sched_fair.c 107 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188
  1. /*
  2. * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
  3. *
  4. * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  5. *
  6. * Interactivity improvements by Mike Galbraith
  7. * (C) 2007 Mike Galbraith <efault@gmx.de>
  8. *
  9. * Various enhancements by Dmitry Adamushko.
  10. * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11. *
  12. * Group scheduling enhancements by Srivatsa Vaddagiri
  13. * Copyright IBM Corporation, 2007
  14. * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15. *
  16. * Scaled math optimizations by Thomas Gleixner
  17. * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18. *
  19. * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21. */
  22. #include <linux/latencytop.h>
  23. #include <linux/sched.h>
  24. /*
  25. * Targeted preemption latency for CPU-bound tasks:
  26. * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
  27. *
  28. * NOTE: this latency value is not the same as the concept of
  29. * 'timeslice length' - timeslices in CFS are of variable length
  30. * and have no persistent notion like in traditional, time-slice
  31. * based scheduling concepts.
  32. *
  33. * (to see the precise effective timeslice length of your workload,
  34. * run vmstat and monitor the context-switches (cs) field)
  35. */
  36. unsigned int sysctl_sched_latency = 6000000ULL;
  37. unsigned int normalized_sysctl_sched_latency = 6000000ULL;
  38. /*
  39. * The initial- and re-scaling of tunables is configurable
  40. * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
  41. *
  42. * Options are:
  43. * SCHED_TUNABLESCALING_NONE - unscaled, always *1
  44. * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
  45. * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
  46. */
  47. enum sched_tunable_scaling sysctl_sched_tunable_scaling
  48. = SCHED_TUNABLESCALING_LOG;
  49. /*
  50. * Minimal preemption granularity for CPU-bound tasks:
  51. * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
  52. */
  53. unsigned int sysctl_sched_min_granularity = 750000ULL;
  54. unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
  55. /*
  56. * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  57. */
  58. static unsigned int sched_nr_latency = 8;
  59. /*
  60. * After fork, child runs first. If set to 0 (default) then
  61. * parent will (try to) run first.
  62. */
  63. unsigned int sysctl_sched_child_runs_first __read_mostly;
  64. /*
  65. * sys_sched_yield() compat mode
  66. *
  67. * This option switches the agressive yield implementation of the
  68. * old scheduler back on.
  69. */
  70. unsigned int __read_mostly sysctl_sched_compat_yield;
  71. /*
  72. * SCHED_OTHER wake-up granularity.
  73. * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
  74. *
  75. * This option delays the preemption effects of decoupled workloads
  76. * and reduces their over-scheduling. Synchronous workloads will still
  77. * have immediate wakeup/sleep latencies.
  78. */
  79. unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
  80. unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
  81. const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  82. /*
  83. * The exponential sliding window over which load is averaged for shares
  84. * distribution.
  85. * (default: 10msec)
  86. */
  87. unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
  88. static const struct sched_class fair_sched_class;
  89. /**************************************************************
  90. * CFS operations on generic schedulable entities:
  91. */
  92. #ifdef CONFIG_FAIR_GROUP_SCHED
  93. /* cpu runqueue to which this cfs_rq is attached */
  94. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  95. {
  96. return cfs_rq->rq;
  97. }
  98. /* An entity is a task if it doesn't "own" a runqueue */
  99. #define entity_is_task(se) (!se->my_q)
  100. static inline struct task_struct *task_of(struct sched_entity *se)
  101. {
  102. #ifdef CONFIG_SCHED_DEBUG
  103. WARN_ON_ONCE(!entity_is_task(se));
  104. #endif
  105. return container_of(se, struct task_struct, se);
  106. }
  107. /* Walk up scheduling entities hierarchy */
  108. #define for_each_sched_entity(se) \
  109. for (; se; se = se->parent)
  110. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  111. {
  112. return p->se.cfs_rq;
  113. }
  114. /* runqueue on which this entity is (to be) queued */
  115. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  116. {
  117. return se->cfs_rq;
  118. }
  119. /* runqueue "owned" by this group */
  120. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  121. {
  122. return grp->my_q;
  123. }
  124. /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
  125. * another cpu ('this_cpu')
  126. */
  127. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  128. {
  129. return cfs_rq->tg->cfs_rq[this_cpu];
  130. }
  131. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  132. {
  133. if (!cfs_rq->on_list) {
  134. /*
  135. * Ensure we either appear before our parent (if already
  136. * enqueued) or force our parent to appear after us when it is
  137. * enqueued. The fact that we always enqueue bottom-up
  138. * reduces this to two cases.
  139. */
  140. if (cfs_rq->tg->parent &&
  141. cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
  142. list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
  143. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  144. } else {
  145. list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
  146. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  147. }
  148. cfs_rq->on_list = 1;
  149. }
  150. }
  151. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  152. {
  153. if (cfs_rq->on_list) {
  154. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  155. cfs_rq->on_list = 0;
  156. }
  157. }
  158. /* Iterate thr' all leaf cfs_rq's on a runqueue */
  159. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  160. list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
  161. /* Do the two (enqueued) entities belong to the same group ? */
  162. static inline int
  163. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  164. {
  165. if (se->cfs_rq == pse->cfs_rq)
  166. return 1;
  167. return 0;
  168. }
  169. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  170. {
  171. return se->parent;
  172. }
  173. /* return depth at which a sched entity is present in the hierarchy */
  174. static inline int depth_se(struct sched_entity *se)
  175. {
  176. int depth = 0;
  177. for_each_sched_entity(se)
  178. depth++;
  179. return depth;
  180. }
  181. static void
  182. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  183. {
  184. int se_depth, pse_depth;
  185. /*
  186. * preemption test can be made between sibling entities who are in the
  187. * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
  188. * both tasks until we find their ancestors who are siblings of common
  189. * parent.
  190. */
  191. /* First walk up until both entities are at same depth */
  192. se_depth = depth_se(*se);
  193. pse_depth = depth_se(*pse);
  194. while (se_depth > pse_depth) {
  195. se_depth--;
  196. *se = parent_entity(*se);
  197. }
  198. while (pse_depth > se_depth) {
  199. pse_depth--;
  200. *pse = parent_entity(*pse);
  201. }
  202. while (!is_same_group(*se, *pse)) {
  203. *se = parent_entity(*se);
  204. *pse = parent_entity(*pse);
  205. }
  206. }
  207. #else /* !CONFIG_FAIR_GROUP_SCHED */
  208. static inline struct task_struct *task_of(struct sched_entity *se)
  209. {
  210. return container_of(se, struct task_struct, se);
  211. }
  212. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  213. {
  214. return container_of(cfs_rq, struct rq, cfs);
  215. }
  216. #define entity_is_task(se) 1
  217. #define for_each_sched_entity(se) \
  218. for (; se; se = NULL)
  219. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  220. {
  221. return &task_rq(p)->cfs;
  222. }
  223. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  224. {
  225. struct task_struct *p = task_of(se);
  226. struct rq *rq = task_rq(p);
  227. return &rq->cfs;
  228. }
  229. /* runqueue "owned" by this group */
  230. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  231. {
  232. return NULL;
  233. }
  234. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  235. {
  236. return &cpu_rq(this_cpu)->cfs;
  237. }
  238. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  239. {
  240. }
  241. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  242. {
  243. }
  244. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  245. for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
  246. static inline int
  247. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  248. {
  249. return 1;
  250. }
  251. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  252. {
  253. return NULL;
  254. }
  255. static inline void
  256. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  257. {
  258. }
  259. #endif /* CONFIG_FAIR_GROUP_SCHED */
  260. /**************************************************************
  261. * Scheduling class tree data structure manipulation methods:
  262. */
  263. static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
  264. {
  265. s64 delta = (s64)(vruntime - min_vruntime);
  266. if (delta > 0)
  267. min_vruntime = vruntime;
  268. return min_vruntime;
  269. }
  270. static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
  271. {
  272. s64 delta = (s64)(vruntime - min_vruntime);
  273. if (delta < 0)
  274. min_vruntime = vruntime;
  275. return min_vruntime;
  276. }
  277. static inline int entity_before(struct sched_entity *a,
  278. struct sched_entity *b)
  279. {
  280. return (s64)(a->vruntime - b->vruntime) < 0;
  281. }
  282. static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
  283. {
  284. return se->vruntime - cfs_rq->min_vruntime;
  285. }
  286. static void update_min_vruntime(struct cfs_rq *cfs_rq)
  287. {
  288. u64 vruntime = cfs_rq->min_vruntime;
  289. if (cfs_rq->curr)
  290. vruntime = cfs_rq->curr->vruntime;
  291. if (cfs_rq->rb_leftmost) {
  292. struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
  293. struct sched_entity,
  294. run_node);
  295. if (!cfs_rq->curr)
  296. vruntime = se->vruntime;
  297. else
  298. vruntime = min_vruntime(vruntime, se->vruntime);
  299. }
  300. cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
  301. }
  302. /*
  303. * Enqueue an entity into the rb-tree:
  304. */
  305. static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  306. {
  307. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  308. struct rb_node *parent = NULL;
  309. struct sched_entity *entry;
  310. s64 key = entity_key(cfs_rq, se);
  311. int leftmost = 1;
  312. /*
  313. * Find the right place in the rbtree:
  314. */
  315. while (*link) {
  316. parent = *link;
  317. entry = rb_entry(parent, struct sched_entity, run_node);
  318. /*
  319. * We dont care about collisions. Nodes with
  320. * the same key stay together.
  321. */
  322. if (key < entity_key(cfs_rq, entry)) {
  323. link = &parent->rb_left;
  324. } else {
  325. link = &parent->rb_right;
  326. leftmost = 0;
  327. }
  328. }
  329. /*
  330. * Maintain a cache of leftmost tree entries (it is frequently
  331. * used):
  332. */
  333. if (leftmost)
  334. cfs_rq->rb_leftmost = &se->run_node;
  335. rb_link_node(&se->run_node, parent, link);
  336. rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
  337. }
  338. static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  339. {
  340. if (cfs_rq->rb_leftmost == &se->run_node) {
  341. struct rb_node *next_node;
  342. next_node = rb_next(&se->run_node);
  343. cfs_rq->rb_leftmost = next_node;
  344. }
  345. rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
  346. }
  347. static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
  348. {
  349. struct rb_node *left = cfs_rq->rb_leftmost;
  350. if (!left)
  351. return NULL;
  352. return rb_entry(left, struct sched_entity, run_node);
  353. }
  354. static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  355. {
  356. struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
  357. if (!last)
  358. return NULL;
  359. return rb_entry(last, struct sched_entity, run_node);
  360. }
  361. /**************************************************************
  362. * Scheduling class statistics methods:
  363. */
  364. #ifdef CONFIG_SCHED_DEBUG
  365. int sched_proc_update_handler(struct ctl_table *table, int write,
  366. void __user *buffer, size_t *lenp,
  367. loff_t *ppos)
  368. {
  369. int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  370. int factor = get_update_sysctl_factor();
  371. if (ret || !write)
  372. return ret;
  373. sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
  374. sysctl_sched_min_granularity);
  375. #define WRT_SYSCTL(name) \
  376. (normalized_sysctl_##name = sysctl_##name / (factor))
  377. WRT_SYSCTL(sched_min_granularity);
  378. WRT_SYSCTL(sched_latency);
  379. WRT_SYSCTL(sched_wakeup_granularity);
  380. #undef WRT_SYSCTL
  381. return 0;
  382. }
  383. #endif
  384. /*
  385. * delta /= w
  386. */
  387. static inline unsigned long
  388. calc_delta_fair(unsigned long delta, struct sched_entity *se)
  389. {
  390. if (unlikely(se->load.weight != NICE_0_LOAD))
  391. delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
  392. return delta;
  393. }
  394. /*
  395. * The idea is to set a period in which each task runs once.
  396. *
  397. * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
  398. * this period because otherwise the slices get too small.
  399. *
  400. * p = (nr <= nl) ? l : l*nr/nl
  401. */
  402. static u64 __sched_period(unsigned long nr_running)
  403. {
  404. u64 period = sysctl_sched_latency;
  405. unsigned long nr_latency = sched_nr_latency;
  406. if (unlikely(nr_running > nr_latency)) {
  407. period = sysctl_sched_min_granularity;
  408. period *= nr_running;
  409. }
  410. return period;
  411. }
  412. /*
  413. * We calculate the wall-time slice from the period by taking a part
  414. * proportional to the weight.
  415. *
  416. * s = p*P[w/rw]
  417. */
  418. static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  419. {
  420. u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
  421. for_each_sched_entity(se) {
  422. struct load_weight *load;
  423. struct load_weight lw;
  424. cfs_rq = cfs_rq_of(se);
  425. load = &cfs_rq->load;
  426. if (unlikely(!se->on_rq)) {
  427. lw = cfs_rq->load;
  428. update_load_add(&lw, se->load.weight);
  429. load = &lw;
  430. }
  431. slice = calc_delta_mine(slice, se->load.weight, load);
  432. }
  433. return slice;
  434. }
  435. /*
  436. * We calculate the vruntime slice of a to be inserted task
  437. *
  438. * vs = s/w
  439. */
  440. static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  441. {
  442. return calc_delta_fair(sched_slice(cfs_rq, se), se);
  443. }
  444. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
  445. static void update_cfs_shares(struct cfs_rq *cfs_rq, long weight_delta);
  446. /*
  447. * Update the current task's runtime statistics. Skip current tasks that
  448. * are not in our scheduling class.
  449. */
  450. static inline void
  451. __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
  452. unsigned long delta_exec)
  453. {
  454. unsigned long delta_exec_weighted;
  455. schedstat_set(curr->statistics.exec_max,
  456. max((u64)delta_exec, curr->statistics.exec_max));
  457. curr->sum_exec_runtime += delta_exec;
  458. schedstat_add(cfs_rq, exec_clock, delta_exec);
  459. delta_exec_weighted = calc_delta_fair(delta_exec, curr);
  460. curr->vruntime += delta_exec_weighted;
  461. update_min_vruntime(cfs_rq);
  462. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  463. cfs_rq->load_unacc_exec_time += delta_exec;
  464. #endif
  465. }
  466. static void update_curr(struct cfs_rq *cfs_rq)
  467. {
  468. struct sched_entity *curr = cfs_rq->curr;
  469. u64 now = rq_of(cfs_rq)->clock_task;
  470. unsigned long delta_exec;
  471. if (unlikely(!curr))
  472. return;
  473. /*
  474. * Get the amount of time the current task was running
  475. * since the last time we changed load (this cannot
  476. * overflow on 32 bits):
  477. */
  478. delta_exec = (unsigned long)(now - curr->exec_start);
  479. if (!delta_exec)
  480. return;
  481. __update_curr(cfs_rq, curr, delta_exec);
  482. curr->exec_start = now;
  483. if (entity_is_task(curr)) {
  484. struct task_struct *curtask = task_of(curr);
  485. trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
  486. cpuacct_charge(curtask, delta_exec);
  487. account_group_exec_runtime(curtask, delta_exec);
  488. }
  489. }
  490. static inline void
  491. update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  492. {
  493. schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
  494. }
  495. /*
  496. * Task is being enqueued - update stats:
  497. */
  498. static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  499. {
  500. /*
  501. * Are we enqueueing a waiting task? (for current tasks
  502. * a dequeue/enqueue event is a NOP)
  503. */
  504. if (se != cfs_rq->curr)
  505. update_stats_wait_start(cfs_rq, se);
  506. }
  507. static void
  508. update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  509. {
  510. schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
  511. rq_of(cfs_rq)->clock - se->statistics.wait_start));
  512. schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
  513. schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
  514. rq_of(cfs_rq)->clock - se->statistics.wait_start);
  515. #ifdef CONFIG_SCHEDSTATS
  516. if (entity_is_task(se)) {
  517. trace_sched_stat_wait(task_of(se),
  518. rq_of(cfs_rq)->clock - se->statistics.wait_start);
  519. }
  520. #endif
  521. schedstat_set(se->statistics.wait_start, 0);
  522. }
  523. static inline void
  524. update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  525. {
  526. /*
  527. * Mark the end of the wait period if dequeueing a
  528. * waiting task:
  529. */
  530. if (se != cfs_rq->curr)
  531. update_stats_wait_end(cfs_rq, se);
  532. }
  533. /*
  534. * We are picking a new current task - update its stats:
  535. */
  536. static inline void
  537. update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  538. {
  539. /*
  540. * We are starting a new run period:
  541. */
  542. se->exec_start = rq_of(cfs_rq)->clock_task;
  543. }
  544. /**************************************************
  545. * Scheduling class queueing methods:
  546. */
  547. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  548. static void
  549. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  550. {
  551. cfs_rq->task_weight += weight;
  552. }
  553. #else
  554. static inline void
  555. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  556. {
  557. }
  558. #endif
  559. static void
  560. account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  561. {
  562. update_load_add(&cfs_rq->load, se->load.weight);
  563. if (!parent_entity(se))
  564. inc_cpu_load(rq_of(cfs_rq), se->load.weight);
  565. if (entity_is_task(se)) {
  566. add_cfs_task_weight(cfs_rq, se->load.weight);
  567. list_add(&se->group_node, &cfs_rq->tasks);
  568. }
  569. cfs_rq->nr_running++;
  570. }
  571. static void
  572. account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  573. {
  574. update_load_sub(&cfs_rq->load, se->load.weight);
  575. if (!parent_entity(se))
  576. dec_cpu_load(rq_of(cfs_rq), se->load.weight);
  577. if (entity_is_task(se)) {
  578. add_cfs_task_weight(cfs_rq, -se->load.weight);
  579. list_del_init(&se->group_node);
  580. }
  581. cfs_rq->nr_running--;
  582. }
  583. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  584. static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
  585. int global_update)
  586. {
  587. struct task_group *tg = cfs_rq->tg;
  588. long load_avg;
  589. load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
  590. load_avg -= cfs_rq->load_contribution;
  591. if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
  592. atomic_add(load_avg, &tg->load_weight);
  593. cfs_rq->load_contribution += load_avg;
  594. }
  595. }
  596. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
  597. {
  598. u64 period = sysctl_sched_shares_window;
  599. u64 now, delta;
  600. unsigned long load = cfs_rq->load.weight;
  601. if (!cfs_rq)
  602. return;
  603. now = rq_of(cfs_rq)->clock;
  604. delta = now - cfs_rq->load_stamp;
  605. /* truncate load history at 4 idle periods */
  606. if (cfs_rq->load_stamp > cfs_rq->load_last &&
  607. now - cfs_rq->load_last > 4 * period) {
  608. cfs_rq->load_period = 0;
  609. cfs_rq->load_avg = 0;
  610. }
  611. cfs_rq->load_stamp = now;
  612. cfs_rq->load_unacc_exec_time = 0;
  613. cfs_rq->load_period += delta;
  614. if (load) {
  615. cfs_rq->load_last = now;
  616. cfs_rq->load_avg += delta * load;
  617. }
  618. /* consider updating load contribution on each fold or truncate */
  619. if (global_update || cfs_rq->load_period > period
  620. || !cfs_rq->load_period)
  621. update_cfs_rq_load_contribution(cfs_rq, global_update);
  622. while (cfs_rq->load_period > period) {
  623. /*
  624. * Inline assembly required to prevent the compiler
  625. * optimising this loop into a divmod call.
  626. * See __iter_div_u64_rem() for another example of this.
  627. */
  628. asm("" : "+rm" (cfs_rq->load_period));
  629. cfs_rq->load_period /= 2;
  630. cfs_rq->load_avg /= 2;
  631. }
  632. if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
  633. list_del_leaf_cfs_rq(cfs_rq);
  634. }
  635. static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
  636. unsigned long weight)
  637. {
  638. if (se->on_rq) {
  639. /* commit outstanding execution time */
  640. if (cfs_rq->curr == se)
  641. update_curr(cfs_rq);
  642. account_entity_dequeue(cfs_rq, se);
  643. }
  644. update_load_set(&se->load, weight);
  645. if (se->on_rq)
  646. account_entity_enqueue(cfs_rq, se);
  647. }
  648. static void update_cfs_shares(struct cfs_rq *cfs_rq, long weight_delta)
  649. {
  650. struct task_group *tg;
  651. struct sched_entity *se;
  652. long load_weight, load, shares;
  653. if (!cfs_rq)
  654. return;
  655. tg = cfs_rq->tg;
  656. se = tg->se[cpu_of(rq_of(cfs_rq))];
  657. if (!se)
  658. return;
  659. load = cfs_rq->load.weight + weight_delta;
  660. load_weight = atomic_read(&tg->load_weight);
  661. load_weight -= cfs_rq->load_contribution;
  662. load_weight += load;
  663. shares = (tg->shares * load);
  664. if (load_weight)
  665. shares /= load_weight;
  666. if (shares < MIN_SHARES)
  667. shares = MIN_SHARES;
  668. if (shares > tg->shares)
  669. shares = tg->shares;
  670. reweight_entity(cfs_rq_of(se), se, shares);
  671. }
  672. static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
  673. {
  674. if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
  675. update_cfs_load(cfs_rq, 0);
  676. update_cfs_shares(cfs_rq, 0);
  677. }
  678. }
  679. #else /* CONFIG_FAIR_GROUP_SCHED */
  680. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
  681. {
  682. }
  683. static inline void update_cfs_shares(struct cfs_rq *cfs_rq, long weight_delta)
  684. {
  685. }
  686. static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
  687. {
  688. }
  689. #endif /* CONFIG_FAIR_GROUP_SCHED */
  690. static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
  691. {
  692. #ifdef CONFIG_SCHEDSTATS
  693. struct task_struct *tsk = NULL;
  694. if (entity_is_task(se))
  695. tsk = task_of(se);
  696. if (se->statistics.sleep_start) {
  697. u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
  698. if ((s64)delta < 0)
  699. delta = 0;
  700. if (unlikely(delta > se->statistics.sleep_max))
  701. se->statistics.sleep_max = delta;
  702. se->statistics.sleep_start = 0;
  703. se->statistics.sum_sleep_runtime += delta;
  704. if (tsk) {
  705. account_scheduler_latency(tsk, delta >> 10, 1);
  706. trace_sched_stat_sleep(tsk, delta);
  707. }
  708. }
  709. if (se->statistics.block_start) {
  710. u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
  711. if ((s64)delta < 0)
  712. delta = 0;
  713. if (unlikely(delta > se->statistics.block_max))
  714. se->statistics.block_max = delta;
  715. se->statistics.block_start = 0;
  716. se->statistics.sum_sleep_runtime += delta;
  717. if (tsk) {
  718. if (tsk->in_iowait) {
  719. se->statistics.iowait_sum += delta;
  720. se->statistics.iowait_count++;
  721. trace_sched_stat_iowait(tsk, delta);
  722. }
  723. /*
  724. * Blocking time is in units of nanosecs, so shift by
  725. * 20 to get a milliseconds-range estimation of the
  726. * amount of time that the task spent sleeping:
  727. */
  728. if (unlikely(prof_on == SLEEP_PROFILING)) {
  729. profile_hits(SLEEP_PROFILING,
  730. (void *)get_wchan(tsk),
  731. delta >> 20);
  732. }
  733. account_scheduler_latency(tsk, delta >> 10, 0);
  734. }
  735. }
  736. #endif
  737. }
  738. static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
  739. {
  740. #ifdef CONFIG_SCHED_DEBUG
  741. s64 d = se->vruntime - cfs_rq->min_vruntime;
  742. if (d < 0)
  743. d = -d;
  744. if (d > 3*sysctl_sched_latency)
  745. schedstat_inc(cfs_rq, nr_spread_over);
  746. #endif
  747. }
  748. static void
  749. place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
  750. {
  751. u64 vruntime = cfs_rq->min_vruntime;
  752. /*
  753. * The 'current' period is already promised to the current tasks,
  754. * however the extra weight of the new task will slow them down a
  755. * little, place the new task so that it fits in the slot that
  756. * stays open at the end.
  757. */
  758. if (initial && sched_feat(START_DEBIT))
  759. vruntime += sched_vslice(cfs_rq, se);
  760. /* sleeps up to a single latency don't count. */
  761. if (!initial) {
  762. unsigned long thresh = sysctl_sched_latency;
  763. /*
  764. * Halve their sleep time's effect, to allow
  765. * for a gentler effect of sleepers:
  766. */
  767. if (sched_feat(GENTLE_FAIR_SLEEPERS))
  768. thresh >>= 1;
  769. vruntime -= thresh;
  770. }
  771. /* ensure we never gain time by being placed backwards. */
  772. vruntime = max_vruntime(se->vruntime, vruntime);
  773. se->vruntime = vruntime;
  774. }
  775. static void
  776. enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  777. {
  778. /*
  779. * Update the normalized vruntime before updating min_vruntime
  780. * through callig update_curr().
  781. */
  782. if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
  783. se->vruntime += cfs_rq->min_vruntime;
  784. /*
  785. * Update run-time statistics of the 'current'.
  786. */
  787. update_curr(cfs_rq);
  788. update_cfs_load(cfs_rq, 0);
  789. update_cfs_shares(cfs_rq, se->load.weight);
  790. account_entity_enqueue(cfs_rq, se);
  791. if (flags & ENQUEUE_WAKEUP) {
  792. place_entity(cfs_rq, se, 0);
  793. enqueue_sleeper(cfs_rq, se);
  794. }
  795. update_stats_enqueue(cfs_rq, se);
  796. check_spread(cfs_rq, se);
  797. if (se != cfs_rq->curr)
  798. __enqueue_entity(cfs_rq, se);
  799. se->on_rq = 1;
  800. if (cfs_rq->nr_running == 1)
  801. list_add_leaf_cfs_rq(cfs_rq);
  802. }
  803. static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  804. {
  805. if (!se || cfs_rq->last == se)
  806. cfs_rq->last = NULL;
  807. if (!se || cfs_rq->next == se)
  808. cfs_rq->next = NULL;
  809. }
  810. static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  811. {
  812. for_each_sched_entity(se)
  813. __clear_buddies(cfs_rq_of(se), se);
  814. }
  815. static void
  816. dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  817. {
  818. /*
  819. * Update run-time statistics of the 'current'.
  820. */
  821. update_curr(cfs_rq);
  822. update_stats_dequeue(cfs_rq, se);
  823. if (flags & DEQUEUE_SLEEP) {
  824. #ifdef CONFIG_SCHEDSTATS
  825. if (entity_is_task(se)) {
  826. struct task_struct *tsk = task_of(se);
  827. if (tsk->state & TASK_INTERRUPTIBLE)
  828. se->statistics.sleep_start = rq_of(cfs_rq)->clock;
  829. if (tsk->state & TASK_UNINTERRUPTIBLE)
  830. se->statistics.block_start = rq_of(cfs_rq)->clock;
  831. }
  832. #endif
  833. }
  834. clear_buddies(cfs_rq, se);
  835. if (se != cfs_rq->curr)
  836. __dequeue_entity(cfs_rq, se);
  837. se->on_rq = 0;
  838. update_cfs_load(cfs_rq, 0);
  839. account_entity_dequeue(cfs_rq, se);
  840. update_min_vruntime(cfs_rq);
  841. update_cfs_shares(cfs_rq, 0);
  842. /*
  843. * Normalize the entity after updating the min_vruntime because the
  844. * update can refer to the ->curr item and we need to reflect this
  845. * movement in our normalized position.
  846. */
  847. if (!(flags & DEQUEUE_SLEEP))
  848. se->vruntime -= cfs_rq->min_vruntime;
  849. }
  850. /*
  851. * Preempt the current task with a newly woken task if needed:
  852. */
  853. static void
  854. check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  855. {
  856. unsigned long ideal_runtime, delta_exec;
  857. ideal_runtime = sched_slice(cfs_rq, curr);
  858. delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  859. if (delta_exec > ideal_runtime) {
  860. resched_task(rq_of(cfs_rq)->curr);
  861. /*
  862. * The current task ran long enough, ensure it doesn't get
  863. * re-elected due to buddy favours.
  864. */
  865. clear_buddies(cfs_rq, curr);
  866. return;
  867. }
  868. /*
  869. * Ensure that a task that missed wakeup preemption by a
  870. * narrow margin doesn't have to wait for a full slice.
  871. * This also mitigates buddy induced latencies under load.
  872. */
  873. if (!sched_feat(WAKEUP_PREEMPT))
  874. return;
  875. if (delta_exec < sysctl_sched_min_granularity)
  876. return;
  877. if (cfs_rq->nr_running > 1) {
  878. struct sched_entity *se = __pick_next_entity(cfs_rq);
  879. s64 delta = curr->vruntime - se->vruntime;
  880. if (delta < 0)
  881. return;
  882. if (delta > ideal_runtime)
  883. resched_task(rq_of(cfs_rq)->curr);
  884. }
  885. }
  886. static void
  887. set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  888. {
  889. /* 'current' is not kept within the tree. */
  890. if (se->on_rq) {
  891. /*
  892. * Any task has to be enqueued before it get to execute on
  893. * a CPU. So account for the time it spent waiting on the
  894. * runqueue.
  895. */
  896. update_stats_wait_end(cfs_rq, se);
  897. __dequeue_entity(cfs_rq, se);
  898. }
  899. update_stats_curr_start(cfs_rq, se);
  900. cfs_rq->curr = se;
  901. #ifdef CONFIG_SCHEDSTATS
  902. /*
  903. * Track our maximum slice length, if the CPU's load is at
  904. * least twice that of our own weight (i.e. dont track it
  905. * when there are only lesser-weight tasks around):
  906. */
  907. if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
  908. se->statistics.slice_max = max(se->statistics.slice_max,
  909. se->sum_exec_runtime - se->prev_sum_exec_runtime);
  910. }
  911. #endif
  912. se->prev_sum_exec_runtime = se->sum_exec_runtime;
  913. }
  914. static int
  915. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
  916. static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
  917. {
  918. struct sched_entity *se = __pick_next_entity(cfs_rq);
  919. struct sched_entity *left = se;
  920. if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
  921. se = cfs_rq->next;
  922. /*
  923. * Prefer last buddy, try to return the CPU to a preempted task.
  924. */
  925. if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
  926. se = cfs_rq->last;
  927. clear_buddies(cfs_rq, se);
  928. return se;
  929. }
  930. static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
  931. {
  932. /*
  933. * If still on the runqueue then deactivate_task()
  934. * was not called and update_curr() has to be done:
  935. */
  936. if (prev->on_rq)
  937. update_curr(cfs_rq);
  938. check_spread(cfs_rq, prev);
  939. if (prev->on_rq) {
  940. update_stats_wait_start(cfs_rq, prev);
  941. /* Put 'current' back into the tree. */
  942. __enqueue_entity(cfs_rq, prev);
  943. }
  944. cfs_rq->curr = NULL;
  945. }
  946. static void
  947. entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
  948. {
  949. /*
  950. * Update run-time statistics of the 'current'.
  951. */
  952. update_curr(cfs_rq);
  953. /*
  954. * Update share accounting for long-running entities.
  955. */
  956. update_entity_shares_tick(cfs_rq);
  957. #ifdef CONFIG_SCHED_HRTICK
  958. /*
  959. * queued ticks are scheduled to match the slice, so don't bother
  960. * validating it and just reschedule.
  961. */
  962. if (queued) {
  963. resched_task(rq_of(cfs_rq)->curr);
  964. return;
  965. }
  966. /*
  967. * don't let the period tick interfere with the hrtick preemption
  968. */
  969. if (!sched_feat(DOUBLE_TICK) &&
  970. hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
  971. return;
  972. #endif
  973. if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
  974. check_preempt_tick(cfs_rq, curr);
  975. }
  976. /**************************************************
  977. * CFS operations on tasks:
  978. */
  979. #ifdef CONFIG_SCHED_HRTICK
  980. static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
  981. {
  982. struct sched_entity *se = &p->se;
  983. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  984. WARN_ON(task_rq(p) != rq);
  985. if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
  986. u64 slice = sched_slice(cfs_rq, se);
  987. u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
  988. s64 delta = slice - ran;
  989. if (delta < 0) {
  990. if (rq->curr == p)
  991. resched_task(p);
  992. return;
  993. }
  994. /*
  995. * Don't schedule slices shorter than 10000ns, that just
  996. * doesn't make sense. Rely on vruntime for fairness.
  997. */
  998. if (rq->curr != p)
  999. delta = max_t(s64, 10000LL, delta);
  1000. hrtick_start(rq, delta);
  1001. }
  1002. }
  1003. /*
  1004. * called from enqueue/dequeue and updates the hrtick when the
  1005. * current task is from our class and nr_running is low enough
  1006. * to matter.
  1007. */
  1008. static void hrtick_update(struct rq *rq)
  1009. {
  1010. struct task_struct *curr = rq->curr;
  1011. if (curr->sched_class != &fair_sched_class)
  1012. return;
  1013. if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
  1014. hrtick_start_fair(rq, curr);
  1015. }
  1016. #else /* !CONFIG_SCHED_HRTICK */
  1017. static inline void
  1018. hrtick_start_fair(struct rq *rq, struct task_struct *p)
  1019. {
  1020. }
  1021. static inline void hrtick_update(struct rq *rq)
  1022. {
  1023. }
  1024. #endif
  1025. /*
  1026. * The enqueue_task method is called before nr_running is
  1027. * increased. Here we update the fair scheduling stats and
  1028. * then put the task into the rbtree:
  1029. */
  1030. static void
  1031. enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  1032. {
  1033. struct cfs_rq *cfs_rq;
  1034. struct sched_entity *se = &p->se;
  1035. for_each_sched_entity(se) {
  1036. if (se->on_rq)
  1037. break;
  1038. cfs_rq = cfs_rq_of(se);
  1039. enqueue_entity(cfs_rq, se, flags);
  1040. flags = ENQUEUE_WAKEUP;
  1041. }
  1042. for_each_sched_entity(se) {
  1043. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1044. update_cfs_load(cfs_rq, 0);
  1045. update_cfs_shares(cfs_rq, 0);
  1046. }
  1047. hrtick_update(rq);
  1048. }
  1049. /*
  1050. * The dequeue_task method is called before nr_running is
  1051. * decreased. We remove the task from the rbtree and
  1052. * update the fair scheduling stats:
  1053. */
  1054. static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  1055. {
  1056. struct cfs_rq *cfs_rq;
  1057. struct sched_entity *se = &p->se;
  1058. for_each_sched_entity(se) {
  1059. cfs_rq = cfs_rq_of(se);
  1060. dequeue_entity(cfs_rq, se, flags);
  1061. /* Don't dequeue parent if it has other entities besides us */
  1062. if (cfs_rq->load.weight)
  1063. break;
  1064. flags |= DEQUEUE_SLEEP;
  1065. }
  1066. for_each_sched_entity(se) {
  1067. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1068. update_cfs_load(cfs_rq, 0);
  1069. update_cfs_shares(cfs_rq, 0);
  1070. }
  1071. hrtick_update(rq);
  1072. }
  1073. /*
  1074. * sched_yield() support is very simple - we dequeue and enqueue.
  1075. *
  1076. * If compat_yield is turned on then we requeue to the end of the tree.
  1077. */
  1078. static void yield_task_fair(struct rq *rq)
  1079. {
  1080. struct task_struct *curr = rq->curr;
  1081. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  1082. struct sched_entity *rightmost, *se = &curr->se;
  1083. /*
  1084. * Are we the only task in the tree?
  1085. */
  1086. if (unlikely(cfs_rq->nr_running == 1))
  1087. return;
  1088. clear_buddies(cfs_rq, se);
  1089. if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
  1090. update_rq_clock(rq);
  1091. /*
  1092. * Update run-time statistics of the 'current'.
  1093. */
  1094. update_curr(cfs_rq);
  1095. return;
  1096. }
  1097. /*
  1098. * Find the rightmost entry in the rbtree:
  1099. */
  1100. rightmost = __pick_last_entity(cfs_rq);
  1101. /*
  1102. * Already in the rightmost position?
  1103. */
  1104. if (unlikely(!rightmost || entity_before(rightmost, se)))
  1105. return;
  1106. /*
  1107. * Minimally necessary key value to be last in the tree:
  1108. * Upon rescheduling, sched_class::put_prev_task() will place
  1109. * 'current' within the tree based on its new key value.
  1110. */
  1111. se->vruntime = rightmost->vruntime + 1;
  1112. }
  1113. #ifdef CONFIG_SMP
  1114. static void task_waking_fair(struct rq *rq, struct task_struct *p)
  1115. {
  1116. struct sched_entity *se = &p->se;
  1117. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1118. se->vruntime -= cfs_rq->min_vruntime;
  1119. }
  1120. #ifdef CONFIG_FAIR_GROUP_SCHED
  1121. /*
  1122. * effective_load() calculates the load change as seen from the root_task_group
  1123. *
  1124. * Adding load to a group doesn't make a group heavier, but can cause movement
  1125. * of group shares between cpus. Assuming the shares were perfectly aligned one
  1126. * can calculate the shift in shares.
  1127. */
  1128. static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
  1129. {
  1130. struct sched_entity *se = tg->se[cpu];
  1131. if (!tg->parent)
  1132. return wl;
  1133. for_each_sched_entity(se) {
  1134. long lw, w;
  1135. tg = se->my_q->tg;
  1136. w = se->my_q->load.weight;
  1137. /* use this cpu's instantaneous contribution */
  1138. lw = atomic_read(&tg->load_weight);
  1139. lw -= se->my_q->load_contribution;
  1140. lw += w + wg;
  1141. wl += w;
  1142. if (lw > 0 && wl < lw)
  1143. wl = (wl * tg->shares) / lw;
  1144. else
  1145. wl = tg->shares;
  1146. /* zero point is MIN_SHARES */
  1147. if (wl < MIN_SHARES)
  1148. wl = MIN_SHARES;
  1149. wl -= se->load.weight;
  1150. wg = 0;
  1151. }
  1152. return wl;
  1153. }
  1154. #else
  1155. static inline unsigned long effective_load(struct task_group *tg, int cpu,
  1156. unsigned long wl, unsigned long wg)
  1157. {
  1158. return wl;
  1159. }
  1160. #endif
  1161. static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
  1162. {
  1163. unsigned long this_load, load;
  1164. int idx, this_cpu, prev_cpu;
  1165. unsigned long tl_per_task;
  1166. struct task_group *tg;
  1167. unsigned long weight;
  1168. int balanced;
  1169. idx = sd->wake_idx;
  1170. this_cpu = smp_processor_id();
  1171. prev_cpu = task_cpu(p);
  1172. load = source_load(prev_cpu, idx);
  1173. this_load = target_load(this_cpu, idx);
  1174. /*
  1175. * If sync wakeup then subtract the (maximum possible)
  1176. * effect of the currently running task from the load
  1177. * of the current CPU:
  1178. */
  1179. rcu_read_lock();
  1180. if (sync) {
  1181. tg = task_group(current);
  1182. weight = current->se.load.weight;
  1183. this_load += effective_load(tg, this_cpu, -weight, -weight);
  1184. load += effective_load(tg, prev_cpu, 0, -weight);
  1185. }
  1186. tg = task_group(p);
  1187. weight = p->se.load.weight;
  1188. /*
  1189. * In low-load situations, where prev_cpu is idle and this_cpu is idle
  1190. * due to the sync cause above having dropped this_load to 0, we'll
  1191. * always have an imbalance, but there's really nothing you can do
  1192. * about that, so that's good too.
  1193. *
  1194. * Otherwise check if either cpus are near enough in load to allow this
  1195. * task to be woken on this_cpu.
  1196. */
  1197. if (this_load) {
  1198. unsigned long this_eff_load, prev_eff_load;
  1199. this_eff_load = 100;
  1200. this_eff_load *= power_of(prev_cpu);
  1201. this_eff_load *= this_load +
  1202. effective_load(tg, this_cpu, weight, weight);
  1203. prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
  1204. prev_eff_load *= power_of(this_cpu);
  1205. prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
  1206. balanced = this_eff_load <= prev_eff_load;
  1207. } else
  1208. balanced = true;
  1209. rcu_read_unlock();
  1210. /*
  1211. * If the currently running task will sleep within
  1212. * a reasonable amount of time then attract this newly
  1213. * woken task:
  1214. */
  1215. if (sync && balanced)
  1216. return 1;
  1217. schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
  1218. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1219. if (balanced ||
  1220. (this_load <= load &&
  1221. this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
  1222. /*
  1223. * This domain has SD_WAKE_AFFINE and
  1224. * p is cache cold in this domain, and
  1225. * there is no bad imbalance.
  1226. */
  1227. schedstat_inc(sd, ttwu_move_affine);
  1228. schedstat_inc(p, se.statistics.nr_wakeups_affine);
  1229. return 1;
  1230. }
  1231. return 0;
  1232. }
  1233. /*
  1234. * find_idlest_group finds and returns the least busy CPU group within the
  1235. * domain.
  1236. */
  1237. static struct sched_group *
  1238. find_idlest_group(struct sched_domain *sd, struct task_struct *p,
  1239. int this_cpu, int load_idx)
  1240. {
  1241. struct sched_group *idlest = NULL, *group = sd->groups;
  1242. unsigned long min_load = ULONG_MAX, this_load = 0;
  1243. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1244. do {
  1245. unsigned long load, avg_load;
  1246. int local_group;
  1247. int i;
  1248. /* Skip over this group if it has no CPUs allowed */
  1249. if (!cpumask_intersects(sched_group_cpus(group),
  1250. &p->cpus_allowed))
  1251. continue;
  1252. local_group = cpumask_test_cpu(this_cpu,
  1253. sched_group_cpus(group));
  1254. /* Tally up the load of all CPUs in the group */
  1255. avg_load = 0;
  1256. for_each_cpu(i, sched_group_cpus(group)) {
  1257. /* Bias balancing toward cpus of our domain */
  1258. if (local_group)
  1259. load = source_load(i, load_idx);
  1260. else
  1261. load = target_load(i, load_idx);
  1262. avg_load += load;
  1263. }
  1264. /* Adjust by relative CPU power of the group */
  1265. avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
  1266. if (local_group) {
  1267. this_load = avg_load;
  1268. } else if (avg_load < min_load) {
  1269. min_load = avg_load;
  1270. idlest = group;
  1271. }
  1272. } while (group = group->next, group != sd->groups);
  1273. if (!idlest || 100*this_load < imbalance*min_load)
  1274. return NULL;
  1275. return idlest;
  1276. }
  1277. /*
  1278. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1279. */
  1280. static int
  1281. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1282. {
  1283. unsigned long load, min_load = ULONG_MAX;
  1284. int idlest = -1;
  1285. int i;
  1286. /* Traverse only the allowed CPUs */
  1287. for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
  1288. load = weighted_cpuload(i);
  1289. if (load < min_load || (load == min_load && i == this_cpu)) {
  1290. min_load = load;
  1291. idlest = i;
  1292. }
  1293. }
  1294. return idlest;
  1295. }
  1296. /*
  1297. * Try and locate an idle CPU in the sched_domain.
  1298. */
  1299. static int select_idle_sibling(struct task_struct *p, int target)
  1300. {
  1301. int cpu = smp_processor_id();
  1302. int prev_cpu = task_cpu(p);
  1303. struct sched_domain *sd;
  1304. int i;
  1305. /*
  1306. * If the task is going to be woken-up on this cpu and if it is
  1307. * already idle, then it is the right target.
  1308. */
  1309. if (target == cpu && idle_cpu(cpu))
  1310. return cpu;
  1311. /*
  1312. * If the task is going to be woken-up on the cpu where it previously
  1313. * ran and if it is currently idle, then it the right target.
  1314. */
  1315. if (target == prev_cpu && idle_cpu(prev_cpu))
  1316. return prev_cpu;
  1317. /*
  1318. * Otherwise, iterate the domains and find an elegible idle cpu.
  1319. */
  1320. for_each_domain(target, sd) {
  1321. if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
  1322. break;
  1323. for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
  1324. if (idle_cpu(i)) {
  1325. target = i;
  1326. break;
  1327. }
  1328. }
  1329. /*
  1330. * Lets stop looking for an idle sibling when we reached
  1331. * the domain that spans the current cpu and prev_cpu.
  1332. */
  1333. if (cpumask_test_cpu(cpu, sched_domain_span(sd)) &&
  1334. cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
  1335. break;
  1336. }
  1337. return target;
  1338. }
  1339. /*
  1340. * sched_balance_self: balance the current task (running on cpu) in domains
  1341. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1342. * SD_BALANCE_EXEC.
  1343. *
  1344. * Balance, ie. select the least loaded group.
  1345. *
  1346. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1347. *
  1348. * preempt must be disabled.
  1349. */
  1350. static int
  1351. select_task_rq_fair(struct rq *rq, struct task_struct *p, int sd_flag, int wake_flags)
  1352. {
  1353. struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
  1354. int cpu = smp_processor_id();
  1355. int prev_cpu = task_cpu(p);
  1356. int new_cpu = cpu;
  1357. int want_affine = 0;
  1358. int want_sd = 1;
  1359. int sync = wake_flags & WF_SYNC;
  1360. if (sd_flag & SD_BALANCE_WAKE) {
  1361. if (cpumask_test_cpu(cpu, &p->cpus_allowed))
  1362. want_affine = 1;
  1363. new_cpu = prev_cpu;
  1364. }
  1365. for_each_domain(cpu, tmp) {
  1366. if (!(tmp->flags & SD_LOAD_BALANCE))
  1367. continue;
  1368. /*
  1369. * If power savings logic is enabled for a domain, see if we
  1370. * are not overloaded, if so, don't balance wider.
  1371. */
  1372. if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
  1373. unsigned long power = 0;
  1374. unsigned long nr_running = 0;
  1375. unsigned long capacity;
  1376. int i;
  1377. for_each_cpu(i, sched_domain_span(tmp)) {
  1378. power += power_of(i);
  1379. nr_running += cpu_rq(i)->cfs.nr_running;
  1380. }
  1381. capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
  1382. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1383. nr_running /= 2;
  1384. if (nr_running < capacity)
  1385. want_sd = 0;
  1386. }
  1387. /*
  1388. * If both cpu and prev_cpu are part of this domain,
  1389. * cpu is a valid SD_WAKE_AFFINE target.
  1390. */
  1391. if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
  1392. cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
  1393. affine_sd = tmp;
  1394. want_affine = 0;
  1395. }
  1396. if (!want_sd && !want_affine)
  1397. break;
  1398. if (!(tmp->flags & sd_flag))
  1399. continue;
  1400. if (want_sd)
  1401. sd = tmp;
  1402. }
  1403. if (affine_sd) {
  1404. if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
  1405. return select_idle_sibling(p, cpu);
  1406. else
  1407. return select_idle_sibling(p, prev_cpu);
  1408. }
  1409. while (sd) {
  1410. int load_idx = sd->forkexec_idx;
  1411. struct sched_group *group;
  1412. int weight;
  1413. if (!(sd->flags & sd_flag)) {
  1414. sd = sd->child;
  1415. continue;
  1416. }
  1417. if (sd_flag & SD_BALANCE_WAKE)
  1418. load_idx = sd->wake_idx;
  1419. group = find_idlest_group(sd, p, cpu, load_idx);
  1420. if (!group) {
  1421. sd = sd->child;
  1422. continue;
  1423. }
  1424. new_cpu = find_idlest_cpu(group, p, cpu);
  1425. if (new_cpu == -1 || new_cpu == cpu) {
  1426. /* Now try balancing at a lower domain level of cpu */
  1427. sd = sd->child;
  1428. continue;
  1429. }
  1430. /* Now try balancing at a lower domain level of new_cpu */
  1431. cpu = new_cpu;
  1432. weight = sd->span_weight;
  1433. sd = NULL;
  1434. for_each_domain(cpu, tmp) {
  1435. if (weight <= tmp->span_weight)
  1436. break;
  1437. if (tmp->flags & sd_flag)
  1438. sd = tmp;
  1439. }
  1440. /* while loop will break here if sd == NULL */
  1441. }
  1442. return new_cpu;
  1443. }
  1444. #endif /* CONFIG_SMP */
  1445. static unsigned long
  1446. wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
  1447. {
  1448. unsigned long gran = sysctl_sched_wakeup_granularity;
  1449. /*
  1450. * Since its curr running now, convert the gran from real-time
  1451. * to virtual-time in his units.
  1452. *
  1453. * By using 'se' instead of 'curr' we penalize light tasks, so
  1454. * they get preempted easier. That is, if 'se' < 'curr' then
  1455. * the resulting gran will be larger, therefore penalizing the
  1456. * lighter, if otoh 'se' > 'curr' then the resulting gran will
  1457. * be smaller, again penalizing the lighter task.
  1458. *
  1459. * This is especially important for buddies when the leftmost
  1460. * task is higher priority than the buddy.
  1461. */
  1462. if (unlikely(se->load.weight != NICE_0_LOAD))
  1463. gran = calc_delta_fair(gran, se);
  1464. return gran;
  1465. }
  1466. /*
  1467. * Should 'se' preempt 'curr'.
  1468. *
  1469. * |s1
  1470. * |s2
  1471. * |s3
  1472. * g
  1473. * |<--->|c
  1474. *
  1475. * w(c, s1) = -1
  1476. * w(c, s2) = 0
  1477. * w(c, s3) = 1
  1478. *
  1479. */
  1480. static int
  1481. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
  1482. {
  1483. s64 gran, vdiff = curr->vruntime - se->vruntime;
  1484. if (vdiff <= 0)
  1485. return -1;
  1486. gran = wakeup_gran(curr, se);
  1487. if (vdiff > gran)
  1488. return 1;
  1489. return 0;
  1490. }
  1491. static void set_last_buddy(struct sched_entity *se)
  1492. {
  1493. if (likely(task_of(se)->policy != SCHED_IDLE)) {
  1494. for_each_sched_entity(se)
  1495. cfs_rq_of(se)->last = se;
  1496. }
  1497. }
  1498. static void set_next_buddy(struct sched_entity *se)
  1499. {
  1500. if (likely(task_of(se)->policy != SCHED_IDLE)) {
  1501. for_each_sched_entity(se)
  1502. cfs_rq_of(se)->next = se;
  1503. }
  1504. }
  1505. /*
  1506. * Preempt the current task with a newly woken task if needed:
  1507. */
  1508. static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  1509. {
  1510. struct task_struct *curr = rq->curr;
  1511. struct sched_entity *se = &curr->se, *pse = &p->se;
  1512. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  1513. int scale = cfs_rq->nr_running >= sched_nr_latency;
  1514. if (unlikely(se == pse))
  1515. return;
  1516. if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
  1517. set_next_buddy(pse);
  1518. /*
  1519. * We can come here with TIF_NEED_RESCHED already set from new task
  1520. * wake up path.
  1521. */
  1522. if (test_tsk_need_resched(curr))
  1523. return;
  1524. /*
  1525. * Batch and idle tasks do not preempt (their preemption is driven by
  1526. * the tick):
  1527. */
  1528. if (unlikely(p->policy != SCHED_NORMAL))
  1529. return;
  1530. /* Idle tasks are by definition preempted by everybody. */
  1531. if (unlikely(curr->policy == SCHED_IDLE))
  1532. goto preempt;
  1533. if (!sched_feat(WAKEUP_PREEMPT))
  1534. return;
  1535. update_curr(cfs_rq);
  1536. find_matching_se(&se, &pse);
  1537. BUG_ON(!pse);
  1538. if (wakeup_preempt_entity(se, pse) == 1)
  1539. goto preempt;
  1540. return;
  1541. preempt:
  1542. resched_task(curr);
  1543. /*
  1544. * Only set the backward buddy when the current task is still
  1545. * on the rq. This can happen when a wakeup gets interleaved
  1546. * with schedule on the ->pre_schedule() or idle_balance()
  1547. * point, either of which can * drop the rq lock.
  1548. *
  1549. * Also, during early boot the idle thread is in the fair class,
  1550. * for obvious reasons its a bad idea to schedule back to it.
  1551. */
  1552. if (unlikely(!se->on_rq || curr == rq->idle))
  1553. return;
  1554. if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
  1555. set_last_buddy(se);
  1556. }
  1557. static struct task_struct *pick_next_task_fair(struct rq *rq)
  1558. {
  1559. struct task_struct *p;
  1560. struct cfs_rq *cfs_rq = &rq->cfs;
  1561. struct sched_entity *se;
  1562. if (!cfs_rq->nr_running)
  1563. return NULL;
  1564. do {
  1565. se = pick_next_entity(cfs_rq);
  1566. set_next_entity(cfs_rq, se);
  1567. cfs_rq = group_cfs_rq(se);
  1568. } while (cfs_rq);
  1569. p = task_of(se);
  1570. hrtick_start_fair(rq, p);
  1571. return p;
  1572. }
  1573. /*
  1574. * Account for a descheduled task:
  1575. */
  1576. static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  1577. {
  1578. struct sched_entity *se = &prev->se;
  1579. struct cfs_rq *cfs_rq;
  1580. for_each_sched_entity(se) {
  1581. cfs_rq = cfs_rq_of(se);
  1582. put_prev_entity(cfs_rq, se);
  1583. }
  1584. }
  1585. #ifdef CONFIG_SMP
  1586. /**************************************************
  1587. * Fair scheduling class load-balancing methods:
  1588. */
  1589. /*
  1590. * pull_task - move a task from a remote runqueue to the local runqueue.
  1591. * Both runqueues must be locked.
  1592. */
  1593. static void pull_task(struct rq *src_rq, struct task_struct *p,
  1594. struct rq *this_rq, int this_cpu)
  1595. {
  1596. deactivate_task(src_rq, p, 0);
  1597. set_task_cpu(p, this_cpu);
  1598. activate_task(this_rq, p, 0);
  1599. check_preempt_curr(this_rq, p, 0);
  1600. }
  1601. /*
  1602. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1603. */
  1604. static
  1605. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  1606. struct sched_domain *sd, enum cpu_idle_type idle,
  1607. int *all_pinned)
  1608. {
  1609. int tsk_cache_hot = 0;
  1610. /*
  1611. * We do not migrate tasks that are:
  1612. * 1) running (obviously), or
  1613. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1614. * 3) are cache-hot on their current CPU.
  1615. */
  1616. if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
  1617. schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
  1618. return 0;
  1619. }
  1620. *all_pinned = 0;
  1621. if (task_running(rq, p)) {
  1622. schedstat_inc(p, se.statistics.nr_failed_migrations_running);
  1623. return 0;
  1624. }
  1625. /*
  1626. * Aggressive migration if:
  1627. * 1) task is cache cold, or
  1628. * 2) too many balance attempts have failed.
  1629. */
  1630. tsk_cache_hot = task_hot(p, rq->clock_task, sd);
  1631. if (!tsk_cache_hot ||
  1632. sd->nr_balance_failed > sd->cache_nice_tries) {
  1633. #ifdef CONFIG_SCHEDSTATS
  1634. if (tsk_cache_hot) {
  1635. schedstat_inc(sd, lb_hot_gained[idle]);
  1636. schedstat_inc(p, se.statistics.nr_forced_migrations);
  1637. }
  1638. #endif
  1639. return 1;
  1640. }
  1641. if (tsk_cache_hot) {
  1642. schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
  1643. return 0;
  1644. }
  1645. return 1;
  1646. }
  1647. /*
  1648. * move_one_task tries to move exactly one task from busiest to this_rq, as
  1649. * part of active balancing operations within "domain".
  1650. * Returns 1 if successful and 0 otherwise.
  1651. *
  1652. * Called with both runqueues locked.
  1653. */
  1654. static int
  1655. move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1656. struct sched_domain *sd, enum cpu_idle_type idle)
  1657. {
  1658. struct task_struct *p, *n;
  1659. struct cfs_rq *cfs_rq;
  1660. int pinned = 0;
  1661. for_each_leaf_cfs_rq(busiest, cfs_rq) {
  1662. list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
  1663. if (!can_migrate_task(p, busiest, this_cpu,
  1664. sd, idle, &pinned))
  1665. continue;
  1666. pull_task(busiest, p, this_rq, this_cpu);
  1667. /*
  1668. * Right now, this is only the second place pull_task()
  1669. * is called, so we can safely collect pull_task()
  1670. * stats here rather than inside pull_task().
  1671. */
  1672. schedstat_inc(sd, lb_gained[idle]);
  1673. return 1;
  1674. }
  1675. }
  1676. return 0;
  1677. }
  1678. static unsigned long
  1679. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1680. unsigned long max_load_move, struct sched_domain *sd,
  1681. enum cpu_idle_type idle, int *all_pinned,
  1682. int *this_best_prio, struct cfs_rq *busiest_cfs_rq)
  1683. {
  1684. int loops = 0, pulled = 0, pinned = 0;
  1685. long rem_load_move = max_load_move;
  1686. struct task_struct *p, *n;
  1687. if (max_load_move == 0)
  1688. goto out;
  1689. pinned = 1;
  1690. list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
  1691. if (loops++ > sysctl_sched_nr_migrate)
  1692. break;
  1693. if ((p->se.load.weight >> 1) > rem_load_move ||
  1694. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned))
  1695. continue;
  1696. pull_task(busiest, p, this_rq, this_cpu);
  1697. pulled++;
  1698. rem_load_move -= p->se.load.weight;
  1699. #ifdef CONFIG_PREEMPT
  1700. /*
  1701. * NEWIDLE balancing is a source of latency, so preemptible
  1702. * kernels will stop after the first task is pulled to minimize
  1703. * the critical section.
  1704. */
  1705. if (idle == CPU_NEWLY_IDLE)
  1706. break;
  1707. #endif
  1708. /*
  1709. * We only want to steal up to the prescribed amount of
  1710. * weighted load.
  1711. */
  1712. if (rem_load_move <= 0)
  1713. break;
  1714. if (p->prio < *this_best_prio)
  1715. *this_best_prio = p->prio;
  1716. }
  1717. out:
  1718. /*
  1719. * Right now, this is one of only two places pull_task() is called,
  1720. * so we can safely collect pull_task() stats here rather than
  1721. * inside pull_task().
  1722. */
  1723. schedstat_add(sd, lb_gained[idle], pulled);
  1724. if (all_pinned)
  1725. *all_pinned = pinned;
  1726. return max_load_move - rem_load_move;
  1727. }
  1728. #ifdef CONFIG_FAIR_GROUP_SCHED
  1729. /*
  1730. * update tg->load_weight by folding this cpu's load_avg
  1731. */
  1732. static int update_shares_cpu(struct task_group *tg, int cpu)
  1733. {
  1734. struct cfs_rq *cfs_rq;
  1735. unsigned long flags;
  1736. struct rq *rq;
  1737. if (!tg->se[cpu])
  1738. return 0;
  1739. rq = cpu_rq(cpu);
  1740. cfs_rq = tg->cfs_rq[cpu];
  1741. raw_spin_lock_irqsave(&rq->lock, flags);
  1742. update_rq_clock(rq);
  1743. update_cfs_load(cfs_rq, 1);
  1744. /*
  1745. * We need to update shares after updating tg->load_weight in
  1746. * order to adjust the weight of groups with long running tasks.
  1747. */
  1748. update_cfs_shares(cfs_rq, 0);
  1749. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1750. return 0;
  1751. }
  1752. static void update_shares(int cpu)
  1753. {
  1754. struct cfs_rq *cfs_rq;
  1755. struct rq *rq = cpu_rq(cpu);
  1756. rcu_read_lock();
  1757. for_each_leaf_cfs_rq(rq, cfs_rq)
  1758. update_shares_cpu(cfs_rq->tg, cpu);
  1759. rcu_read_unlock();
  1760. }
  1761. static unsigned long
  1762. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1763. unsigned long max_load_move,
  1764. struct sched_domain *sd, enum cpu_idle_type idle,
  1765. int *all_pinned, int *this_best_prio)
  1766. {
  1767. long rem_load_move = max_load_move;
  1768. int busiest_cpu = cpu_of(busiest);
  1769. struct task_group *tg;
  1770. rcu_read_lock();
  1771. update_h_load(busiest_cpu);
  1772. list_for_each_entry_rcu(tg, &task_groups, list) {
  1773. struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
  1774. unsigned long busiest_h_load = busiest_cfs_rq->h_load;
  1775. unsigned long busiest_weight = busiest_cfs_rq->load.weight;
  1776. u64 rem_load, moved_load;
  1777. /*
  1778. * empty group
  1779. */
  1780. if (!busiest_cfs_rq->task_weight)
  1781. continue;
  1782. rem_load = (u64)rem_load_move * busiest_weight;
  1783. rem_load = div_u64(rem_load, busiest_h_load + 1);
  1784. moved_load = balance_tasks(this_rq, this_cpu, busiest,
  1785. rem_load, sd, idle, all_pinned, this_best_prio,
  1786. busiest_cfs_rq);
  1787. if (!moved_load)
  1788. continue;
  1789. moved_load *= busiest_h_load;
  1790. moved_load = div_u64(moved_load, busiest_weight + 1);
  1791. rem_load_move -= moved_load;
  1792. if (rem_load_move < 0)
  1793. break;
  1794. }
  1795. rcu_read_unlock();
  1796. return max_load_move - rem_load_move;
  1797. }
  1798. #else
  1799. static inline void update_shares(int cpu)
  1800. {
  1801. }
  1802. static unsigned long
  1803. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1804. unsigned long max_load_move,
  1805. struct sched_domain *sd, enum cpu_idle_type idle,
  1806. int *all_pinned, int *this_best_prio)
  1807. {
  1808. return balance_tasks(this_rq, this_cpu, busiest,
  1809. max_load_move, sd, idle, all_pinned,
  1810. this_best_prio, &busiest->cfs);
  1811. }
  1812. #endif
  1813. /*
  1814. * move_tasks tries to move up to max_load_move weighted load from busiest to
  1815. * this_rq, as part of a balancing operation within domain "sd".
  1816. * Returns 1 if successful and 0 otherwise.
  1817. *
  1818. * Called with both runqueues locked.
  1819. */
  1820. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1821. unsigned long max_load_move,
  1822. struct sched_domain *sd, enum cpu_idle_type idle,
  1823. int *all_pinned)
  1824. {
  1825. unsigned long total_load_moved = 0, load_moved;
  1826. int this_best_prio = this_rq->curr->prio;
  1827. do {
  1828. load_moved = load_balance_fair(this_rq, this_cpu, busiest,
  1829. max_load_move - total_load_moved,
  1830. sd, idle, all_pinned, &this_best_prio);
  1831. total_load_moved += load_moved;
  1832. #ifdef CONFIG_PREEMPT
  1833. /*
  1834. * NEWIDLE balancing is a source of latency, so preemptible
  1835. * kernels will stop after the first task is pulled to minimize
  1836. * the critical section.
  1837. */
  1838. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  1839. break;
  1840. if (raw_spin_is_contended(&this_rq->lock) ||
  1841. raw_spin_is_contended(&busiest->lock))
  1842. break;
  1843. #endif
  1844. } while (load_moved && max_load_move > total_load_moved);
  1845. return total_load_moved > 0;
  1846. }
  1847. /********** Helpers for find_busiest_group ************************/
  1848. /*
  1849. * sd_lb_stats - Structure to store the statistics of a sched_domain
  1850. * during load balancing.
  1851. */
  1852. struct sd_lb_stats {
  1853. struct sched_group *busiest; /* Busiest group in this sd */
  1854. struct sched_group *this; /* Local group in this sd */
  1855. unsigned long total_load; /* Total load of all groups in sd */
  1856. unsigned long total_pwr; /* Total power of all groups in sd */
  1857. unsigned long avg_load; /* Average load across all groups in sd */
  1858. /** Statistics of this group */
  1859. unsigned long this_load;
  1860. unsigned long this_load_per_task;
  1861. unsigned long this_nr_running;
  1862. unsigned long this_has_capacity;
  1863. unsigned int this_idle_cpus;
  1864. /* Statistics of the busiest group */
  1865. unsigned int busiest_idle_cpus;
  1866. unsigned long max_load;
  1867. unsigned long busiest_load_per_task;
  1868. unsigned long busiest_nr_running;
  1869. unsigned long busiest_group_capacity;
  1870. unsigned long busiest_has_capacity;
  1871. unsigned int busiest_group_weight;
  1872. int group_imb; /* Is there imbalance in this sd */
  1873. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  1874. int power_savings_balance; /* Is powersave balance needed for this sd */
  1875. struct sched_group *group_min; /* Least loaded group in sd */
  1876. struct sched_group *group_leader; /* Group which relieves group_min */
  1877. unsigned long min_load_per_task; /* load_per_task in group_min */
  1878. unsigned long leader_nr_running; /* Nr running of group_leader */
  1879. unsigned long min_nr_running; /* Nr running of group_min */
  1880. #endif
  1881. };
  1882. /*
  1883. * sg_lb_stats - stats of a sched_group required for load_balancing
  1884. */
  1885. struct sg_lb_stats {
  1886. unsigned long avg_load; /*Avg load across the CPUs of the group */
  1887. unsigned long group_load; /* Total load over the CPUs of the group */
  1888. unsigned long sum_nr_running; /* Nr tasks running in the group */
  1889. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  1890. unsigned long group_capacity;
  1891. unsigned long idle_cpus;
  1892. unsigned long group_weight;
  1893. int group_imb; /* Is there an imbalance in the group ? */
  1894. int group_has_capacity; /* Is there extra capacity in the group? */
  1895. };
  1896. /**
  1897. * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
  1898. * @group: The group whose first cpu is to be returned.
  1899. */
  1900. static inline unsigned int group_first_cpu(struct sched_group *group)
  1901. {
  1902. return cpumask_first(sched_group_cpus(group));
  1903. }
  1904. /**
  1905. * get_sd_load_idx - Obtain the load index for a given sched domain.
  1906. * @sd: The sched_domain whose load_idx is to be obtained.
  1907. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  1908. */
  1909. static inline int get_sd_load_idx(struct sched_domain *sd,
  1910. enum cpu_idle_type idle)
  1911. {
  1912. int load_idx;
  1913. switch (idle) {
  1914. case CPU_NOT_IDLE:
  1915. load_idx = sd->busy_idx;
  1916. break;
  1917. case CPU_NEWLY_IDLE:
  1918. load_idx = sd->newidle_idx;
  1919. break;
  1920. default:
  1921. load_idx = sd->idle_idx;
  1922. break;
  1923. }
  1924. return load_idx;
  1925. }
  1926. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  1927. /**
  1928. * init_sd_power_savings_stats - Initialize power savings statistics for
  1929. * the given sched_domain, during load balancing.
  1930. *
  1931. * @sd: Sched domain whose power-savings statistics are to be initialized.
  1932. * @sds: Variable containing the statistics for sd.
  1933. * @idle: Idle status of the CPU at which we're performing load-balancing.
  1934. */
  1935. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  1936. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  1937. {
  1938. /*
  1939. * Busy processors will not participate in power savings
  1940. * balance.
  1941. */
  1942. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  1943. sds->power_savings_balance = 0;
  1944. else {
  1945. sds->power_savings_balance = 1;
  1946. sds->min_nr_running = ULONG_MAX;
  1947. sds->leader_nr_running = 0;
  1948. }
  1949. }
  1950. /**
  1951. * update_sd_power_savings_stats - Update the power saving stats for a
  1952. * sched_domain while performing load balancing.
  1953. *
  1954. * @group: sched_group belonging to the sched_domain under consideration.
  1955. * @sds: Variable containing the statistics of the sched_domain
  1956. * @local_group: Does group contain the CPU for which we're performing
  1957. * load balancing ?
  1958. * @sgs: Variable containing the statistics of the group.
  1959. */
  1960. static inline void update_sd_power_savings_stats(struct sched_group *group,
  1961. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  1962. {
  1963. if (!sds->power_savings_balance)
  1964. return;
  1965. /*
  1966. * If the local group is idle or completely loaded
  1967. * no need to do power savings balance at this domain
  1968. */
  1969. if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
  1970. !sds->this_nr_running))
  1971. sds->power_savings_balance = 0;
  1972. /*
  1973. * If a group is already running at full capacity or idle,
  1974. * don't include that group in power savings calculations
  1975. */
  1976. if (!sds->power_savings_balance ||
  1977. sgs->sum_nr_running >= sgs->group_capacity ||
  1978. !sgs->sum_nr_running)
  1979. return;
  1980. /*
  1981. * Calculate the group which has the least non-idle load.
  1982. * This is the group from where we need to pick up the load
  1983. * for saving power
  1984. */
  1985. if ((sgs->sum_nr_running < sds->min_nr_running) ||
  1986. (sgs->sum_nr_running == sds->min_nr_running &&
  1987. group_first_cpu(group) > group_first_cpu(sds->group_min))) {
  1988. sds->group_min = group;
  1989. sds->min_nr_running = sgs->sum_nr_running;
  1990. sds->min_load_per_task = sgs->sum_weighted_load /
  1991. sgs->sum_nr_running;
  1992. }
  1993. /*
  1994. * Calculate the group which is almost near its
  1995. * capacity but still has some space to pick up some load
  1996. * from other group and save more power
  1997. */
  1998. if (sgs->sum_nr_running + 1 > sgs->group_capacity)
  1999. return;
  2000. if (sgs->sum_nr_running > sds->leader_nr_running ||
  2001. (sgs->sum_nr_running == sds->leader_nr_running &&
  2002. group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
  2003. sds->group_leader = group;
  2004. sds->leader_nr_running = sgs->sum_nr_running;
  2005. }
  2006. }
  2007. /**
  2008. * check_power_save_busiest_group - see if there is potential for some power-savings balance
  2009. * @sds: Variable containing the statistics of the sched_domain
  2010. * under consideration.
  2011. * @this_cpu: Cpu at which we're currently performing load-balancing.
  2012. * @imbalance: Variable to store the imbalance.
  2013. *
  2014. * Description:
  2015. * Check if we have potential to perform some power-savings balance.
  2016. * If yes, set the busiest group to be the least loaded group in the
  2017. * sched_domain, so that it's CPUs can be put to idle.
  2018. *
  2019. * Returns 1 if there is potential to perform power-savings balance.
  2020. * Else returns 0.
  2021. */
  2022. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  2023. int this_cpu, unsigned long *imbalance)
  2024. {
  2025. if (!sds->power_savings_balance)
  2026. return 0;
  2027. if (sds->this != sds->group_leader ||
  2028. sds->group_leader == sds->group_min)
  2029. return 0;
  2030. *imbalance = sds->min_load_per_task;
  2031. sds->busiest = sds->group_min;
  2032. return 1;
  2033. }
  2034. #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  2035. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2036. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2037. {
  2038. return;
  2039. }
  2040. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2041. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2042. {
  2043. return;
  2044. }
  2045. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  2046. int this_cpu, unsigned long *imbalance)
  2047. {
  2048. return 0;
  2049. }
  2050. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  2051. unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
  2052. {
  2053. return SCHED_LOAD_SCALE;
  2054. }
  2055. unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
  2056. {
  2057. return default_scale_freq_power(sd, cpu);
  2058. }
  2059. unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
  2060. {
  2061. unsigned long weight = sd->span_weight;
  2062. unsigned long smt_gain = sd->smt_gain;
  2063. smt_gain /= weight;
  2064. return smt_gain;
  2065. }
  2066. unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
  2067. {
  2068. return default_scale_smt_power(sd, cpu);
  2069. }
  2070. unsigned long scale_rt_power(int cpu)
  2071. {
  2072. struct rq *rq = cpu_rq(cpu);
  2073. u64 total, available;
  2074. total = sched_avg_period() + (rq->clock - rq->age_stamp);
  2075. if (unlikely(total < rq->rt_avg)) {
  2076. /* Ensures that power won't end up being negative */
  2077. available = 0;
  2078. } else {
  2079. available = total - rq->rt_avg;
  2080. }
  2081. if (unlikely((s64)total < SCHED_LOAD_SCALE))
  2082. total = SCHED_LOAD_SCALE;
  2083. total >>= SCHED_LOAD_SHIFT;
  2084. return div_u64(available, total);
  2085. }
  2086. static void update_cpu_power(struct sched_domain *sd, int cpu)
  2087. {
  2088. unsigned long weight = sd->span_weight;
  2089. unsigned long power = SCHED_LOAD_SCALE;
  2090. struct sched_group *sdg = sd->groups;
  2091. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  2092. if (sched_feat(ARCH_POWER))
  2093. power *= arch_scale_smt_power(sd, cpu);
  2094. else
  2095. power *= default_scale_smt_power(sd, cpu);
  2096. power >>= SCHED_LOAD_SHIFT;
  2097. }
  2098. sdg->cpu_power_orig = power;
  2099. if (sched_feat(ARCH_POWER))
  2100. power *= arch_scale_freq_power(sd, cpu);
  2101. else
  2102. power *= default_scale_freq_power(sd, cpu);
  2103. power >>= SCHED_LOAD_SHIFT;
  2104. power *= scale_rt_power(cpu);
  2105. power >>= SCHED_LOAD_SHIFT;
  2106. if (!power)
  2107. power = 1;
  2108. cpu_rq(cpu)->cpu_power = power;
  2109. sdg->cpu_power = power;
  2110. }
  2111. static void update_group_power(struct sched_domain *sd, int cpu)
  2112. {
  2113. struct sched_domain *child = sd->child;
  2114. struct sched_group *group, *sdg = sd->groups;
  2115. unsigned long power;
  2116. if (!child) {
  2117. update_cpu_power(sd, cpu);
  2118. return;
  2119. }
  2120. power = 0;
  2121. group = child->groups;
  2122. do {
  2123. power += group->cpu_power;
  2124. group = group->next;
  2125. } while (group != child->groups);
  2126. sdg->cpu_power = power;
  2127. }
  2128. /*
  2129. * Try and fix up capacity for tiny siblings, this is needed when
  2130. * things like SD_ASYM_PACKING need f_b_g to select another sibling
  2131. * which on its own isn't powerful enough.
  2132. *
  2133. * See update_sd_pick_busiest() and check_asym_packing().
  2134. */
  2135. static inline int
  2136. fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
  2137. {
  2138. /*
  2139. * Only siblings can have significantly less than SCHED_LOAD_SCALE
  2140. */
  2141. if (sd->level != SD_LV_SIBLING)
  2142. return 0;
  2143. /*
  2144. * If ~90% of the cpu_power is still there, we're good.
  2145. */
  2146. if (group->cpu_power * 32 > group->cpu_power_orig * 29)
  2147. return 1;
  2148. return 0;
  2149. }
  2150. /**
  2151. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  2152. * @sd: The sched_domain whose statistics are to be updated.
  2153. * @group: sched_group whose statistics are to be updated.
  2154. * @this_cpu: Cpu for which load balance is currently performed.
  2155. * @idle: Idle status of this_cpu
  2156. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  2157. * @sd_idle: Idle status of the sched_domain containing group.
  2158. * @local_group: Does group contain this_cpu.
  2159. * @cpus: Set of cpus considered for load balancing.
  2160. * @balance: Should we balance.
  2161. * @sgs: variable to hold the statistics for this group.
  2162. */
  2163. static inline void update_sg_lb_stats(struct sched_domain *sd,
  2164. struct sched_group *group, int this_cpu,
  2165. enum cpu_idle_type idle, int load_idx, int *sd_idle,
  2166. int local_group, const struct cpumask *cpus,
  2167. int *balance, struct sg_lb_stats *sgs)
  2168. {
  2169. unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
  2170. int i;
  2171. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2172. unsigned long avg_load_per_task = 0;
  2173. if (local_group)
  2174. balance_cpu = group_first_cpu(group);
  2175. /* Tally up the load of all CPUs in the group */
  2176. max_cpu_load = 0;
  2177. min_cpu_load = ~0UL;
  2178. max_nr_running = 0;
  2179. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  2180. struct rq *rq = cpu_rq(i);
  2181. if (*sd_idle && rq->nr_running)
  2182. *sd_idle = 0;
  2183. /* Bias balancing toward cpus of our domain */
  2184. if (local_group) {
  2185. if (idle_cpu(i) && !first_idle_cpu) {
  2186. first_idle_cpu = 1;
  2187. balance_cpu = i;
  2188. }
  2189. load = target_load(i, load_idx);
  2190. } else {
  2191. load = source_load(i, load_idx);
  2192. if (load > max_cpu_load) {
  2193. max_cpu_load = load;
  2194. max_nr_running = rq->nr_running;
  2195. }
  2196. if (min_cpu_load > load)
  2197. min_cpu_load = load;
  2198. }
  2199. sgs->group_load += load;
  2200. sgs->sum_nr_running += rq->nr_running;
  2201. sgs->sum_weighted_load += weighted_cpuload(i);
  2202. if (idle_cpu(i))
  2203. sgs->idle_cpus++;
  2204. }
  2205. /*
  2206. * First idle cpu or the first cpu(busiest) in this sched group
  2207. * is eligible for doing load balancing at this and above
  2208. * domains. In the newly idle case, we will allow all the cpu's
  2209. * to do the newly idle load balance.
  2210. */
  2211. if (idle != CPU_NEWLY_IDLE && local_group) {
  2212. if (balance_cpu != this_cpu) {
  2213. *balance = 0;
  2214. return;
  2215. }
  2216. update_group_power(sd, this_cpu);
  2217. }
  2218. /* Adjust by relative CPU power of the group */
  2219. sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
  2220. /*
  2221. * Consider the group unbalanced when the imbalance is larger
  2222. * than the average weight of two tasks.
  2223. *
  2224. * APZ: with cgroup the avg task weight can vary wildly and
  2225. * might not be a suitable number - should we keep a
  2226. * normalized nr_running number somewhere that negates
  2227. * the hierarchy?
  2228. */
  2229. if (sgs->sum_nr_running)
  2230. avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
  2231. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task && max_nr_running > 1)
  2232. sgs->group_imb = 1;
  2233. sgs->group_capacity = DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
  2234. if (!sgs->group_capacity)
  2235. sgs->group_capacity = fix_small_capacity(sd, group);
  2236. sgs->group_weight = group->group_weight;
  2237. if (sgs->group_capacity > sgs->sum_nr_running)
  2238. sgs->group_has_capacity = 1;
  2239. }
  2240. /**
  2241. * update_sd_pick_busiest - return 1 on busiest group
  2242. * @sd: sched_domain whose statistics are to be checked
  2243. * @sds: sched_domain statistics
  2244. * @sg: sched_group candidate to be checked for being the busiest
  2245. * @sgs: sched_group statistics
  2246. * @this_cpu: the current cpu
  2247. *
  2248. * Determine if @sg is a busier group than the previously selected
  2249. * busiest group.
  2250. */
  2251. static bool update_sd_pick_busiest(struct sched_domain *sd,
  2252. struct sd_lb_stats *sds,
  2253. struct sched_group *sg,
  2254. struct sg_lb_stats *sgs,
  2255. int this_cpu)
  2256. {
  2257. if (sgs->avg_load <= sds->max_load)
  2258. return false;
  2259. if (sgs->sum_nr_running > sgs->group_capacity)
  2260. return true;
  2261. if (sgs->group_imb)
  2262. return true;
  2263. /*
  2264. * ASYM_PACKING needs to move all the work to the lowest
  2265. * numbered CPUs in the group, therefore mark all groups
  2266. * higher than ourself as busy.
  2267. */
  2268. if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
  2269. this_cpu < group_first_cpu(sg)) {
  2270. if (!sds->busiest)
  2271. return true;
  2272. if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
  2273. return true;
  2274. }
  2275. return false;
  2276. }
  2277. /**
  2278. * update_sd_lb_stats - Update sched_group's statistics for load balancing.
  2279. * @sd: sched_domain whose statistics are to be updated.
  2280. * @this_cpu: Cpu for which load balance is currently performed.
  2281. * @idle: Idle status of this_cpu
  2282. * @sd_idle: Idle status of the sched_domain containing sg.
  2283. * @cpus: Set of cpus considered for load balancing.
  2284. * @balance: Should we balance.
  2285. * @sds: variable to hold the statistics for this sched_domain.
  2286. */
  2287. static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
  2288. enum cpu_idle_type idle, int *sd_idle,
  2289. const struct cpumask *cpus, int *balance,
  2290. struct sd_lb_stats *sds)
  2291. {
  2292. struct sched_domain *child = sd->child;
  2293. struct sched_group *sg = sd->groups;
  2294. struct sg_lb_stats sgs;
  2295. int load_idx, prefer_sibling = 0;
  2296. if (child && child->flags & SD_PREFER_SIBLING)
  2297. prefer_sibling = 1;
  2298. init_sd_power_savings_stats(sd, sds, idle);
  2299. load_idx = get_sd_load_idx(sd, idle);
  2300. do {
  2301. int local_group;
  2302. local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
  2303. memset(&sgs, 0, sizeof(sgs));
  2304. update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx, sd_idle,
  2305. local_group, cpus, balance, &sgs);
  2306. if (local_group && !(*balance))
  2307. return;
  2308. sds->total_load += sgs.group_load;
  2309. sds->total_pwr += sg->cpu_power;
  2310. /*
  2311. * In case the child domain prefers tasks go to siblings
  2312. * first, lower the sg capacity to one so that we'll try
  2313. * and move all the excess tasks away. We lower the capacity
  2314. * of a group only if the local group has the capacity to fit
  2315. * these excess tasks, i.e. nr_running < group_capacity. The
  2316. * extra check prevents the case where you always pull from the
  2317. * heaviest group when it is already under-utilized (possible
  2318. * with a large weight task outweighs the tasks on the system).
  2319. */
  2320. if (prefer_sibling && !local_group && sds->this_has_capacity)
  2321. sgs.group_capacity = min(sgs.group_capacity, 1UL);
  2322. if (local_group) {
  2323. sds->this_load = sgs.avg_load;
  2324. sds->this = sg;
  2325. sds->this_nr_running = sgs.sum_nr_running;
  2326. sds->this_load_per_task = sgs.sum_weighted_load;
  2327. sds->this_has_capacity = sgs.group_has_capacity;
  2328. sds->this_idle_cpus = sgs.idle_cpus;
  2329. } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
  2330. sds->max_load = sgs.avg_load;
  2331. sds->busiest = sg;
  2332. sds->busiest_nr_running = sgs.sum_nr_running;
  2333. sds->busiest_idle_cpus = sgs.idle_cpus;
  2334. sds->busiest_group_capacity = sgs.group_capacity;
  2335. sds->busiest_load_per_task = sgs.sum_weighted_load;
  2336. sds->busiest_has_capacity = sgs.group_has_capacity;
  2337. sds->busiest_group_weight = sgs.group_weight;
  2338. sds->group_imb = sgs.group_imb;
  2339. }
  2340. update_sd_power_savings_stats(sg, sds, local_group, &sgs);
  2341. sg = sg->next;
  2342. } while (sg != sd->groups);
  2343. }
  2344. int __weak arch_sd_sibling_asym_packing(void)
  2345. {
  2346. return 0*SD_ASYM_PACKING;
  2347. }
  2348. /**
  2349. * check_asym_packing - Check to see if the group is packed into the
  2350. * sched doman.
  2351. *
  2352. * This is primarily intended to used at the sibling level. Some
  2353. * cores like POWER7 prefer to use lower numbered SMT threads. In the
  2354. * case of POWER7, it can move to lower SMT modes only when higher
  2355. * threads are idle. When in lower SMT modes, the threads will
  2356. * perform better since they share less core resources. Hence when we
  2357. * have idle threads, we want them to be the higher ones.
  2358. *
  2359. * This packing function is run on idle threads. It checks to see if
  2360. * the busiest CPU in this domain (core in the P7 case) has a higher
  2361. * CPU number than the packing function is being run on. Here we are
  2362. * assuming lower CPU number will be equivalent to lower a SMT thread
  2363. * number.
  2364. *
  2365. * Returns 1 when packing is required and a task should be moved to
  2366. * this CPU. The amount of the imbalance is returned in *imbalance.
  2367. *
  2368. * @sd: The sched_domain whose packing is to be checked.
  2369. * @sds: Statistics of the sched_domain which is to be packed
  2370. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  2371. * @imbalance: returns amount of imbalanced due to packing.
  2372. */
  2373. static int check_asym_packing(struct sched_domain *sd,
  2374. struct sd_lb_stats *sds,
  2375. int this_cpu, unsigned long *imbalance)
  2376. {
  2377. int busiest_cpu;
  2378. if (!(sd->flags & SD_ASYM_PACKING))
  2379. return 0;
  2380. if (!sds->busiest)
  2381. return 0;
  2382. busiest_cpu = group_first_cpu(sds->busiest);
  2383. if (this_cpu > busiest_cpu)
  2384. return 0;
  2385. *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->cpu_power,
  2386. SCHED_LOAD_SCALE);
  2387. return 1;
  2388. }
  2389. /**
  2390. * fix_small_imbalance - Calculate the minor imbalance that exists
  2391. * amongst the groups of a sched_domain, during
  2392. * load balancing.
  2393. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  2394. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  2395. * @imbalance: Variable to store the imbalance.
  2396. */
  2397. static inline void fix_small_imbalance(struct sd_lb_stats *sds,
  2398. int this_cpu, unsigned long *imbalance)
  2399. {
  2400. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  2401. unsigned int imbn = 2;
  2402. unsigned long scaled_busy_load_per_task;
  2403. if (sds->this_nr_running) {
  2404. sds->this_load_per_task /= sds->this_nr_running;
  2405. if (sds->busiest_load_per_task >
  2406. sds->this_load_per_task)
  2407. imbn = 1;
  2408. } else
  2409. sds->this_load_per_task =
  2410. cpu_avg_load_per_task(this_cpu);
  2411. scaled_busy_load_per_task = sds->busiest_load_per_task
  2412. * SCHED_LOAD_SCALE;
  2413. scaled_busy_load_per_task /= sds->busiest->cpu_power;
  2414. if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
  2415. (scaled_busy_load_per_task * imbn)) {
  2416. *imbalance = sds->busiest_load_per_task;
  2417. return;
  2418. }
  2419. /*
  2420. * OK, we don't have enough imbalance to justify moving tasks,
  2421. * however we may be able to increase total CPU power used by
  2422. * moving them.
  2423. */
  2424. pwr_now += sds->busiest->cpu_power *
  2425. min(sds->busiest_load_per_task, sds->max_load);
  2426. pwr_now += sds->this->cpu_power *
  2427. min(sds->this_load_per_task, sds->this_load);
  2428. pwr_now /= SCHED_LOAD_SCALE;
  2429. /* Amount of load we'd subtract */
  2430. tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
  2431. sds->busiest->cpu_power;
  2432. if (sds->max_load > tmp)
  2433. pwr_move += sds->busiest->cpu_power *
  2434. min(sds->busiest_load_per_task, sds->max_load - tmp);
  2435. /* Amount of load we'd add */
  2436. if (sds->max_load * sds->busiest->cpu_power <
  2437. sds->busiest_load_per_task * SCHED_LOAD_SCALE)
  2438. tmp = (sds->max_load * sds->busiest->cpu_power) /
  2439. sds->this->cpu_power;
  2440. else
  2441. tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
  2442. sds->this->cpu_power;
  2443. pwr_move += sds->this->cpu_power *
  2444. min(sds->this_load_per_task, sds->this_load + tmp);
  2445. pwr_move /= SCHED_LOAD_SCALE;
  2446. /* Move if we gain throughput */
  2447. if (pwr_move > pwr_now)
  2448. *imbalance = sds->busiest_load_per_task;
  2449. }
  2450. /**
  2451. * calculate_imbalance - Calculate the amount of imbalance present within the
  2452. * groups of a given sched_domain during load balance.
  2453. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  2454. * @this_cpu: Cpu for which currently load balance is being performed.
  2455. * @imbalance: The variable to store the imbalance.
  2456. */
  2457. static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
  2458. unsigned long *imbalance)
  2459. {
  2460. unsigned long max_pull, load_above_capacity = ~0UL;
  2461. sds->busiest_load_per_task /= sds->busiest_nr_running;
  2462. if (sds->group_imb) {
  2463. sds->busiest_load_per_task =
  2464. min(sds->busiest_load_per_task, sds->avg_load);
  2465. }
  2466. /*
  2467. * In the presence of smp nice balancing, certain scenarios can have
  2468. * max load less than avg load(as we skip the groups at or below
  2469. * its cpu_power, while calculating max_load..)
  2470. */
  2471. if (sds->max_load < sds->avg_load) {
  2472. *imbalance = 0;
  2473. return fix_small_imbalance(sds, this_cpu, imbalance);
  2474. }
  2475. if (!sds->group_imb) {
  2476. /*
  2477. * Don't want to pull so many tasks that a group would go idle.
  2478. */
  2479. load_above_capacity = (sds->busiest_nr_running -
  2480. sds->busiest_group_capacity);
  2481. load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_LOAD_SCALE);
  2482. load_above_capacity /= sds->busiest->cpu_power;
  2483. }
  2484. /*
  2485. * We're trying to get all the cpus to the average_load, so we don't
  2486. * want to push ourselves above the average load, nor do we wish to
  2487. * reduce the max loaded cpu below the average load. At the same time,
  2488. * we also don't want to reduce the group load below the group capacity
  2489. * (so that we can implement power-savings policies etc). Thus we look
  2490. * for the minimum possible imbalance.
  2491. * Be careful of negative numbers as they'll appear as very large values
  2492. * with unsigned longs.
  2493. */
  2494. max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
  2495. /* How much load to actually move to equalise the imbalance */
  2496. *imbalance = min(max_pull * sds->busiest->cpu_power,
  2497. (sds->avg_load - sds->this_load) * sds->this->cpu_power)
  2498. / SCHED_LOAD_SCALE;
  2499. /*
  2500. * if *imbalance is less than the average load per runnable task
  2501. * there is no gaurantee that any tasks will be moved so we'll have
  2502. * a think about bumping its value to force at least one task to be
  2503. * moved
  2504. */
  2505. if (*imbalance < sds->busiest_load_per_task)
  2506. return fix_small_imbalance(sds, this_cpu, imbalance);
  2507. }
  2508. /******* find_busiest_group() helpers end here *********************/
  2509. /**
  2510. * find_busiest_group - Returns the busiest group within the sched_domain
  2511. * if there is an imbalance. If there isn't an imbalance, and
  2512. * the user has opted for power-savings, it returns a group whose
  2513. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  2514. * such a group exists.
  2515. *
  2516. * Also calculates the amount of weighted load which should be moved
  2517. * to restore balance.
  2518. *
  2519. * @sd: The sched_domain whose busiest group is to be returned.
  2520. * @this_cpu: The cpu for which load balancing is currently being performed.
  2521. * @imbalance: Variable which stores amount of weighted load which should
  2522. * be moved to restore balance/put a group to idle.
  2523. * @idle: The idle status of this_cpu.
  2524. * @sd_idle: The idleness of sd
  2525. * @cpus: The set of CPUs under consideration for load-balancing.
  2526. * @balance: Pointer to a variable indicating if this_cpu
  2527. * is the appropriate cpu to perform load balancing at this_level.
  2528. *
  2529. * Returns: - the busiest group if imbalance exists.
  2530. * - If no imbalance and user has opted for power-savings balance,
  2531. * return the least loaded group whose CPUs can be
  2532. * put to idle by rebalancing its tasks onto our group.
  2533. */
  2534. static struct sched_group *
  2535. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2536. unsigned long *imbalance, enum cpu_idle_type idle,
  2537. int *sd_idle, const struct cpumask *cpus, int *balance)
  2538. {
  2539. struct sd_lb_stats sds;
  2540. memset(&sds, 0, sizeof(sds));
  2541. /*
  2542. * Compute the various statistics relavent for load balancing at
  2543. * this level.
  2544. */
  2545. update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
  2546. balance, &sds);
  2547. /* Cases where imbalance does not exist from POV of this_cpu */
  2548. /* 1) this_cpu is not the appropriate cpu to perform load balancing
  2549. * at this level.
  2550. * 2) There is no busy sibling group to pull from.
  2551. * 3) This group is the busiest group.
  2552. * 4) This group is more busy than the avg busieness at this
  2553. * sched_domain.
  2554. * 5) The imbalance is within the specified limit.
  2555. *
  2556. * Note: when doing newidle balance, if the local group has excess
  2557. * capacity (i.e. nr_running < group_capacity) and the busiest group
  2558. * does not have any capacity, we force a load balance to pull tasks
  2559. * to the local group. In this case, we skip past checks 3, 4 and 5.
  2560. */
  2561. if (!(*balance))
  2562. goto ret;
  2563. if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
  2564. check_asym_packing(sd, &sds, this_cpu, imbalance))
  2565. return sds.busiest;
  2566. if (!sds.busiest || sds.busiest_nr_running == 0)
  2567. goto out_balanced;
  2568. /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
  2569. if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
  2570. !sds.busiest_has_capacity)
  2571. goto force_balance;
  2572. if (sds.this_load >= sds.max_load)
  2573. goto out_balanced;
  2574. sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
  2575. if (sds.this_load >= sds.avg_load)
  2576. goto out_balanced;
  2577. /*
  2578. * In the CPU_NEWLY_IDLE, use imbalance_pct to be conservative.
  2579. * And to check for busy balance use !idle_cpu instead of
  2580. * CPU_NOT_IDLE. This is because HT siblings will use CPU_NOT_IDLE
  2581. * even when they are idle.
  2582. */
  2583. if (idle == CPU_NEWLY_IDLE || !idle_cpu(this_cpu)) {
  2584. if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
  2585. goto out_balanced;
  2586. } else {
  2587. /*
  2588. * This cpu is idle. If the busiest group load doesn't
  2589. * have more tasks than the number of available cpu's and
  2590. * there is no imbalance between this and busiest group
  2591. * wrt to idle cpu's, it is balanced.
  2592. */
  2593. if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
  2594. sds.busiest_nr_running <= sds.busiest_group_weight)
  2595. goto out_balanced;
  2596. }
  2597. force_balance:
  2598. /* Looks like there is an imbalance. Compute it */
  2599. calculate_imbalance(&sds, this_cpu, imbalance);
  2600. return sds.busiest;
  2601. out_balanced:
  2602. /*
  2603. * There is no obvious imbalance. But check if we can do some balancing
  2604. * to save power.
  2605. */
  2606. if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
  2607. return sds.busiest;
  2608. ret:
  2609. *imbalance = 0;
  2610. return NULL;
  2611. }
  2612. /*
  2613. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2614. */
  2615. static struct rq *
  2616. find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
  2617. enum cpu_idle_type idle, unsigned long imbalance,
  2618. const struct cpumask *cpus)
  2619. {
  2620. struct rq *busiest = NULL, *rq;
  2621. unsigned long max_load = 0;
  2622. int i;
  2623. for_each_cpu(i, sched_group_cpus(group)) {
  2624. unsigned long power = power_of(i);
  2625. unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
  2626. unsigned long wl;
  2627. if (!capacity)
  2628. capacity = fix_small_capacity(sd, group);
  2629. if (!cpumask_test_cpu(i, cpus))
  2630. continue;
  2631. rq = cpu_rq(i);
  2632. wl = weighted_cpuload(i);
  2633. /*
  2634. * When comparing with imbalance, use weighted_cpuload()
  2635. * which is not scaled with the cpu power.
  2636. */
  2637. if (capacity && rq->nr_running == 1 && wl > imbalance)
  2638. continue;
  2639. /*
  2640. * For the load comparisons with the other cpu's, consider
  2641. * the weighted_cpuload() scaled with the cpu power, so that
  2642. * the load can be moved away from the cpu that is potentially
  2643. * running at a lower capacity.
  2644. */
  2645. wl = (wl * SCHED_LOAD_SCALE) / power;
  2646. if (wl > max_load) {
  2647. max_load = wl;
  2648. busiest = rq;
  2649. }
  2650. }
  2651. return busiest;
  2652. }
  2653. /*
  2654. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2655. * so long as it is large enough.
  2656. */
  2657. #define MAX_PINNED_INTERVAL 512
  2658. /* Working cpumask for load_balance and load_balance_newidle. */
  2659. static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  2660. static int need_active_balance(struct sched_domain *sd, int sd_idle, int idle,
  2661. int busiest_cpu, int this_cpu)
  2662. {
  2663. if (idle == CPU_NEWLY_IDLE) {
  2664. /*
  2665. * ASYM_PACKING needs to force migrate tasks from busy but
  2666. * higher numbered CPUs in order to pack all tasks in the
  2667. * lowest numbered CPUs.
  2668. */
  2669. if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
  2670. return 1;
  2671. /*
  2672. * The only task running in a non-idle cpu can be moved to this
  2673. * cpu in an attempt to completely freeup the other CPU
  2674. * package.
  2675. *
  2676. * The package power saving logic comes from
  2677. * find_busiest_group(). If there are no imbalance, then
  2678. * f_b_g() will return NULL. However when sched_mc={1,2} then
  2679. * f_b_g() will select a group from which a running task may be
  2680. * pulled to this cpu in order to make the other package idle.
  2681. * If there is no opportunity to make a package idle and if
  2682. * there are no imbalance, then f_b_g() will return NULL and no
  2683. * action will be taken in load_balance_newidle().
  2684. *
  2685. * Under normal task pull operation due to imbalance, there
  2686. * will be more than one task in the source run queue and
  2687. * move_tasks() will succeed. ld_moved will be true and this
  2688. * active balance code will not be triggered.
  2689. */
  2690. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2691. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2692. return 0;
  2693. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  2694. return 0;
  2695. }
  2696. return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
  2697. }
  2698. static int active_load_balance_cpu_stop(void *data);
  2699. /*
  2700. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2701. * tasks if there is an imbalance.
  2702. */
  2703. static int load_balance(int this_cpu, struct rq *this_rq,
  2704. struct sched_domain *sd, enum cpu_idle_type idle,
  2705. int *balance)
  2706. {
  2707. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2708. struct sched_group *group;
  2709. unsigned long imbalance;
  2710. struct rq *busiest;
  2711. unsigned long flags;
  2712. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  2713. cpumask_copy(cpus, cpu_active_mask);
  2714. /*
  2715. * When power savings policy is enabled for the parent domain, idle
  2716. * sibling can pick up load irrespective of busy siblings. In this case,
  2717. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2718. * portraying it as CPU_NOT_IDLE.
  2719. */
  2720. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2721. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2722. sd_idle = 1;
  2723. schedstat_inc(sd, lb_count[idle]);
  2724. redo:
  2725. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2726. cpus, balance);
  2727. if (*balance == 0)
  2728. goto out_balanced;
  2729. if (!group) {
  2730. schedstat_inc(sd, lb_nobusyg[idle]);
  2731. goto out_balanced;
  2732. }
  2733. busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
  2734. if (!busiest) {
  2735. schedstat_inc(sd, lb_nobusyq[idle]);
  2736. goto out_balanced;
  2737. }
  2738. BUG_ON(busiest == this_rq);
  2739. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2740. ld_moved = 0;
  2741. if (busiest->nr_running > 1) {
  2742. /*
  2743. * Attempt to move tasks. If find_busiest_group has found
  2744. * an imbalance but busiest->nr_running <= 1, the group is
  2745. * still unbalanced. ld_moved simply stays zero, so it is
  2746. * correctly treated as an imbalance.
  2747. */
  2748. local_irq_save(flags);
  2749. double_rq_lock(this_rq, busiest);
  2750. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2751. imbalance, sd, idle, &all_pinned);
  2752. double_rq_unlock(this_rq, busiest);
  2753. local_irq_restore(flags);
  2754. /*
  2755. * some other cpu did the load balance for us.
  2756. */
  2757. if (ld_moved && this_cpu != smp_processor_id())
  2758. resched_cpu(this_cpu);
  2759. /* All tasks on this runqueue were pinned by CPU affinity */
  2760. if (unlikely(all_pinned)) {
  2761. cpumask_clear_cpu(cpu_of(busiest), cpus);
  2762. if (!cpumask_empty(cpus))
  2763. goto redo;
  2764. goto out_balanced;
  2765. }
  2766. }
  2767. if (!ld_moved) {
  2768. schedstat_inc(sd, lb_failed[idle]);
  2769. /*
  2770. * Increment the failure counter only on periodic balance.
  2771. * We do not want newidle balance, which can be very
  2772. * frequent, pollute the failure counter causing
  2773. * excessive cache_hot migrations and active balances.
  2774. */
  2775. if (idle != CPU_NEWLY_IDLE)
  2776. sd->nr_balance_failed++;
  2777. if (need_active_balance(sd, sd_idle, idle, cpu_of(busiest),
  2778. this_cpu)) {
  2779. raw_spin_lock_irqsave(&busiest->lock, flags);
  2780. /* don't kick the active_load_balance_cpu_stop,
  2781. * if the curr task on busiest cpu can't be
  2782. * moved to this_cpu
  2783. */
  2784. if (!cpumask_test_cpu(this_cpu,
  2785. &busiest->curr->cpus_allowed)) {
  2786. raw_spin_unlock_irqrestore(&busiest->lock,
  2787. flags);
  2788. all_pinned = 1;
  2789. goto out_one_pinned;
  2790. }
  2791. /*
  2792. * ->active_balance synchronizes accesses to
  2793. * ->active_balance_work. Once set, it's cleared
  2794. * only after active load balance is finished.
  2795. */
  2796. if (!busiest->active_balance) {
  2797. busiest->active_balance = 1;
  2798. busiest->push_cpu = this_cpu;
  2799. active_balance = 1;
  2800. }
  2801. raw_spin_unlock_irqrestore(&busiest->lock, flags);
  2802. if (active_balance)
  2803. stop_one_cpu_nowait(cpu_of(busiest),
  2804. active_load_balance_cpu_stop, busiest,
  2805. &busiest->active_balance_work);
  2806. /*
  2807. * We've kicked active balancing, reset the failure
  2808. * counter.
  2809. */
  2810. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2811. }
  2812. } else
  2813. sd->nr_balance_failed = 0;
  2814. if (likely(!active_balance)) {
  2815. /* We were unbalanced, so reset the balancing interval */
  2816. sd->balance_interval = sd->min_interval;
  2817. } else {
  2818. /*
  2819. * If we've begun active balancing, start to back off. This
  2820. * case may not be covered by the all_pinned logic if there
  2821. * is only 1 task on the busy runqueue (because we don't call
  2822. * move_tasks).
  2823. */
  2824. if (sd->balance_interval < sd->max_interval)
  2825. sd->balance_interval *= 2;
  2826. }
  2827. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2828. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2829. ld_moved = -1;
  2830. goto out;
  2831. out_balanced:
  2832. schedstat_inc(sd, lb_balanced[idle]);
  2833. sd->nr_balance_failed = 0;
  2834. out_one_pinned:
  2835. /* tune up the balancing interval */
  2836. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2837. (sd->balance_interval < sd->max_interval))
  2838. sd->balance_interval *= 2;
  2839. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2840. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2841. ld_moved = -1;
  2842. else
  2843. ld_moved = 0;
  2844. out:
  2845. return ld_moved;
  2846. }
  2847. /*
  2848. * idle_balance is called by schedule() if this_cpu is about to become
  2849. * idle. Attempts to pull tasks from other CPUs.
  2850. */
  2851. static void idle_balance(int this_cpu, struct rq *this_rq)
  2852. {
  2853. struct sched_domain *sd;
  2854. int pulled_task = 0;
  2855. unsigned long next_balance = jiffies + HZ;
  2856. this_rq->idle_stamp = this_rq->clock;
  2857. if (this_rq->avg_idle < sysctl_sched_migration_cost)
  2858. return;
  2859. /*
  2860. * Drop the rq->lock, but keep IRQ/preempt disabled.
  2861. */
  2862. raw_spin_unlock(&this_rq->lock);
  2863. update_shares(this_cpu);
  2864. for_each_domain(this_cpu, sd) {
  2865. unsigned long interval;
  2866. int balance = 1;
  2867. if (!(sd->flags & SD_LOAD_BALANCE))
  2868. continue;
  2869. if (sd->flags & SD_BALANCE_NEWIDLE) {
  2870. /* If we've pulled tasks over stop searching: */
  2871. pulled_task = load_balance(this_cpu, this_rq,
  2872. sd, CPU_NEWLY_IDLE, &balance);
  2873. }
  2874. interval = msecs_to_jiffies(sd->balance_interval);
  2875. if (time_after(next_balance, sd->last_balance + interval))
  2876. next_balance = sd->last_balance + interval;
  2877. if (pulled_task) {
  2878. this_rq->idle_stamp = 0;
  2879. break;
  2880. }
  2881. }
  2882. raw_spin_lock(&this_rq->lock);
  2883. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2884. /*
  2885. * We are going idle. next_balance may be set based on
  2886. * a busy processor. So reset next_balance.
  2887. */
  2888. this_rq->next_balance = next_balance;
  2889. }
  2890. }
  2891. /*
  2892. * active_load_balance_cpu_stop is run by cpu stopper. It pushes
  2893. * running tasks off the busiest CPU onto idle CPUs. It requires at
  2894. * least 1 task to be running on each physical CPU where possible, and
  2895. * avoids physical / logical imbalances.
  2896. */
  2897. static int active_load_balance_cpu_stop(void *data)
  2898. {
  2899. struct rq *busiest_rq = data;
  2900. int busiest_cpu = cpu_of(busiest_rq);
  2901. int target_cpu = busiest_rq->push_cpu;
  2902. struct rq *target_rq = cpu_rq(target_cpu);
  2903. struct sched_domain *sd;
  2904. raw_spin_lock_irq(&busiest_rq->lock);
  2905. /* make sure the requested cpu hasn't gone down in the meantime */
  2906. if (unlikely(busiest_cpu != smp_processor_id() ||
  2907. !busiest_rq->active_balance))
  2908. goto out_unlock;
  2909. /* Is there any task to move? */
  2910. if (busiest_rq->nr_running <= 1)
  2911. goto out_unlock;
  2912. /*
  2913. * This condition is "impossible", if it occurs
  2914. * we need to fix it. Originally reported by
  2915. * Bjorn Helgaas on a 128-cpu setup.
  2916. */
  2917. BUG_ON(busiest_rq == target_rq);
  2918. /* move a task from busiest_rq to target_rq */
  2919. double_lock_balance(busiest_rq, target_rq);
  2920. /* Search for an sd spanning us and the target CPU. */
  2921. for_each_domain(target_cpu, sd) {
  2922. if ((sd->flags & SD_LOAD_BALANCE) &&
  2923. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  2924. break;
  2925. }
  2926. if (likely(sd)) {
  2927. schedstat_inc(sd, alb_count);
  2928. if (move_one_task(target_rq, target_cpu, busiest_rq,
  2929. sd, CPU_IDLE))
  2930. schedstat_inc(sd, alb_pushed);
  2931. else
  2932. schedstat_inc(sd, alb_failed);
  2933. }
  2934. double_unlock_balance(busiest_rq, target_rq);
  2935. out_unlock:
  2936. busiest_rq->active_balance = 0;
  2937. raw_spin_unlock_irq(&busiest_rq->lock);
  2938. return 0;
  2939. }
  2940. #ifdef CONFIG_NO_HZ
  2941. static DEFINE_PER_CPU(struct call_single_data, remote_sched_softirq_cb);
  2942. static void trigger_sched_softirq(void *data)
  2943. {
  2944. raise_softirq_irqoff(SCHED_SOFTIRQ);
  2945. }
  2946. static inline void init_sched_softirq_csd(struct call_single_data *csd)
  2947. {
  2948. csd->func = trigger_sched_softirq;
  2949. csd->info = NULL;
  2950. csd->flags = 0;
  2951. csd->priv = 0;
  2952. }
  2953. /*
  2954. * idle load balancing details
  2955. * - One of the idle CPUs nominates itself as idle load_balancer, while
  2956. * entering idle.
  2957. * - This idle load balancer CPU will also go into tickless mode when
  2958. * it is idle, just like all other idle CPUs
  2959. * - When one of the busy CPUs notice that there may be an idle rebalancing
  2960. * needed, they will kick the idle load balancer, which then does idle
  2961. * load balancing for all the idle CPUs.
  2962. */
  2963. static struct {
  2964. atomic_t load_balancer;
  2965. atomic_t first_pick_cpu;
  2966. atomic_t second_pick_cpu;
  2967. cpumask_var_t idle_cpus_mask;
  2968. cpumask_var_t grp_idle_mask;
  2969. unsigned long next_balance; /* in jiffy units */
  2970. } nohz ____cacheline_aligned;
  2971. int get_nohz_load_balancer(void)
  2972. {
  2973. return atomic_read(&nohz.load_balancer);
  2974. }
  2975. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2976. /**
  2977. * lowest_flag_domain - Return lowest sched_domain containing flag.
  2978. * @cpu: The cpu whose lowest level of sched domain is to
  2979. * be returned.
  2980. * @flag: The flag to check for the lowest sched_domain
  2981. * for the given cpu.
  2982. *
  2983. * Returns the lowest sched_domain of a cpu which contains the given flag.
  2984. */
  2985. static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
  2986. {
  2987. struct sched_domain *sd;
  2988. for_each_domain(cpu, sd)
  2989. if (sd && (sd->flags & flag))
  2990. break;
  2991. return sd;
  2992. }
  2993. /**
  2994. * for_each_flag_domain - Iterates over sched_domains containing the flag.
  2995. * @cpu: The cpu whose domains we're iterating over.
  2996. * @sd: variable holding the value of the power_savings_sd
  2997. * for cpu.
  2998. * @flag: The flag to filter the sched_domains to be iterated.
  2999. *
  3000. * Iterates over all the scheduler domains for a given cpu that has the 'flag'
  3001. * set, starting from the lowest sched_domain to the highest.
  3002. */
  3003. #define for_each_flag_domain(cpu, sd, flag) \
  3004. for (sd = lowest_flag_domain(cpu, flag); \
  3005. (sd && (sd->flags & flag)); sd = sd->parent)
  3006. /**
  3007. * is_semi_idle_group - Checks if the given sched_group is semi-idle.
  3008. * @ilb_group: group to be checked for semi-idleness
  3009. *
  3010. * Returns: 1 if the group is semi-idle. 0 otherwise.
  3011. *
  3012. * We define a sched_group to be semi idle if it has atleast one idle-CPU
  3013. * and atleast one non-idle CPU. This helper function checks if the given
  3014. * sched_group is semi-idle or not.
  3015. */
  3016. static inline int is_semi_idle_group(struct sched_group *ilb_group)
  3017. {
  3018. cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask,
  3019. sched_group_cpus(ilb_group));
  3020. /*
  3021. * A sched_group is semi-idle when it has atleast one busy cpu
  3022. * and atleast one idle cpu.
  3023. */
  3024. if (cpumask_empty(nohz.grp_idle_mask))
  3025. return 0;
  3026. if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group)))
  3027. return 0;
  3028. return 1;
  3029. }
  3030. /**
  3031. * find_new_ilb - Finds the optimum idle load balancer for nomination.
  3032. * @cpu: The cpu which is nominating a new idle_load_balancer.
  3033. *
  3034. * Returns: Returns the id of the idle load balancer if it exists,
  3035. * Else, returns >= nr_cpu_ids.
  3036. *
  3037. * This algorithm picks the idle load balancer such that it belongs to a
  3038. * semi-idle powersavings sched_domain. The idea is to try and avoid
  3039. * completely idle packages/cores just for the purpose of idle load balancing
  3040. * when there are other idle cpu's which are better suited for that job.
  3041. */
  3042. static int find_new_ilb(int cpu)
  3043. {
  3044. struct sched_domain *sd;
  3045. struct sched_group *ilb_group;
  3046. /*
  3047. * Have idle load balancer selection from semi-idle packages only
  3048. * when power-aware load balancing is enabled
  3049. */
  3050. if (!(sched_smt_power_savings || sched_mc_power_savings))
  3051. goto out_done;
  3052. /*
  3053. * Optimize for the case when we have no idle CPUs or only one
  3054. * idle CPU. Don't walk the sched_domain hierarchy in such cases
  3055. */
  3056. if (cpumask_weight(nohz.idle_cpus_mask) < 2)
  3057. goto out_done;
  3058. for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
  3059. ilb_group = sd->groups;
  3060. do {
  3061. if (is_semi_idle_group(ilb_group))
  3062. return cpumask_first(nohz.grp_idle_mask);
  3063. ilb_group = ilb_group->next;
  3064. } while (ilb_group != sd->groups);
  3065. }
  3066. out_done:
  3067. return nr_cpu_ids;
  3068. }
  3069. #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
  3070. static inline int find_new_ilb(int call_cpu)
  3071. {
  3072. return nr_cpu_ids;
  3073. }
  3074. #endif
  3075. /*
  3076. * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
  3077. * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
  3078. * CPU (if there is one).
  3079. */
  3080. static void nohz_balancer_kick(int cpu)
  3081. {
  3082. int ilb_cpu;
  3083. nohz.next_balance++;
  3084. ilb_cpu = get_nohz_load_balancer();
  3085. if (ilb_cpu >= nr_cpu_ids) {
  3086. ilb_cpu = cpumask_first(nohz.idle_cpus_mask);
  3087. if (ilb_cpu >= nr_cpu_ids)
  3088. return;
  3089. }
  3090. if (!cpu_rq(ilb_cpu)->nohz_balance_kick) {
  3091. struct call_single_data *cp;
  3092. cpu_rq(ilb_cpu)->nohz_balance_kick = 1;
  3093. cp = &per_cpu(remote_sched_softirq_cb, cpu);
  3094. __smp_call_function_single(ilb_cpu, cp, 0);
  3095. }
  3096. return;
  3097. }
  3098. /*
  3099. * This routine will try to nominate the ilb (idle load balancing)
  3100. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3101. * load balancing on behalf of all those cpus.
  3102. *
  3103. * When the ilb owner becomes busy, we will not have new ilb owner until some
  3104. * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
  3105. * idle load balancing by kicking one of the idle CPUs.
  3106. *
  3107. * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
  3108. * ilb owner CPU in future (when there is a need for idle load balancing on
  3109. * behalf of all idle CPUs).
  3110. */
  3111. void select_nohz_load_balancer(int stop_tick)
  3112. {
  3113. int cpu = smp_processor_id();
  3114. if (stop_tick) {
  3115. if (!cpu_active(cpu)) {
  3116. if (atomic_read(&nohz.load_balancer) != cpu)
  3117. return;
  3118. /*
  3119. * If we are going offline and still the leader,
  3120. * give up!
  3121. */
  3122. if (atomic_cmpxchg(&nohz.load_balancer, cpu,
  3123. nr_cpu_ids) != cpu)
  3124. BUG();
  3125. return;
  3126. }
  3127. cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
  3128. if (atomic_read(&nohz.first_pick_cpu) == cpu)
  3129. atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids);
  3130. if (atomic_read(&nohz.second_pick_cpu) == cpu)
  3131. atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
  3132. if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) {
  3133. int new_ilb;
  3134. /* make me the ilb owner */
  3135. if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids,
  3136. cpu) != nr_cpu_ids)
  3137. return;
  3138. /*
  3139. * Check to see if there is a more power-efficient
  3140. * ilb.
  3141. */
  3142. new_ilb = find_new_ilb(cpu);
  3143. if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
  3144. atomic_set(&nohz.load_balancer, nr_cpu_ids);
  3145. resched_cpu(new_ilb);
  3146. return;
  3147. }
  3148. return;
  3149. }
  3150. } else {
  3151. if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
  3152. return;
  3153. cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
  3154. if (atomic_read(&nohz.load_balancer) == cpu)
  3155. if (atomic_cmpxchg(&nohz.load_balancer, cpu,
  3156. nr_cpu_ids) != cpu)
  3157. BUG();
  3158. }
  3159. return;
  3160. }
  3161. #endif
  3162. static DEFINE_SPINLOCK(balancing);
  3163. /*
  3164. * It checks each scheduling domain to see if it is due to be balanced,
  3165. * and initiates a balancing operation if so.
  3166. *
  3167. * Balancing parameters are set up in arch_init_sched_domains.
  3168. */
  3169. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3170. {
  3171. int balance = 1;
  3172. struct rq *rq = cpu_rq(cpu);
  3173. unsigned long interval;
  3174. struct sched_domain *sd;
  3175. /* Earliest time when we have to do rebalance again */
  3176. unsigned long next_balance = jiffies + 60*HZ;
  3177. int update_next_balance = 0;
  3178. int need_serialize;
  3179. update_shares(cpu);
  3180. for_each_domain(cpu, sd) {
  3181. if (!(sd->flags & SD_LOAD_BALANCE))
  3182. continue;
  3183. interval = sd->balance_interval;
  3184. if (idle != CPU_IDLE)
  3185. interval *= sd->busy_factor;
  3186. /* scale ms to jiffies */
  3187. interval = msecs_to_jiffies(interval);
  3188. if (unlikely(!interval))
  3189. interval = 1;
  3190. if (interval > HZ*NR_CPUS/10)
  3191. interval = HZ*NR_CPUS/10;
  3192. need_serialize = sd->flags & SD_SERIALIZE;
  3193. if (need_serialize) {
  3194. if (!spin_trylock(&balancing))
  3195. goto out;
  3196. }
  3197. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3198. if (load_balance(cpu, rq, sd, idle, &balance)) {
  3199. /*
  3200. * We've pulled tasks over so either we're no
  3201. * longer idle, or one of our SMT siblings is
  3202. * not idle.
  3203. */
  3204. idle = CPU_NOT_IDLE;
  3205. }
  3206. sd->last_balance = jiffies;
  3207. }
  3208. if (need_serialize)
  3209. spin_unlock(&balancing);
  3210. out:
  3211. if (time_after(next_balance, sd->last_balance + interval)) {
  3212. next_balance = sd->last_balance + interval;
  3213. update_next_balance = 1;
  3214. }
  3215. /*
  3216. * Stop the load balance at this level. There is another
  3217. * CPU in our sched group which is doing load balancing more
  3218. * actively.
  3219. */
  3220. if (!balance)
  3221. break;
  3222. }
  3223. /*
  3224. * next_balance will be updated only when there is a need.
  3225. * When the cpu is attached to null domain for ex, it will not be
  3226. * updated.
  3227. */
  3228. if (likely(update_next_balance))
  3229. rq->next_balance = next_balance;
  3230. }
  3231. #ifdef CONFIG_NO_HZ
  3232. /*
  3233. * In CONFIG_NO_HZ case, the idle balance kickee will do the
  3234. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3235. */
  3236. static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
  3237. {
  3238. struct rq *this_rq = cpu_rq(this_cpu);
  3239. struct rq *rq;
  3240. int balance_cpu;
  3241. if (idle != CPU_IDLE || !this_rq->nohz_balance_kick)
  3242. return;
  3243. for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
  3244. if (balance_cpu == this_cpu)
  3245. continue;
  3246. /*
  3247. * If this cpu gets work to do, stop the load balancing
  3248. * work being done for other cpus. Next load
  3249. * balancing owner will pick it up.
  3250. */
  3251. if (need_resched()) {
  3252. this_rq->nohz_balance_kick = 0;
  3253. break;
  3254. }
  3255. raw_spin_lock_irq(&this_rq->lock);
  3256. update_rq_clock(this_rq);
  3257. update_cpu_load(this_rq);
  3258. raw_spin_unlock_irq(&this_rq->lock);
  3259. rebalance_domains(balance_cpu, CPU_IDLE);
  3260. rq = cpu_rq(balance_cpu);
  3261. if (time_after(this_rq->next_balance, rq->next_balance))
  3262. this_rq->next_balance = rq->next_balance;
  3263. }
  3264. nohz.next_balance = this_rq->next_balance;
  3265. this_rq->nohz_balance_kick = 0;
  3266. }
  3267. /*
  3268. * Current heuristic for kicking the idle load balancer
  3269. * - first_pick_cpu is the one of the busy CPUs. It will kick
  3270. * idle load balancer when it has more than one process active. This
  3271. * eliminates the need for idle load balancing altogether when we have
  3272. * only one running process in the system (common case).
  3273. * - If there are more than one busy CPU, idle load balancer may have
  3274. * to run for active_load_balance to happen (i.e., two busy CPUs are
  3275. * SMT or core siblings and can run better if they move to different
  3276. * physical CPUs). So, second_pick_cpu is the second of the busy CPUs
  3277. * which will kick idle load balancer as soon as it has any load.
  3278. */
  3279. static inline int nohz_kick_needed(struct rq *rq, int cpu)
  3280. {
  3281. unsigned long now = jiffies;
  3282. int ret;
  3283. int first_pick_cpu, second_pick_cpu;
  3284. if (time_before(now, nohz.next_balance))
  3285. return 0;
  3286. if (rq->idle_at_tick)
  3287. return 0;
  3288. first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
  3289. second_pick_cpu = atomic_read(&nohz.second_pick_cpu);
  3290. if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu &&
  3291. second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu)
  3292. return 0;
  3293. ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu);
  3294. if (ret == nr_cpu_ids || ret == cpu) {
  3295. atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
  3296. if (rq->nr_running > 1)
  3297. return 1;
  3298. } else {
  3299. ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu);
  3300. if (ret == nr_cpu_ids || ret == cpu) {
  3301. if (rq->nr_running)
  3302. return 1;
  3303. }
  3304. }
  3305. return 0;
  3306. }
  3307. #else
  3308. static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
  3309. #endif
  3310. /*
  3311. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3312. * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
  3313. */
  3314. static void run_rebalance_domains(struct softirq_action *h)
  3315. {
  3316. int this_cpu = smp_processor_id();
  3317. struct rq *this_rq = cpu_rq(this_cpu);
  3318. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3319. CPU_IDLE : CPU_NOT_IDLE;
  3320. rebalance_domains(this_cpu, idle);
  3321. /*
  3322. * If this cpu has a pending nohz_balance_kick, then do the
  3323. * balancing on behalf of the other idle cpus whose ticks are
  3324. * stopped.
  3325. */
  3326. nohz_idle_balance(this_cpu, idle);
  3327. }
  3328. static inline int on_null_domain(int cpu)
  3329. {
  3330. return !rcu_dereference_sched(cpu_rq(cpu)->sd);
  3331. }
  3332. /*
  3333. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3334. */
  3335. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3336. {
  3337. /* Don't need to rebalance while attached to NULL domain */
  3338. if (time_after_eq(jiffies, rq->next_balance) &&
  3339. likely(!on_null_domain(cpu)))
  3340. raise_softirq(SCHED_SOFTIRQ);
  3341. #ifdef CONFIG_NO_HZ
  3342. else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
  3343. nohz_balancer_kick(cpu);
  3344. #endif
  3345. }
  3346. static void rq_online_fair(struct rq *rq)
  3347. {
  3348. update_sysctl();
  3349. }
  3350. static void rq_offline_fair(struct rq *rq)
  3351. {
  3352. update_sysctl();
  3353. }
  3354. #else /* CONFIG_SMP */
  3355. /*
  3356. * on UP we do not need to balance between CPUs:
  3357. */
  3358. static inline void idle_balance(int cpu, struct rq *rq)
  3359. {
  3360. }
  3361. #endif /* CONFIG_SMP */
  3362. /*
  3363. * scheduler tick hitting a task of our scheduling class:
  3364. */
  3365. static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
  3366. {
  3367. struct cfs_rq *cfs_rq;
  3368. struct sched_entity *se = &curr->se;
  3369. for_each_sched_entity(se) {
  3370. cfs_rq = cfs_rq_of(se);
  3371. entity_tick(cfs_rq, se, queued);
  3372. }
  3373. }
  3374. /*
  3375. * called on fork with the child task as argument from the parent's context
  3376. * - child not yet on the tasklist
  3377. * - preemption disabled
  3378. */
  3379. static void task_fork_fair(struct task_struct *p)
  3380. {
  3381. struct cfs_rq *cfs_rq = task_cfs_rq(current);
  3382. struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
  3383. int this_cpu = smp_processor_id();
  3384. struct rq *rq = this_rq();
  3385. unsigned long flags;
  3386. raw_spin_lock_irqsave(&rq->lock, flags);
  3387. update_rq_clock(rq);
  3388. if (unlikely(task_cpu(p) != this_cpu)) {
  3389. rcu_read_lock();
  3390. __set_task_cpu(p, this_cpu);
  3391. rcu_read_unlock();
  3392. }
  3393. update_curr(cfs_rq);
  3394. if (curr)
  3395. se->vruntime = curr->vruntime;
  3396. place_entity(cfs_rq, se, 1);
  3397. if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
  3398. /*
  3399. * Upon rescheduling, sched_class::put_prev_task() will place
  3400. * 'current' within the tree based on its new key value.
  3401. */
  3402. swap(curr->vruntime, se->vruntime);
  3403. resched_task(rq->curr);
  3404. }
  3405. se->vruntime -= cfs_rq->min_vruntime;
  3406. raw_spin_unlock_irqrestore(&rq->lock, flags);
  3407. }
  3408. /*
  3409. * Priority of the task has changed. Check to see if we preempt
  3410. * the current task.
  3411. */
  3412. static void prio_changed_fair(struct rq *rq, struct task_struct *p,
  3413. int oldprio, int running)
  3414. {
  3415. /*
  3416. * Reschedule if we are currently running on this runqueue and
  3417. * our priority decreased, or if we are not currently running on
  3418. * this runqueue and our priority is higher than the current's
  3419. */
  3420. if (running) {
  3421. if (p->prio > oldprio)
  3422. resched_task(rq->curr);
  3423. } else
  3424. check_preempt_curr(rq, p, 0);
  3425. }
  3426. /*
  3427. * We switched to the sched_fair class.
  3428. */
  3429. static void switched_to_fair(struct rq *rq, struct task_struct *p,
  3430. int running)
  3431. {
  3432. /*
  3433. * We were most likely switched from sched_rt, so
  3434. * kick off the schedule if running, otherwise just see
  3435. * if we can still preempt the current task.
  3436. */
  3437. if (running)
  3438. resched_task(rq->curr);
  3439. else
  3440. check_preempt_curr(rq, p, 0);
  3441. }
  3442. /* Account for a task changing its policy or group.
  3443. *
  3444. * This routine is mostly called to set cfs_rq->curr field when a task
  3445. * migrates between groups/classes.
  3446. */
  3447. static void set_curr_task_fair(struct rq *rq)
  3448. {
  3449. struct sched_entity *se = &rq->curr->se;
  3450. for_each_sched_entity(se)
  3451. set_next_entity(cfs_rq_of(se), se);
  3452. }
  3453. #ifdef CONFIG_FAIR_GROUP_SCHED
  3454. static void task_move_group_fair(struct task_struct *p, int on_rq)
  3455. {
  3456. /*
  3457. * If the task was not on the rq at the time of this cgroup movement
  3458. * it must have been asleep, sleeping tasks keep their ->vruntime
  3459. * absolute on their old rq until wakeup (needed for the fair sleeper
  3460. * bonus in place_entity()).
  3461. *
  3462. * If it was on the rq, we've just 'preempted' it, which does convert
  3463. * ->vruntime to a relative base.
  3464. *
  3465. * Make sure both cases convert their relative position when migrating
  3466. * to another cgroup's rq. This does somewhat interfere with the
  3467. * fair sleeper stuff for the first placement, but who cares.
  3468. */
  3469. if (!on_rq)
  3470. p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
  3471. set_task_rq(p, task_cpu(p));
  3472. if (!on_rq)
  3473. p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
  3474. }
  3475. #endif
  3476. static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
  3477. {
  3478. struct sched_entity *se = &task->se;
  3479. unsigned int rr_interval = 0;
  3480. /*
  3481. * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
  3482. * idle runqueue:
  3483. */
  3484. if (rq->cfs.load.weight)
  3485. rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  3486. return rr_interval;
  3487. }
  3488. /*
  3489. * All the scheduling class methods:
  3490. */
  3491. static const struct sched_class fair_sched_class = {
  3492. .next = &idle_sched_class,
  3493. .enqueue_task = enqueue_task_fair,
  3494. .dequeue_task = dequeue_task_fair,
  3495. .yield_task = yield_task_fair,
  3496. .check_preempt_curr = check_preempt_wakeup,
  3497. .pick_next_task = pick_next_task_fair,
  3498. .put_prev_task = put_prev_task_fair,
  3499. #ifdef CONFIG_SMP
  3500. .select_task_rq = select_task_rq_fair,
  3501. .rq_online = rq_online_fair,
  3502. .rq_offline = rq_offline_fair,
  3503. .task_waking = task_waking_fair,
  3504. #endif
  3505. .set_curr_task = set_curr_task_fair,
  3506. .task_tick = task_tick_fair,
  3507. .task_fork = task_fork_fair,
  3508. .prio_changed = prio_changed_fair,
  3509. .switched_to = switched_to_fair,
  3510. .get_rr_interval = get_rr_interval_fair,
  3511. #ifdef CONFIG_FAIR_GROUP_SCHED
  3512. .task_move_group = task_move_group_fair,
  3513. #endif
  3514. };
  3515. #ifdef CONFIG_SCHED_DEBUG
  3516. static void print_cfs_stats(struct seq_file *m, int cpu)
  3517. {
  3518. struct cfs_rq *cfs_rq;
  3519. rcu_read_lock();
  3520. for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
  3521. print_cfs_rq(m, cpu, cfs_rq);
  3522. rcu_read_unlock();
  3523. }
  3524. #endif