  1619. reclaim_state.reclaimed_slab = 0;
  1620. current->reclaim_state = &reclaim_state;
  1621. *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
  1622. current->reclaim_state = NULL;
  1623. lockdep_clear_current_reclaim_state();
  1624. current->flags &= ~PF_MEMALLOC;
  1625. cond_resched();
  1626. if (unlikely(!(*did_some_progress)))
  1627. return NULL;
  1628. retry:
  1629. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1630. zonelist, high_zoneidx,
  1631. alloc_flags, preferred_zone,
  1632. migratetype);
  1633. /*
  1634. * If an allocation failed after direct reclaim, it could be because
  1635. * pages are pinned on the per-cpu lists. Drain them and try again
  1636. */
  1637. if (!page && !drained) {
  1638. drain_all_pages();
  1639. drained = true;
  1640. goto retry;
  1641. }
  1642. return page;
  1643. }
  1644. /*
  1645. * This is called in the allocator slow-path if the allocation request is of
  1646. * sufficient urgency to ignore watermarks and take other desperate measures
  1647. */
  1648. static inline struct page *
  1649. __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
  1650. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1651. nodemask_t *nodemask, struct zone *preferred_zone,
  1652. int migratetype)
  1653. {
  1654. struct page *page;
  1655. do {
  1656. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1657. zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
  1658. preferred_zone, migratetype);
  1659. if (!page && gfp_mask & __GFP_NOFAIL)
  1660. wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
  1661. } while (!page && (gfp_mask & __GFP_NOFAIL));
  1662. return page;
  1663. }
  1664. static inline
  1665. void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
  1666. enum zone_type high_zoneidx,
  1667. enum zone_type classzone_idx)
  1668. {
  1669. struct zoneref *z;
  1670. struct zone *zone;
  1671. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
  1672. wakeup_kswapd(zone, order, classzone_idx);
  1673. }
  1674. static inline int
  1675. gfp_to_alloc_flags(gfp_t gfp_mask)
  1676. {
  1677. int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
  1678. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1679. /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
  1680. BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
  1681. /*
  1682. * The caller may dip into page reserves a bit more if the caller
  1683. * cannot run direct reclaim, or if the caller has realtime scheduling
  1684. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  1685. * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
  1686. */
  1687. alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
  1688. if (!wait) {
  1689. /*
  1690. * Not worth trying to allocate harder for
  1691. * __GFP_NOMEMALLOC even if it can't schedule.
  1692. */
  1693. if (!(gfp_mask & __GFP_NOMEMALLOC))
  1694. alloc_flags |= ALLOC_HARDER;
  1695. /*
  1696. * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
  1697. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1698. */
  1699. alloc_flags &= ~ALLOC_CPUSET;
  1700. } else if (unlikely(rt_task(current)) && !in_interrupt())
  1701. alloc_flags |= ALLOC_HARDER;
  1702. if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
  1703. if (!in_interrupt() &&
  1704. ((current->flags & PF_MEMALLOC) ||
  1705. unlikely(test_thread_flag(TIF_MEMDIE))))
  1706. alloc_flags |= ALLOC_NO_WATERMARKS;
  1707. }
  1708. return alloc_flags;
  1709. }
  1710. static inline struct page *
  1711. __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
  1712. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1713. nodemask_t *nodemask, struct zone *preferred_zone,
  1714. int migratetype)
  1715. {
  1716. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1717. struct page *page = NULL;
  1718. int alloc_flags;
  1719. unsigned long pages_reclaimed = 0;
  1720. unsigned long did_some_progress;
  1721. bool sync_migration = false;
  1722. /*
  1723. * In the slowpath, we sanity check order to avoid ever trying to
  1724. * reclaim >= MAX_ORDER areas which will never succeed. Callers may
  1725. * be using allocators in order of preference for an area that is
  1726. * too large.
  1727. */
  1728. if (order >= MAX_ORDER) {
  1729. WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
  1730. return NULL;
  1731. }
  1732. /*
  1733. * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
  1734. * __GFP_NOWARN set) should not cause reclaim since the subsystem
  1735. * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
  1736. * using a larger set of nodes after it has established that the
  1737. * allowed per node queues are empty and that nodes are
  1738. * over allocated.
  1739. */
  1740. if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
  1741. goto nopage;
  1742. restart:
  1743. if (!(gfp_mask & __GFP_NO_KSWAPD))
  1744. wake_all_kswapd(order, zonelist, high_zoneidx,
  1745. zone_idx(preferred_zone));
  1746. /*
  1747. * OK, we're below the kswapd watermark and have kicked background
  1748. * reclaim. Now things get more complex, so set up alloc_flags according
  1749. * to how we want to proceed.
  1750. */
  1751. alloc_flags = gfp_to_alloc_flags(gfp_mask);
  1752. /* This is the last chance, in general, before the goto nopage. */
  1753. page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
  1754. high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
  1755. preferred_zone, migratetype);
  1756. if (page)
  1757. goto got_pg;
  1758. rebalance:
  1759. /* Allocate without watermarks if the context allows */
  1760. if (alloc_flags & ALLOC_NO_WATERMARKS) {
  1761. page = __alloc_pages_high_priority(gfp_mask, order,
  1762. zonelist, high_zoneidx, nodemask,
  1763. preferred_zone, migratetype);
  1764. if (page)
  1765. goto got_pg;
  1766. }
  1767. /* Atomic allocations - we can't balance anything */
  1768. if (!wait)
  1769. goto nopage;
  1770. /* Avoid recursion of direct reclaim */
  1771. if (current->flags & PF_MEMALLOC)
  1772. goto nopage;
  1773. /* Avoid allocations with no watermarks from looping endlessly */
  1774. if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
  1775. goto nopage;
  1776. /*
  1777. * Try direct compaction. The first pass is asynchronous. Subsequent
  1778. * attempts after direct reclaim are synchronous
  1779. */
  1780. page = __alloc_pages_direct_compact(gfp_mask, order,
  1781. zonelist, high_zoneidx,
  1782. nodemask,
  1783. alloc_flags, preferred_zone,
  1784. migratetype, &did_some_progress,
  1785. sync_migration);
  1786. if (page)
  1787. goto got_pg;
  1788. sync_migration = true;
  1789. /* Try direct reclaim and then allocating */
  1790. page = __alloc_pages_direct_reclaim(gfp_mask, order,
  1791. zonelist, high_zoneidx,
  1792. nodemask,
  1793. alloc_flags, preferred_zone,
  1794. migratetype, &did_some_progress);
  1795. if (page)
  1796. goto got_pg;
  1797. /*
  1798. * If we failed to make any progress reclaiming, then we are
  1799. * running out of options and have to consider going OOM
  1800. */
  1801. if (!did_some_progress) {
  1802. if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
  1803. if (oom_killer_disabled)
  1804. goto nopage;
  1805. page = __alloc_pages_may_oom(gfp_mask, order,
  1806. zonelist, high_zoneidx,
  1807. nodemask, preferred_zone,
  1808. migratetype);
  1809. if (page)
  1810. goto got_pg;
  1811. if (!(gfp_mask & __GFP_NOFAIL)) {
  1812. /*
  1813. * The oom killer is not called for high-order
  1814. * allocations that may fail, so if no progress
  1815. * is being made, there are no other options and
  1816. * retrying is unlikely to help.
  1817. */
  1818. if (order > PAGE_ALLOC_COSTLY_ORDER)
  1819. goto nopage;
  1820. /*
  1821. * The oom killer is not called for lowmem
  1822. * allocations to prevent needlessly killing
  1823. * innocent tasks.
  1824. */
  1825. if (high_zoneidx < ZONE_NORMAL)
  1826. goto nopage;
  1827. }
  1828. goto restart;
  1829. }
  1830. }
  1831. /* Check if we should retry the allocation */
  1832. pages_reclaimed += did_some_progress;
  1833. if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
  1834. /* Wait for some write requests to complete then retry */
  1835. wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
  1836. goto rebalance;
  1837. } else {
  1838. /*
  1839. * High-order allocations do not necessarily loop after
  1840. * direct reclaim and reclaim/compaction depends on compaction
  1841. * being called after reclaim so call directly if necessary
  1842. */
  1843. page = __alloc_pages_direct_compact(gfp_mask, order,
  1844. zonelist, high_zoneidx,
  1845. nodemask,
  1846. alloc_flags, preferred_zone,
  1847. migratetype, &did_some_progress,
  1848. sync_migration);
  1849. if (page)
  1850. goto got_pg;
  1851. }
  1852. nopage:
  1853. if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
  1854. printk(KERN_WARNING "%s: page allocation failure."
  1855. " order:%d, mode:0x%x\n",
  1856. current->comm, order, gfp_mask);
  1857. dump_stack();
  1858. show_mem();
  1859. }
  1860. return page;
  1861. got_pg:
  1862. if (kmemcheck_enabled)
  1863. kmemcheck_pagealloc_alloc(page, order, gfp_mask);
  1864. return page;
  1865. }
  1866. /*
  1867. * This is the 'heart' of the zoned buddy allocator.
  1868. */
  1869. struct page *
  1870. __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
  1871. struct zonelist *zonelist, nodemask_t *nodemask)
  1872. {
  1873. enum zone_type high_zoneidx = gfp_zone(gfp_mask);
  1874. struct zone *preferred_zone;
  1875. struct page *page;
  1876. int migratetype = allocflags_to_migratetype(gfp_mask);
  1877. gfp_mask &= gfp_allowed_mask;
  1878. lockdep_trace_alloc(gfp_mask);
  1879. might_sleep_if(gfp_mask & __GFP_WAIT);
  1880. if (should_fail_alloc_page(gfp_mask, order))
  1881. return NULL;
  1882. /*
  1883. * Check the zones suitable for the gfp_mask contain at least one
  1884. * valid zone. It's possible to have an empty zonelist as a result
  1885. * of GFP_THISNODE and a memoryless node
  1886. */
  1887. if (unlikely(!zonelist->_zonerefs->zone))
  1888. return NULL;
  1889. get_mems_allowed();
  1890. /* The preferred zone is used for statistics later */
  1891. first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
  1892. if (!preferred_zone) {
  1893. put_mems_allowed();
  1894. return NULL;
  1895. }
  1896. /* First allocation attempt */
  1897. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
  1898. zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
  1899. preferred_zone, migratetype);
  1900. if (unlikely(!page))
  1901. page = __alloc_pages_slowpath(gfp_mask, order,
  1902. zonelist, high_zoneidx, nodemask,
  1903. preferred_zone, migratetype);
  1904. put_mems_allowed();
  1905. trace_mm_page_alloc(page, order, gfp_mask, migratetype);
  1906. return page;
  1907. }
  1908. EXPORT_SYMBOL(__alloc_pages_nodemask);
  1909. /*
  1910. * Common helper functions.
  1911. */
  1912. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  1913. {
  1914. struct page *page;
  1915. /*
  1916. * __get_free_pages() returns a 32-bit address, which cannot represent
  1917. * a highmem page
  1918. */
  1919. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  1920. page = alloc_pages(gfp_mask, order);
  1921. if (!page)
  1922. return 0;
  1923. return (unsigned long) page_address(page);
  1924. }
  1925. EXPORT_SYMBOL(__get_free_pages);
  1926. unsigned long get_zeroed_page(gfp_t gfp_mask)
  1927. {
  1928. return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
  1929. }
  1930. EXPORT_SYMBOL(get_zeroed_page);
  1931. void __pagevec_free(struct pagevec *pvec)
  1932. {
  1933. int i = pagevec_count(pvec);
  1934. while (--i >= 0) {
  1935. trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
  1936. free_hot_cold_page(pvec->pages[i], pvec->cold);
  1937. }
  1938. }
  1939. void __free_pages(struct page *page, unsigned int order)
  1940. {
  1941. if (put_page_testzero(page)) {
  1942. if (order == 0)
  1943. free_hot_cold_page(page, 0);
  1944. else
  1945. __free_pages_ok(page, order);
  1946. }
  1947. }
  1948. EXPORT_SYMBOL(__free_pages);
  1949. void free_pages(unsigned long addr, unsigned int order)
  1950. {
  1951. if (addr != 0) {
  1952. VM_BUG_ON(!virt_addr_valid((void *)addr));
  1953. __free_pages(virt_to_page((void *)addr), order);
  1954. }
  1955. }
  1956. EXPORT_SYMBOL(free_pages);
  1957. /**
  1958. * alloc_pages_exact - allocate an exact number physically-contiguous pages.
  1959. * @size: the number of bytes to allocate
  1960. * @gfp_mask: GFP flags for the allocation
  1961. *
  1962. * This function is similar to alloc_pages(), except that it allocates the
  1963. * minimum number of pages to satisfy the request. alloc_pages() can only
  1964. * allocate memory in power-of-two pages.
  1965. *
  1966. * This function is also limited by MAX_ORDER.
  1967. *
  1968. * Memory allocated by this function must be released by free_pages_exact().
  1969. */
  1970. void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
  1971. {
  1972. unsigned int order = get_order(size);
  1973. unsigned long addr;
  1974. addr = __get_free_pages(gfp_mask, order);
  1975. if (addr) {
  1976. unsigned long alloc_end = addr + (PAGE_SIZE << order);
  1977. unsigned long used = addr + PAGE_ALIGN(size);
  1978. split_page(virt_to_page((void *)addr), order);
  1979. while (used < alloc_end) {
  1980. free_page(used);
  1981. used += PAGE_SIZE;
  1982. }
  1983. }
  1984. return (void *)addr;
  1985. }
  1986. EXPORT_SYMBOL(alloc_pages_exact);
  1987. /**
  1988. * free_pages_exact - release memory allocated via alloc_pages_exact()
  1989. * @virt: the value returned by alloc_pages_exact.
  1990. * @size: size of allocation, same value as passed to alloc_pages_exact().
  1991. *
  1992. * Release the memory allocated by a previous call to alloc_pages_exact.
  1993. */
  1994. void free_pages_exact(void *virt, size_t size)
  1995. {
  1996. unsigned long addr = (unsigned long)virt;
  1997. unsigned long end = addr + PAGE_ALIGN(size);
  1998. while (addr < end) {
  1999. free_page(addr);
  2000. addr += PAGE_SIZE;
  2001. }
  2002. }
  2003. EXPORT_SYMBOL(free_pages_exact);
  2004. static unsigned int nr_free_zone_pages(int offset)
  2005. {
  2006. struct zoneref *z;
  2007. struct zone *zone;
  2008. /* Just pick one node, since fallback list is circular */
  2009. unsigned int sum = 0;
  2010. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  2011. for_each_zone_zonelist(zone, z, zonelist, offset) {
  2012. unsigned long size = zone->present_pages;
  2013. unsigned long high = high_wmark_pages(zone);
  2014. if (size > high)
  2015. sum += size - high;
  2016. }
  2017. return sum;
  2018. }
  2019. /*
  2020. * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
  2021. */
  2022. unsigned int nr_free_buffer_pages(void)
  2023. {
  2024. return nr_free_zone_pages(gfp_zone(GFP_USER));
  2025. }
  2026. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  2027. /*
  2028. * Amount of free RAM allocatable within all zones
  2029. */
  2030. unsigned int nr_free_pagecache_pages(void)
  2031. {
  2032. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  2033. }
  2034. static inline void show_node(struct zone *zone)
  2035. {
  2036. if (NUMA_BUILD)
  2037. printk("Node %d ", zone_to_nid(zone));
  2038. }
  2039. void si_meminfo(struct sysinfo *val)
  2040. {
  2041. val->totalram = totalram_pages;
  2042. val->sharedram = 0;
  2043. val->freeram = global_page_state(NR_FREE_PAGES);
  2044. val->bufferram = nr_blockdev_pages();
  2045. val->totalhigh = totalhigh_pages;
  2046. val->freehigh = nr_free_highpages();
  2047. val->mem_unit = PAGE_SIZE;
  2048. }
  2049. EXPORT_SYMBOL(si_meminfo);
  2050. #ifdef CONFIG_NUMA
  2051. void si_meminfo_node(struct sysinfo *val, int nid)
  2052. {
  2053. pg_data_t *pgdat = NODE_DATA(nid);
  2054. val->totalram = pgdat->node_present_pages;
  2055. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  2056. #ifdef CONFIG_HIGHMEM
  2057. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
  2058. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  2059. NR_FREE_PAGES);
  2060. #else
  2061. val->totalhigh = 0;
  2062. val->freehigh = 0;
  2063. #endif
  2064. val->mem_unit = PAGE_SIZE;
  2065. }
  2066. #endif
  2067. #define K(x) ((x) << (PAGE_SHIFT-10))
  2068. /*
  2069. * Show free area list (used inside shift_scroll-lock stuff)
  2070. * We also calculate the percentage fragmentation. We do this by counting the
  2071. * memory on each free list with the exception of the first item on the list.
  2072. */
  2073. void show_free_areas(void)
  2074. {
  2075. int cpu;
  2076. struct zone *zone;
  2077. for_each_populated_zone(zone) {
  2078. show_node(zone);
  2079. printk("%s per-cpu:\n", zone->name);
  2080. for_each_online_cpu(cpu) {
  2081. struct per_cpu_pageset *pageset;
  2082. pageset = per_cpu_ptr(zone->pageset, cpu);
  2083. printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
  2084. cpu, pageset->pcp.high,
  2085. pageset->pcp.batch, pageset->pcp.count);
  2086. }
  2087. }
  2088. printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
  2089. " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
  2090. " unevictable:%lu"
  2091. " dirty:%lu writeback:%lu unstable:%lu\n"
  2092. " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
  2093. " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
  2094. global_page_state(NR_ACTIVE_ANON),
  2095. global_page_state(NR_INACTIVE_ANON),
  2096. global_page_state(NR_ISOLATED_ANON),
  2097. global_page_state(NR_ACTIVE_FILE),
  2098. global_page_state(NR_INACTIVE_FILE),
  2099. global_page_state(NR_ISOLATED_FILE),
  2100. global_page_state(NR_UNEVICTABLE),
  2101. global_page_state(NR_FILE_DIRTY),
  2102. global_page_state(NR_WRITEBACK),
  2103. global_page_state(NR_UNSTABLE_NFS),
  2104. global_page_state(NR_FREE_PAGES),
  2105. global_page_state(NR_SLAB_RECLAIMABLE),
  2106. global_page_state(NR_SLAB_UNRECLAIMABLE),
  2107. global_page_state(NR_FILE_MAPPED),
  2108. global_page_state(NR_SHMEM),
  2109. global_page_state(NR_PAGETABLE),
  2110. global_page_state(NR_BOUNCE));
  2111. for_each_populated_zone(zone) {
  2112. int i;
  2113. show_node(zone);
  2114. printk("%s"
  2115. " free:%lukB"
  2116. " min:%lukB"
  2117. " low:%lukB"
  2118. " high:%lukB"
  2119. " active_anon:%lukB"
  2120. " inactive_anon:%lukB"
  2121. " active_file:%lukB"
  2122. " inactive_file:%lukB"
  2123. " unevictable:%lukB"
  2124. " isolated(anon):%lukB"
  2125. " isolated(file):%lukB"
  2126. " present:%lukB"
  2127. " mlocked:%lukB"
  2128. " dirty:%lukB"
  2129. " writeback:%lukB"
  2130. " mapped:%lukB"
  2131. " shmem:%lukB"
  2132. " slab_reclaimable:%lukB"
  2133. " slab_unreclaimable:%lukB"
  2134. " kernel_stack:%lukB"
  2135. " pagetables:%lukB"
  2136. " unstable:%lukB"
  2137. " bounce:%lukB"
  2138. " writeback_tmp:%lukB"
  2139. " pages_scanned:%lu"
  2140. " all_unreclaimable? %s"
  2141. "\n",
  2142. zone->name,
  2143. K(zone_page_state(zone, NR_FREE_PAGES)),
  2144. K(min_wmark_pages(zone)),
  2145. K(low_wmark_pages(zone)),
  2146. K(high_wmark_pages(zone)),
  2147. K(zone_page_state(zone, NR_ACTIVE_ANON)),
  2148. K(zone_page_state(zone, NR_INACTIVE_ANON)),
  2149. K(zone_page_state(zone, NR_ACTIVE_FILE)),
  2150. K(zone_page_state(zone, NR_INACTIVE_FILE)),
  2151. K(zone_page_state(zone, NR_UNEVICTABLE)),
  2152. K(zone_page_state(zone, NR_ISOLATED_ANON)),
  2153. K(zone_page_state(zone, NR_ISOLATED_FILE)),
  2154. K(zone->present_pages),
  2155. K(zone_page_state(zone, NR_MLOCK)),
  2156. K(zone_page_state(zone, NR_FILE_DIRTY)),
  2157. K(zone_page_state(zone, NR_WRITEBACK)),
  2158. K(zone_page_state(zone, NR_FILE_MAPPED)),
  2159. K(zone_page_state(zone, NR_SHMEM)),
  2160. K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
  2161. K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
  2162. zone_page_state(zone, NR_KERNEL_STACK) *
  2163. THREAD_SIZE / 1024,
  2164. K(zone_page_state(zone, NR_PAGETABLE)),
  2165. K(zone_page_state(zone, NR_UNSTABLE_NFS)),
  2166. K(zone_page_state(zone, NR_BOUNCE)),
  2167. K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
  2168. zone->pages_scanned,
  2169. (zone->all_unreclaimable ? "yes" : "no")
  2170. );
  2171. printk("lowmem_reserve[]:");
  2172. for (i = 0; i < MAX_NR_ZONES; i++)
  2173. printk(" %lu", zone->lowmem_reserve[i]);
  2174. printk("\n");
  2175. }
  2176. for_each_populated_zone(zone) {
  2177. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  2178. show_node(zone);
  2179. printk("%s: ", zone->name);
  2180. spin_lock_irqsave(&zone->lock, flags);
  2181. for (order = 0; order < MAX_ORDER; order++) {
  2182. nr[order] = zone->free_area[order].nr_free;
  2183. total += nr[order] << order;
  2184. }
  2185. spin_unlock_irqrestore(&zone->lock, flags);
  2186. for (order = 0; order < MAX_ORDER; order++)
  2187. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  2188. printk("= %lukB\n", K(total));
  2189. }
  2190. printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
  2191. show_swap_cache_info();
  2192. }
  2193. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  2194. {
  2195. zoneref->zone = zone;
  2196. zoneref->zone_idx = zone_idx(zone);
  2197. }
  2198. /*
  2199. * Builds allocation fallback zone lists.
  2200. *
  2201. * Add all populated zones of a node to the zonelist.
  2202. */
  2203. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  2204. int nr_zones, enum zone_type zone_type)
  2205. {
  2206. struct zone *zone;
  2207. BUG_ON(zone_type >= MAX_NR_ZONES);
  2208. zone_type++;
  2209. do {
  2210. zone_type--;
  2211. zone = pgdat->node_zones + zone_type;
  2212. if (populated_zone(zone)) {
  2213. zoneref_set_zone(zone,
  2214. &zonelist->_zonerefs[nr_zones++]);
  2215. check_highest_zone(zone_type);
  2216. }
  2217. } while (zone_type);
  2218. return nr_zones;
  2219. }
  2220. /*
  2221. * zonelist_order:
  2222. * 0 = automatic detection of better ordering.
  2223. * 1 = order by ([node] distance, -zonetype)
  2224. * 2 = order by (-zonetype, [node] distance)
  2225. *
  2226. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  2227. * the same zonelist. So only NUMA can configure this param.
  2228. */
  2229. #define ZONELIST_ORDER_DEFAULT 0
  2230. #define ZONELIST_ORDER_NODE 1
  2231. #define ZONELIST_ORDER_ZONE 2
  2232. /* zonelist order in the kernel.
  2233. * set_zonelist_order() will set this to NODE or ZONE.
  2234. */
  2235. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2236. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  2237. #ifdef CONFIG_NUMA
  2238. /* The value user specified ....changed by config */
  2239. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2240. /* string for sysctl */
  2241. #define NUMA_ZONELIST_ORDER_LEN 16
  2242. char numa_zonelist_order[16] = "default";
  2243. /*
  2244. * interface for configure zonelist ordering.
  2245. * command line option "numa_zonelist_order"
  2246. * = "[dD]efault - default, automatic configuration.
  2247. * = "[nN]ode - order by node locality, then by zone within node
  2248. * = "[zZ]one - order by zone, then by locality within zone
  2249. */
  2250. static int __parse_numa_zonelist_order(char *s)
  2251. {
  2252. if (*s == 'd' || *s == 'D') {
  2253. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2254. } else if (*s == 'n' || *s == 'N') {
  2255. user_zonelist_order = ZONELIST_ORDER_NODE;
  2256. } else if (*s == 'z' || *s == 'Z') {
  2257. user_zonelist_order = ZONELIST_ORDER_ZONE;
  2258. } else {
  2259. printk(KERN_WARNING
  2260. "Ignoring invalid numa_zonelist_order value: "
  2261. "%s\n", s);
  2262. return -EINVAL;
  2263. }
  2264. return 0;
  2265. }
  2266. static __init int setup_numa_zonelist_order(char *s)
  2267. {
  2268. int ret;
  2269. if (!s)
  2270. return 0;
  2271. ret = __parse_numa_zonelist_order(s);
  2272. if (ret == 0)
  2273. strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
  2274. return ret;
  2275. }
  2276. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  2277. /*
  2278. * sysctl handler for numa_zonelist_order
  2279. */
  2280. int numa_zonelist_order_handler(ctl_table *table, int write,
  2281. void __user *buffer, size_t *length,
  2282. loff_t *ppos)
  2283. {
  2284. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  2285. int ret;
  2286. static DEFINE_MUTEX(zl_order_mutex);
  2287. mutex_lock(&zl_order_mutex);
  2288. if (write)
  2289. strcpy(saved_string, (char*)table->data);
  2290. ret = proc_dostring(table, write, buffer, length, ppos);
  2291. if (ret)
  2292. goto out;
  2293. if (write) {
  2294. int oldval = user_zonelist_order;
  2295. if (__parse_numa_zonelist_order((char*)table->data)) {
  2296. /*
  2297. * bogus value. restore saved string
  2298. */
  2299. strncpy((char*)table->data, saved_string,
  2300. NUMA_ZONELIST_ORDER_LEN);
  2301. user_zonelist_order = oldval;
  2302. } else if (oldval != user_zonelist_order) {
  2303. mutex_lock(&zonelists_mutex);
  2304. build_all_zonelists(NULL);
  2305. mutex_unlock(&zonelists_mutex);
  2306. }
  2307. }
  2308. out:
  2309. mutex_unlock(&zl_order_mutex);
  2310. return ret;
  2311. }
  2312. #define MAX_NODE_LOAD (nr_online_nodes)
  2313. static int node_load[MAX_NUMNODES];
  2314. /**
  2315. * find_next_best_node - find the next node that should appear in a given node's fallback list
  2316. * @node: node whose fallback list we're appending
  2317. * @used_node_mask: nodemask_t of already used nodes
  2318. *
  2319. * We use a number of factors to determine which is the next node that should
  2320. * appear on a given node's fallback list. The node should not have appeared
  2321. * already in @node's fallback list, and it should be the next closest node
  2322. * according to the distance array (which contains arbitrary distance values
  2323. * from each node to each node in the system), and should also prefer nodes
  2324. * with no CPUs, since presumably they'll have very little allocation pressure
  2325. * on them otherwise.
  2326. * It returns -1 if no node is found.
  2327. */
  2328. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  2329. {
  2330. int n, val;
  2331. int min_val = INT_MAX;
  2332. int best_node = -1;
  2333. const struct cpumask *tmp = cpumask_of_node(0);
  2334. /* Use the local node if we haven't already */
  2335. if (!node_isset(node, *used_node_mask)) {
  2336. node_set(node, *used_node_mask);
  2337. return node;
  2338. }
  2339. for_each_node_state(n, N_HIGH_MEMORY) {
  2340. /* Don't want a node to appear more than once */
  2341. if (node_isset(n, *used_node_mask))
  2342. continue;
  2343. /* Use the distance array to find the distance */
  2344. val = node_distance(node, n);
  2345. /* Penalize nodes under us ("prefer the next node") */
  2346. val += (n < node);
  2347. /* Give preference to headless and unused nodes */
  2348. tmp = cpumask_of_node(n);
  2349. if (!cpumask_empty(tmp))
  2350. val += PENALTY_FOR_NODE_WITH_CPUS;
  2351. /* Slight preference for less loaded node */
  2352. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  2353. val += node_load[n];
  2354. if (val < min_val) {
  2355. min_val = val;
  2356. best_node = n;
  2357. }
  2358. }
  2359. if (best_node >= 0)
  2360. node_set(best_node, *used_node_mask);
  2361. return best_node;
  2362. }
  2363. /*
  2364. * Build zonelists ordered by node and zones within node.
  2365. * This results in maximum locality--normal zone overflows into local
  2366. * DMA zone, if any--but risks exhausting DMA zone.
  2367. */
  2368. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  2369. {
  2370. int j;
  2371. struct zonelist *zonelist;
  2372. zonelist = &pgdat->node_zonelists[0];
  2373. for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
  2374. ;
  2375. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2376. MAX_NR_ZONES - 1);
  2377. zonelist->_zonerefs[j].zone = NULL;
  2378. zonelist->_zonerefs[j].zone_idx = 0;
  2379. }
  2380. /*
  2381. * Build gfp_thisnode zonelists
  2382. */
  2383. static void build_thisnode_zonelists(pg_data_t *pgdat)
  2384. {
  2385. int j;
  2386. struct zonelist *zonelist;
  2387. zonelist = &pgdat->node_zonelists[1];
  2388. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  2389. zonelist->_zonerefs[j].zone = NULL;
  2390. zonelist->_zonerefs[j].zone_idx = 0;
  2391. }
  2392. /*
  2393. * Build zonelists ordered by zone and nodes within zones.
  2394. * This results in conserving DMA zone[s] until all Normal memory is
  2395. * exhausted, but results in overflowing to remote node while memory
  2396. * may still exist in local DMA zone.
  2397. */
  2398. static int node_order[MAX_NUMNODES];
  2399. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  2400. {
  2401. int pos, j, node;
  2402. int zone_type; /* needs to be signed */
  2403. struct zone *z;
  2404. struct zonelist *zonelist;
  2405. zonelist = &pgdat->node_zonelists[0];
  2406. pos = 0;
  2407. for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
  2408. for (j = 0; j < nr_nodes; j++) {
  2409. node = node_order[j];
  2410. z = &NODE_DATA(node)->node_zones[zone_type];
  2411. if (populated_zone(z)) {
  2412. zoneref_set_zone(z,
  2413. &zonelist->_zonerefs[pos++]);
  2414. check_highest_zone(zone_type);
  2415. }
  2416. }
  2417. }
  2418. zonelist->_zonerefs[pos].zone = NULL;
  2419. zonelist->_zonerefs[pos].zone_idx = 0;
  2420. }
  2421. static int default_zonelist_order(void)
  2422. {
  2423. int nid, zone_type;
  2424. unsigned long low_kmem_size,total_size;
  2425. struct zone *z;
  2426. int average_size;
  2427. /*
  2428. * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
  2429. * If they are really small and used heavily, the system can fall
  2430. * into OOM very easily.
  2431. * This function detect ZONE_DMA/DMA32 size and configures zone order.
  2432. */
  2433. /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
  2434. low_kmem_size = 0;
  2435. total_size = 0;
  2436. for_each_online_node(nid) {
  2437. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  2438. z = &NODE_DATA(nid)->node_zones[zone_type];
  2439. if (populated_zone(z)) {
  2440. if (zone_type < ZONE_NORMAL)
  2441. low_kmem_size += z->present_pages;
  2442. total_size += z->present_pages;
  2443. } else if (zone_type == ZONE_NORMAL) {
  2444. /*
  2445. * If any node has only lowmem, then node order
  2446. * is preferred to allow kernel allocations
  2447. * locally; otherwise, they can easily infringe
  2448. * on other nodes when there is an abundance of
  2449. * lowmem available to allocate from.
  2450. */
  2451. return ZONELIST_ORDER_NODE;
  2452. }
  2453. }
  2454. }
  2455. if (!low_kmem_size || /* there are no DMA area. */
  2456. low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
  2457. return ZONELIST_ORDER_NODE;
  2458. /*
  2459. * look into each node's config.
  2460. * If there is a node whose DMA/DMA32 memory is very big area on
  2461. * local memory, NODE_ORDER may be suitable.
  2462. */
  2463. average_size = total_size /
  2464. (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
  2465. for_each_online_node(nid) {
  2466. low_kmem_size = 0;
  2467. total_size = 0;
  2468. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  2469. z = &NODE_DATA(nid)->node_zones[zone_type];
  2470. if (populated_zone(z)) {
  2471. if (zone_type < ZONE_NORMAL)
  2472. low_kmem_size += z->present_pages;
  2473. total_size += z->present_pages;
  2474. }
  2475. }
  2476. if (low_kmem_size &&
  2477. total_size > average_size && /* ignore small node */
  2478. low_kmem_size > total_size * 70/100)
  2479. return ZONELIST_ORDER_NODE;
  2480. }
  2481. return ZONELIST_ORDER_ZONE;
  2482. }
  2483. static void set_zonelist_order(void)
  2484. {
  2485. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  2486. current_zonelist_order = default_zonelist_order();
  2487. else
  2488. current_zonelist_order = user_zonelist_order;
  2489. }
  2490. static void build_zonelists(pg_data_t *pgdat)
  2491. {
  2492. int j, node, load;
  2493. enum zone_type i;
  2494. nodemask_t used_mask;
  2495. int local_node, prev_node;
  2496. struct zonelist *zonelist;
  2497. int order = current_zonelist_order;
  2498. /* initialize zonelists */
  2499. for (i = 0; i < MAX_ZONELISTS; i++) {
  2500. zonelist = pgdat->node_zonelists + i;
  2501. zonelist->_zonerefs[0].zone = NULL;
  2502. zonelist->_zonerefs[0].zone_idx = 0;
  2503. }
  2504. /* NUMA-aware ordering of nodes */
  2505. local_node = pgdat->node_id;
  2506. load = nr_online_nodes;
  2507. prev_node = local_node;
  2508. nodes_clear(used_mask);
  2509. memset(node_order, 0, sizeof(node_order));
  2510. j = 0;
  2511. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  2512. int distance = node_distance(local_node, node);
  2513. /*
  2514. * If another node is sufficiently far away then it is better
  2515. * to reclaim pages in a zone before going off node.
  2516. */
  2517. if (distance > RECLAIM_DISTANCE)
  2518. zone_reclaim_mode = 1;
  2519. /*
  2520. * We don't want to pressure a particular node.
  2521. * So adding penalty to the first node in same
  2522. * distance group to make it round-robin.
  2523. */
  2524. if (distance != node_distance(local_node, prev_node))
  2525. node_load[node] = load;
  2526. prev_node = node;
  2527. load--;
  2528. if (order == ZONELIST_ORDER_NODE)
  2529. build_zonelists_in_node_order(pgdat, node);
  2530. else
  2531. node_order[j++] = node; /* remember order */
  2532. }
  2533. if (order == ZONELIST_ORDER_ZONE) {
  2534. /* calculate node order -- i.e., DMA last! */
  2535. build_zonelists_in_zone_order(pgdat, j);
  2536. }
  2537. build_thisnode_zonelists(pgdat);
  2538. }
  2539. /* Construct the zonelist performance cache - see further mmzone.h */
  2540. static void build_zonelist_cache(pg_data_t *pgdat)
  2541. {
  2542. struct zonelist *zonelist;
  2543. struct zonelist_cache *zlc;
  2544. struct zoneref *z;
  2545. zonelist = &pgdat->node_zonelists[0];
  2546. zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
  2547. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  2548. for (z = zonelist->_zonerefs; z->zone; z++)
  2549. zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
  2550. }
  2551. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  2552. /*
  2553. * Return node id of node used for "local" allocations.
  2554. * I.e., first node id of first zone in arg node's generic zonelist.
  2555. * Used for initializing percpu 'numa_mem', which is used primarily
  2556. * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
  2557. */
  2558. int local_memory_node(int node)
  2559. {
  2560. struct zone *zone;
  2561. (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
  2562. gfp_zone(GFP_KERNEL),
  2563. NULL,
  2564. &zone);
  2565. return zone->node;
  2566. }
  2567. #endif
  2568. #else /* CONFIG_NUMA */
  2569. static void set_zonelist_order(void)
  2570. {
  2571. current_zonelist_order = ZONELIST_ORDER_ZONE;
  2572. }
  2573. static void build_zonelists(pg_data_t *pgdat)
  2574. {
  2575. int node, local_node;
  2576. enum zone_type j;
  2577. struct zonelist *zonelist;
  2578. local_node = pgdat->node_id;
  2579. zonelist = &pgdat->node_zonelists[0];
  2580. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  2581. /*
  2582. * Now we build the zonelist so that it contains the zones
  2583. * of all the other nodes.
  2584. * We don't want to pressure a particular node, so when
  2585. * building the zones for node N, we make sure that the
  2586. * zones coming right after the local ones are those from
  2587. * node N+1 (modulo N)
  2588. */
  2589. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  2590. if (!node_online(node))
  2591. continue;
  2592. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2593. MAX_NR_ZONES - 1);
  2594. }
  2595. for (node = 0; node < local_node; node++) {
  2596. if (!node_online(node))
  2597. continue;
  2598. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2599. MAX_NR_ZONES - 1);
  2600. }
  2601. zonelist->_zonerefs[j].zone = NULL;
  2602. zonelist->_zonerefs[j].zone_idx = 0;
  2603. }
  2604. /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
  2605. static void build_zonelist_cache(pg_data_t *pgdat)
  2606. {
  2607. pgdat->node_zonelists[0].zlcache_ptr = NULL;
  2608. }
  2609. #endif /* CONFIG_NUMA */
  2610. /*
  2611. * Boot pageset table. One per cpu which is going to be used for all
  2612. * zones and all nodes. The parameters will be set in such a way
  2613. * that an item put on a list will immediately be handed over to
  2614. * the buddy list. This is safe since pageset manipulation is done
  2615. * with interrupts disabled.
  2616. *
  2617. * The boot_pagesets must be kept even after bootup is complete for
  2618. * unused processors and/or zones. They do play a role for bootstrapping
  2619. * hotplugged processors.
  2620. *
  2621. * zoneinfo_show() and maybe other functions do
  2622. * not check if the processor is online before following the pageset pointer.
  2623. * Other parts of the kernel may not check if the zone is available.
  2624. */
  2625. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
  2626. static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
  2627. static void setup_zone_pageset(struct zone *zone);
  2628. /*
  2629. * Global mutex to protect against size modification of zonelists
  2630. * as well as to serialize pageset setup for the new populated zone.
  2631. */
  2632. DEFINE_MUTEX(zonelists_mutex);
  2633. /* return values int ....just for stop_machine() */
  2634. static __init_refok int __build_all_zonelists(void *data)
  2635. {
  2636. int nid;
  2637. int cpu;
  2638. #ifdef CONFIG_NUMA
  2639. memset(node_load, 0, sizeof(node_load));
  2640. #endif
  2641. for_each_online_node(nid) {
  2642. pg_data_t *pgdat = NODE_DATA(nid);
  2643. build_zonelists(pgdat);
  2644. build_zonelist_cache(pgdat);
  2645. }
  2646. /*
  2647. * Initialize the boot_pagesets that are going to be used
  2648. * for bootstrapping processors. The real pagesets for
  2649. * each zone will be allocated later when the per cpu
  2650. * allocator is available.
  2651. *
  2652. * boot_pagesets are used also for bootstrapping offline
  2653. * cpus if the system is already booted because the pagesets
  2654. * are needed to initialize allocators on a specific cpu too.
  2655. * F.e. the percpu allocator needs the page allocator which
  2656. * needs the percpu allocator in order to allocate its pagesets
  2657. * (a chicken-egg dilemma).
  2658. */
  2659. for_each_possible_cpu(cpu) {
  2660. setup_pageset(&per_cpu(boot_pageset, cpu), 0);
  2661. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  2662. /*
  2663. * We now know the "local memory node" for each node--
  2664. * i.e., the node of the first zone in the generic zonelist.
  2665. * Set up numa_mem percpu variable for on-line cpus. During
  2666. * boot, only the boot cpu should be on-line; we'll init the
  2667. * secondary cpus' numa_mem as they come on-line. During
  2668. * node/memory hotplug, we'll fixup all on-line cpus.
  2669. */
  2670. if (cpu_online(cpu))
  2671. set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
  2672. #endif
  2673. }
  2674. return 0;
  2675. }
  2676. /*
  2677. * Called with zonelists_mutex held always
  2678. * unless system_state == SYSTEM_BOOTING.
  2679. */
  2680. void build_all_zonelists(void *data)
  2681. {
  2682. set_zonelist_order();
  2683. if (system_state == SYSTEM_BOOTING) {
  2684. __build_all_zonelists(NULL);
  2685. mminit_verify_zonelist();
  2686. cpuset_init_current_mems_allowed();
  2687. } else {
  2688. /* we have to stop all cpus to guarantee there is no user
  2689. of zonelist */
  2690. #ifdef CONFIG_MEMORY_HOTPLUG
  2691. if (data)
  2692. setup_zone_pageset((struct zone *)data);
  2693. #endif
  2694. stop_machine(__build_all_zonelists, NULL, NULL);
  2695. /* cpuset refresh routine should be here */
  2696. }
  2697. vm_total_pages = nr_free_pagecache_pages();
  2698. /*
  2699. * Disable grouping by mobility if the number of pages in the
  2700. * system is too low to allow the mechanism to work. It would be
  2701. * more accurate, but expensive to check per-zone. This check is
  2702. * made on memory-hotadd so a system can start with mobility
  2703. * disabled and enable it later
  2704. */
  2705. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  2706. page_group_by_mobility_disabled = 1;
  2707. else
  2708. page_group_by_mobility_disabled = 0;
  2709. printk("Built %i zonelists in %s order, mobility grouping %s. "
  2710. "Total pages: %ld\n",
  2711. nr_online_nodes,
  2712. zonelist_order_name[current_zonelist_order],
  2713. page_group_by_mobility_disabled ? "off" : "on",
  2714. vm_total_pages);
  2715. #ifdef CONFIG_NUMA
  2716. printk("Policy zone: %s\n", zone_names[policy_zone]);
  2717. #endif
  2718. }
  2719. /*
  2720. * Helper functions to size the waitqueue hash table.
  2721. * Essentially these want to choose hash table sizes sufficiently
  2722. * large so that collisions trying to wait on pages are rare.
  2723. * But in fact, the number of active page waitqueues on typical
  2724. * systems is ridiculously low, less than 200. So this is even
  2725. * conservative, even though it seems large.
  2726. *
  2727. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  2728. * waitqueues, i.e. the size of the waitq table given the number of pages.
  2729. */
  2730. #define PAGES_PER_WAITQUEUE 256
  2731. #ifndef CONFIG_MEMORY_HOTPLUG
  2732. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2733. {
  2734. unsigned long size = 1;
  2735. pages /= PAGES_PER_WAITQUEUE;
  2736. while (size < pages)
  2737. size <<= 1;
  2738. /*
  2739. * Once we have dozens or even hundreds of threads sleeping
  2740. * on IO we've got bigger problems than wait queue collision.
  2741. * Limit the size of the wait table to a reasonable size.
  2742. */
  2743. size = min(size, 4096UL);
  2744. return max(size, 4UL);
  2745. }
  2746. #else
  2747. /*
  2748. * A zone's size might be changed by hot-add, so it is not possible to determine
  2749. * a suitable size for its wait_table. So we use the maximum size now.
  2750. *
  2751. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  2752. *
  2753. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  2754. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  2755. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  2756. *
  2757. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  2758. * or more by the traditional way. (See above). It equals:
  2759. *
  2760. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  2761. * ia64(16K page size) : = ( 8G + 4M)byte.
  2762. * powerpc (64K page size) : = (32G +16M)byte.
  2763. */
  2764. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2765. {
  2766. return 4096UL;
  2767. }
  2768. #endif
  2769. /*
  2770. * This is an integer logarithm so that shifts can be used later
  2771. * to extract the more random high bits from the multiplicative
  2772. * hash function before the remainder is taken.
  2773. */
  2774. static inline unsigned long wait_table_bits(unsigned long size)
  2775. {
  2776. return ffz(~size);
  2777. }
  2778. #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
  2779. /*
  2780. * Mark a number of pageblocks as MIGRATE_RESERVE. The number
  2781. * of blocks reserved is based on min_wmark_pages(zone). The memory within
  2782. * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
  2783. * higher will lead to a bigger reserve which will get freed as contiguous
  2784. * blocks as reclaim kicks in
  2785. */
  2786. static void setup_zone_migrate_reserve(struct zone *zone)
  2787. {
  2788. unsigned long start_pfn, pfn, end_pfn;
  2789. struct page *page;
  2790. unsigned long block_migratetype;
  2791. int reserve;
  2792. /* Get the start pfn, end pfn and the number of blocks to reserve */
  2793. start_pfn = zone->zone_start_pfn;
  2794. end_pfn = start_pfn + zone->spanned_pages;
  2795. reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
  2796. pageblock_order;
  2797. /*
  2798. * Reserve blocks are generally in place to help high-order atomic
  2799. * allocations that are short-lived. A min_free_kbytes value that
  2800. * would result in more than 2 reserve blocks for atomic allocations
  2801. * is assumed to be in place to help anti-fragmentation for the
  2802. * future allocation of hugepages at runtime.
  2803. */
  2804. reserve = min(2, reserve);
  2805. for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  2806. if (!pfn_valid(pfn))
  2807. continue;
  2808. page = pfn_to_page(pfn);
  2809. /* Watch out for overlapping nodes */
  2810. if (page_to_nid(page) != zone_to_nid(zone))
  2811. continue;
  2812. /* Blocks with reserved pages will never free, skip them. */
  2813. if (PageReserved(page))
  2814. continue;
  2815. block_migratetype = get_pageblock_migratetype(page);
  2816. /* If this block is reserved, account for it */
  2817. if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
  2818. reserve--;
  2819. continue;
  2820. }
  2821. /* Suitable for reserving if this block is movable */
  2822. if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
  2823. set_pageblock_migratetype(page, MIGRATE_RESERVE);
  2824. move_freepages_block(zone, page, MIGRATE_RESERVE);
  2825. reserve--;
  2826. continue;
  2827. }
  2828. /*
  2829. * If the reserve is met and this is a previous reserved block,
  2830. * take it back
  2831. */
  2832. if (block_migratetype == MIGRATE_RESERVE) {
  2833. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2834. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  2835. }
  2836. }
  2837. }
  2838. /*
  2839. * Initially all pages are reserved - free ones are freed
  2840. * up by free_all_bootmem() once the early boot process is
  2841. * done. Non-atomic initialization, single-pass.
  2842. */
  2843. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  2844. unsigned long start_pfn, enum memmap_context context)
  2845. {
  2846. struct page *page;
  2847. unsigned long end_pfn = start_pfn + size;
  2848. unsigned long pfn;
  2849. struct zone *z;
  2850. if (highest_memmap_pfn < end_pfn - 1)
  2851. highest_memmap_pfn = end_pfn - 1;
  2852. z = &NODE_DATA(nid)->node_zones[zone];
  2853. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  2854. /*
  2855. * There can be holes in boot-time mem_map[]s
  2856. * handed to this function. They do not
  2857. * exist on hotplugged memory.
  2858. */
  2859. if (context == MEMMAP_EARLY) {
  2860. if (!early_pfn_valid(pfn))
  2861. continue;
  2862. if (!early_pfn_in_nid(pfn, nid))
  2863. continue;
  2864. }
  2865. page = pfn_to_page(pfn);
  2866. set_page_links(page, zone, nid, pfn);
  2867. mminit_verify_page_links(page, zone, nid, pfn);
  2868. init_page_count(page);
  2869. reset_page_mapcount(page);
  2870. SetPageReserved(page);
  2871. /*
  2872. * Mark the block movable so that blocks are reserved for
  2873. * movable at startup. This will force kernel allocations
  2874. * to reserve their blocks rather than leaking throughout
  2875. * the address space during boot when many long-lived
  2876. * kernel allocations are made. Later some blocks near
  2877. * the start are marked MIGRATE_RESERVE by
  2878. * setup_zone_migrate_reserve()
  2879. *
  2880. * bitmap is created for zone's valid pfn range. but memmap
  2881. * can be created for invalid pages (for alignment)
  2882. * check here not to call set_pageblock_migratetype() against
  2883. * pfn out of zone.
  2884. */
  2885. if ((z->zone_start_pfn <= pfn)
  2886. && (pfn < z->zone_start_pfn + z->spanned_pages)
  2887. && !(pfn & (pageblock_nr_pages - 1)))
  2888. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2889. INIT_LIST_HEAD(&page->lru);
  2890. #ifdef WANT_PAGE_VIRTUAL
  2891. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  2892. if (!is_highmem_idx(zone))
  2893. set_page_address(page, __va(pfn << PAGE_SHIFT));
  2894. #endif
  2895. }
  2896. }
  2897. static void __meminit zone_init_free_lists(struct zone *zone)
  2898. {
  2899. int order, t;
  2900. for_each_migratetype_order(order, t) {
  2901. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  2902. zone->free_area[order].nr_free = 0;
  2903. }
  2904. }
  2905. #ifndef __HAVE_ARCH_MEMMAP_INIT
  2906. #define memmap_init(size, nid, zone, start_pfn) \
  2907. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  2908. #endif
  2909. static int zone_batchsize(struct zone *zone)
  2910. {
  2911. #ifdef CONFIG_MMU
  2912. int batch;
  2913. /*
  2914. * The per-cpu-pages pools are set to around 1000th of the
  2915. * size of the zone. But no more than 1/2 of a meg.
  2916. *
  2917. * OK, so we don't know how big the cache is. So guess.
  2918. */
  2919. batch = zone->present_pages / 1024;
  2920. if (batch * PAGE_SIZE > 512 * 1024)
  2921. batch = (512 * 1024) / PAGE_SIZE;
  2922. batch /= 4; /* We effectively *= 4 below */
  2923. if (batch < 1)
  2924. batch = 1;
  2925. /*
  2926. * Clamp the batch to a 2^n - 1 value. Having a power
  2927. * of 2 value was found to be more likely to have
  2928. * suboptimal cache aliasing properties in some cases.
  2929. *
  2930. * For example if 2 tasks are alternately allocating
  2931. * batches of pages, one task can end up with a lot
  2932. * of pages of one half of the possible page colors
  2933. * and the other with pages of the other colors.
  2934. */
  2935. batch = rounddown_pow_of_two(batch + batch/2) - 1;
  2936. return batch;
  2937. #else
  2938. /* The deferral and batching of frees should be suppressed under NOMMU
  2939. * conditions.
  2940. *
  2941. * The problem is that NOMMU needs to be able to allocate large chunks
  2942. * of contiguous memory as there's no hardware page translation to
  2943. * assemble apparent contiguous memory from discontiguous pages.
  2944. *
  2945. * Queueing large contiguous runs of pages for batching, however,
  2946. * causes the pages to actually be freed in smaller chunks. As there
  2947. * can be a significant delay between the individual batches being
  2948. * recycled, this leads to the once large chunks of space being
  2949. * fragmented and becoming unavailable for high-order allocations.
  2950. */
  2951. return 0;
  2952. #endif
  2953. }
  2954. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  2955. {
  2956. struct per_cpu_pages *pcp;
  2957. int migratetype;
  2958. memset(p, 0, sizeof(*p));
  2959. pcp = &p->pcp;
  2960. pcp->count = 0;
  2961. pcp->high = 6 * batch;
  2962. pcp->batch = max(1UL, 1 * batch);
  2963. for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
  2964. INIT_LIST_HEAD(&pcp->lists[migratetype]);
  2965. }
  2966. /*
  2967. * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
  2968. * to the value high for the pageset p.
  2969. */
  2970. static void setup_pagelist_highmark(struct per_cpu_pageset *p,
  2971. unsigned long high)
  2972. {
  2973. struct per_cpu_pages *pcp;
  2974. pcp = &p->pcp;
  2975. pcp->high = high;
  2976. pcp->batch = max(1UL, high/4);
  2977. if ((high/4) > (PAGE_SHIFT * 8))
  2978. pcp->batch = PAGE_SHIFT * 8;
  2979. }
  2980. static __meminit void setup_zone_pageset(struct zone *zone)
  2981. {
  2982. int cpu;
  2983. zone->pageset = alloc_percpu(struct per_cpu_pageset);
  2984. for_each_possible_cpu(cpu) {
  2985. struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
  2986. setup_pageset(pcp, zone_batchsize(zone));
  2987. if (percpu_pagelist_fraction)
  2988. setup_pagelist_highmark(pcp,
  2989. (zone->present_pages /
  2990. percpu_pagelist_fraction));
  2991. }
  2992. }
  2993. /*
  2994. * Allocate per cpu pagesets and initialize them.
  2995. * Before this call only boot pagesets were available.
  2996. */
  2997. void __init setup_per_cpu_pageset(void)
  2998. {
  2999. struct zone *zone;
  3000. for_each_populated_zone(zone)
  3001. setup_zone_pageset(zone);
  3002. }
  3003. static noinline __init_refok
  3004. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  3005. {
  3006. int i;
  3007. struct pglist_data *pgdat = zone->zone_pgdat;
  3008. size_t alloc_size;
  3009. /*
  3010. * The per-page waitqueue mechanism uses hashed waitqueues
  3011. * per zone.
  3012. */
  3013. zone->wait_table_hash_nr_entries =
  3014. wait_table_hash_nr_entries(zone_size_pages);
  3015. zone->wait_table_bits =
  3016. wait_table_bits(zone->wait_table_hash_nr_entries);
  3017. alloc_size = zone->wait_table_hash_nr_entries
  3018. * sizeof(wait_queue_head_t);
  3019. if (!slab_is_available()) {
  3020. zone->wait_table = (wait_queue_head_t *)
  3021. alloc_bootmem_node(pgdat, alloc_size);
  3022. } else {
  3023. /*
  3024. * This case means that a zone whose size was 0 gets new memory
  3025. * via memory hot-add.
  3026. * But it may be the case that a new node was hot-added. In
  3027. * this case vmalloc() will not be able to use this new node's
  3028. * memory - this wait_table must be initialized to use this new
  3029. * node itself as well.
  3030. * To use this new node's memory, further consideration will be
  3031. * necessary.
  3032. */
  3033. zone->wait_table = vmalloc(alloc_size);
  3034. }
  3035. if (!zone->wait_table)
  3036. return -ENOMEM;
  3037. for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  3038. init_waitqueue_head(zone->wait_table + i);
  3039. return 0;
  3040. }
  3041. static int __zone_pcp_update(void *data)
  3042. {
  3043. struct zone *zone = data;
  3044. int cpu;
  3045. unsigned long batch = zone_batchsize(zone), flags;
  3046. for_each_possible_cpu(cpu) {
  3047. struct per_cpu_pageset *pset;
  3048. struct per_cpu_pages *pcp;
  3049. pset = per_cpu_ptr(zone->pageset, cpu);
  3050. pcp = &pset->pcp;
  3051. local_irq_save(flags);
  3052. free_pcppages_bulk(zone, pcp->count, pcp);
  3053. setup_pageset(pset, batch);
  3054. local_irq_restore(flags);
  3055. }
  3056. return 0;
  3057. }
  3058. void zone_pcp_update(struct zone *zone)
  3059. {
  3060. stop_machine(__zone_pcp_update, zone, NULL);
  3061. }
  3062. static __meminit void zone_pcp_init(struct zone *zone)
  3063. {
  3064. /*
  3065. * per cpu subsystem is not up at this point. The following code
  3066. * relies on the ability of the linker to provide the
  3067. * offset of a (static) per cpu variable into the per cpu area.
  3068. */
  3069. zone->pageset = &boot_pageset;
  3070. if (zone->present_pages)
  3071. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
  3072. zone->name, zone->present_pages,
  3073. zone_batchsize(zone));
  3074. }
  3075. __meminit int init_currently_empty_zone(struct zone *zone,
  3076. unsigned long zone_start_pfn,
  3077. unsigned long size,
  3078. enum memmap_context context)
  3079. {
  3080. struct pglist_data *pgdat = zone->zone_pgdat;
  3081. int ret;
  3082. ret = zone_wait_table_init(zone, size);
  3083. if (ret)
  3084. return ret;
  3085. pgdat->nr_zones = zone_idx(zone) + 1;
  3086. zone->zone_start_pfn = zone_start_pfn;
  3087. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  3088. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  3089. pgdat->node_id,
  3090. (unsigned long)zone_idx(zone),
  3091. zone_start_pfn, (zone_start_pfn + size));
  3092. zone_init_free_lists(zone);
  3093. return 0;
  3094. }
  3095. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  3096. /*
  3097. * Basic iterator support. Return the first range of PFNs for a node
  3098. * Note: nid == MAX_NUMNODES returns first region regardless of node
  3099. */
  3100. static int __meminit first_active_region_index_in_nid(int nid)
  3101. {
  3102. int i;
  3103. for (i = 0; i < nr_nodemap_entries; i++)
  3104. if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
  3105. return i;
  3106. return -1;
  3107. }
  3108. /*
  3109. * Basic iterator support. Return the next active range of PFNs for a node
  3110. * Note: nid == MAX_NUMNODES returns next region regardless of node
  3111. */
  3112. static int __meminit next_active_region_index_in_nid(int index, int nid)
  3113. {
  3114. for (index = index + 1; index < nr_nodemap_entries; index++)
  3115. if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
  3116. return index;
  3117. return -1;
  3118. }
  3119. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  3120. /*
  3121. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  3122. * Architectures may implement their own version but if add_active_range()
  3123. * was used and there are no special requirements, this is a convenient
  3124. * alternative
  3125. */
  3126. int __meminit __early_pfn_to_nid(unsigned long pfn)
  3127. {
  3128. int i;
  3129. for (i = 0; i < nr_nodemap_entries; i++) {
  3130. unsigned long start_pfn = early_node_map[i].start_pfn;
  3131. unsigned long end_pfn = early_node_map[i].end_pfn;
  3132. if (start_pfn <= pfn && pfn < end_pfn)
  3133. return early_node_map[i].nid;
  3134. }
  3135. /* This is a memory hole */
  3136. return -1;
  3137. }
  3138. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  3139. int __meminit early_pfn_to_nid(unsigned long pfn)
  3140. {
  3141. int nid;
  3142. nid = __early_pfn_to_nid(pfn);
  3143. if (nid >= 0)
  3144. return nid;
  3145. /* just returns 0 */
  3146. return 0;
  3147. }
  3148. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  3149. bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  3150. {
  3151. int nid;
  3152. nid = __early_pfn_to_nid(pfn);
  3153. if (nid >= 0 && nid != node)
  3154. return false;
  3155. return true;
  3156. }
  3157. #endif
  3158. /* Basic iterator support to walk early_node_map[] */
  3159. #define for_each_active_range_index_in_nid(i, nid) \
  3160. for (i = first_active_region_index_in_nid(nid); i != -1; \
  3161. i = next_active_region_index_in_nid(i, nid))
  3162. /**
  3163. * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
  3164. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  3165. * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
  3166. *
  3167. * If an architecture guarantees that all ranges registered with
  3168. * add_active_ranges() contain no holes and may be freed, this
  3169. * this function may be used instead of calling free_bootmem() manually.
  3170. */
  3171. void __init free_bootmem_with_active_regions(int nid,
  3172. unsigned long max_low_pfn)
  3173. {
  3174. int i;
  3175. for_each_active_range_index_in_nid(i, nid) {
  3176. unsigned long size_pages = 0;
  3177. unsigned long end_pfn = early_node_map[i].end_pfn;
  3178. if (early_node_map[i].start_pfn >= max_low_pfn)
  3179. continue;
  3180. if (end_pfn > max_low_pfn)
  3181. end_pfn = max_low_pfn;
  3182. size_pages = end_pfn - early_node_map[i].start_pfn;
  3183. free_bootmem_node(NODE_DATA(early_node_map[i].nid),
  3184. PFN_PHYS(early_node_map[i].start_pfn),
  3185. size_pages << PAGE_SHIFT);
  3186. }
  3187. }
  3188. #ifdef CONFIG_HAVE_MEMBLOCK
  3189. u64 __init find_memory_core_early(int nid, u64 size, u64 align,
  3190. u64 goal, u64 limit)
  3191. {
  3192. int i;
  3193. /* Need to go over early_node_map to find out good range for node */
  3194. for_each_active_range_index_in_nid(i, nid) {
  3195. u64 addr;
  3196. u64 ei_start, ei_last;
  3197. u64 final_start, final_end;
  3198. ei_last = early_node_map[i].end_pfn;
  3199. ei_last <<= PAGE_SHIFT;
  3200. ei_start = early_node_map[i].start_pfn;
  3201. ei_start <<= PAGE_SHIFT;
  3202. final_start = max(ei_start, goal);
  3203. final_end = min(ei_last, limit);
  3204. if (final_start >= final_end)
  3205. continue;
  3206. addr = memblock_find_in_range(final_start, final_end, size, align);
  3207. if (addr == MEMBLOCK_ERROR)
  3208. continue;
  3209. return addr;
  3210. }
  3211. return MEMBLOCK_ERROR;
  3212. }
  3213. #endif
  3214. int __init add_from_early_node_map(struct range *range, int az,
  3215. int nr_range, int nid)
  3216. {
  3217. int i;
  3218. u64 start, end;
  3219. /* need to go over early_node_map to find out good range for node */
  3220. for_each_active_range_index_in_nid(i, nid) {
  3221. start = early_node_map[i].start_pfn;
  3222. end = early_node_map[i].end_pfn;
  3223. nr_range = add_range(range, az, nr_range, start, end);
  3224. }
  3225. return nr_range;
  3226. }
  3227. #ifdef CONFIG_NO_BOOTMEM
  3228. void * __init __alloc_memory_core_early(int nid, u64 size, u64 align,
  3229. u64 goal, u64 limit)
  3230. {
  3231. void *ptr;
  3232. u64 addr;
  3233. if (limit > memblock.current_limit)
  3234. limit = memblock.current_limit;
  3235. addr = find_memory_core_early(nid, size, align, goal, limit);
  3236. if (addr == MEMBLOCK_ERROR)
  3237. return NULL;
  3238. ptr = phys_to_virt(addr);
  3239. memset(ptr, 0, size);
  3240. memblock_x86_reserve_range(addr, addr + size, "BOOTMEM");
  3241. /*
  3242. * The min_count is set to 0 so that bootmem allocated blocks
  3243. * are never reported as leaks.
  3244. */
  3245. kmemleak_alloc(ptr, size, 0, 0);
  3246. return ptr;
  3247. }
  3248. #endif
  3249. void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
  3250. {
  3251. int i;
  3252. int ret;
  3253. for_each_active_range_index_in_nid(i, nid) {
  3254. ret = work_fn(early_node_map[i].start_pfn,
  3255. early_node_map[i].end_pfn, data);
  3256. if (ret)
  3257. break;
  3258. }
  3259. }
  3260. /**
  3261. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  3262. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  3263. *
  3264. * If an architecture guarantees that all ranges registered with
  3265. * add_active_ranges() contain no holes and may be freed, this
  3266. * function may be used instead of calling memory_present() manually.
  3267. */
  3268. void __init sparse_memory_present_with_active_regions(int nid)
  3269. {
  3270. int i;
  3271. for_each_active_range_index_in_nid(i, nid)
  3272. memory_present(early_node_map[i].nid,
  3273. early_node_map[i].start_pfn,
  3274. early_node_map[i].end_pfn);
  3275. }
  3276. /**
  3277. * get_pfn_range_for_nid - Return the start and end page frames for a node
  3278. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  3279. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  3280. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  3281. *
  3282. * It returns the start and end page frame of a node based on information
  3283. * provided by an arch calling add_active_range(). If called for a node
  3284. * with no available memory, a warning is printed and the start and end
  3285. * PFNs will be 0.
  3286. */
  3287. void __meminit get_pfn_range_for_nid(unsigned int nid,
  3288. unsigned long *start_pfn, unsigned long *end_pfn)
  3289. {
  3290. int i;
  3291. *start_pfn = -1UL;
  3292. *end_pfn = 0;
  3293. for_each_active_range_index_in_nid(i, nid) {
  3294. *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
  3295. *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
  3296. }
  3297. if (*start_pfn == -1UL)
  3298. *start_pfn = 0;
  3299. }
  3300. /*
  3301. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  3302. * assumption is made that zones within a node are ordered in monotonic
  3303. * increasing memory addresses so that the "highest" populated zone is used
  3304. */
  3305. static void __init find_usable_zone_for_movable(void)
  3306. {
  3307. int zone_index;
  3308. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  3309. if (zone_index == ZONE_MOVABLE)
  3310. continue;
  3311. if (arch_zone_highest_possible_pfn[zone_index] >
  3312. arch_zone_lowest_possible_pfn[zone_index])
  3313. break;
  3314. }
  3315. VM_BUG_ON(zone_index == -1);
  3316. movable_zone = zone_index;
  3317. }
  3318. /*
  3319. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  3320. * because it is sized independant of architecture. Unlike the other zones,
  3321. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  3322. * in each node depending on the size of each node and how evenly kernelcore
  3323. * is distributed. This helper function adjusts the zone ranges
  3324. * provided by the architecture for a given node by using the end of the
  3325. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  3326. * zones within a node are in order of monotonic increases memory addresses
  3327. */
  3328. static void __meminit adjust_zone_range_for_zone_movable(int nid,
  3329. unsigned long zone_type,
  3330. unsigned long node_start_pfn,
  3331. unsigned long node_end_pfn,
  3332. unsigned long *zone_start_pfn,
  3333. unsigned long *zone_end_pfn)
  3334. {
  3335. /* Only adjust if ZONE_MOVABLE is on this node */
  3336. if (zone_movable_pfn[nid]) {
  3337. /* Size ZONE_MOVABLE */
  3338. if (zone_type == ZONE_MOVABLE) {
  3339. *zone_start_pfn = zone_movable_pfn[nid];
  3340. *zone_end_pfn = min(node_end_pfn,
  3341. arch_zone_highest_possible_pfn[movable_zone]);
  3342. /* Adjust for ZONE_MOVABLE starting within this range */
  3343. } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
  3344. *zone_end_pfn > zone_movable_pfn[nid]) {
  3345. *zone_end_pfn = zone_movable_pfn[nid];
  3346. /* Check if this whole range is within ZONE_MOVABLE */
  3347. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  3348. *zone_start_pfn = *zone_end_pfn;
  3349. }
  3350. }
  3351. /*
  3352. * Return the number of pages a zone spans in a node, including holes
  3353. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  3354. */
  3355. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  3356. unsigned long zone_type,
  3357. unsigned long *ignored)
  3358. {
  3359. unsigned long node_start_pfn, node_end_pfn;
  3360. unsigned long zone_start_pfn, zone_end_pfn;
  3361. /* Get the start and end of the node and zone */
  3362. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  3363. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  3364. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  3365. adjust_zone_range_for_zone_movable(nid, zone_type,
  3366. node_start_pfn, node_end_pfn,
  3367. &zone_start_pfn, &zone_end_pfn);
  3368. /* Check that this node has pages within the zone's required range */
  3369. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  3370. return 0;
  3371. /* Move the zone boundaries inside the node if necessary */
  3372. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  3373. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  3374. /* Return the spanned pages */
  3375. return zone_end_pfn - zone_start_pfn;
  3376. }
  3377. /*
  3378. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  3379. * then all holes in the requested range will be accounted for.
  3380. */
  3381. unsigned long __meminit __absent_pages_in_range(int nid,
  3382. unsigned long range_start_pfn,
  3383. unsigned long range_end_pfn)
  3384. {
  3385. int i = 0;
  3386. unsigned long prev_end_pfn = 0, hole_pages = 0;
  3387. unsigned long start_pfn;
  3388. /* Find the end_pfn of the first active range of pfns in the node */
  3389. i = first_active_region_index_in_nid(nid);
  3390. if (i == -1)
  3391. return 0;
  3392. prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  3393. /* Account for ranges before physical memory on this node */
  3394. if (early_node_map[i].start_pfn > range_start_pfn)
  3395. hole_pages = prev_end_pfn - range_start_pfn;
  3396. /* Find all holes for the zone within the node */
  3397. for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
  3398. /* No need to continue if prev_end_pfn is outside the zone */
  3399. if (prev_end_pfn >= range_end_pfn)
  3400. break;
  3401. /* Make sure the end of the zone is not within the hole */
  3402. start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  3403. prev_end_pfn = max(prev_end_pfn, range_start_pfn);
  3404. /* Update the hole size cound and move on */
  3405. if (start_pfn > range_start_pfn) {
  3406. BUG_ON(prev_end_pfn > start_pfn);
  3407. hole_pages += start_pfn - prev_end_pfn;
  3408. }
  3409. prev_end_pfn = early_node_map[i].end_pfn;
  3410. }
  3411. /* Account for ranges past physical memory on this node */
  3412. if (range_end_pfn > prev_end_pfn)
  3413. hole_pages += range_end_pfn -
  3414. max(range_start_pfn, prev_end_pfn);
  3415. return hole_pages;
  3416. }
  3417. /**
  3418. * absent_pages_in_range - Return number of page frames in holes within a range
  3419. * @start_pfn: The start PFN to start searching for holes
  3420. * @end_pfn: The end PFN to stop searching for holes
  3421. *
  3422. * It returns the number of pages frames in memory holes within a range.
  3423. */
  3424. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  3425. unsigned long end_pfn)
  3426. {
  3427. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  3428. }
  3429. /* Return the number of page frames in holes in a zone on a node */
  3430. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  3431. unsigned long zone_type,
  3432. unsigned long *ignored)
  3433. {
  3434. unsigned long node_start_pfn, node_end_pfn;
  3435. unsigned long zone_start_pfn, zone_end_pfn;
  3436. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  3437. zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
  3438. node_start_pfn);
  3439. zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
  3440. node_end_pfn);
  3441. adjust_zone_range_for_zone_movable(nid, zone_type,
  3442. node_start_pfn, node_end_pfn,
  3443. &zone_start_pfn, &zone_end_pfn);
  3444. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  3445. }
  3446. #else
  3447. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  3448. unsigned long zone_type,
  3449. unsigned long *zones_size)
  3450. {
  3451. return zones_size[zone_type];
  3452. }
  3453. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  3454. unsigned long zone_type,
  3455. unsigned long *zholes_size)
  3456. {
  3457. if (!zholes_size)
  3458. return 0;
  3459. return zholes_size[zone_type];
  3460. }
  3461. #endif
  3462. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  3463. unsigned long *zones_size, unsigned long *zholes_size)
  3464. {
  3465. unsigned long realtotalpages, totalpages = 0;
  3466. enum zone_type i;
  3467. for (i = 0; i < MAX_NR_ZONES; i++)
  3468. totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
  3469. zones_size);
  3470. pgdat->node_spanned_pages = totalpages;
  3471. realtotalpages = totalpages;
  3472. for (i = 0; i < MAX_NR_ZONES; i++)
  3473. realtotalpages -=
  3474. zone_absent_pages_in_node(pgdat->node_id, i,
  3475. zholes_size);
  3476. pgdat->node_present_pages = realtotalpages;
  3477. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  3478. realtotalpages);
  3479. }
  3480. #ifndef CONFIG_SPARSEMEM
  3481. /*
  3482. * Calculate the size of the zone->blockflags rounded to an unsigned long
  3483. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  3484. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  3485. * round what is now in bits to nearest long in bits, then return it in
  3486. * bytes.
  3487. */
  3488. static unsigned long __init usemap_size(unsigned long zonesize)
  3489. {
  3490. unsigned long usemapsize;
  3491. usemapsize = roundup(zonesize, pageblock_nr_pages);
  3492. usemapsize = usemapsize >> pageblock_order;
  3493. usemapsize *= NR_PAGEBLOCK_BITS;
  3494. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  3495. return usemapsize / 8;
  3496. }
  3497. static void __init setup_usemap(struct pglist_data *pgdat,
  3498. struct zone *zone, unsigned long zonesize)
  3499. {
  3500. unsigned long usemapsize = usemap_size(zonesize);
  3501. zone->pageblock_flags = NULL;
  3502. if (usemapsize)
  3503. zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
  3504. }
  3505. #else
  3506. static inline void setup_usemap(struct pglist_data *pgdat,
  3507. struct zone *zone, unsigned long zonesize) {}
  3508. #endif /* CONFIG_SPARSEMEM */
  3509. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  3510. /* Return a sensible default order for the pageblock size. */
  3511. static inline int pageblock_default_order(void)
  3512. {
  3513. if (HPAGE_SHIFT > PAGE_SHIFT)
  3514. return HUGETLB_PAGE_ORDER;
  3515. return MAX_ORDER-1;
  3516. }
  3517. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  3518. static inline void __init set_pageblock_order(unsigned int order)
  3519. {
  3520. /* Check that pageblock_nr_pages has not already been setup */
  3521. if (pageblock_order)
  3522. return;
  3523. /*
  3524. * Assume the largest contiguous order of interest is a huge page.
  3525. * This value may be variable depending on boot parameters on IA64
  3526. */
  3527. pageblock_order = order;
  3528. }
  3529. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  3530. /*
  3531. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  3532. * and pageblock_default_order() are unused as pageblock_order is set
  3533. * at compile-time. See include/linux/pageblock-flags.h for the values of
  3534. * pageblock_order based on the kernel config
  3535. */
  3536. static inline int pageblock_default_order(unsigned int order)
  3537. {
  3538. return MAX_ORDER-1;
  3539. }
  3540. #define set_pageblock_order(x) do {} while (0)
  3541. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  3542. /*
  3543. * Set up the zone data structures:
  3544. * - mark all pages reserved
  3545. * - mark all memory queues empty
  3546. * - clear the memory bitmaps
  3547. */
  3548. static void __paginginit free_area_init_core(struct pglist_data *pgdat,
  3549. unsigned long *zones_size, unsigned long *zholes_size)
  3550. {
  3551. enum zone_type j;
  3552. int nid = pgdat->node_id;
  3553. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  3554. int ret;
  3555. pgdat_resize_init(pgdat);
  3556. pgdat->nr_zones = 0;
  3557. init_waitqueue_head(&pgdat->kswapd_wait);
  3558. pgdat->kswapd_max_order = 0;
  3559. pgdat_page_cgroup_init(pgdat);
  3560. for (j = 0; j < MAX_NR_ZONES; j++) {
  3561. struct zone *zone = pgdat->node_zones + j;
  3562. unsigned long size, realsize, memmap_pages;
  3563. enum lru_list l;
  3564. size = zone_spanned_pages_in_node(nid, j, zones_size);
  3565. realsize = size - zone_absent_pages_in_node(nid, j,
  3566. zholes_size);
  3567. /*
  3568. * Adjust realsize so that it accounts for how much memory
  3569. * is used by this zone for memmap. This affects the watermark
  3570. * and per-cpu initialisations
  3571. */
  3572. memmap_pages =
  3573. PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
  3574. if (realsize >= memmap_pages) {
  3575. realsize -= memmap_pages;
  3576. if (memmap_pages)
  3577. printk(KERN_DEBUG
  3578. " %s zone: %lu pages used for memmap\n",
  3579. zone_names[j], memmap_pages);
  3580. } else
  3581. printk(KERN_WARNING
  3582. " %s zone: %lu pages exceeds realsize %lu\n",
  3583. zone_names[j], memmap_pages, realsize);
  3584. /* Account for reserved pages */
  3585. if (j == 0 && realsize > dma_reserve) {
  3586. realsize -= dma_reserve;
  3587. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  3588. zone_names[0], dma_reserve);
  3589. }
  3590. if (!is_highmem_idx(j))
  3591. nr_kernel_pages += realsize;
  3592. nr_all_pages += realsize;
  3593. zone->spanned_pages = size;
  3594. zone->present_pages = realsize;
  3595. #ifdef CONFIG_NUMA
  3596. zone->node = nid;
  3597. zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
  3598. / 100;
  3599. zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
  3600. #endif
  3601. zone->name = zone_names[j];
  3602. spin_lock_init(&zone->lock);
  3603. spin_lock_init(&zone->lru_lock);
  3604. zone_seqlock_init(zone);
  3605. zone->zone_pgdat = pgdat;
  3606. zone_pcp_init(zone);
  3607. for_each_lru(l) {
  3608. INIT_LIST_HEAD(&zone->lru[l].list);
  3609. zone->reclaim_stat.nr_saved_scan[l] = 0;
  3610. }
  3611. zone->reclaim_stat.recent_rotated[0] = 0;
  3612. zone->reclaim_stat.recent_rotated[1] = 0;
  3613. zone->reclaim_stat.recent_scanned[0] = 0;
  3614. zone->reclaim_stat.recent_scanned[1] = 0;
  3615. zap_zone_vm_stats(zone);
  3616. zone->flags = 0;
  3617. if (!size)
  3618. continue;
  3619. set_pageblock_order(pageblock_default_order());
  3620. setup_usemap(pgdat, zone, size);
  3621. ret = init_currently_empty_zone(zone, zone_start_pfn,
  3622. size, MEMMAP_EARLY);
  3623. BUG_ON(ret);
  3624. memmap_init(size, nid, j, zone_start_pfn);
  3625. zone_start_pfn += size;
  3626. }
  3627. }
  3628. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  3629. {
  3630. /* Skip empty nodes */
  3631. if (!pgdat->node_spanned_pages)
  3632. return;
  3633. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  3634. /* ia64 gets its own node_mem_map, before this, without bootmem */
  3635. if (!pgdat->node_mem_map) {
  3636. unsigned long size, start, end;
  3637. struct page *map;
  3638. /*
  3639. * The zone's endpoints aren't required to be MAX_ORDER
  3640. * aligned but the node_mem_map endpoints must be in order
  3641. * for the buddy allocator to function correctly.
  3642. */
  3643. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  3644. end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
  3645. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  3646. size = (end - start) * sizeof(struct page);
  3647. map = alloc_remap(pgdat->node_id, size);
  3648. if (!map)
  3649. map = alloc_bootmem_node(pgdat, size);
  3650. pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
  3651. }
  3652. #ifndef CONFIG_NEED_MULTIPLE_NODES
  3653. /*
  3654. * With no DISCONTIG, the global mem_map is just set as node 0's
  3655. */
  3656. if (pgdat == NODE_DATA(0)) {
  3657. mem_map = NODE_DATA(0)->node_mem_map;
  3658. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  3659. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  3660. mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
  3661. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  3662. }
  3663. #endif
  3664. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  3665. }
  3666. void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
  3667. unsigned long node_start_pfn, unsigned long *zholes_size)
  3668. {
  3669. pg_data_t *pgdat = NODE_DATA(nid);
  3670. pgdat->node_id = nid;
  3671. pgdat->node_start_pfn = node_start_pfn;
  3672. calculate_node_totalpages(pgdat, zones_size, zholes_size);
  3673. alloc_node_mem_map(pgdat);
  3674. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  3675. printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
  3676. nid, (unsigned long)pgdat,
  3677. (unsigned long)pgdat->node_mem_map);
  3678. #endif
  3679. free_area_init_core(pgdat, zones_size, zholes_size);
  3680. }
  3681. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  3682. #if MAX_NUMNODES > 1
  3683. /*
  3684. * Figure out the number of possible node ids.
  3685. */
  3686. static void __init setup_nr_node_ids(void)
  3687. {
  3688. unsigned int node;
  3689. unsigned int highest = 0;
  3690. for_each_node_mask(node, node_possible_map)
  3691. highest = node;
  3692. nr_node_ids = highest + 1;
  3693. }
  3694. #else
  3695. static inline void setup_nr_node_ids(void)
  3696. {
  3697. }
  3698. #endif
  3699. /**
  3700. * add_active_range - Register a range of PFNs backed by physical memory
  3701. * @nid: The node ID the range resides on
  3702. * @start_pfn: The start PFN of the available physical memory
  3703. * @end_pfn: The end PFN of the available physical memory
  3704. *
  3705. * These ranges are stored in an early_node_map[] and later used by
  3706. * free_area_init_nodes() to calculate zone sizes and holes. If the
  3707. * range spans a memory hole, it is up to the architecture to ensure
  3708. * the memory is not freed by the bootmem allocator. If possible
  3709. * the range being registered will be merged with existing ranges.
  3710. */
  3711. void __init add_active_range(unsigned int nid, unsigned long start_pfn,
  3712. unsigned long end_pfn)
  3713. {
  3714. int i;
  3715. mminit_dprintk(MMINIT_TRACE, "memory_register",
  3716. "Entering add_active_range(%d, %#lx, %#lx) "
  3717. "%d entries of %d used\n",
  3718. nid, start_pfn, end_pfn,
  3719. nr_nodemap_entries, MAX_ACTIVE_REGIONS);
  3720. mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
  3721. /* Merge with existing active regions if possible */
  3722. for (i = 0; i < nr_nodemap_entries; i++) {
  3723. if (early_node_map[i].nid != nid)
  3724. continue;
  3725. /* Skip if an existing region covers this new one */
  3726. if (start_pfn >= early_node_map[i].start_pfn &&
  3727. end_pfn <= early_node_map[i].end_pfn)
  3728. return;
  3729. /* Merge forward if suitable */
  3730. if (start_pfn <= early_node_map[i].end_pfn &&
  3731. end_pfn > early_node_map[i].end_pfn) {
  3732. early_node_map[i].end_pfn = end_pfn;
  3733. return;
  3734. }
  3735. /* Merge backward if suitable */
  3736. if (start_pfn < early_node_map[i].start_pfn &&
  3737. end_pfn >= early_node_map[i].start_pfn) {
  3738. early_node_map[i].start_pfn = start_pfn;
  3739. return;
  3740. }
  3741. }
  3742. /* Check that early_node_map is large enough */
  3743. if (i >= MAX_ACTIVE_REGIONS) {
  3744. printk(KERN_CRIT "More than %d memory regions, truncating\n",
  3745. MAX_ACTIVE_REGIONS);
  3746. return;
  3747. }
  3748. early_node_map[i].nid = nid;
  3749. early_node_map[i].start_pfn = start_pfn;
  3750. early_node_map[i].end_pfn = end_pfn;
  3751. nr_nodemap_entries = i + 1;
  3752. }
  3753. /**
  3754. * remove_active_range - Shrink an existing registered range of PFNs
  3755. * @nid: The node id the range is on that should be shrunk
  3756. * @start_pfn: The new PFN of the range
  3757. * @end_pfn: The new PFN of the range
  3758. *
  3759. * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
  3760. * The map is kept near the end physical page range that has already been
  3761. * registered. This function allows an arch to shrink an existing registered
  3762. * range.
  3763. */
  3764. void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
  3765. unsigned long end_pfn)
  3766. {
  3767. int i, j;
  3768. int removed = 0;
  3769. printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
  3770. nid, start_pfn, end_pfn);
  3771. /* Find the old active region end and shrink */
  3772. for_each_active_range_index_in_nid(i, nid) {
  3773. if (early_node_map[i].start_pfn >= start_pfn &&
  3774. early_node_map[i].end_pfn <= end_pfn) {
  3775. /* clear it */
  3776. early_node_map[i].start_pfn = 0;
  3777. early_node_map[i].end_pfn = 0;
  3778. removed = 1;
  3779. continue;
  3780. }
  3781. if (early_node_map[i].start_pfn < start_pfn &&
  3782. early_node_map[i].end_pfn > start_pfn) {
  3783. unsigned long temp_end_pfn = early_node_map[i].end_pfn;
  3784. early_node_map[i].end_pfn = start_pfn;
  3785. if (temp_end_pfn > end_pfn)
  3786. add_active_range(nid, end_pfn, temp_end_pfn);
  3787. continue;
  3788. }
  3789. if (early_node_map[i].start_pfn >= start_pfn &&
  3790. early_node_map[i].end_pfn > end_pfn &&
  3791. early_node_map[i].start_pfn < end_pfn) {
  3792. early_node_map[i].start_pfn = end_pfn;
  3793. continue;
  3794. }
  3795. }
  3796. if (!removed)
  3797. return;
  3798. /* remove the blank ones */
  3799. for (i = nr_nodemap_entries - 1; i > 0; i--) {
  3800. if (early_node_map[i].nid != nid)
  3801. continue;
  3802. if (early_node_map[i].end_pfn)
  3803. continue;
  3804. /* we found it, get rid of it */
  3805. for (j = i; j < nr_nodemap_entries - 1; j++)
  3806. memcpy(&early_node_map[j], &early_node_map[j+1],
  3807. sizeof(early_node_map[j]));
  3808. j = nr_nodemap_entries - 1;
  3809. memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
  3810. nr_nodemap_entries--;
  3811. }
  3812. }
  3813. /**
  3814. * remove_all_active_ranges - Remove all currently registered regions
  3815. *
  3816. * During discovery, it may be found that a table like SRAT is invalid
  3817. * and an alternative discovery method must be used. This function removes
  3818. * all currently registered regions.
  3819. */
  3820. void __init remove_all_active_ranges(void)
  3821. {
  3822. memset(early_node_map, 0, sizeof(early_node_map));
  3823. nr_nodemap_entries = 0;
  3824. }
  3825. /* Compare two active node_active_regions */
  3826. static int __init cmp_node_active_region(const void *a, const void *b)
  3827. {
  3828. struct node_active_region *arange = (struct node_active_region *)a;
  3829. struct node_active_region *brange = (struct node_active_region *)b;
  3830. /* Done this way to avoid overflows */
  3831. if (arange->start_pfn > brange->start_pfn)
  3832. return 1;
  3833. if (arange->start_pfn < brange->start_pfn)
  3834. return -1;
  3835. return 0;
  3836. }
  3837. /* sort the node_map by start_pfn */
  3838. void __init sort_node_map(void)
  3839. {
  3840. sort(early_node_map, (size_t)nr_nodemap_entries,
  3841. sizeof(struct node_active_region),
  3842. cmp_node_active_region, NULL);
  3843. }
  3844. /* Find the lowest pfn for a node */
  3845. static unsigned long __init find_min_pfn_for_node(int nid)
  3846. {
  3847. int i;
  3848. unsigned long min_pfn = ULONG_MAX;
  3849. /* Assuming a sorted map, the first range found has the starting pfn */
  3850. for_each_active_range_index_in_nid(i, nid)
  3851. min_pfn = min(min_pfn, early_node_map[i].start_pfn);
  3852. if (min_pfn == ULONG_MAX) {
  3853. printk(KERN_WARNING
  3854. "Could not find start_pfn for node %d\n", nid);
  3855. return 0;
  3856. }
  3857. return min_pfn;
  3858. }
  3859. /**
  3860. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  3861. *
  3862. * It returns the minimum PFN based on information provided via
  3863. * add_active_range().
  3864. */
  3865. unsigned long __init find_min_pfn_with_active_regions(void)
  3866. {
  3867. return find_min_pfn_for_node(MAX_NUMNODES);
  3868. }
  3869. /*
  3870. * early_calculate_totalpages()
  3871. * Sum pages in active regions for movable zone.
  3872. * Populate N_HIGH_MEMORY for calculating usable_nodes.
  3873. */
  3874. static unsigned long __init early_calculate_totalpages(void)
  3875. {
  3876. int i;
  3877. unsigned long totalpages = 0;
  3878. for (i = 0; i < nr_nodemap_entries; i++) {
  3879. unsigned long pages = early_node_map[i].end_pfn -
  3880. early_node_map[i].start_pfn;
  3881. totalpages += pages;
  3882. if (pages)
  3883. node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
  3884. }
  3885. return totalpages;
  3886. }
  3887. /*
  3888. * Find the PFN the Movable zone begins in each node. Kernel memory
  3889. * is spread evenly between nodes as long as the nodes have enough
  3890. * memory. When they don't, some nodes will have more kernelcore than
  3891. * others
  3892. */
  3893. static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
  3894. {
  3895. int i, nid;
  3896. unsigned long usable_startpfn;
  3897. unsigned long kernelcore_node, kernelcore_remaining;
  3898. /* save the state before borrow the nodemask */
  3899. nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
  3900. unsigned long totalpages = early_calculate_totalpages();
  3901. int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
  3902. /*
  3903. * If movablecore was specified, calculate what size of
  3904. * kernelcore that corresponds so that memory usable for
  3905. * any allocation type is evenly spread. If both kernelcore
  3906. * and movablecore are specified, then the value of kernelcore
  3907. * will be used for required_kernelcore if it's greater than
  3908. * what movablecore would have allowed.
  3909. */
  3910. if (required_movablecore) {
  3911. unsigned long corepages;
  3912. /*
  3913. * Round-up so that ZONE_MOVABLE is at least as large as what
  3914. * was requested by the user
  3915. */
  3916. required_movablecore =
  3917. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  3918. corepages = totalpages - required_movablecore;
  3919. required_kernelcore = max(required_kernelcore, corepages);
  3920. }
  3921. /* If kernelcore was not specified, there is no ZONE_MOVABLE */
  3922. if (!required_kernelcore)
  3923. goto out;
  3924. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  3925. find_usable_zone_for_movable();
  3926. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  3927. restart:
  3928. /* Spread kernelcore memory as evenly as possible throughout nodes */
  3929. kernelcore_node = required_kernelcore / usable_nodes;
  3930. for_each_node_state(nid, N_HIGH_MEMORY) {
  3931. /*
  3932. * Recalculate kernelcore_node if the division per node
  3933. * now exceeds what is necessary to satisfy the requested
  3934. * amount of memory for the kernel
  3935. */
  3936. if (required_kernelcore < kernelcore_node)
  3937. kernelcore_node = required_kernelcore / usable_nodes;
  3938. /*
  3939. * As the map is walked, we track how much memory is usable
  3940. * by the kernel using kernelcore_remaining. When it is
  3941. * 0, the rest of the node is usable by ZONE_MOVABLE
  3942. */
  3943. kernelcore_remaining = kernelcore_node;
  3944. /* Go through each range of PFNs within this node */
  3945. for_each_active_range_index_in_nid(i, nid) {
  3946. unsigned long start_pfn, end_pfn;
  3947. unsigned long size_pages;
  3948. start_pfn = max(early_node_map[i].start_pfn,
  3949. zone_movable_pfn[nid]);
  3950. end_pfn = early_node_map[i].end_pfn;
  3951. if (start_pfn >= end_pfn)
  3952. continue;
  3953. /* Account for what is only usable for kernelcore */
  3954. if (start_pfn < usable_startpfn) {
  3955. unsigned long kernel_pages;
  3956. kernel_pages = min(end_pfn, usable_startpfn)
  3957. - start_pfn;
  3958. kernelcore_remaining -= min(kernel_pages,
  3959. kernelcore_remaining);
  3960. required_kernelcore -= min(kernel_pages,
  3961. required_kernelcore);
  3962. /* Continue if range is now fully accounted */
  3963. if (end_pfn <= usable_startpfn) {
  3964. /*
  3965. * Push zone_movable_pfn to the end so
  3966. * that if we have to rebalance
  3967. * kernelcore across nodes, we will
  3968. * not double account here
  3969. */
  3970. zone_movable_pfn[nid] = end_pfn;
  3971. continue;
  3972. }
  3973. start_pfn = usable_startpfn;
  3974. }
  3975. /*
  3976. * The usable PFN range for ZONE_MOVABLE is from
  3977. * start_pfn->end_pfn. Calculate size_pages as the
  3978. * number of pages used as kernelcore
  3979. */
  3980. size_pages = end_pfn - start_pfn;
  3981. if (size_pages > kernelcore_remaining)
  3982. size_pages = kernelcore_remaining;
  3983. zone_movable_pfn[nid] = start_pfn + size_pages;
  3984. /*
  3985. * Some kernelcore has been met, update counts and
  3986. * break if the kernelcore for this node has been
  3987. * satisified
  3988. */
  3989. required_kernelcore -= min(required_kernelcore,
  3990. size_pages);
  3991. kernelcore_remaining -= size_pages;
  3992. if (!kernelcore_remaining)
  3993. break;
  3994. }
  3995. }
  3996. /*
  3997. * If there is still required_kernelcore, we do another pass with one
  3998. * less node in the count. This will push zone_movable_pfn[nid] further
  3999. * along on the nodes that still have memory until kernelcore is
  4000. * satisified
  4001. */
  4002. usable_nodes--;
  4003. if (usable_nodes && required_kernelcore > usable_nodes)
  4004. goto restart;
  4005. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  4006. for (nid = 0; nid < MAX_NUMNODES; nid++)
  4007. zone_movable_pfn[nid] =
  4008. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  4009. out:
  4010. /* restore the node_state */
  4011. node_states[N_HIGH_MEMORY] = saved_node_state;
  4012. }
  4013. /* Any regular memory on that node ? */
  4014. static void check_for_regular_memory(pg_data_t *pgdat)
  4015. {
  4016. #ifdef CONFIG_HIGHMEM
  4017. enum zone_type zone_type;
  4018. for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
  4019. struct zone *zone = &pgdat->node_zones[zone_type];
  4020. if (zone->present_pages)
  4021. node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
  4022. }
  4023. #endif
  4024. }
  4025. /**
  4026. * free_area_init_nodes - Initialise all pg_data_t and zone data
  4027. * @max_zone_pfn: an array of max PFNs for each zone
  4028. *
  4029. * This will call free_area_init_node() for each active node in the system.
  4030. * Using the page ranges provided by add_active_range(), the size of each
  4031. * zone in each node and their holes is calculated. If the maximum PFN
  4032. * between two adjacent zones match, it is assumed that the zone is empty.
  4033. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  4034. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  4035. * starts where the previous one ended. For example, ZONE_DMA32 starts
  4036. * at arch_max_dma_pfn.
  4037. */
  4038. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  4039. {
  4040. unsigned long nid;
  4041. int i;
  4042. /* Sort early_node_map as initialisation assumes it is sorted */
  4043. sort_node_map();
  4044. /* Record where the zone boundaries are */
  4045. memset(arch_zone_lowest_possible_pfn, 0,
  4046. sizeof(arch_zone_lowest_possible_pfn));
  4047. memset(arch_zone_highest_possible_pfn, 0,
  4048. sizeof(arch_zone_highest_possible_pfn));
  4049. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  4050. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  4051. for (i = 1; i < MAX_NR_ZONES; i++) {
  4052. if (i == ZONE_MOVABLE)
  4053. continue;
  4054. arch_zone_lowest_possible_pfn[i] =
  4055. arch_zone_highest_possible_pfn[i-1];
  4056. arch_zone_highest_possible_pfn[i] =
  4057. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  4058. }
  4059. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  4060. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  4061. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  4062. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  4063. find_zone_movable_pfns_for_nodes(zone_movable_pfn);
  4064. /* Print out the zone ranges */
  4065. printk("Zone PFN ranges:\n");
  4066. for (i = 0; i < MAX_NR_ZONES; i++) {
  4067. if (i == ZONE_MOVABLE)
  4068. continue;
  4069. printk(" %-8s ", zone_names[i]);
  4070. if (arch_zone_lowest_possible_pfn[i] ==
  4071. arch_zone_highest_possible_pfn[i])
  4072. printk("empty\n");
  4073. else
  4074. printk("%0#10lx -> %0#10lx\n",
  4075. arch_zone_lowest_possible_pfn[i],
  4076. arch_zone_highest_possible_pfn[i]);
  4077. }
  4078. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  4079. printk("Movable zone start PFN for each node\n");
  4080. for (i = 0; i < MAX_NUMNODES; i++) {
  4081. if (zone_movable_pfn[i])
  4082. printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
  4083. }
  4084. /* Print out the early_node_map[] */
  4085. printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
  4086. for (i = 0; i < nr_nodemap_entries; i++)
  4087. printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
  4088. early_node_map[i].start_pfn,
  4089. early_node_map[i].end_pfn);
  4090. /* Initialise every node */
  4091. mminit_verify_pageflags_layout();
  4092. setup_nr_node_ids();
  4093. for_each_online_node(nid) {
  4094. pg_data_t *pgdat = NODE_DATA(nid);
  4095. free_area_init_node(nid, NULL,
  4096. find_min_pfn_for_node(nid), NULL);
  4097. /* Any memory on that node */
  4098. if (pgdat->node_present_pages)
  4099. node_set_state(nid, N_HIGH_MEMORY);
  4100. check_for_regular_memory(pgdat);
  4101. }
  4102. }
  4103. static int __init cmdline_parse_core(char *p, unsigned long *core)
  4104. {
  4105. unsigned long long coremem;
  4106. if (!p)
  4107. return -EINVAL;
  4108. coremem = memparse(p, &p);
  4109. *core = coremem >> PAGE_SHIFT;
  4110. /* Paranoid check that UL is enough for the coremem value */
  4111. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  4112. return 0;
  4113. }
  4114. /*
  4115. * kernelcore=size sets the amount of memory for use for allocations that
  4116. * cannot be reclaimed or migrated.
  4117. */
  4118. static int __init cmdline_parse_kernelcore(char *p)
  4119. {
  4120. return cmdline_parse_core(p, &required_kernelcore);
  4121. }
  4122. /*
  4123. * movablecore=size sets the amount of memory for use for allocations that
  4124. * can be reclaimed or migrated.
  4125. */
  4126. static int __init cmdline_parse_movablecore(char *p)
  4127. {
  4128. return cmdline_parse_core(p, &required_movablecore);
  4129. }
  4130. early_param("kernelcore", cmdline_parse_kernelcore);
  4131. early_param("movablecore", cmdline_parse_movablecore);
  4132. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  4133. /**
  4134. * set_dma_reserve - set the specified number of pages reserved in the first zone
  4135. * @new_dma_reserve: The number of pages to mark reserved
  4136. *
  4137. * The per-cpu batchsize and zone watermarks are determined by present_pages.
  4138. * In the DMA zone, a significant percentage may be consumed by kernel image
  4139. * and other unfreeable allocations which can skew the watermarks badly. This
  4140. * function may optionally be used to account for unfreeable pages in the
  4141. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  4142. * smaller per-cpu batchsize.
  4143. */
  4144. void __init set_dma_reserve(unsigned long new_dma_reserve)
  4145. {
  4146. dma_reserve = new_dma_reserve;
  4147. }
  4148. #ifndef CONFIG_NEED_MULTIPLE_NODES
  4149. struct pglist_data __refdata contig_page_data = {
  4150. #ifndef CONFIG_NO_BOOTMEM
  4151. .bdata = &bootmem_node_data[0]
  4152. #endif
  4153. };
  4154. EXPORT_SYMBOL(contig_page_data);
  4155. #endif
  4156. void __init free_area_init(unsigned long *zones_size)
  4157. {
  4158. free_area_init_node(0, zones_size,
  4159. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  4160. }
  4161. static int page_alloc_cpu_notify(struct notifier_block *self,
  4162. unsigned long action, void *hcpu)
  4163. {
  4164. int cpu = (unsigned long)hcpu;
  4165. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  4166. drain_pages(cpu);
  4167. /*
  4168. * Spill the event counters of the dead processor
  4169. * into the current processors event counters.
  4170. * This artificially elevates the count of the current
  4171. * processor.
  4172. */
  4173. vm_events_fold_cpu(cpu);
  4174. /*
  4175. * Zero the differential counters of the dead processor
  4176. * so that the vm statistics are consistent.
  4177. *
  4178. * This is only okay since the processor is dead and cannot
  4179. * race with what we are doing.
  4180. */
  4181. refresh_cpu_vm_stats(cpu);
  4182. }
  4183. return NOTIFY_OK;
  4184. }
  4185. void __init page_alloc_init(void)
  4186. {
  4187. hotcpu_notifier(page_alloc_cpu_notify, 0);
  4188. }
  4189. /*
  4190. * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
  4191. * or min_free_kbytes changes.
  4192. */
  4193. static void calculate_totalreserve_pages(void)
  4194. {
  4195. struct pglist_data *pgdat;
  4196. unsigned long reserve_pages = 0;
  4197. enum zone_type i, j;
  4198. for_each_online_pgdat(pgdat) {
  4199. for (i = 0; i < MAX_NR_ZONES; i++) {
  4200. struct zone *zone = pgdat->node_zones + i;
  4201. unsigned long max = 0;
  4202. /* Find valid and maximum lowmem_reserve in the zone */
  4203. for (j = i; j < MAX_NR_ZONES; j++) {
  4204. if (zone->lowmem_reserve[j] > max)
  4205. max = zone->lowmem_reserve[j];
  4206. }
  4207. /* we treat the high watermark as reserved pages. */
  4208. max += high_wmark_pages(zone);
  4209. if (max > zone->present_pages)
  4210. max = zone->present_pages;
  4211. reserve_pages += max;
  4212. }
  4213. }
  4214. totalreserve_pages = reserve_pages;
  4215. }
  4216. /*
  4217. * setup_per_zone_lowmem_reserve - called whenever
  4218. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  4219. * has a correct pages reserved value, so an adequate number of
  4220. * pages are left in the zone after a successful __alloc_pages().
  4221. */
  4222. static void setup_per_zone_lowmem_reserve(void)
  4223. {
  4224. struct pglist_data *pgdat;
  4225. enum zone_type j, idx;
  4226. for_each_online_pgdat(pgdat) {
  4227. for (j = 0; j < MAX_NR_ZONES; j++) {
  4228. struct zone *zone = pgdat->node_zones + j;
  4229. unsigned long present_pages = zone->present_pages;
  4230. zone->lowmem_reserve[j] = 0;
  4231. idx = j;
  4232. while (idx) {
  4233. struct zone *lower_zone;
  4234. idx--;
  4235. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  4236. sysctl_lowmem_reserve_ratio[idx] = 1;
  4237. lower_zone = pgdat->node_zones + idx;
  4238. lower_zone->lowmem_reserve[j] = present_pages /
  4239. sysctl_lowmem_reserve_ratio[idx];
  4240. present_pages += lower_zone->present_pages;
  4241. }
  4242. }
  4243. }
  4244. /* update totalreserve_pages */
  4245. calculate_totalreserve_pages();
  4246. }
  4247. /**
  4248. * setup_per_zone_wmarks - called when min_free_kbytes changes
  4249. * or when memory is hot-{added|removed}
  4250. *
  4251. * Ensures that the watermark[min,low,high] values for each zone are set
  4252. * correctly with respect to min_free_kbytes.
  4253. */
  4254. void setup_per_zone_wmarks(void)
  4255. {
  4256. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  4257. unsigned long lowmem_pages = 0;
  4258. struct zone *zone;
  4259. unsigned long flags;
  4260. /* Calculate total number of !ZONE_HIGHMEM pages */
  4261. for_each_zone(zone) {
  4262. if (!is_highmem(zone))
  4263. lowmem_pages += zone->present_pages;
  4264. }
  4265. for_each_zone(zone) {
  4266. u64 tmp;
  4267. spin_lock_irqsave(&zone->lock, flags);
  4268. tmp = (u64)pages_min * zone->present_pages;
  4269. do_div(tmp, lowmem_pages);
  4270. if (is_highmem(zone)) {
  4271. /*
  4272. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  4273. * need highmem pages, so cap pages_min to a small
  4274. * value here.
  4275. *
  4276. * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
  4277. * deltas controls asynch page reclaim, and so should
  4278. * not be capped for highmem.
  4279. */
  4280. int min_pages;
  4281. min_pages = zone->present_pages / 1024;
  4282. if (min_pages < SWAP_CLUSTER_MAX)
  4283. min_pages = SWAP_CLUSTER_MAX;
  4284. if (min_pages > 128)
  4285. min_pages = 128;
  4286. zone->watermark[WMARK_MIN] = min_pages;
  4287. } else {
  4288. /*
  4289. * If it's a lowmem zone, reserve a number of pages
  4290. * proportionate to the zone's size.
  4291. */
  4292. zone->watermark[WMARK_MIN] = tmp;
  4293. }
  4294. zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
  4295. zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
  4296. setup_zone_migrate_reserve(zone);
  4297. spin_unlock_irqrestore(&zone->lock, flags);
  4298. }
  4299. /* update totalreserve_pages */
  4300. calculate_totalreserve_pages();
  4301. }
  4302. /*
  4303. * The inactive anon list should be small enough that the VM never has to
  4304. * do too much work, but large enough that each inactive page has a chance
  4305. * to be referenced again before it is swapped out.
  4306. *
  4307. * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
  4308. * INACTIVE_ANON pages on this zone's LRU, maintained by the
  4309. * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
  4310. * the anonymous pages are kept on the inactive list.
  4311. *
  4312. * total target max
  4313. * memory ratio inactive anon
  4314. * -------------------------------------
  4315. * 10MB 1 5MB
  4316. * 100MB 1 50MB
  4317. * 1GB 3 250MB
  4318. * 10GB 10 0.9GB
  4319. * 100GB 31 3GB
  4320. * 1TB 101 10GB
  4321. * 10TB 320 32GB
  4322. */
  4323. void calculate_zone_inactive_ratio(struct zone *zone)
  4324. {
  4325. unsigned int gb, ratio;
  4326. /* Zone size in gigabytes */
  4327. gb = zone->present_pages >> (30 - PAGE_SHIFT);
  4328. if (gb)
  4329. ratio = int_sqrt(10 * gb);
  4330. else
  4331. ratio = 1;
  4332. zone->inactive_ratio = ratio;
  4333. }
  4334. static void __init setup_per_zone_inactive_ratio(void)
  4335. {
  4336. struct zone *zone;
  4337. for_each_zone(zone)
  4338. calculate_zone_inactive_ratio(zone);
  4339. }
  4340. /*
  4341. * Initialise min_free_kbytes.
  4342. *
  4343. * For small machines we want it small (128k min). For large machines
  4344. * we want it large (64MB max). But it is not linear, because network
  4345. * bandwidth does not increase linearly with machine size. We use
  4346. *
  4347. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  4348. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  4349. *
  4350. * which yields
  4351. *
  4352. * 16MB: 512k
  4353. * 32MB: 724k
  4354. * 64MB: 1024k
  4355. * 128MB: 1448k
  4356. * 256MB: 2048k
  4357. * 512MB: 2896k
  4358. * 1024MB: 4096k
  4359. * 2048MB: 5792k
  4360. * 4096MB: 8192k
  4361. * 8192MB: 11584k
  4362. * 16384MB: 16384k
  4363. */
  4364. static int __init init_per_zone_wmark_min(void)
  4365. {
  4366. unsigned long lowmem_kbytes;
  4367. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  4368. min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  4369. if (min_free_kbytes < 128)
  4370. min_free_kbytes = 128;
  4371. if (min_free_kbytes > 65536)
  4372. min_free_kbytes = 65536;
  4373. setup_per_zone_wmarks();
  4374. setup_per_zone_lowmem_reserve();
  4375. setup_per_zone_inactive_ratio();
  4376. return 0;
  4377. }
  4378. module_init(init_per_zone_wmark_min)
  4379. /*
  4380. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  4381. * that we can call two helper functions whenever min_free_kbytes
  4382. * changes.
  4383. */
  4384. int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
  4385. void __user *buffer, size_t *length, loff_t *ppos)
  4386. {
  4387. proc_dointvec(table, write, buffer, length, ppos);
  4388. if (write)
  4389. setup_per_zone_wmarks();
  4390. return 0;
  4391. }
  4392. #ifdef CONFIG_NUMA
  4393. int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
  4394. void __user *buffer, size_t *length, loff_t *ppos)
  4395. {
  4396. struct zone *zone;
  4397. int rc;
  4398. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4399. if (rc)
  4400. return rc;
  4401. for_each_zone(zone)
  4402. zone->min_unmapped_pages = (zone->present_pages *
  4403. sysctl_min_unmapped_ratio) / 100;
  4404. return 0;
  4405. }
  4406. int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
  4407. void __user *buffer, size_t *length, loff_t *ppos)
  4408. {
  4409. struct zone *zone;
  4410. int rc;
  4411. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4412. if (rc)
  4413. return rc;
  4414. for_each_zone(zone)
  4415. zone->min_slab_pages = (zone->present_pages *
  4416. sysctl_min_slab_ratio) / 100;
  4417. return 0;
  4418. }
  4419. #endif
  4420. /*
  4421. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  4422. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  4423. * whenever sysctl_lowmem_reserve_ratio changes.
  4424. *
  4425. * The reserve ratio obviously has absolutely no relation with the
  4426. * minimum watermarks. The lowmem reserve ratio can only make sense
  4427. * if in function of the boot time zone sizes.
  4428. */
  4429. int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
  4430. void __user *buffer, size_t *length, loff_t *ppos)
  4431. {
  4432. proc_dointvec_minmax(table, write, buffer, length, ppos);
  4433. setup_per_zone_lowmem_reserve();
  4434. return 0;
  4435. }
  4436. /*
  4437. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  4438. * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
  4439. * can have before it gets flushed back to buddy allocator.
  4440. */
  4441. int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
  4442. void __user *buffer, size_t *length, loff_t *ppos)
  4443. {
  4444. struct zone *zone;
  4445. unsigned int cpu;
  4446. int ret;
  4447. ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4448. if (!write || (ret == -EINVAL))
  4449. return ret;
  4450. for_each_populated_zone(zone) {
  4451. for_each_possible_cpu(cpu) {
  4452. unsigned long high;
  4453. high = zone->present_pages / percpu_pagelist_fraction;
  4454. setup_pagelist_highmark(
  4455. per_cpu_ptr(zone->pageset, cpu), high);
  4456. }
  4457. }
  4458. return 0;
  4459. }
  4460. int hashdist = HASHDIST_DEFAULT;
  4461. #ifdef CONFIG_NUMA
  4462. static int __init set_hashdist(char *str)
  4463. {
  4464. if (!str)
  4465. return 0;
  4466. hashdist = simple_strtoul(str, &str, 0);
  4467. return 1;
  4468. }
  4469. __setup("hashdist=", set_hashdist);
  4470. #endif
  4471. /*
  4472. * allocate a large system hash table from bootmem
  4473. * - it is assumed that the hash table must contain an exact power-of-2
  4474. * quantity of entries
  4475. * - limit is the number of hash buckets, not the total allocation size
  4476. */
  4477. void *__init alloc_large_system_hash(const char *tablename,
  4478. unsigned long bucketsize,
  4479. unsigned long numentries,
  4480. int scale,
  4481. int flags,
  4482. unsigned int *_hash_shift,
  4483. unsigned int *_hash_mask,
  4484. unsigned long limit)
  4485. {
  4486. unsigned long long max = limit;
  4487. unsigned long log2qty, size;
  4488. void *table = NULL;
  4489. /* allow the kernel cmdline to have a say */
  4490. if (!numentries) {
  4491. /* round applicable memory size up to nearest megabyte */
  4492. numentries = nr_kernel_pages;
  4493. numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
  4494. numentries >>= 20 - PAGE_SHIFT;
  4495. numentries <<= 20 - PAGE_SHIFT;
  4496. /* limit to 1 bucket per 2^scale bytes of low memory */
  4497. if (scale > PAGE_SHIFT)
  4498. numentries >>= (scale - PAGE_SHIFT);
  4499. else
  4500. numentries <<= (PAGE_SHIFT - scale);
  4501. /* Make sure we've got at least a 0-order allocation.. */
  4502. if (unlikely(flags & HASH_SMALL)) {
  4503. /* Makes no sense without HASH_EARLY */
  4504. WARN_ON(!(flags & HASH_EARLY));
  4505. if (!(numentries >> *_hash_shift)) {
  4506. numentries = 1UL << *_hash_shift;
  4507. BUG_ON(!numentries);
  4508. }
  4509. } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  4510. numentries = PAGE_SIZE / bucketsize;
  4511. }
  4512. numentries = roundup_pow_of_two(numentries);
  4513. /* limit allocation size to 1/16 total memory by default */
  4514. if (max == 0) {
  4515. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  4516. do_div(max, bucketsize);
  4517. }
  4518. if (numentries > max)
  4519. numentries = max;
  4520. log2qty = ilog2(numentries);
  4521. do {
  4522. size = bucketsize << log2qty;
  4523. if (flags & HASH_EARLY)
  4524. table = alloc_bootmem_nopanic(size);
  4525. else if (hashdist)
  4526. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  4527. else {
  4528. /*
  4529. * If bucketsize is not a power-of-two, we may free
  4530. * some pages at the end of hash table which
  4531. * alloc_pages_exact() automatically does
  4532. */
  4533. if (get_order(size) < MAX_ORDER) {
  4534. table = alloc_pages_exact(size, GFP_ATOMIC);
  4535. kmemleak_alloc(table, size, 1, GFP_ATOMIC);
  4536. }
  4537. }
  4538. } while (!table && size > PAGE_SIZE && --log2qty);
  4539. if (!table)
  4540. panic("Failed to allocate %s hash table\n", tablename);
  4541. printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
  4542. tablename,
  4543. (1UL << log2qty),
  4544. ilog2(size) - PAGE_SHIFT,
  4545. size);
  4546. if (_hash_shift)
  4547. *_hash_shift = log2qty;
  4548. if (_hash_mask)
  4549. *_hash_mask = (1 << log2qty) - 1;
  4550. return table;
  4551. }
  4552. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  4553. static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
  4554. unsigned long pfn)
  4555. {
  4556. #ifdef CONFIG_SPARSEMEM
  4557. return __pfn_to_section(pfn)->pageblock_flags;
  4558. #else
  4559. return zone->pageblock_flags;
  4560. #endif /* CONFIG_SPARSEMEM */
  4561. }
  4562. static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
  4563. {
  4564. #ifdef CONFIG_SPARSEMEM
  4565. pfn &= (PAGES_PER_SECTION-1);
  4566. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  4567. #else
  4568. pfn = pfn - zone->zone_start_pfn;
  4569. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  4570. #endif /* CONFIG_SPARSEMEM */
  4571. }
  4572. /**
  4573. * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
  4574. * @page: The page within the block of interest
  4575. * @start_bitidx: The first bit of interest to retrieve
  4576. * @end_bitidx: The last bit of interest
  4577. * returns pageblock_bits flags
  4578. */
  4579. unsigned long get_pageblock_flags_group(struct page *page,
  4580. int start_bitidx, int end_bitidx)
  4581. {
  4582. struct zone *zone;
  4583. unsigned long *bitmap;
  4584. unsigned long pfn, bitidx;
  4585. unsigned long flags = 0;
  4586. unsigned long value = 1;
  4587. zone = page_zone(page);
  4588. pfn = page_to_pfn(page);
  4589. bitmap = get_pageblock_bitmap(zone, pfn);
  4590. bitidx = pfn_to_bitidx(zone, pfn);
  4591. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  4592. if (test_bit(bitidx + start_bitidx, bitmap))
  4593. flags |= value;
  4594. return flags;
  4595. }
  4596. /**
  4597. * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
  4598. * @page: The page within the block of interest
  4599. * @start_bitidx: The first bit of interest
  4600. * @end_bitidx: The last bit of interest
  4601. * @flags: The flags to set
  4602. */
  4603. void set_pageblock_flags_group(struct page *page, unsigned long flags,
  4604. int start_bitidx, int end_bitidx)
  4605. {
  4606. struct zone *zone;
  4607. unsigned long *bitmap;
  4608. unsigned long pfn, bitidx;
  4609. unsigned long value = 1;
  4610. zone = page_zone(page);
  4611. pfn = page_to_pfn(page);
  4612. bitmap = get_pageblock_bitmap(zone, pfn);
  4613. bitidx = pfn_to_bitidx(zone, pfn);
  4614. VM_BUG_ON(pfn < zone->zone_start_pfn);
  4615. VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
  4616. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  4617. if (flags & value)
  4618. __set_bit(bitidx + start_bitidx, bitmap);
  4619. else
  4620. __clear_bit(bitidx + start_bitidx, bitmap);
  4621. }
  4622. /*
  4623. * This is designed as sub function...plz see page_isolation.c also.
  4624. * set/clear page block's type to be ISOLATE.
  4625. * page allocater never alloc memory from ISOLATE block.
  4626. */
  4627. static int
  4628. __count_immobile_pages(struct zone *zone, struct page *page, int count)
  4629. {
  4630. unsigned long pfn, iter, found;
  4631. /*
  4632. * For avoiding noise data, lru_add_drain_all() should be called
  4633. * If ZONE_MOVABLE, the zone never contains immobile pages
  4634. */
  4635. if (zone_idx(zone) == ZONE_MOVABLE)
  4636. return true;
  4637. if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE)
  4638. return true;
  4639. pfn = page_to_pfn(page);
  4640. for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
  4641. unsigned long check = pfn + iter;
  4642. if (!pfn_valid_within(check)) {
  4643. iter++;
  4644. continue;
  4645. }
  4646. page = pfn_to_page(check);
  4647. if (!page_count(page)) {
  4648. if (PageBuddy(page))
  4649. iter += (1 << page_order(page)) - 1;
  4650. continue;
  4651. }
  4652. if (!PageLRU(page))
  4653. found++;
  4654. /*
  4655. * If there are RECLAIMABLE pages, we need to check it.
  4656. * But now, memory offline itself doesn't call shrink_slab()
  4657. * and it still to be fixed.
  4658. */
  4659. /*
  4660. * If the page is not RAM, page_count()should be 0.
  4661. * we don't need more check. This is an _used_ not-movable page.
  4662. *
  4663. * The problematic thing here is PG_reserved pages. PG_reserved
  4664. * is set to both of a memory hole page and a _used_ kernel
  4665. * page at boot.
  4666. */
  4667. if (found > count)
  4668. return false;
  4669. }
  4670. return true;
  4671. }
  4672. bool is_pageblock_removable_nolock(struct page *page)
  4673. {
  4674. struct zone *zone = page_zone(page);
  4675. return __count_immobile_pages(zone, page, 0);
  4676. }
  4677. int set_migratetype_isolate(struct page *page)
  4678. {
  4679. struct zone *zone;
  4680. unsigned long flags, pfn;
  4681. struct memory_isolate_notify arg;
  4682. int notifier_ret;
  4683. int ret = -EBUSY;
  4684. int zone_idx;
  4685. zone = page_zone(page);
  4686. zone_idx = zone_idx(zone);
  4687. spin_lock_irqsave(&zone->lock, flags);
  4688. pfn = page_to_pfn(page);
  4689. arg.start_pfn = pfn;
  4690. arg.nr_pages = pageblock_nr_pages;
  4691. arg.pages_found = 0;
  4692. /*
  4693. * It may be possible to isolate a pageblock even if the
  4694. * migratetype is not MIGRATE_MOVABLE. The memory isolation
  4695. * notifier chain is used by balloon drivers to return the
  4696. * number of pages in a range that are held by the balloon
  4697. * driver to shrink memory. If all the pages are accounted for
  4698. * by balloons, are free, or on the LRU, isolation can continue.
  4699. * Later, for example, when memory hotplug notifier runs, these
  4700. * pages reported as "can be isolated" should be isolated(freed)
  4701. * by the balloon driver through the memory notifier chain.
  4702. */
  4703. notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
  4704. notifier_ret = notifier_to_errno(notifier_ret);
  4705. if (notifier_ret)
  4706. goto out;
  4707. /*
  4708. * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
  4709. * We just check MOVABLE pages.
  4710. */
  4711. if (__count_immobile_pages(zone, page, arg.pages_found))
  4712. ret = 0;
  4713. /*
  4714. * immobile means "not-on-lru" paes. If immobile is larger than
  4715. * removable-by-driver pages reported by notifier, we'll fail.
  4716. */
  4717. out:
  4718. if (!ret) {
  4719. set_pageblock_migratetype(page, MIGRATE_ISOLATE);
  4720. move_freepages_block(zone, page, MIGRATE_ISOLATE);
  4721. }
  4722. spin_unlock_irqrestore(&zone->lock, flags);
  4723. if (!ret)
  4724. drain_all_pages();
  4725. return ret;
  4726. }
  4727. void unset_migratetype_isolate(struct page *page)
  4728. {
  4729. struct zone *zone;
  4730. unsigned long flags;
  4731. zone = page_zone(page);
  4732. spin_lock_irqsave(&zone->lock, flags);
  4733. if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
  4734. goto out;
  4735. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  4736. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  4737. out:
  4738. spin_unlock_irqrestore(&zone->lock, flags);
  4739. }
  4740. #ifdef CONFIG_MEMORY_HOTREMOVE
  4741. /*
  4742. * All pages in the range must be isolated before calling this.
  4743. */
  4744. void
  4745. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  4746. {
  4747. struct page *page;
  4748. struct zone *zone;
  4749. int order, i;
  4750. unsigned long pfn;
  4751. unsigned long flags;
  4752. /* find the first valid pfn */
  4753. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  4754. if (pfn_valid(pfn))
  4755. break;
  4756. if (pfn == end_pfn)
  4757. return;
  4758. zone = page_zone(pfn_to_page(pfn));
  4759. spin_lock_irqsave(&zone->lock, flags);
  4760. pfn = start_pfn;
  4761. while (pfn < end_pfn) {
  4762. if (!pfn_valid(pfn)) {
  4763. pfn++;
  4764. continue;
  4765. }
  4766. page = pfn_to_page(pfn);
  4767. BUG_ON(page_count(page));
  4768. BUG_ON(!PageBuddy(page));
  4769. order = page_order(page);
  4770. #ifdef CONFIG_DEBUG_VM
  4771. printk(KERN_INFO "remove from free list %lx %d %lx\n",
  4772. pfn, 1 << order, end_pfn);
  4773. #endif
  4774. list_del(&page->lru);
  4775. rmv_page_order(page);
  4776. zone->free_area[order].nr_free--;
  4777. __mod_zone_page_state(zone, NR_FREE_PAGES,
  4778. - (1UL << order));
  4779. for (i = 0; i < (1 << order); i++)
  4780. SetPageReserved((page+i));
  4781. pfn += (1 << order);
  4782. }
  4783. spin_unlock_irqrestore(&zone->lock, flags);
  4784. }
  4785. #endif
  4786. #ifdef CONFIG_MEMORY_FAILURE
  4787. bool is_free_buddy_page(struct page *page)
  4788. {
  4789. struct zone *zone = page_zone(page);
  4790. unsigned long pfn = page_to_pfn(page);
  4791. unsigned long flags;
  4792. int order;
  4793. spin_lock_irqsave(&zone->lock, flags);
  4794. for (order = 0; order < MAX_ORDER; order++) {
  4795. struct page *page_head = page - (pfn & ((1 << order) - 1));
  4796. if (PageBuddy(page_head) && page_order(page_head) >= order)
  4797. break;
  4798. }
  4799. spin_unlock_irqrestore(&zone->lock, flags);
  4800. return order < MAX_ORDER;
  4801. }
  4802. #endif
  4803. static struct trace_print_flags pageflag_names[] = {
  4804. {1UL << PG_locked, "locked" },
  4805. {1UL << PG_error, "error" },
  4806. {1UL << PG_referenced, "referenced" },
  4807. {1UL << PG_uptodate, "uptodate" },
  4808. {1UL << PG_dirty, "dirty" },
  4809. {1UL << PG_lru, "lru" },
  4810. {1UL << PG_active, "active" },
  4811. {1UL << PG_slab, "slab" },
  4812. {1UL << PG_owner_priv_1, "owner_priv_1" },
  4813. {1UL << PG_arch_1, "arch_1" },
  4814. {1UL << PG_reserved, "reserved" },
  4815. {1UL << PG_private, "private" },
  4816. {1UL << PG_private_2, "private_2" },
  4817. {1UL << PG_writeback, "writeback" },
  4818. #ifdef CONFIG_PAGEFLAGS_EXTENDED
  4819. {1UL << PG_head, "head" },
  4820. {1UL << PG_tail, "tail" },
  4821. #else
  4822. {1UL << PG_compound, "compound" },
  4823. #endif
  4824. {1UL << PG_swapcache, "swapcache" },
  4825. {1UL << PG_mappedtodisk, "mappedtodisk" },
  4826. {1UL << PG_reclaim, "reclaim" },
  4827. {1UL << PG_swapbacked, "swapbacked" },
  4828. {1UL << PG_unevictable, "unevictable" },
  4829. #ifdef CONFIG_MMU
  4830. {1UL << PG_mlocked, "mlocked" },
  4831. #endif
  4832. #ifdef CONFIG_ARCH_USES_PG_UNCACHED
  4833. {1UL << PG_uncached, "uncached" },
  4834. #endif
  4835. #ifdef CONFIG_MEMORY_FAILURE
  4836. {1UL << PG_hwpoison, "hwpoison" },
  4837. #endif
  4838. {-1UL, NULL },
  4839. };
  4840. static void dump_page_flags(unsigned long flags)
  4841. {
  4842. const char *delim = "";
  4843. unsigned long mask;
  4844. int i;
  4845. printk(KERN_ALERT "page flags: %#lx(", flags);
  4846. /* remove zone id */
  4847. flags &= (1UL << NR_PAGEFLAGS) - 1;
  4848. for (i = 0; pageflag_names[i].name && flags; i++) {
  4849. mask = pageflag_names[i].mask;
  4850. if ((flags & mask) != mask)
  4851. continue;
  4852. flags &= ~mask;
  4853. printk("%s%s", delim, pageflag_names[i].name);
  4854. delim = "|";
  4855. }
  4856. /* check for left over flags */
  4857. if (flags)
  4858. printk("%s%#lx", delim, flags);
  4859. printk(")\n");
  4860. }
  4861. void dump_page(struct page *page)
  4862. {
  4863. printk(KERN_ALERT
  4864. "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
  4865. page, atomic_read(&page->_count), page_mapcount(page),
  4866. page->mapping, page->index);
  4867. dump_page_flags(page->flags);
  4868. }