namespace.c 63 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629
  1. /*
  2. * linux/fs/namespace.c
  3. *
  4. * (C) Copyright Al Viro 2000, 2001
  5. * Released under GPL v2.
  6. *
  7. * Based on code from fs/super.c, copyright Linus Torvalds and others.
  8. * Heavily rewritten.
  9. */
  10. #include <linux/syscalls.h>
  11. #include <linux/slab.h>
  12. #include <linux/sched.h>
  13. #include <linux/spinlock.h>
  14. #include <linux/percpu.h>
  15. #include <linux/init.h>
  16. #include <linux/kernel.h>
  17. #include <linux/acct.h>
  18. #include <linux/capability.h>
  19. #include <linux/cpumask.h>
  20. #include <linux/module.h>
  21. #include <linux/sysfs.h>
  22. #include <linux/seq_file.h>
  23. #include <linux/mnt_namespace.h>
  24. #include <linux/namei.h>
  25. #include <linux/nsproxy.h>
  26. #include <linux/security.h>
  27. #include <linux/mount.h>
  28. #include <linux/ramfs.h>
  29. #include <linux/log2.h>
  30. #include <linux/idr.h>
  31. #include <linux/fs_struct.h>
  32. #include <linux/fsnotify.h>
  33. #include <asm/uaccess.h>
  34. #include <asm/unistd.h>
  35. #include "pnode.h"
  36. #include "internal.h"
  37. #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
  38. #define HASH_SIZE (1UL << HASH_SHIFT)
  39. static int event;
  40. static DEFINE_IDA(mnt_id_ida);
  41. static DEFINE_IDA(mnt_group_ida);
  42. static DEFINE_SPINLOCK(mnt_id_lock);
  43. static int mnt_id_start = 0;
  44. static int mnt_group_start = 1;
  45. static struct list_head *mount_hashtable __read_mostly;
  46. static struct kmem_cache *mnt_cache __read_mostly;
  47. static struct rw_semaphore namespace_sem;
  48. /* /sys/fs */
  49. struct kobject *fs_kobj;
  50. EXPORT_SYMBOL_GPL(fs_kobj);
  51. /*
  52. * vfsmount lock may be taken for read to prevent changes to the
  53. * vfsmount hash, ie. during mountpoint lookups or walking back
  54. * up the tree.
  55. *
  56. * It should be taken for write in all cases where the vfsmount
  57. * tree or hash is modified or when a vfsmount structure is modified.
  58. */
  59. DEFINE_BRLOCK(vfsmount_lock);
  60. static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
  61. {
  62. unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
  63. tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
  64. tmp = tmp + (tmp >> HASH_SHIFT);
  65. return tmp & (HASH_SIZE - 1);
  66. }
  67. #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
  68. /*
  69. * allocation is serialized by namespace_sem, but we need the spinlock to
  70. * serialize with freeing.
  71. */
  72. static int mnt_alloc_id(struct vfsmount *mnt)
  73. {
  74. int res;
  75. retry:
  76. ida_pre_get(&mnt_id_ida, GFP_KERNEL);
  77. spin_lock(&mnt_id_lock);
  78. res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
  79. if (!res)
  80. mnt_id_start = mnt->mnt_id + 1;
  81. spin_unlock(&mnt_id_lock);
  82. if (res == -EAGAIN)
  83. goto retry;
  84. return res;
  85. }
  86. static void mnt_free_id(struct vfsmount *mnt)
  87. {
  88. int id = mnt->mnt_id;
  89. spin_lock(&mnt_id_lock);
  90. ida_remove(&mnt_id_ida, id);
  91. if (mnt_id_start > id)
  92. mnt_id_start = id;
  93. spin_unlock(&mnt_id_lock);
  94. }
  95. /*
  96. * Allocate a new peer group ID
  97. *
  98. * mnt_group_ida is protected by namespace_sem
  99. */
  100. static int mnt_alloc_group_id(struct vfsmount *mnt)
  101. {
  102. int res;
  103. if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
  104. return -ENOMEM;
  105. res = ida_get_new_above(&mnt_group_ida,
  106. mnt_group_start,
  107. &mnt->mnt_group_id);
  108. if (!res)
  109. mnt_group_start = mnt->mnt_group_id + 1;
  110. return res;
  111. }
  112. /*
  113. * Release a peer group ID
  114. */
  115. void mnt_release_group_id(struct vfsmount *mnt)
  116. {
  117. int id = mnt->mnt_group_id;
  118. ida_remove(&mnt_group_ida, id);
  119. if (mnt_group_start > id)
  120. mnt_group_start = id;
  121. mnt->mnt_group_id = 0;
  122. }
  123. /*
  124. * vfsmount lock must be held for read
  125. */
  126. static inline void mnt_add_count(struct vfsmount *mnt, int n)
  127. {
  128. #ifdef CONFIG_SMP
  129. this_cpu_add(mnt->mnt_pcp->mnt_count, n);
  130. #else
  131. preempt_disable();
  132. mnt->mnt_count += n;
  133. preempt_enable();
  134. #endif
  135. }
  136. static inline void mnt_set_count(struct vfsmount *mnt, int n)
  137. {
  138. #ifdef CONFIG_SMP
  139. this_cpu_write(mnt->mnt_pcp->mnt_count, n);
  140. #else
  141. mnt->mnt_count = n;
  142. #endif
  143. }
  144. /*
  145. * vfsmount lock must be held for read
  146. */
  147. static inline void mnt_inc_count(struct vfsmount *mnt)
  148. {
  149. mnt_add_count(mnt, 1);
  150. }
  151. /*
  152. * vfsmount lock must be held for read
  153. */
  154. static inline void mnt_dec_count(struct vfsmount *mnt)
  155. {
  156. mnt_add_count(mnt, -1);
  157. }
  158. /*
  159. * vfsmount lock must be held for write
  160. */
  161. unsigned int mnt_get_count(struct vfsmount *mnt)
  162. {
  163. #ifdef CONFIG_SMP
  164. unsigned int count = 0;
  165. int cpu;
  166. for_each_possible_cpu(cpu) {
  167. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
  168. }
  169. return count;
  170. #else
  171. return mnt->mnt_count;
  172. #endif
  173. }
  174. struct vfsmount *alloc_vfsmnt(const char *name)
  175. {
  176. struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
  177. if (mnt) {
  178. int err;
  179. err = mnt_alloc_id(mnt);
  180. if (err)
  181. goto out_free_cache;
  182. if (name) {
  183. mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
  184. if (!mnt->mnt_devname)
  185. goto out_free_id;
  186. }
  187. #ifdef CONFIG_SMP
  188. mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
  189. if (!mnt->mnt_pcp)
  190. goto out_free_devname;
  191. this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
  192. #else
  193. mnt->mnt_count = 1;
  194. mnt->mnt_writers = 0;
  195. #endif
  196. INIT_LIST_HEAD(&mnt->mnt_hash);
  197. INIT_LIST_HEAD(&mnt->mnt_child);
  198. INIT_LIST_HEAD(&mnt->mnt_mounts);
  199. INIT_LIST_HEAD(&mnt->mnt_list);
  200. INIT_LIST_HEAD(&mnt->mnt_expire);
  201. INIT_LIST_HEAD(&mnt->mnt_share);
  202. INIT_LIST_HEAD(&mnt->mnt_slave_list);
  203. INIT_LIST_HEAD(&mnt->mnt_slave);
  204. #ifdef CONFIG_FSNOTIFY
  205. INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
  206. #endif
  207. }
  208. return mnt;
  209. #ifdef CONFIG_SMP
  210. out_free_devname:
  211. kfree(mnt->mnt_devname);
  212. #endif
  213. out_free_id:
  214. mnt_free_id(mnt);
  215. out_free_cache:
  216. kmem_cache_free(mnt_cache, mnt);
  217. return NULL;
  218. }
  219. /*
  220. * Most r/o checks on a fs are for operations that take
  221. * discrete amounts of time, like a write() or unlink().
  222. * We must keep track of when those operations start
  223. * (for permission checks) and when they end, so that
  224. * we can determine when writes are able to occur to
  225. * a filesystem.
  226. */
  227. /*
  228. * __mnt_is_readonly: check whether a mount is read-only
  229. * @mnt: the mount to check for its write status
  230. *
  231. * This shouldn't be used directly ouside of the VFS.
  232. * It does not guarantee that the filesystem will stay
  233. * r/w, just that it is right *now*. This can not and
  234. * should not be used in place of IS_RDONLY(inode).
  235. * mnt_want/drop_write() will _keep_ the filesystem
  236. * r/w.
  237. */
  238. int __mnt_is_readonly(struct vfsmount *mnt)
  239. {
  240. if (mnt->mnt_flags & MNT_READONLY)
  241. return 1;
  242. if (mnt->mnt_sb->s_flags & MS_RDONLY)
  243. return 1;
  244. return 0;
  245. }
  246. EXPORT_SYMBOL_GPL(__mnt_is_readonly);
  247. static inline void mnt_inc_writers(struct vfsmount *mnt)
  248. {
  249. #ifdef CONFIG_SMP
  250. this_cpu_inc(mnt->mnt_pcp->mnt_writers);
  251. #else
  252. mnt->mnt_writers++;
  253. #endif
  254. }
  255. static inline void mnt_dec_writers(struct vfsmount *mnt)
  256. {
  257. #ifdef CONFIG_SMP
  258. this_cpu_dec(mnt->mnt_pcp->mnt_writers);
  259. #else
  260. mnt->mnt_writers--;
  261. #endif
  262. }
  263. static unsigned int mnt_get_writers(struct vfsmount *mnt)
  264. {
  265. #ifdef CONFIG_SMP
  266. unsigned int count = 0;
  267. int cpu;
  268. for_each_possible_cpu(cpu) {
  269. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
  270. }
  271. return count;
  272. #else
  273. return mnt->mnt_writers;
  274. #endif
  275. }
  276. /*
  277. * Most r/o checks on a fs are for operations that take
  278. * discrete amounts of time, like a write() or unlink().
  279. * We must keep track of when those operations start
  280. * (for permission checks) and when they end, so that
  281. * we can determine when writes are able to occur to
  282. * a filesystem.
  283. */
  284. /**
  285. * mnt_want_write - get write access to a mount
  286. * @mnt: the mount on which to take a write
  287. *
  288. * This tells the low-level filesystem that a write is
  289. * about to be performed to it, and makes sure that
  290. * writes are allowed before returning success. When
  291. * the write operation is finished, mnt_drop_write()
  292. * must be called. This is effectively a refcount.
  293. */
  294. int mnt_want_write(struct vfsmount *mnt)
  295. {
  296. int ret = 0;
  297. preempt_disable();
  298. mnt_inc_writers(mnt);
  299. /*
  300. * The store to mnt_inc_writers must be visible before we pass
  301. * MNT_WRITE_HOLD loop below, so that the slowpath can see our
  302. * incremented count after it has set MNT_WRITE_HOLD.
  303. */
  304. smp_mb();
  305. while (mnt->mnt_flags & MNT_WRITE_HOLD)
  306. cpu_relax();
  307. /*
  308. * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
  309. * be set to match its requirements. So we must not load that until
  310. * MNT_WRITE_HOLD is cleared.
  311. */
  312. smp_rmb();
  313. if (__mnt_is_readonly(mnt)) {
  314. mnt_dec_writers(mnt);
  315. ret = -EROFS;
  316. goto out;
  317. }
  318. out:
  319. preempt_enable();
  320. return ret;
  321. }
  322. EXPORT_SYMBOL_GPL(mnt_want_write);
  323. /**
  324. * mnt_clone_write - get write access to a mount
  325. * @mnt: the mount on which to take a write
  326. *
  327. * This is effectively like mnt_want_write, except
  328. * it must only be used to take an extra write reference
  329. * on a mountpoint that we already know has a write reference
  330. * on it. This allows some optimisation.
  331. *
  332. * After finished, mnt_drop_write must be called as usual to
  333. * drop the reference.
  334. */
  335. int mnt_clone_write(struct vfsmount *mnt)
  336. {
  337. /* superblock may be r/o */
  338. if (__mnt_is_readonly(mnt))
  339. return -EROFS;
  340. preempt_disable();
  341. mnt_inc_writers(mnt);
  342. preempt_enable();
  343. return 0;
  344. }
  345. EXPORT_SYMBOL_GPL(mnt_clone_write);
  346. /**
  347. * mnt_want_write_file - get write access to a file's mount
  348. * @file: the file who's mount on which to take a write
  349. *
  350. * This is like mnt_want_write, but it takes a file and can
  351. * do some optimisations if the file is open for write already
  352. */
  353. int mnt_want_write_file(struct file *file)
  354. {
  355. struct inode *inode = file->f_dentry->d_inode;
  356. if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
  357. return mnt_want_write(file->f_path.mnt);
  358. else
  359. return mnt_clone_write(file->f_path.mnt);
  360. }
  361. EXPORT_SYMBOL_GPL(mnt_want_write_file);
  362. /**
  363. * mnt_drop_write - give up write access to a mount
  364. * @mnt: the mount on which to give up write access
  365. *
  366. * Tells the low-level filesystem that we are done
  367. * performing writes to it. Must be matched with
  368. * mnt_want_write() call above.
  369. */
  370. void mnt_drop_write(struct vfsmount *mnt)
  371. {
  372. preempt_disable();
  373. mnt_dec_writers(mnt);
  374. preempt_enable();
  375. }
  376. EXPORT_SYMBOL_GPL(mnt_drop_write);
  377. static int mnt_make_readonly(struct vfsmount *mnt)
  378. {
  379. int ret = 0;
  380. br_write_lock(vfsmount_lock);
  381. mnt->mnt_flags |= MNT_WRITE_HOLD;
  382. /*
  383. * After storing MNT_WRITE_HOLD, we'll read the counters. This store
  384. * should be visible before we do.
  385. */
  386. smp_mb();
  387. /*
  388. * With writers on hold, if this value is zero, then there are
  389. * definitely no active writers (although held writers may subsequently
  390. * increment the count, they'll have to wait, and decrement it after
  391. * seeing MNT_READONLY).
  392. *
  393. * It is OK to have counter incremented on one CPU and decremented on
  394. * another: the sum will add up correctly. The danger would be when we
  395. * sum up each counter, if we read a counter before it is incremented,
  396. * but then read another CPU's count which it has been subsequently
  397. * decremented from -- we would see more decrements than we should.
  398. * MNT_WRITE_HOLD protects against this scenario, because
  399. * mnt_want_write first increments count, then smp_mb, then spins on
  400. * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
  401. * we're counting up here.
  402. */
  403. if (mnt_get_writers(mnt) > 0)
  404. ret = -EBUSY;
  405. else
  406. mnt->mnt_flags |= MNT_READONLY;
  407. /*
  408. * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
  409. * that become unheld will see MNT_READONLY.
  410. */
  411. smp_wmb();
  412. mnt->mnt_flags &= ~MNT_WRITE_HOLD;
  413. br_write_unlock(vfsmount_lock);
  414. return ret;
  415. }
  416. static void __mnt_unmake_readonly(struct vfsmount *mnt)
  417. {
  418. br_write_lock(vfsmount_lock);
  419. mnt->mnt_flags &= ~MNT_READONLY;
  420. br_write_unlock(vfsmount_lock);
  421. }
  422. void simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
  423. {
  424. mnt->mnt_sb = sb;
  425. mnt->mnt_root = dget(sb->s_root);
  426. }
  427. EXPORT_SYMBOL(simple_set_mnt);
  428. void free_vfsmnt(struct vfsmount *mnt)
  429. {
  430. kfree(mnt->mnt_devname);
  431. mnt_free_id(mnt);
  432. #ifdef CONFIG_SMP
  433. free_percpu(mnt->mnt_pcp);
  434. #endif
  435. kmem_cache_free(mnt_cache, mnt);
  436. }
  437. /*
  438. * find the first or last mount at @dentry on vfsmount @mnt depending on
  439. * @dir. If @dir is set return the first mount else return the last mount.
  440. * vfsmount_lock must be held for read or write.
  441. */
  442. struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
  443. int dir)
  444. {
  445. struct list_head *head = mount_hashtable + hash(mnt, dentry);
  446. struct list_head *tmp = head;
  447. struct vfsmount *p, *found = NULL;
  448. for (;;) {
  449. tmp = dir ? tmp->next : tmp->prev;
  450. p = NULL;
  451. if (tmp == head)
  452. break;
  453. p = list_entry(tmp, struct vfsmount, mnt_hash);
  454. if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
  455. found = p;
  456. break;
  457. }
  458. }
  459. return found;
  460. }
  461. /*
  462. * lookup_mnt increments the ref count before returning
  463. * the vfsmount struct.
  464. */
  465. struct vfsmount *lookup_mnt(struct path *path)
  466. {
  467. struct vfsmount *child_mnt;
  468. br_read_lock(vfsmount_lock);
  469. if ((child_mnt = __lookup_mnt(path->mnt, path->dentry, 1)))
  470. mntget(child_mnt);
  471. br_read_unlock(vfsmount_lock);
  472. return child_mnt;
  473. }
  474. static inline int check_mnt(struct vfsmount *mnt)
  475. {
  476. return mnt->mnt_ns == current->nsproxy->mnt_ns;
  477. }
  478. /*
  479. * vfsmount lock must be held for write
  480. */
  481. static void touch_mnt_namespace(struct mnt_namespace *ns)
  482. {
  483. if (ns) {
  484. ns->event = ++event;
  485. wake_up_interruptible(&ns->poll);
  486. }
  487. }
  488. /*
  489. * vfsmount lock must be held for write
  490. */
  491. static void __touch_mnt_namespace(struct mnt_namespace *ns)
  492. {
  493. if (ns && ns->event != event) {
  494. ns->event = event;
  495. wake_up_interruptible(&ns->poll);
  496. }
  497. }
  498. /*
  499. * Clear dentry's mounted state if it has no remaining mounts.
  500. * vfsmount_lock must be held for write.
  501. */
  502. static void dentry_reset_mounted(struct vfsmount *mnt, struct dentry *dentry)
  503. {
  504. unsigned u;
  505. for (u = 0; u < HASH_SIZE; u++) {
  506. struct vfsmount *p;
  507. list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
  508. if (p->mnt_mountpoint == dentry)
  509. return;
  510. }
  511. }
  512. spin_lock(&dentry->d_lock);
  513. dentry->d_flags &= ~DCACHE_MOUNTED;
  514. spin_unlock(&dentry->d_lock);
  515. }
  516. /*
  517. * vfsmount lock must be held for write
  518. */
  519. static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
  520. {
  521. old_path->dentry = mnt->mnt_mountpoint;
  522. old_path->mnt = mnt->mnt_parent;
  523. mnt->mnt_parent = mnt;
  524. mnt->mnt_mountpoint = mnt->mnt_root;
  525. list_del_init(&mnt->mnt_child);
  526. list_del_init(&mnt->mnt_hash);
  527. dentry_reset_mounted(old_path->mnt, old_path->dentry);
  528. }
  529. /*
  530. * vfsmount lock must be held for write
  531. */
  532. void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
  533. struct vfsmount *child_mnt)
  534. {
  535. child_mnt->mnt_parent = mntget(mnt);
  536. child_mnt->mnt_mountpoint = dget(dentry);
  537. spin_lock(&dentry->d_lock);
  538. dentry->d_flags |= DCACHE_MOUNTED;
  539. spin_unlock(&dentry->d_lock);
  540. }
  541. /*
  542. * vfsmount lock must be held for write
  543. */
  544. static void attach_mnt(struct vfsmount *mnt, struct path *path)
  545. {
  546. mnt_set_mountpoint(path->mnt, path->dentry, mnt);
  547. list_add_tail(&mnt->mnt_hash, mount_hashtable +
  548. hash(path->mnt, path->dentry));
  549. list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
  550. }
  551. static inline void __mnt_make_longterm(struct vfsmount *mnt)
  552. {
  553. #ifdef CONFIG_SMP
  554. atomic_inc(&mnt->mnt_longterm);
  555. #endif
  556. }
  557. /* needs vfsmount lock for write */
  558. static inline void __mnt_make_shortterm(struct vfsmount *mnt)
  559. {
  560. #ifdef CONFIG_SMP
  561. atomic_dec(&mnt->mnt_longterm);
  562. #endif
  563. }
  564. /*
  565. * vfsmount lock must be held for write
  566. */
  567. static void commit_tree(struct vfsmount *mnt)
  568. {
  569. struct vfsmount *parent = mnt->mnt_parent;
  570. struct vfsmount *m;
  571. LIST_HEAD(head);
  572. struct mnt_namespace *n = parent->mnt_ns;
  573. BUG_ON(parent == mnt);
  574. list_add_tail(&head, &mnt->mnt_list);
  575. list_for_each_entry(m, &head, mnt_list) {
  576. m->mnt_ns = n;
  577. __mnt_make_longterm(m);
  578. }
  579. list_splice(&head, n->list.prev);
  580. list_add_tail(&mnt->mnt_hash, mount_hashtable +
  581. hash(parent, mnt->mnt_mountpoint));
  582. list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
  583. touch_mnt_namespace(n);
  584. }
  585. static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
  586. {
  587. struct list_head *next = p->mnt_mounts.next;
  588. if (next == &p->mnt_mounts) {
  589. while (1) {
  590. if (p == root)
  591. return NULL;
  592. next = p->mnt_child.next;
  593. if (next != &p->mnt_parent->mnt_mounts)
  594. break;
  595. p = p->mnt_parent;
  596. }
  597. }
  598. return list_entry(next, struct vfsmount, mnt_child);
  599. }
  600. static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
  601. {
  602. struct list_head *prev = p->mnt_mounts.prev;
  603. while (prev != &p->mnt_mounts) {
  604. p = list_entry(prev, struct vfsmount, mnt_child);
  605. prev = p->mnt_mounts.prev;
  606. }
  607. return p;
  608. }
  609. static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
  610. int flag)
  611. {
  612. struct super_block *sb = old->mnt_sb;
  613. struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
  614. if (mnt) {
  615. if (flag & (CL_SLAVE | CL_PRIVATE))
  616. mnt->mnt_group_id = 0; /* not a peer of original */
  617. else
  618. mnt->mnt_group_id = old->mnt_group_id;
  619. if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
  620. int err = mnt_alloc_group_id(mnt);
  621. if (err)
  622. goto out_free;
  623. }
  624. mnt->mnt_flags = old->mnt_flags & ~MNT_WRITE_HOLD;
  625. atomic_inc(&sb->s_active);
  626. mnt->mnt_sb = sb;
  627. mnt->mnt_root = dget(root);
  628. mnt->mnt_mountpoint = mnt->mnt_root;
  629. mnt->mnt_parent = mnt;
  630. if (flag & CL_SLAVE) {
  631. list_add(&mnt->mnt_slave, &old->mnt_slave_list);
  632. mnt->mnt_master = old;
  633. CLEAR_MNT_SHARED(mnt);
  634. } else if (!(flag & CL_PRIVATE)) {
  635. if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
  636. list_add(&mnt->mnt_share, &old->mnt_share);
  637. if (IS_MNT_SLAVE(old))
  638. list_add(&mnt->mnt_slave, &old->mnt_slave);
  639. mnt->mnt_master = old->mnt_master;
  640. }
  641. if (flag & CL_MAKE_SHARED)
  642. set_mnt_shared(mnt);
  643. /* stick the duplicate mount on the same expiry list
  644. * as the original if that was on one */
  645. if (flag & CL_EXPIRE) {
  646. if (!list_empty(&old->mnt_expire))
  647. list_add(&mnt->mnt_expire, &old->mnt_expire);
  648. }
  649. }
  650. return mnt;
  651. out_free:
  652. free_vfsmnt(mnt);
  653. return NULL;
  654. }
  655. static inline void mntfree(struct vfsmount *mnt)
  656. {
  657. struct super_block *sb = mnt->mnt_sb;
  658. /*
  659. * This probably indicates that somebody messed
  660. * up a mnt_want/drop_write() pair. If this
  661. * happens, the filesystem was probably unable
  662. * to make r/w->r/o transitions.
  663. */
  664. /*
  665. * The locking used to deal with mnt_count decrement provides barriers,
  666. * so mnt_get_writers() below is safe.
  667. */
  668. WARN_ON(mnt_get_writers(mnt));
  669. fsnotify_vfsmount_delete(mnt);
  670. dput(mnt->mnt_root);
  671. free_vfsmnt(mnt);
  672. deactivate_super(sb);
  673. }
  674. static void mntput_no_expire(struct vfsmount *mnt)
  675. {
  676. put_again:
  677. #ifdef CONFIG_SMP
  678. br_read_lock(vfsmount_lock);
  679. if (likely(atomic_read(&mnt->mnt_longterm))) {
  680. mnt_dec_count(mnt);
  681. br_read_unlock(vfsmount_lock);
  682. return;
  683. }
  684. br_read_unlock(vfsmount_lock);
  685. br_write_lock(vfsmount_lock);
  686. mnt_dec_count(mnt);
  687. if (mnt_get_count(mnt)) {
  688. br_write_unlock(vfsmount_lock);
  689. return;
  690. }
  691. #else
  692. mnt_dec_count(mnt);
  693. if (likely(mnt_get_count(mnt)))
  694. return;
  695. br_write_lock(vfsmount_lock);
  696. #endif
  697. if (unlikely(mnt->mnt_pinned)) {
  698. mnt_add_count(mnt, mnt->mnt_pinned + 1);
  699. mnt->mnt_pinned = 0;
  700. br_write_unlock(vfsmount_lock);
  701. acct_auto_close_mnt(mnt);
  702. goto put_again;
  703. }
  704. br_write_unlock(vfsmount_lock);
  705. mntfree(mnt);
  706. }
  707. void mntput(struct vfsmount *mnt)
  708. {
  709. if (mnt) {
  710. /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
  711. if (unlikely(mnt->mnt_expiry_mark))
  712. mnt->mnt_expiry_mark = 0;
  713. mntput_no_expire(mnt);
  714. }
  715. }
  716. EXPORT_SYMBOL(mntput);
  717. struct vfsmount *mntget(struct vfsmount *mnt)
  718. {
  719. if (mnt)
  720. mnt_inc_count(mnt);
  721. return mnt;
  722. }
  723. EXPORT_SYMBOL(mntget);
  724. void mnt_pin(struct vfsmount *mnt)
  725. {
  726. br_write_lock(vfsmount_lock);
  727. mnt->mnt_pinned++;
  728. br_write_unlock(vfsmount_lock);
  729. }
  730. EXPORT_SYMBOL(mnt_pin);
  731. void mnt_unpin(struct vfsmount *mnt)
  732. {
  733. br_write_lock(vfsmount_lock);
  734. if (mnt->mnt_pinned) {
  735. mnt_inc_count(mnt);
  736. mnt->mnt_pinned--;
  737. }
  738. br_write_unlock(vfsmount_lock);
  739. }
  740. EXPORT_SYMBOL(mnt_unpin);
  741. static inline void mangle(struct seq_file *m, const char *s)
  742. {
  743. seq_escape(m, s, " \t\n\\");
  744. }
  745. /*
  746. * Simple .show_options callback for filesystems which don't want to
  747. * implement more complex mount option showing.
  748. *
  749. * See also save_mount_options().
  750. */
  751. int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
  752. {
  753. const char *options;
  754. rcu_read_lock();
  755. options = rcu_dereference(mnt->mnt_sb->s_options);
  756. if (options != NULL && options[0]) {
  757. seq_putc(m, ',');
  758. mangle(m, options);
  759. }
  760. rcu_read_unlock();
  761. return 0;
  762. }
  763. EXPORT_SYMBOL(generic_show_options);
  764. /*
  765. * If filesystem uses generic_show_options(), this function should be
  766. * called from the fill_super() callback.
  767. *
  768. * The .remount_fs callback usually needs to be handled in a special
  769. * way, to make sure, that previous options are not overwritten if the
  770. * remount fails.
  771. *
  772. * Also note, that if the filesystem's .remount_fs function doesn't
  773. * reset all options to their default value, but changes only newly
  774. * given options, then the displayed options will not reflect reality
  775. * any more.
  776. */
  777. void save_mount_options(struct super_block *sb, char *options)
  778. {
  779. BUG_ON(sb->s_options);
  780. rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
  781. }
  782. EXPORT_SYMBOL(save_mount_options);
  783. void replace_mount_options(struct super_block *sb, char *options)
  784. {
  785. char *old = sb->s_options;
  786. rcu_assign_pointer(sb->s_options, options);
  787. if (old) {
  788. synchronize_rcu();
  789. kfree(old);
  790. }
  791. }
  792. EXPORT_SYMBOL(replace_mount_options);
  793. #ifdef CONFIG_PROC_FS
  794. /* iterator */
  795. static void *m_start(struct seq_file *m, loff_t *pos)
  796. {
  797. struct proc_mounts *p = m->private;
  798. down_read(&namespace_sem);
  799. return seq_list_start(&p->ns->list, *pos);
  800. }
  801. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  802. {
  803. struct proc_mounts *p = m->private;
  804. return seq_list_next(v, &p->ns->list, pos);
  805. }
  806. static void m_stop(struct seq_file *m, void *v)
  807. {
  808. up_read(&namespace_sem);
  809. }
  810. int mnt_had_events(struct proc_mounts *p)
  811. {
  812. struct mnt_namespace *ns = p->ns;
  813. int res = 0;
  814. br_read_lock(vfsmount_lock);
  815. if (p->event != ns->event) {
  816. p->event = ns->event;
  817. res = 1;
  818. }
  819. br_read_unlock(vfsmount_lock);
  820. return res;
  821. }
  822. struct proc_fs_info {
  823. int flag;
  824. const char *str;
  825. };
  826. static int show_sb_opts(struct seq_file *m, struct super_block *sb)
  827. {
  828. static const struct proc_fs_info fs_info[] = {
  829. { MS_SYNCHRONOUS, ",sync" },
  830. { MS_DIRSYNC, ",dirsync" },
  831. { MS_MANDLOCK, ",mand" },
  832. { 0, NULL }
  833. };
  834. const struct proc_fs_info *fs_infop;
  835. for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
  836. if (sb->s_flags & fs_infop->flag)
  837. seq_puts(m, fs_infop->str);
  838. }
  839. return security_sb_show_options(m, sb);
  840. }
  841. static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
  842. {
  843. static const struct proc_fs_info mnt_info[] = {
  844. { MNT_NOSUID, ",nosuid" },
  845. { MNT_NODEV, ",nodev" },
  846. { MNT_NOEXEC, ",noexec" },
  847. { MNT_NOATIME, ",noatime" },
  848. { MNT_NODIRATIME, ",nodiratime" },
  849. { MNT_RELATIME, ",relatime" },
  850. { 0, NULL }
  851. };
  852. const struct proc_fs_info *fs_infop;
  853. for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
  854. if (mnt->mnt_flags & fs_infop->flag)
  855. seq_puts(m, fs_infop->str);
  856. }
  857. }
  858. static void show_type(struct seq_file *m, struct super_block *sb)
  859. {
  860. mangle(m, sb->s_type->name);
  861. if (sb->s_subtype && sb->s_subtype[0]) {
  862. seq_putc(m, '.');
  863. mangle(m, sb->s_subtype);
  864. }
  865. }
  866. static int show_vfsmnt(struct seq_file *m, void *v)
  867. {
  868. struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
  869. int err = 0;
  870. struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
  871. mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
  872. seq_putc(m, ' ');
  873. seq_path(m, &mnt_path, " \t\n\\");
  874. seq_putc(m, ' ');
  875. show_type(m, mnt->mnt_sb);
  876. seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
  877. err = show_sb_opts(m, mnt->mnt_sb);
  878. if (err)
  879. goto out;
  880. show_mnt_opts(m, mnt);
  881. if (mnt->mnt_sb->s_op->show_options)
  882. err = mnt->mnt_sb->s_op->show_options(m, mnt);
  883. seq_puts(m, " 0 0\n");
  884. out:
  885. return err;
  886. }
  887. const struct seq_operations mounts_op = {
  888. .start = m_start,
  889. .next = m_next,
  890. .stop = m_stop,
  891. .show = show_vfsmnt
  892. };
  893. static int show_mountinfo(struct seq_file *m, void *v)
  894. {
  895. struct proc_mounts *p = m->private;
  896. struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
  897. struct super_block *sb = mnt->mnt_sb;
  898. struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
  899. struct path root = p->root;
  900. int err = 0;
  901. seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
  902. MAJOR(sb->s_dev), MINOR(sb->s_dev));
  903. seq_dentry(m, mnt->mnt_root, " \t\n\\");
  904. seq_putc(m, ' ');
  905. seq_path_root(m, &mnt_path, &root, " \t\n\\");
  906. if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) {
  907. /*
  908. * Mountpoint is outside root, discard that one. Ugly,
  909. * but less so than trying to do that in iterator in a
  910. * race-free way (due to renames).
  911. */
  912. return SEQ_SKIP;
  913. }
  914. seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
  915. show_mnt_opts(m, mnt);
  916. /* Tagged fields ("foo:X" or "bar") */
  917. if (IS_MNT_SHARED(mnt))
  918. seq_printf(m, " shared:%i", mnt->mnt_group_id);
  919. if (IS_MNT_SLAVE(mnt)) {
  920. int master = mnt->mnt_master->mnt_group_id;
  921. int dom = get_dominating_id(mnt, &p->root);
  922. seq_printf(m, " master:%i", master);
  923. if (dom && dom != master)
  924. seq_printf(m, " propagate_from:%i", dom);
  925. }
  926. if (IS_MNT_UNBINDABLE(mnt))
  927. seq_puts(m, " unbindable");
  928. /* Filesystem specific data */
  929. seq_puts(m, " - ");
  930. show_type(m, sb);
  931. seq_putc(m, ' ');
  932. mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
  933. seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
  934. err = show_sb_opts(m, sb);
  935. if (err)
  936. goto out;
  937. if (sb->s_op->show_options)
  938. err = sb->s_op->show_options(m, mnt);
  939. seq_putc(m, '\n');
  940. out:
  941. return err;
  942. }
  943. const struct seq_operations mountinfo_op = {
  944. .start = m_start,
  945. .next = m_next,
  946. .stop = m_stop,
  947. .show = show_mountinfo,
  948. };
  949. static int show_vfsstat(struct seq_file *m, void *v)
  950. {
  951. struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
  952. struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
  953. int err = 0;
  954. /* device */
  955. if (mnt->mnt_devname) {
  956. seq_puts(m, "device ");
  957. mangle(m, mnt->mnt_devname);
  958. } else
  959. seq_puts(m, "no device");
  960. /* mount point */
  961. seq_puts(m, " mounted on ");
  962. seq_path(m, &mnt_path, " \t\n\\");
  963. seq_putc(m, ' ');
  964. /* file system type */
  965. seq_puts(m, "with fstype ");
  966. show_type(m, mnt->mnt_sb);
  967. /* optional statistics */
  968. if (mnt->mnt_sb->s_op->show_stats) {
  969. seq_putc(m, ' ');
  970. err = mnt->mnt_sb->s_op->show_stats(m, mnt);
  971. }
  972. seq_putc(m, '\n');
  973. return err;
  974. }
  975. const struct seq_operations mountstats_op = {
  976. .start = m_start,
  977. .next = m_next,
  978. .stop = m_stop,
  979. .show = show_vfsstat,
  980. };
  981. #endif /* CONFIG_PROC_FS */
  982. /**
  983. * may_umount_tree - check if a mount tree is busy
  984. * @mnt: root of mount tree
  985. *
  986. * This is called to check if a tree of mounts has any
  987. * open files, pwds, chroots or sub mounts that are
  988. * busy.
  989. */
  990. int may_umount_tree(struct vfsmount *mnt)
  991. {
  992. int actual_refs = 0;
  993. int minimum_refs = 0;
  994. struct vfsmount *p;
  995. /* write lock needed for mnt_get_count */
  996. br_write_lock(vfsmount_lock);
  997. for (p = mnt; p; p = next_mnt(p, mnt)) {
  998. actual_refs += mnt_get_count(p);
  999. minimum_refs += 2;
  1000. }
  1001. br_write_unlock(vfsmount_lock);
  1002. if (actual_refs > minimum_refs)
  1003. return 0;
  1004. return 1;
  1005. }
  1006. EXPORT_SYMBOL(may_umount_tree);
  1007. /**
  1008. * may_umount - check if a mount point is busy
  1009. * @mnt: root of mount
  1010. *
  1011. * This is called to check if a mount point has any
  1012. * open files, pwds, chroots or sub mounts. If the
  1013. * mount has sub mounts this will return busy
  1014. * regardless of whether the sub mounts are busy.
  1015. *
  1016. * Doesn't take quota and stuff into account. IOW, in some cases it will
  1017. * give false negatives. The main reason why it's here is that we need
  1018. * a non-destructive way to look for easily umountable filesystems.
  1019. */
  1020. int may_umount(struct vfsmount *mnt)
  1021. {
  1022. int ret = 1;
  1023. down_read(&namespace_sem);
  1024. br_write_lock(vfsmount_lock);
  1025. if (propagate_mount_busy(mnt, 2))
  1026. ret = 0;
  1027. br_write_unlock(vfsmount_lock);
  1028. up_read(&namespace_sem);
  1029. return ret;
  1030. }
  1031. EXPORT_SYMBOL(may_umount);
  1032. void release_mounts(struct list_head *head)
  1033. {
  1034. struct vfsmount *mnt;
  1035. while (!list_empty(head)) {
  1036. mnt = list_first_entry(head, struct vfsmount, mnt_hash);
  1037. list_del_init(&mnt->mnt_hash);
  1038. if (mnt->mnt_parent != mnt) {
  1039. struct dentry *dentry;
  1040. struct vfsmount *m;
  1041. br_write_lock(vfsmount_lock);
  1042. dentry = mnt->mnt_mountpoint;
  1043. m = mnt->mnt_parent;
  1044. mnt->mnt_mountpoint = mnt->mnt_root;
  1045. mnt->mnt_parent = mnt;
  1046. m->mnt_ghosts--;
  1047. br_write_unlock(vfsmount_lock);
  1048. dput(dentry);
  1049. mntput(m);
  1050. }
  1051. mntput(mnt);
  1052. }
  1053. }
  1054. /*
  1055. * vfsmount lock must be held for write
  1056. * namespace_sem must be held for write
  1057. */
  1058. void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
  1059. {
  1060. LIST_HEAD(tmp_list);
  1061. struct vfsmount *p;
  1062. for (p = mnt; p; p = next_mnt(p, mnt))
  1063. list_move(&p->mnt_hash, &tmp_list);
  1064. if (propagate)
  1065. propagate_umount(&tmp_list);
  1066. list_for_each_entry(p, &tmp_list, mnt_hash) {
  1067. list_del_init(&p->mnt_expire);
  1068. list_del_init(&p->mnt_list);
  1069. __touch_mnt_namespace(p->mnt_ns);
  1070. p->mnt_ns = NULL;
  1071. __mnt_make_shortterm(p);
  1072. list_del_init(&p->mnt_child);
  1073. if (p->mnt_parent != p) {
  1074. p->mnt_parent->mnt_ghosts++;
  1075. dentry_reset_mounted(p->mnt_parent, p->mnt_mountpoint);
  1076. }
  1077. change_mnt_propagation(p, MS_PRIVATE);
  1078. }
  1079. list_splice(&tmp_list, kill);
  1080. }
  1081. static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
  1082. static int do_umount(struct vfsmount *mnt, int flags)
  1083. {
  1084. struct super_block *sb = mnt->mnt_sb;
  1085. int retval;
  1086. LIST_HEAD(umount_list);
  1087. retval = security_sb_umount(mnt, flags);
  1088. if (retval)
  1089. return retval;
  1090. /*
  1091. * Allow userspace to request a mountpoint be expired rather than
  1092. * unmounting unconditionally. Unmount only happens if:
  1093. * (1) the mark is already set (the mark is cleared by mntput())
  1094. * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
  1095. */
  1096. if (flags & MNT_EXPIRE) {
  1097. if (mnt == current->fs->root.mnt ||
  1098. flags & (MNT_FORCE | MNT_DETACH))
  1099. return -EINVAL;
  1100. /*
  1101. * probably don't strictly need the lock here if we examined
  1102. * all race cases, but it's a slowpath.
  1103. */
  1104. br_write_lock(vfsmount_lock);
  1105. if (mnt_get_count(mnt) != 2) {
  1106. br_write_lock(vfsmount_lock);
  1107. return -EBUSY;
  1108. }
  1109. br_write_unlock(vfsmount_lock);
  1110. if (!xchg(&mnt->mnt_expiry_mark, 1))
  1111. return -EAGAIN;
  1112. }
  1113. /*
  1114. * If we may have to abort operations to get out of this
  1115. * mount, and they will themselves hold resources we must
  1116. * allow the fs to do things. In the Unix tradition of
  1117. * 'Gee thats tricky lets do it in userspace' the umount_begin
  1118. * might fail to complete on the first run through as other tasks
  1119. * must return, and the like. Thats for the mount program to worry
  1120. * about for the moment.
  1121. */
  1122. if (flags & MNT_FORCE && sb->s_op->umount_begin) {
  1123. sb->s_op->umount_begin(sb);
  1124. }
  1125. /*
  1126. * No sense to grab the lock for this test, but test itself looks
  1127. * somewhat bogus. Suggestions for better replacement?
  1128. * Ho-hum... In principle, we might treat that as umount + switch
  1129. * to rootfs. GC would eventually take care of the old vfsmount.
  1130. * Actually it makes sense, especially if rootfs would contain a
  1131. * /reboot - static binary that would close all descriptors and
  1132. * call reboot(9). Then init(8) could umount root and exec /reboot.
  1133. */
  1134. if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
  1135. /*
  1136. * Special case for "unmounting" root ...
  1137. * we just try to remount it readonly.
  1138. */
  1139. down_write(&sb->s_umount);
  1140. if (!(sb->s_flags & MS_RDONLY))
  1141. retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
  1142. up_write(&sb->s_umount);
  1143. return retval;
  1144. }
  1145. down_write(&namespace_sem);
  1146. br_write_lock(vfsmount_lock);
  1147. event++;
  1148. if (!(flags & MNT_DETACH))
  1149. shrink_submounts(mnt, &umount_list);
  1150. retval = -EBUSY;
  1151. if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
  1152. if (!list_empty(&mnt->mnt_list))
  1153. umount_tree(mnt, 1, &umount_list);
  1154. retval = 0;
  1155. }
  1156. br_write_unlock(vfsmount_lock);
  1157. up_write(&namespace_sem);
  1158. release_mounts(&umount_list);
  1159. return retval;
  1160. }
  1161. /*
  1162. * Now umount can handle mount points as well as block devices.
  1163. * This is important for filesystems which use unnamed block devices.
  1164. *
  1165. * We now support a flag for forced unmount like the other 'big iron'
  1166. * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
  1167. */
  1168. SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
  1169. {
  1170. struct path path;
  1171. int retval;
  1172. int lookup_flags = 0;
  1173. if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
  1174. return -EINVAL;
  1175. if (!(flags & UMOUNT_NOFOLLOW))
  1176. lookup_flags |= LOOKUP_FOLLOW;
  1177. retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
  1178. if (retval)
  1179. goto out;
  1180. retval = -EINVAL;
  1181. if (path.dentry != path.mnt->mnt_root)
  1182. goto dput_and_out;
  1183. if (!check_mnt(path.mnt))
  1184. goto dput_and_out;
  1185. retval = -EPERM;
  1186. if (!capable(CAP_SYS_ADMIN))
  1187. goto dput_and_out;
  1188. retval = do_umount(path.mnt, flags);
  1189. dput_and_out:
  1190. /* we mustn't call path_put() as that would clear mnt_expiry_mark */
  1191. dput(path.dentry);
  1192. mntput_no_expire(path.mnt);
  1193. out:
  1194. return retval;
  1195. }
  1196. #ifdef __ARCH_WANT_SYS_OLDUMOUNT
  1197. /*
  1198. * The 2.0 compatible umount. No flags.
  1199. */
  1200. SYSCALL_DEFINE1(oldumount, char __user *, name)
  1201. {
  1202. return sys_umount(name, 0);
  1203. }
  1204. #endif
  1205. static int mount_is_safe(struct path *path)
  1206. {
  1207. if (capable(CAP_SYS_ADMIN))
  1208. return 0;
  1209. return -EPERM;
  1210. #ifdef notyet
  1211. if (S_ISLNK(path->dentry->d_inode->i_mode))
  1212. return -EPERM;
  1213. if (path->dentry->d_inode->i_mode & S_ISVTX) {
  1214. if (current_uid() != path->dentry->d_inode->i_uid)
  1215. return -EPERM;
  1216. }
  1217. if (inode_permission(path->dentry->d_inode, MAY_WRITE))
  1218. return -EPERM;
  1219. return 0;
  1220. #endif
  1221. }
  1222. struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
  1223. int flag)
  1224. {
  1225. struct vfsmount *res, *p, *q, *r, *s;
  1226. struct path path;
  1227. if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
  1228. return NULL;
  1229. res = q = clone_mnt(mnt, dentry, flag);
  1230. if (!q)
  1231. goto Enomem;
  1232. q->mnt_mountpoint = mnt->mnt_mountpoint;
  1233. p = mnt;
  1234. list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
  1235. if (!is_subdir(r->mnt_mountpoint, dentry))
  1236. continue;
  1237. for (s = r; s; s = next_mnt(s, r)) {
  1238. if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
  1239. s = skip_mnt_tree(s);
  1240. continue;
  1241. }
  1242. while (p != s->mnt_parent) {
  1243. p = p->mnt_parent;
  1244. q = q->mnt_parent;
  1245. }
  1246. p = s;
  1247. path.mnt = q;
  1248. path.dentry = p->mnt_mountpoint;
  1249. q = clone_mnt(p, p->mnt_root, flag);
  1250. if (!q)
  1251. goto Enomem;
  1252. br_write_lock(vfsmount_lock);
  1253. list_add_tail(&q->mnt_list, &res->mnt_list);
  1254. attach_mnt(q, &path);
  1255. br_write_unlock(vfsmount_lock);
  1256. }
  1257. }
  1258. return res;
  1259. Enomem:
  1260. if (res) {
  1261. LIST_HEAD(umount_list);
  1262. br_write_lock(vfsmount_lock);
  1263. umount_tree(res, 0, &umount_list);
  1264. br_write_unlock(vfsmount_lock);
  1265. release_mounts(&umount_list);
  1266. }
  1267. return NULL;
  1268. }
  1269. struct vfsmount *collect_mounts(struct path *path)
  1270. {
  1271. struct vfsmount *tree;
  1272. down_write(&namespace_sem);
  1273. tree = copy_tree(path->mnt, path->dentry, CL_COPY_ALL | CL_PRIVATE);
  1274. up_write(&namespace_sem);
  1275. return tree;
  1276. }
  1277. void drop_collected_mounts(struct vfsmount *mnt)
  1278. {
  1279. LIST_HEAD(umount_list);
  1280. down_write(&namespace_sem);
  1281. br_write_lock(vfsmount_lock);
  1282. umount_tree(mnt, 0, &umount_list);
  1283. br_write_unlock(vfsmount_lock);
  1284. up_write(&namespace_sem);
  1285. release_mounts(&umount_list);
  1286. }
  1287. int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
  1288. struct vfsmount *root)
  1289. {
  1290. struct vfsmount *mnt;
  1291. int res = f(root, arg);
  1292. if (res)
  1293. return res;
  1294. list_for_each_entry(mnt, &root->mnt_list, mnt_list) {
  1295. res = f(mnt, arg);
  1296. if (res)
  1297. return res;
  1298. }
  1299. return 0;
  1300. }
  1301. static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
  1302. {
  1303. struct vfsmount *p;
  1304. for (p = mnt; p != end; p = next_mnt(p, mnt)) {
  1305. if (p->mnt_group_id && !IS_MNT_SHARED(p))
  1306. mnt_release_group_id(p);
  1307. }
  1308. }
  1309. static int invent_group_ids(struct vfsmount *mnt, bool recurse)
  1310. {
  1311. struct vfsmount *p;
  1312. for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
  1313. if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
  1314. int err = mnt_alloc_group_id(p);
  1315. if (err) {
  1316. cleanup_group_ids(mnt, p);
  1317. return err;
  1318. }
  1319. }
  1320. }
  1321. return 0;
  1322. }
  1323. /*
  1324. * @source_mnt : mount tree to be attached
  1325. * @nd : place the mount tree @source_mnt is attached
  1326. * @parent_nd : if non-null, detach the source_mnt from its parent and
  1327. * store the parent mount and mountpoint dentry.
  1328. * (done when source_mnt is moved)
  1329. *
  1330. * NOTE: in the table below explains the semantics when a source mount
  1331. * of a given type is attached to a destination mount of a given type.
  1332. * ---------------------------------------------------------------------------
  1333. * | BIND MOUNT OPERATION |
  1334. * |**************************************************************************
  1335. * | source-->| shared | private | slave | unbindable |
  1336. * | dest | | | | |
  1337. * | | | | | | |
  1338. * | v | | | | |
  1339. * |**************************************************************************
  1340. * | shared | shared (++) | shared (+) | shared(+++)| invalid |
  1341. * | | | | | |
  1342. * |non-shared| shared (+) | private | slave (*) | invalid |
  1343. * ***************************************************************************
  1344. * A bind operation clones the source mount and mounts the clone on the
  1345. * destination mount.
  1346. *
  1347. * (++) the cloned mount is propagated to all the mounts in the propagation
  1348. * tree of the destination mount and the cloned mount is added to
  1349. * the peer group of the source mount.
  1350. * (+) the cloned mount is created under the destination mount and is marked
  1351. * as shared. The cloned mount is added to the peer group of the source
  1352. * mount.
  1353. * (+++) the mount is propagated to all the mounts in the propagation tree
  1354. * of the destination mount and the cloned mount is made slave
  1355. * of the same master as that of the source mount. The cloned mount
  1356. * is marked as 'shared and slave'.
  1357. * (*) the cloned mount is made a slave of the same master as that of the
  1358. * source mount.
  1359. *
  1360. * ---------------------------------------------------------------------------
  1361. * | MOVE MOUNT OPERATION |
  1362. * |**************************************************************************
  1363. * | source-->| shared | private | slave | unbindable |
  1364. * | dest | | | | |
  1365. * | | | | | | |
  1366. * | v | | | | |
  1367. * |**************************************************************************
  1368. * | shared | shared (+) | shared (+) | shared(+++) | invalid |
  1369. * | | | | | |
  1370. * |non-shared| shared (+*) | private | slave (*) | unbindable |
  1371. * ***************************************************************************
  1372. *
  1373. * (+) the mount is moved to the destination. And is then propagated to
  1374. * all the mounts in the propagation tree of the destination mount.
  1375. * (+*) the mount is moved to the destination.
  1376. * (+++) the mount is moved to the destination and is then propagated to
  1377. * all the mounts belonging to the destination mount's propagation tree.
  1378. * the mount is marked as 'shared and slave'.
  1379. * (*) the mount continues to be a slave at the new location.
  1380. *
  1381. * if the source mount is a tree, the operations explained above is
  1382. * applied to each mount in the tree.
  1383. * Must be called without spinlocks held, since this function can sleep
  1384. * in allocations.
  1385. */
  1386. static int attach_recursive_mnt(struct vfsmount *source_mnt,
  1387. struct path *path, struct path *parent_path)
  1388. {
  1389. LIST_HEAD(tree_list);
  1390. struct vfsmount *dest_mnt = path->mnt;
  1391. struct dentry *dest_dentry = path->dentry;
  1392. struct vfsmount *child, *p;
  1393. int err;
  1394. if (IS_MNT_SHARED(dest_mnt)) {
  1395. err = invent_group_ids(source_mnt, true);
  1396. if (err)
  1397. goto out;
  1398. }
  1399. err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
  1400. if (err)
  1401. goto out_cleanup_ids;
  1402. br_write_lock(vfsmount_lock);
  1403. if (IS_MNT_SHARED(dest_mnt)) {
  1404. for (p = source_mnt; p; p = next_mnt(p, source_mnt))
  1405. set_mnt_shared(p);
  1406. }
  1407. if (parent_path) {
  1408. detach_mnt(source_mnt, parent_path);
  1409. attach_mnt(source_mnt, path);
  1410. touch_mnt_namespace(parent_path->mnt->mnt_ns);
  1411. } else {
  1412. mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
  1413. commit_tree(source_mnt);
  1414. }
  1415. list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
  1416. list_del_init(&child->mnt_hash);
  1417. commit_tree(child);
  1418. }
  1419. br_write_unlock(vfsmount_lock);
  1420. return 0;
  1421. out_cleanup_ids:
  1422. if (IS_MNT_SHARED(dest_mnt))
  1423. cleanup_group_ids(source_mnt, NULL);
  1424. out:
  1425. return err;
  1426. }
  1427. static int graft_tree(struct vfsmount *mnt, struct path *path)
  1428. {
  1429. int err;
  1430. if (mnt->mnt_sb->s_flags & MS_NOUSER)
  1431. return -EINVAL;
  1432. if (S_ISDIR(path->dentry->d_inode->i_mode) !=
  1433. S_ISDIR(mnt->mnt_root->d_inode->i_mode))
  1434. return -ENOTDIR;
  1435. err = -ENOENT;
  1436. mutex_lock(&path->dentry->d_inode->i_mutex);
  1437. if (cant_mount(path->dentry))
  1438. goto out_unlock;
  1439. if (!d_unlinked(path->dentry))
  1440. err = attach_recursive_mnt(mnt, path, NULL);
  1441. out_unlock:
  1442. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1443. return err;
  1444. }
  1445. /*
  1446. * Sanity check the flags to change_mnt_propagation.
  1447. */
  1448. static int flags_to_propagation_type(int flags)
  1449. {
  1450. int type = flags & ~MS_REC;
  1451. /* Fail if any non-propagation flags are set */
  1452. if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  1453. return 0;
  1454. /* Only one propagation flag should be set */
  1455. if (!is_power_of_2(type))
  1456. return 0;
  1457. return type;
  1458. }
  1459. /*
  1460. * recursively change the type of the mountpoint.
  1461. */
  1462. static int do_change_type(struct path *path, int flag)
  1463. {
  1464. struct vfsmount *m, *mnt = path->mnt;
  1465. int recurse = flag & MS_REC;
  1466. int type;
  1467. int err = 0;
  1468. if (!capable(CAP_SYS_ADMIN))
  1469. return -EPERM;
  1470. if (path->dentry != path->mnt->mnt_root)
  1471. return -EINVAL;
  1472. type = flags_to_propagation_type(flag);
  1473. if (!type)
  1474. return -EINVAL;
  1475. down_write(&namespace_sem);
  1476. if (type == MS_SHARED) {
  1477. err = invent_group_ids(mnt, recurse);
  1478. if (err)
  1479. goto out_unlock;
  1480. }
  1481. br_write_lock(vfsmount_lock);
  1482. for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
  1483. change_mnt_propagation(m, type);
  1484. br_write_unlock(vfsmount_lock);
  1485. out_unlock:
  1486. up_write(&namespace_sem);
  1487. return err;
  1488. }
  1489. /*
  1490. * do loopback mount.
  1491. */
  1492. static int do_loopback(struct path *path, char *old_name,
  1493. int recurse)
  1494. {
  1495. struct path old_path;
  1496. struct vfsmount *mnt = NULL;
  1497. int err = mount_is_safe(path);
  1498. if (err)
  1499. return err;
  1500. if (!old_name || !*old_name)
  1501. return -EINVAL;
  1502. err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
  1503. if (err)
  1504. return err;
  1505. down_write(&namespace_sem);
  1506. err = -EINVAL;
  1507. if (IS_MNT_UNBINDABLE(old_path.mnt))
  1508. goto out;
  1509. if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
  1510. goto out;
  1511. err = -ENOMEM;
  1512. if (recurse)
  1513. mnt = copy_tree(old_path.mnt, old_path.dentry, 0);
  1514. else
  1515. mnt = clone_mnt(old_path.mnt, old_path.dentry, 0);
  1516. if (!mnt)
  1517. goto out;
  1518. err = graft_tree(mnt, path);
  1519. if (err) {
  1520. LIST_HEAD(umount_list);
  1521. br_write_lock(vfsmount_lock);
  1522. umount_tree(mnt, 0, &umount_list);
  1523. br_write_unlock(vfsmount_lock);
  1524. release_mounts(&umount_list);
  1525. }
  1526. out:
  1527. up_write(&namespace_sem);
  1528. path_put(&old_path);
  1529. return err;
  1530. }
  1531. static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
  1532. {
  1533. int error = 0;
  1534. int readonly_request = 0;
  1535. if (ms_flags & MS_RDONLY)
  1536. readonly_request = 1;
  1537. if (readonly_request == __mnt_is_readonly(mnt))
  1538. return 0;
  1539. if (readonly_request)
  1540. error = mnt_make_readonly(mnt);
  1541. else
  1542. __mnt_unmake_readonly(mnt);
  1543. return error;
  1544. }
  1545. /*
  1546. * change filesystem flags. dir should be a physical root of filesystem.
  1547. * If you've mounted a non-root directory somewhere and want to do remount
  1548. * on it - tough luck.
  1549. */
  1550. static int do_remount(struct path *path, int flags, int mnt_flags,
  1551. void *data)
  1552. {
  1553. int err;
  1554. struct super_block *sb = path->mnt->mnt_sb;
  1555. if (!capable(CAP_SYS_ADMIN))
  1556. return -EPERM;
  1557. if (!check_mnt(path->mnt))
  1558. return -EINVAL;
  1559. if (path->dentry != path->mnt->mnt_root)
  1560. return -EINVAL;
  1561. down_write(&sb->s_umount);
  1562. if (flags & MS_BIND)
  1563. err = change_mount_flags(path->mnt, flags);
  1564. else
  1565. err = do_remount_sb(sb, flags, data, 0);
  1566. if (!err) {
  1567. br_write_lock(vfsmount_lock);
  1568. mnt_flags |= path->mnt->mnt_flags & MNT_PROPAGATION_MASK;
  1569. path->mnt->mnt_flags = mnt_flags;
  1570. br_write_unlock(vfsmount_lock);
  1571. }
  1572. up_write(&sb->s_umount);
  1573. if (!err) {
  1574. br_write_lock(vfsmount_lock);
  1575. touch_mnt_namespace(path->mnt->mnt_ns);
  1576. br_write_unlock(vfsmount_lock);
  1577. }
  1578. return err;
  1579. }
  1580. static inline int tree_contains_unbindable(struct vfsmount *mnt)
  1581. {
  1582. struct vfsmount *p;
  1583. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1584. if (IS_MNT_UNBINDABLE(p))
  1585. return 1;
  1586. }
  1587. return 0;
  1588. }
  1589. static int do_move_mount(struct path *path, char *old_name)
  1590. {
  1591. struct path old_path, parent_path;
  1592. struct vfsmount *p;
  1593. int err = 0;
  1594. if (!capable(CAP_SYS_ADMIN))
  1595. return -EPERM;
  1596. if (!old_name || !*old_name)
  1597. return -EINVAL;
  1598. err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
  1599. if (err)
  1600. return err;
  1601. down_write(&namespace_sem);
  1602. err = follow_down(path, true);
  1603. if (err < 0)
  1604. goto out;
  1605. err = -EINVAL;
  1606. if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
  1607. goto out;
  1608. err = -ENOENT;
  1609. mutex_lock(&path->dentry->d_inode->i_mutex);
  1610. if (cant_mount(path->dentry))
  1611. goto out1;
  1612. if (d_unlinked(path->dentry))
  1613. goto out1;
  1614. err = -EINVAL;
  1615. if (old_path.dentry != old_path.mnt->mnt_root)
  1616. goto out1;
  1617. if (old_path.mnt == old_path.mnt->mnt_parent)
  1618. goto out1;
  1619. if (S_ISDIR(path->dentry->d_inode->i_mode) !=
  1620. S_ISDIR(old_path.dentry->d_inode->i_mode))
  1621. goto out1;
  1622. /*
  1623. * Don't move a mount residing in a shared parent.
  1624. */
  1625. if (old_path.mnt->mnt_parent &&
  1626. IS_MNT_SHARED(old_path.mnt->mnt_parent))
  1627. goto out1;
  1628. /*
  1629. * Don't move a mount tree containing unbindable mounts to a destination
  1630. * mount which is shared.
  1631. */
  1632. if (IS_MNT_SHARED(path->mnt) &&
  1633. tree_contains_unbindable(old_path.mnt))
  1634. goto out1;
  1635. err = -ELOOP;
  1636. for (p = path->mnt; p->mnt_parent != p; p = p->mnt_parent)
  1637. if (p == old_path.mnt)
  1638. goto out1;
  1639. err = attach_recursive_mnt(old_path.mnt, path, &parent_path);
  1640. if (err)
  1641. goto out1;
  1642. /* if the mount is moved, it should no longer be expire
  1643. * automatically */
  1644. list_del_init(&old_path.mnt->mnt_expire);
  1645. out1:
  1646. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1647. out:
  1648. up_write(&namespace_sem);
  1649. if (!err)
  1650. path_put(&parent_path);
  1651. path_put(&old_path);
  1652. return err;
  1653. }
  1654. static int do_add_mount(struct vfsmount *, struct path *, int);
  1655. /*
  1656. * create a new mount for userspace and request it to be added into the
  1657. * namespace's tree
  1658. */
  1659. static int do_new_mount(struct path *path, char *type, int flags,
  1660. int mnt_flags, char *name, void *data)
  1661. {
  1662. struct vfsmount *mnt;
  1663. int err;
  1664. if (!type)
  1665. return -EINVAL;
  1666. /* we need capabilities... */
  1667. if (!capable(CAP_SYS_ADMIN))
  1668. return -EPERM;
  1669. mnt = do_kern_mount(type, flags, name, data);
  1670. if (IS_ERR(mnt))
  1671. return PTR_ERR(mnt);
  1672. err = do_add_mount(mnt, path, mnt_flags);
  1673. if (err)
  1674. mntput(mnt);
  1675. return err;
  1676. }
  1677. int finish_automount(struct vfsmount *m, struct path *path)
  1678. {
  1679. int err;
  1680. /* The new mount record should have at least 2 refs to prevent it being
  1681. * expired before we get a chance to add it
  1682. */
  1683. BUG_ON(mnt_get_count(m) < 2);
  1684. if (m->mnt_sb == path->mnt->mnt_sb &&
  1685. m->mnt_root == path->dentry) {
  1686. err = -ELOOP;
  1687. goto fail;
  1688. }
  1689. err = do_add_mount(m, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
  1690. if (!err)
  1691. return 0;
  1692. fail:
  1693. /* remove m from any expiration list it may be on */
  1694. if (!list_empty(&m->mnt_expire)) {
  1695. down_write(&namespace_sem);
  1696. br_write_lock(vfsmount_lock);
  1697. list_del_init(&m->mnt_expire);
  1698. br_write_unlock(vfsmount_lock);
  1699. up_write(&namespace_sem);
  1700. }
  1701. mntput(m);
  1702. mntput(m);
  1703. return err;
  1704. }
  1705. /*
  1706. * add a mount into a namespace's mount tree
  1707. */
  1708. static int do_add_mount(struct vfsmount *newmnt, struct path *path, int mnt_flags)
  1709. {
  1710. int err;
  1711. mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
  1712. down_write(&namespace_sem);
  1713. /* Something was mounted here while we slept */
  1714. err = follow_down(path, true);
  1715. if (err < 0)
  1716. goto unlock;
  1717. err = -EINVAL;
  1718. if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(path->mnt))
  1719. goto unlock;
  1720. /* Refuse the same filesystem on the same mount point */
  1721. err = -EBUSY;
  1722. if (path->mnt->mnt_sb == newmnt->mnt_sb &&
  1723. path->mnt->mnt_root == path->dentry)
  1724. goto unlock;
  1725. err = -EINVAL;
  1726. if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
  1727. goto unlock;
  1728. newmnt->mnt_flags = mnt_flags;
  1729. err = graft_tree(newmnt, path);
  1730. unlock:
  1731. up_write(&namespace_sem);
  1732. return err;
  1733. }
  1734. /**
  1735. * mnt_set_expiry - Put a mount on an expiration list
  1736. * @mnt: The mount to list.
  1737. * @expiry_list: The list to add the mount to.
  1738. */
  1739. void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
  1740. {
  1741. down_write(&namespace_sem);
  1742. br_write_lock(vfsmount_lock);
  1743. list_add_tail(&mnt->mnt_expire, expiry_list);
  1744. br_write_unlock(vfsmount_lock);
  1745. up_write(&namespace_sem);
  1746. }
  1747. EXPORT_SYMBOL(mnt_set_expiry);
  1748. /*
  1749. * process a list of expirable mountpoints with the intent of discarding any
  1750. * mountpoints that aren't in use and haven't been touched since last we came
  1751. * here
  1752. */
  1753. void mark_mounts_for_expiry(struct list_head *mounts)
  1754. {
  1755. struct vfsmount *mnt, *next;
  1756. LIST_HEAD(graveyard);
  1757. LIST_HEAD(umounts);
  1758. if (list_empty(mounts))
  1759. return;
  1760. down_write(&namespace_sem);
  1761. br_write_lock(vfsmount_lock);
  1762. /* extract from the expiration list every vfsmount that matches the
  1763. * following criteria:
  1764. * - only referenced by its parent vfsmount
  1765. * - still marked for expiry (marked on the last call here; marks are
  1766. * cleared by mntput())
  1767. */
  1768. list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
  1769. if (!xchg(&mnt->mnt_expiry_mark, 1) ||
  1770. propagate_mount_busy(mnt, 1))
  1771. continue;
  1772. list_move(&mnt->mnt_expire, &graveyard);
  1773. }
  1774. while (!list_empty(&graveyard)) {
  1775. mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
  1776. touch_mnt_namespace(mnt->mnt_ns);
  1777. umount_tree(mnt, 1, &umounts);
  1778. }
  1779. br_write_unlock(vfsmount_lock);
  1780. up_write(&namespace_sem);
  1781. release_mounts(&umounts);
  1782. }
  1783. EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
  1784. /*
  1785. * Ripoff of 'select_parent()'
  1786. *
  1787. * search the list of submounts for a given mountpoint, and move any
  1788. * shrinkable submounts to the 'graveyard' list.
  1789. */
  1790. static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
  1791. {
  1792. struct vfsmount *this_parent = parent;
  1793. struct list_head *next;
  1794. int found = 0;
  1795. repeat:
  1796. next = this_parent->mnt_mounts.next;
  1797. resume:
  1798. while (next != &this_parent->mnt_mounts) {
  1799. struct list_head *tmp = next;
  1800. struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
  1801. next = tmp->next;
  1802. if (!(mnt->mnt_flags & MNT_SHRINKABLE))
  1803. continue;
  1804. /*
  1805. * Descend a level if the d_mounts list is non-empty.
  1806. */
  1807. if (!list_empty(&mnt->mnt_mounts)) {
  1808. this_parent = mnt;
  1809. goto repeat;
  1810. }
  1811. if (!propagate_mount_busy(mnt, 1)) {
  1812. list_move_tail(&mnt->mnt_expire, graveyard);
  1813. found++;
  1814. }
  1815. }
  1816. /*
  1817. * All done at this level ... ascend and resume the search
  1818. */
  1819. if (this_parent != parent) {
  1820. next = this_parent->mnt_child.next;
  1821. this_parent = this_parent->mnt_parent;
  1822. goto resume;
  1823. }
  1824. return found;
  1825. }
  1826. /*
  1827. * process a list of expirable mountpoints with the intent of discarding any
  1828. * submounts of a specific parent mountpoint
  1829. *
  1830. * vfsmount_lock must be held for write
  1831. */
  1832. static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
  1833. {
  1834. LIST_HEAD(graveyard);
  1835. struct vfsmount *m;
  1836. /* extract submounts of 'mountpoint' from the expiration list */
  1837. while (select_submounts(mnt, &graveyard)) {
  1838. while (!list_empty(&graveyard)) {
  1839. m = list_first_entry(&graveyard, struct vfsmount,
  1840. mnt_expire);
  1841. touch_mnt_namespace(m->mnt_ns);
  1842. umount_tree(m, 1, umounts);
  1843. }
  1844. }
  1845. }
  1846. /*
  1847. * Some copy_from_user() implementations do not return the exact number of
  1848. * bytes remaining to copy on a fault. But copy_mount_options() requires that.
  1849. * Note that this function differs from copy_from_user() in that it will oops
  1850. * on bad values of `to', rather than returning a short copy.
  1851. */
  1852. static long exact_copy_from_user(void *to, const void __user * from,
  1853. unsigned long n)
  1854. {
  1855. char *t = to;
  1856. const char __user *f = from;
  1857. char c;
  1858. if (!access_ok(VERIFY_READ, from, n))
  1859. return n;
  1860. while (n) {
  1861. if (__get_user(c, f)) {
  1862. memset(t, 0, n);
  1863. break;
  1864. }
  1865. *t++ = c;
  1866. f++;
  1867. n--;
  1868. }
  1869. return n;
  1870. }
  1871. int copy_mount_options(const void __user * data, unsigned long *where)
  1872. {
  1873. int i;
  1874. unsigned long page;
  1875. unsigned long size;
  1876. *where = 0;
  1877. if (!data)
  1878. return 0;
  1879. if (!(page = __get_free_page(GFP_KERNEL)))
  1880. return -ENOMEM;
  1881. /* We only care that *some* data at the address the user
  1882. * gave us is valid. Just in case, we'll zero
  1883. * the remainder of the page.
  1884. */
  1885. /* copy_from_user cannot cross TASK_SIZE ! */
  1886. size = TASK_SIZE - (unsigned long)data;
  1887. if (size > PAGE_SIZE)
  1888. size = PAGE_SIZE;
  1889. i = size - exact_copy_from_user((void *)page, data, size);
  1890. if (!i) {
  1891. free_page(page);
  1892. return -EFAULT;
  1893. }
  1894. if (i != PAGE_SIZE)
  1895. memset((char *)page + i, 0, PAGE_SIZE - i);
  1896. *where = page;
  1897. return 0;
  1898. }
  1899. int copy_mount_string(const void __user *data, char **where)
  1900. {
  1901. char *tmp;
  1902. if (!data) {
  1903. *where = NULL;
  1904. return 0;
  1905. }
  1906. tmp = strndup_user(data, PAGE_SIZE);
  1907. if (IS_ERR(tmp))
  1908. return PTR_ERR(tmp);
  1909. *where = tmp;
  1910. return 0;
  1911. }
  1912. /*
  1913. * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
  1914. * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
  1915. *
  1916. * data is a (void *) that can point to any structure up to
  1917. * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
  1918. * information (or be NULL).
  1919. *
  1920. * Pre-0.97 versions of mount() didn't have a flags word.
  1921. * When the flags word was introduced its top half was required
  1922. * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
  1923. * Therefore, if this magic number is present, it carries no information
  1924. * and must be discarded.
  1925. */
  1926. long do_mount(char *dev_name, char *dir_name, char *type_page,
  1927. unsigned long flags, void *data_page)
  1928. {
  1929. struct path path;
  1930. int retval = 0;
  1931. int mnt_flags = 0;
  1932. /* Discard magic */
  1933. if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
  1934. flags &= ~MS_MGC_MSK;
  1935. /* Basic sanity checks */
  1936. if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
  1937. return -EINVAL;
  1938. if (data_page)
  1939. ((char *)data_page)[PAGE_SIZE - 1] = 0;
  1940. /* ... and get the mountpoint */
  1941. retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
  1942. if (retval)
  1943. return retval;
  1944. retval = security_sb_mount(dev_name, &path,
  1945. type_page, flags, data_page);
  1946. if (retval)
  1947. goto dput_out;
  1948. /* Default to relatime unless overriden */
  1949. if (!(flags & MS_NOATIME))
  1950. mnt_flags |= MNT_RELATIME;
  1951. /* Separate the per-mountpoint flags */
  1952. if (flags & MS_NOSUID)
  1953. mnt_flags |= MNT_NOSUID;
  1954. if (flags & MS_NODEV)
  1955. mnt_flags |= MNT_NODEV;
  1956. if (flags & MS_NOEXEC)
  1957. mnt_flags |= MNT_NOEXEC;
  1958. if (flags & MS_NOATIME)
  1959. mnt_flags |= MNT_NOATIME;
  1960. if (flags & MS_NODIRATIME)
  1961. mnt_flags |= MNT_NODIRATIME;
  1962. if (flags & MS_STRICTATIME)
  1963. mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
  1964. if (flags & MS_RDONLY)
  1965. mnt_flags |= MNT_READONLY;
  1966. flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
  1967. MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
  1968. MS_STRICTATIME);
  1969. if (flags & MS_REMOUNT)
  1970. retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
  1971. data_page);
  1972. else if (flags & MS_BIND)
  1973. retval = do_loopback(&path, dev_name, flags & MS_REC);
  1974. else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  1975. retval = do_change_type(&path, flags);
  1976. else if (flags & MS_MOVE)
  1977. retval = do_move_mount(&path, dev_name);
  1978. else
  1979. retval = do_new_mount(&path, type_page, flags, mnt_flags,
  1980. dev_name, data_page);
  1981. dput_out:
  1982. path_put(&path);
  1983. return retval;
  1984. }
  1985. static struct mnt_namespace *alloc_mnt_ns(void)
  1986. {
  1987. struct mnt_namespace *new_ns;
  1988. new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
  1989. if (!new_ns)
  1990. return ERR_PTR(-ENOMEM);
  1991. atomic_set(&new_ns->count, 1);
  1992. new_ns->root = NULL;
  1993. INIT_LIST_HEAD(&new_ns->list);
  1994. init_waitqueue_head(&new_ns->poll);
  1995. new_ns->event = 0;
  1996. return new_ns;
  1997. }
  1998. void mnt_make_longterm(struct vfsmount *mnt)
  1999. {
  2000. __mnt_make_longterm(mnt);
  2001. }
  2002. void mnt_make_shortterm(struct vfsmount *mnt)
  2003. {
  2004. #ifdef CONFIG_SMP
  2005. if (atomic_add_unless(&mnt->mnt_longterm, -1, 1))
  2006. return;
  2007. br_write_lock(vfsmount_lock);
  2008. atomic_dec(&mnt->mnt_longterm);
  2009. br_write_unlock(vfsmount_lock);
  2010. #endif
  2011. }
  2012. /*
  2013. * Allocate a new namespace structure and populate it with contents
  2014. * copied from the namespace of the passed in task structure.
  2015. */
  2016. static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
  2017. struct fs_struct *fs)
  2018. {
  2019. struct mnt_namespace *new_ns;
  2020. struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
  2021. struct vfsmount *p, *q;
  2022. new_ns = alloc_mnt_ns();
  2023. if (IS_ERR(new_ns))
  2024. return new_ns;
  2025. down_write(&namespace_sem);
  2026. /* First pass: copy the tree topology */
  2027. new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
  2028. CL_COPY_ALL | CL_EXPIRE);
  2029. if (!new_ns->root) {
  2030. up_write(&namespace_sem);
  2031. kfree(new_ns);
  2032. return ERR_PTR(-ENOMEM);
  2033. }
  2034. br_write_lock(vfsmount_lock);
  2035. list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
  2036. br_write_unlock(vfsmount_lock);
  2037. /*
  2038. * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
  2039. * as belonging to new namespace. We have already acquired a private
  2040. * fs_struct, so tsk->fs->lock is not needed.
  2041. */
  2042. p = mnt_ns->root;
  2043. q = new_ns->root;
  2044. while (p) {
  2045. q->mnt_ns = new_ns;
  2046. __mnt_make_longterm(q);
  2047. if (fs) {
  2048. if (p == fs->root.mnt) {
  2049. fs->root.mnt = mntget(q);
  2050. __mnt_make_longterm(q);
  2051. mnt_make_shortterm(p);
  2052. rootmnt = p;
  2053. }
  2054. if (p == fs->pwd.mnt) {
  2055. fs->pwd.mnt = mntget(q);
  2056. __mnt_make_longterm(q);
  2057. mnt_make_shortterm(p);
  2058. pwdmnt = p;
  2059. }
  2060. }
  2061. p = next_mnt(p, mnt_ns->root);
  2062. q = next_mnt(q, new_ns->root);
  2063. }
  2064. up_write(&namespace_sem);
  2065. if (rootmnt)
  2066. mntput(rootmnt);
  2067. if (pwdmnt)
  2068. mntput(pwdmnt);
  2069. return new_ns;
  2070. }
  2071. struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
  2072. struct fs_struct *new_fs)
  2073. {
  2074. struct mnt_namespace *new_ns;
  2075. BUG_ON(!ns);
  2076. get_mnt_ns(ns);
  2077. if (!(flags & CLONE_NEWNS))
  2078. return ns;
  2079. new_ns = dup_mnt_ns(ns, new_fs);
  2080. put_mnt_ns(ns);
  2081. return new_ns;
  2082. }
  2083. /**
  2084. * create_mnt_ns - creates a private namespace and adds a root filesystem
  2085. * @mnt: pointer to the new root filesystem mountpoint
  2086. */
  2087. struct mnt_namespace *create_mnt_ns(struct vfsmount *mnt)
  2088. {
  2089. struct mnt_namespace *new_ns;
  2090. new_ns = alloc_mnt_ns();
  2091. if (!IS_ERR(new_ns)) {
  2092. mnt->mnt_ns = new_ns;
  2093. __mnt_make_longterm(mnt);
  2094. new_ns->root = mnt;
  2095. list_add(&new_ns->list, &new_ns->root->mnt_list);
  2096. }
  2097. return new_ns;
  2098. }
  2099. EXPORT_SYMBOL(create_mnt_ns);
  2100. SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
  2101. char __user *, type, unsigned long, flags, void __user *, data)
  2102. {
  2103. int ret;
  2104. char *kernel_type;
  2105. char *kernel_dir;
  2106. char *kernel_dev;
  2107. unsigned long data_page;
  2108. ret = copy_mount_string(type, &kernel_type);
  2109. if (ret < 0)
  2110. goto out_type;
  2111. kernel_dir = getname(dir_name);
  2112. if (IS_ERR(kernel_dir)) {
  2113. ret = PTR_ERR(kernel_dir);
  2114. goto out_dir;
  2115. }
  2116. ret = copy_mount_string(dev_name, &kernel_dev);
  2117. if (ret < 0)
  2118. goto out_dev;
  2119. ret = copy_mount_options(data, &data_page);
  2120. if (ret < 0)
  2121. goto out_data;
  2122. ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
  2123. (void *) data_page);
  2124. free_page(data_page);
  2125. out_data:
  2126. kfree(kernel_dev);
  2127. out_dev:
  2128. putname(kernel_dir);
  2129. out_dir:
  2130. kfree(kernel_type);
  2131. out_type:
  2132. return ret;
  2133. }
  2134. /*
  2135. * pivot_root Semantics:
  2136. * Moves the root file system of the current process to the directory put_old,
  2137. * makes new_root as the new root file system of the current process, and sets
  2138. * root/cwd of all processes which had them on the current root to new_root.
  2139. *
  2140. * Restrictions:
  2141. * The new_root and put_old must be directories, and must not be on the
  2142. * same file system as the current process root. The put_old must be
  2143. * underneath new_root, i.e. adding a non-zero number of /.. to the string
  2144. * pointed to by put_old must yield the same directory as new_root. No other
  2145. * file system may be mounted on put_old. After all, new_root is a mountpoint.
  2146. *
  2147. * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
  2148. * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
  2149. * in this situation.
  2150. *
  2151. * Notes:
  2152. * - we don't move root/cwd if they are not at the root (reason: if something
  2153. * cared enough to change them, it's probably wrong to force them elsewhere)
  2154. * - it's okay to pick a root that isn't the root of a file system, e.g.
  2155. * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
  2156. * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
  2157. * first.
  2158. */
  2159. SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
  2160. const char __user *, put_old)
  2161. {
  2162. struct vfsmount *tmp;
  2163. struct path new, old, parent_path, root_parent, root;
  2164. int error;
  2165. if (!capable(CAP_SYS_ADMIN))
  2166. return -EPERM;
  2167. error = user_path_dir(new_root, &new);
  2168. if (error)
  2169. goto out0;
  2170. error = -EINVAL;
  2171. if (!check_mnt(new.mnt))
  2172. goto out1;
  2173. error = user_path_dir(put_old, &old);
  2174. if (error)
  2175. goto out1;
  2176. error = security_sb_pivotroot(&old, &new);
  2177. if (error) {
  2178. path_put(&old);
  2179. goto out1;
  2180. }
  2181. get_fs_root(current->fs, &root);
  2182. down_write(&namespace_sem);
  2183. mutex_lock(&old.dentry->d_inode->i_mutex);
  2184. error = -EINVAL;
  2185. if (IS_MNT_SHARED(old.mnt) ||
  2186. IS_MNT_SHARED(new.mnt->mnt_parent) ||
  2187. IS_MNT_SHARED(root.mnt->mnt_parent))
  2188. goto out2;
  2189. if (!check_mnt(root.mnt))
  2190. goto out2;
  2191. error = -ENOENT;
  2192. if (cant_mount(old.dentry))
  2193. goto out2;
  2194. if (d_unlinked(new.dentry))
  2195. goto out2;
  2196. if (d_unlinked(old.dentry))
  2197. goto out2;
  2198. error = -EBUSY;
  2199. if (new.mnt == root.mnt ||
  2200. old.mnt == root.mnt)
  2201. goto out2; /* loop, on the same file system */
  2202. error = -EINVAL;
  2203. if (root.mnt->mnt_root != root.dentry)
  2204. goto out2; /* not a mountpoint */
  2205. if (root.mnt->mnt_parent == root.mnt)
  2206. goto out2; /* not attached */
  2207. if (new.mnt->mnt_root != new.dentry)
  2208. goto out2; /* not a mountpoint */
  2209. if (new.mnt->mnt_parent == new.mnt)
  2210. goto out2; /* not attached */
  2211. /* make sure we can reach put_old from new_root */
  2212. tmp = old.mnt;
  2213. br_write_lock(vfsmount_lock);
  2214. if (tmp != new.mnt) {
  2215. for (;;) {
  2216. if (tmp->mnt_parent == tmp)
  2217. goto out3; /* already mounted on put_old */
  2218. if (tmp->mnt_parent == new.mnt)
  2219. break;
  2220. tmp = tmp->mnt_parent;
  2221. }
  2222. if (!is_subdir(tmp->mnt_mountpoint, new.dentry))
  2223. goto out3;
  2224. } else if (!is_subdir(old.dentry, new.dentry))
  2225. goto out3;
  2226. detach_mnt(new.mnt, &parent_path);
  2227. detach_mnt(root.mnt, &root_parent);
  2228. /* mount old root on put_old */
  2229. attach_mnt(root.mnt, &old);
  2230. /* mount new_root on / */
  2231. attach_mnt(new.mnt, &root_parent);
  2232. touch_mnt_namespace(current->nsproxy->mnt_ns);
  2233. br_write_unlock(vfsmount_lock);
  2234. chroot_fs_refs(&root, &new);
  2235. error = 0;
  2236. path_put(&root_parent);
  2237. path_put(&parent_path);
  2238. out2:
  2239. mutex_unlock(&old.dentry->d_inode->i_mutex);
  2240. up_write(&namespace_sem);
  2241. path_put(&root);
  2242. path_put(&old);
  2243. out1:
  2244. path_put(&new);
  2245. out0:
  2246. return error;
  2247. out3:
  2248. br_write_unlock(vfsmount_lock);
  2249. goto out2;
  2250. }
  2251. static void __init init_mount_tree(void)
  2252. {
  2253. struct vfsmount *mnt;
  2254. struct mnt_namespace *ns;
  2255. struct path root;
  2256. mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
  2257. if (IS_ERR(mnt))
  2258. panic("Can't create rootfs");
  2259. ns = create_mnt_ns(mnt);
  2260. if (IS_ERR(ns))
  2261. panic("Can't allocate initial namespace");
  2262. init_task.nsproxy->mnt_ns = ns;
  2263. get_mnt_ns(ns);
  2264. root.mnt = ns->root;
  2265. root.dentry = ns->root->mnt_root;
  2266. set_fs_pwd(current->fs, &root);
  2267. set_fs_root(current->fs, &root);
  2268. }
  2269. void __init mnt_init(void)
  2270. {
  2271. unsigned u;
  2272. int err;
  2273. init_rwsem(&namespace_sem);
  2274. mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
  2275. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  2276. mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
  2277. if (!mount_hashtable)
  2278. panic("Failed to allocate mount hash table\n");
  2279. printk("Mount-cache hash table entries: %lu\n", HASH_SIZE);
  2280. for (u = 0; u < HASH_SIZE; u++)
  2281. INIT_LIST_HEAD(&mount_hashtable[u]);
  2282. br_lock_init(vfsmount_lock);
  2283. err = sysfs_init();
  2284. if (err)
  2285. printk(KERN_WARNING "%s: sysfs_init error: %d\n",
  2286. __func__, err);
  2287. fs_kobj = kobject_create_and_add("fs", NULL);
  2288. if (!fs_kobj)
  2289. printk(KERN_WARNING "%s: kobj create error\n", __func__);
  2290. init_rootfs();
  2291. init_mount_tree();
  2292. }
  2293. void put_mnt_ns(struct mnt_namespace *ns)
  2294. {
  2295. LIST_HEAD(umount_list);
  2296. if (!atomic_dec_and_test(&ns->count))
  2297. return;
  2298. down_write(&namespace_sem);
  2299. br_write_lock(vfsmount_lock);
  2300. umount_tree(ns->root, 0, &umount_list);
  2301. br_write_unlock(vfsmount_lock);
  2302. up_write(&namespace_sem);
  2303. release_mounts(&umount_list);
  2304. kfree(ns);
  2305. }
  2306. EXPORT_SYMBOL(put_mnt_ns);