disk-io.c 80 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/crc32c.h>
  29. #include <linux/slab.h>
  30. #include <linux/migrate.h>
  31. #include "compat.h"
  32. #include "ctree.h"
  33. #include "disk-io.h"
  34. #include "transaction.h"
  35. #include "btrfs_inode.h"
  36. #include "volumes.h"
  37. #include "print-tree.h"
  38. #include "async-thread.h"
  39. #include "locking.h"
  40. #include "tree-log.h"
  41. #include "free-space-cache.h"
  42. static struct extent_io_ops btree_extent_io_ops;
  43. static void end_workqueue_fn(struct btrfs_work *work);
  44. static void free_fs_root(struct btrfs_root *root);
  45. static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  46. int read_only);
  47. static int btrfs_destroy_ordered_operations(struct btrfs_root *root);
  48. static int btrfs_destroy_ordered_extents(struct btrfs_root *root);
  49. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  50. struct btrfs_root *root);
  51. static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
  52. static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  53. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  54. struct extent_io_tree *dirty_pages,
  55. int mark);
  56. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  57. struct extent_io_tree *pinned_extents);
  58. static int btrfs_cleanup_transaction(struct btrfs_root *root);
  59. /*
  60. * end_io_wq structs are used to do processing in task context when an IO is
  61. * complete. This is used during reads to verify checksums, and it is used
  62. * by writes to insert metadata for new file extents after IO is complete.
  63. */
  64. struct end_io_wq {
  65. struct bio *bio;
  66. bio_end_io_t *end_io;
  67. void *private;
  68. struct btrfs_fs_info *info;
  69. int error;
  70. int metadata;
  71. struct list_head list;
  72. struct btrfs_work work;
  73. };
  74. /*
  75. * async submit bios are used to offload expensive checksumming
  76. * onto the worker threads. They checksum file and metadata bios
  77. * just before they are sent down the IO stack.
  78. */
  79. struct async_submit_bio {
  80. struct inode *inode;
  81. struct bio *bio;
  82. struct list_head list;
  83. extent_submit_bio_hook_t *submit_bio_start;
  84. extent_submit_bio_hook_t *submit_bio_done;
  85. int rw;
  86. int mirror_num;
  87. unsigned long bio_flags;
  88. /*
  89. * bio_offset is optional, can be used if the pages in the bio
  90. * can't tell us where in the file the bio should go
  91. */
  92. u64 bio_offset;
  93. struct btrfs_work work;
  94. };
  95. /* These are used to set the lockdep class on the extent buffer locks.
  96. * The class is set by the readpage_end_io_hook after the buffer has
  97. * passed csum validation but before the pages are unlocked.
  98. *
  99. * The lockdep class is also set by btrfs_init_new_buffer on freshly
  100. * allocated blocks.
  101. *
  102. * The class is based on the level in the tree block, which allows lockdep
  103. * to know that lower nodes nest inside the locks of higher nodes.
  104. *
  105. * We also add a check to make sure the highest level of the tree is
  106. * the same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this
  107. * code needs update as well.
  108. */
  109. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  110. # if BTRFS_MAX_LEVEL != 8
  111. # error
  112. # endif
  113. static struct lock_class_key btrfs_eb_class[BTRFS_MAX_LEVEL + 1];
  114. static const char *btrfs_eb_name[BTRFS_MAX_LEVEL + 1] = {
  115. /* leaf */
  116. "btrfs-extent-00",
  117. "btrfs-extent-01",
  118. "btrfs-extent-02",
  119. "btrfs-extent-03",
  120. "btrfs-extent-04",
  121. "btrfs-extent-05",
  122. "btrfs-extent-06",
  123. "btrfs-extent-07",
  124. /* highest possible level */
  125. "btrfs-extent-08",
  126. };
  127. #endif
  128. /*
  129. * extents on the btree inode are pretty simple, there's one extent
  130. * that covers the entire device
  131. */
  132. static struct extent_map *btree_get_extent(struct inode *inode,
  133. struct page *page, size_t page_offset, u64 start, u64 len,
  134. int create)
  135. {
  136. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  137. struct extent_map *em;
  138. int ret;
  139. read_lock(&em_tree->lock);
  140. em = lookup_extent_mapping(em_tree, start, len);
  141. if (em) {
  142. em->bdev =
  143. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  144. read_unlock(&em_tree->lock);
  145. goto out;
  146. }
  147. read_unlock(&em_tree->lock);
  148. em = alloc_extent_map(GFP_NOFS);
  149. if (!em) {
  150. em = ERR_PTR(-ENOMEM);
  151. goto out;
  152. }
  153. em->start = 0;
  154. em->len = (u64)-1;
  155. em->block_len = (u64)-1;
  156. em->block_start = 0;
  157. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  158. write_lock(&em_tree->lock);
  159. ret = add_extent_mapping(em_tree, em);
  160. if (ret == -EEXIST) {
  161. u64 failed_start = em->start;
  162. u64 failed_len = em->len;
  163. free_extent_map(em);
  164. em = lookup_extent_mapping(em_tree, start, len);
  165. if (em) {
  166. ret = 0;
  167. } else {
  168. em = lookup_extent_mapping(em_tree, failed_start,
  169. failed_len);
  170. ret = -EIO;
  171. }
  172. } else if (ret) {
  173. free_extent_map(em);
  174. em = NULL;
  175. }
  176. write_unlock(&em_tree->lock);
  177. if (ret)
  178. em = ERR_PTR(ret);
  179. out:
  180. return em;
  181. }
  182. u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
  183. {
  184. return crc32c(seed, data, len);
  185. }
  186. void btrfs_csum_final(u32 crc, char *result)
  187. {
  188. *(__le32 *)result = ~cpu_to_le32(crc);
  189. }
  190. /*
  191. * compute the csum for a btree block, and either verify it or write it
  192. * into the csum field of the block.
  193. */
  194. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  195. int verify)
  196. {
  197. u16 csum_size =
  198. btrfs_super_csum_size(&root->fs_info->super_copy);
  199. char *result = NULL;
  200. unsigned long len;
  201. unsigned long cur_len;
  202. unsigned long offset = BTRFS_CSUM_SIZE;
  203. char *map_token = NULL;
  204. char *kaddr;
  205. unsigned long map_start;
  206. unsigned long map_len;
  207. int err;
  208. u32 crc = ~(u32)0;
  209. unsigned long inline_result;
  210. len = buf->len - offset;
  211. while (len > 0) {
  212. err = map_private_extent_buffer(buf, offset, 32,
  213. &map_token, &kaddr,
  214. &map_start, &map_len, KM_USER0);
  215. if (err)
  216. return 1;
  217. cur_len = min(len, map_len - (offset - map_start));
  218. crc = btrfs_csum_data(root, kaddr + offset - map_start,
  219. crc, cur_len);
  220. len -= cur_len;
  221. offset += cur_len;
  222. unmap_extent_buffer(buf, map_token, KM_USER0);
  223. }
  224. if (csum_size > sizeof(inline_result)) {
  225. result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
  226. if (!result)
  227. return 1;
  228. } else {
  229. result = (char *)&inline_result;
  230. }
  231. btrfs_csum_final(crc, result);
  232. if (verify) {
  233. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  234. u32 val;
  235. u32 found = 0;
  236. memcpy(&found, result, csum_size);
  237. read_extent_buffer(buf, &val, 0, csum_size);
  238. if (printk_ratelimit()) {
  239. printk(KERN_INFO "btrfs: %s checksum verify "
  240. "failed on %llu wanted %X found %X "
  241. "level %d\n",
  242. root->fs_info->sb->s_id,
  243. (unsigned long long)buf->start, val, found,
  244. btrfs_header_level(buf));
  245. }
  246. if (result != (char *)&inline_result)
  247. kfree(result);
  248. return 1;
  249. }
  250. } else {
  251. write_extent_buffer(buf, result, 0, csum_size);
  252. }
  253. if (result != (char *)&inline_result)
  254. kfree(result);
  255. return 0;
  256. }
  257. /*
  258. * we can't consider a given block up to date unless the transid of the
  259. * block matches the transid in the parent node's pointer. This is how we
  260. * detect blocks that either didn't get written at all or got written
  261. * in the wrong place.
  262. */
  263. static int verify_parent_transid(struct extent_io_tree *io_tree,
  264. struct extent_buffer *eb, u64 parent_transid)
  265. {
  266. struct extent_state *cached_state = NULL;
  267. int ret;
  268. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  269. return 0;
  270. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  271. 0, &cached_state, GFP_NOFS);
  272. if (extent_buffer_uptodate(io_tree, eb, cached_state) &&
  273. btrfs_header_generation(eb) == parent_transid) {
  274. ret = 0;
  275. goto out;
  276. }
  277. if (printk_ratelimit()) {
  278. printk("parent transid verify failed on %llu wanted %llu "
  279. "found %llu\n",
  280. (unsigned long long)eb->start,
  281. (unsigned long long)parent_transid,
  282. (unsigned long long)btrfs_header_generation(eb));
  283. }
  284. ret = 1;
  285. clear_extent_buffer_uptodate(io_tree, eb, &cached_state);
  286. out:
  287. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  288. &cached_state, GFP_NOFS);
  289. return ret;
  290. }
  291. /*
  292. * helper to read a given tree block, doing retries as required when
  293. * the checksums don't match and we have alternate mirrors to try.
  294. */
  295. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  296. struct extent_buffer *eb,
  297. u64 start, u64 parent_transid)
  298. {
  299. struct extent_io_tree *io_tree;
  300. int ret;
  301. int num_copies = 0;
  302. int mirror_num = 0;
  303. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  304. while (1) {
  305. ret = read_extent_buffer_pages(io_tree, eb, start, 1,
  306. btree_get_extent, mirror_num);
  307. if (!ret &&
  308. !verify_parent_transid(io_tree, eb, parent_transid))
  309. return ret;
  310. num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
  311. eb->start, eb->len);
  312. if (num_copies == 1)
  313. return ret;
  314. mirror_num++;
  315. if (mirror_num > num_copies)
  316. return ret;
  317. }
  318. return -EIO;
  319. }
  320. /*
  321. * checksum a dirty tree block before IO. This has extra checks to make sure
  322. * we only fill in the checksum field in the first page of a multi-page block
  323. */
  324. static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  325. {
  326. struct extent_io_tree *tree;
  327. u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
  328. u64 found_start;
  329. unsigned long len;
  330. struct extent_buffer *eb;
  331. int ret;
  332. tree = &BTRFS_I(page->mapping->host)->io_tree;
  333. if (page->private == EXTENT_PAGE_PRIVATE)
  334. goto out;
  335. if (!page->private)
  336. goto out;
  337. len = page->private >> 2;
  338. WARN_ON(len == 0);
  339. eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
  340. if (eb == NULL) {
  341. WARN_ON(1);
  342. goto out;
  343. }
  344. ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
  345. btrfs_header_generation(eb));
  346. BUG_ON(ret);
  347. WARN_ON(!btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN));
  348. found_start = btrfs_header_bytenr(eb);
  349. if (found_start != start) {
  350. WARN_ON(1);
  351. goto err;
  352. }
  353. if (eb->first_page != page) {
  354. WARN_ON(1);
  355. goto err;
  356. }
  357. if (!PageUptodate(page)) {
  358. WARN_ON(1);
  359. goto err;
  360. }
  361. csum_tree_block(root, eb, 0);
  362. err:
  363. free_extent_buffer(eb);
  364. out:
  365. return 0;
  366. }
  367. static int check_tree_block_fsid(struct btrfs_root *root,
  368. struct extent_buffer *eb)
  369. {
  370. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  371. u8 fsid[BTRFS_UUID_SIZE];
  372. int ret = 1;
  373. read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
  374. BTRFS_FSID_SIZE);
  375. while (fs_devices) {
  376. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  377. ret = 0;
  378. break;
  379. }
  380. fs_devices = fs_devices->seed;
  381. }
  382. return ret;
  383. }
  384. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  385. void btrfs_set_buffer_lockdep_class(struct extent_buffer *eb, int level)
  386. {
  387. lockdep_set_class_and_name(&eb->lock,
  388. &btrfs_eb_class[level],
  389. btrfs_eb_name[level]);
  390. }
  391. #endif
  392. static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
  393. struct extent_state *state)
  394. {
  395. struct extent_io_tree *tree;
  396. u64 found_start;
  397. int found_level;
  398. unsigned long len;
  399. struct extent_buffer *eb;
  400. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  401. int ret = 0;
  402. tree = &BTRFS_I(page->mapping->host)->io_tree;
  403. if (page->private == EXTENT_PAGE_PRIVATE)
  404. goto out;
  405. if (!page->private)
  406. goto out;
  407. len = page->private >> 2;
  408. WARN_ON(len == 0);
  409. eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
  410. if (eb == NULL) {
  411. ret = -EIO;
  412. goto out;
  413. }
  414. found_start = btrfs_header_bytenr(eb);
  415. if (found_start != start) {
  416. if (printk_ratelimit()) {
  417. printk(KERN_INFO "btrfs bad tree block start "
  418. "%llu %llu\n",
  419. (unsigned long long)found_start,
  420. (unsigned long long)eb->start);
  421. }
  422. ret = -EIO;
  423. goto err;
  424. }
  425. if (eb->first_page != page) {
  426. printk(KERN_INFO "btrfs bad first page %lu %lu\n",
  427. eb->first_page->index, page->index);
  428. WARN_ON(1);
  429. ret = -EIO;
  430. goto err;
  431. }
  432. if (check_tree_block_fsid(root, eb)) {
  433. if (printk_ratelimit()) {
  434. printk(KERN_INFO "btrfs bad fsid on block %llu\n",
  435. (unsigned long long)eb->start);
  436. }
  437. ret = -EIO;
  438. goto err;
  439. }
  440. found_level = btrfs_header_level(eb);
  441. btrfs_set_buffer_lockdep_class(eb, found_level);
  442. ret = csum_tree_block(root, eb, 1);
  443. if (ret)
  444. ret = -EIO;
  445. end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
  446. end = eb->start + end - 1;
  447. err:
  448. free_extent_buffer(eb);
  449. out:
  450. return ret;
  451. }
  452. static void end_workqueue_bio(struct bio *bio, int err)
  453. {
  454. struct end_io_wq *end_io_wq = bio->bi_private;
  455. struct btrfs_fs_info *fs_info;
  456. fs_info = end_io_wq->info;
  457. end_io_wq->error = err;
  458. end_io_wq->work.func = end_workqueue_fn;
  459. end_io_wq->work.flags = 0;
  460. if (bio->bi_rw & REQ_WRITE) {
  461. if (end_io_wq->metadata == 1)
  462. btrfs_queue_worker(&fs_info->endio_meta_write_workers,
  463. &end_io_wq->work);
  464. else if (end_io_wq->metadata == 2)
  465. btrfs_queue_worker(&fs_info->endio_freespace_worker,
  466. &end_io_wq->work);
  467. else
  468. btrfs_queue_worker(&fs_info->endio_write_workers,
  469. &end_io_wq->work);
  470. } else {
  471. if (end_io_wq->metadata)
  472. btrfs_queue_worker(&fs_info->endio_meta_workers,
  473. &end_io_wq->work);
  474. else
  475. btrfs_queue_worker(&fs_info->endio_workers,
  476. &end_io_wq->work);
  477. }
  478. }
  479. /*
  480. * For the metadata arg you want
  481. *
  482. * 0 - if data
  483. * 1 - if normal metadta
  484. * 2 - if writing to the free space cache area
  485. */
  486. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  487. int metadata)
  488. {
  489. struct end_io_wq *end_io_wq;
  490. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  491. if (!end_io_wq)
  492. return -ENOMEM;
  493. end_io_wq->private = bio->bi_private;
  494. end_io_wq->end_io = bio->bi_end_io;
  495. end_io_wq->info = info;
  496. end_io_wq->error = 0;
  497. end_io_wq->bio = bio;
  498. end_io_wq->metadata = metadata;
  499. bio->bi_private = end_io_wq;
  500. bio->bi_end_io = end_workqueue_bio;
  501. return 0;
  502. }
  503. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  504. {
  505. unsigned long limit = min_t(unsigned long,
  506. info->workers.max_workers,
  507. info->fs_devices->open_devices);
  508. return 256 * limit;
  509. }
  510. int btrfs_congested_async(struct btrfs_fs_info *info, int iodone)
  511. {
  512. return atomic_read(&info->nr_async_bios) >
  513. btrfs_async_submit_limit(info);
  514. }
  515. static void run_one_async_start(struct btrfs_work *work)
  516. {
  517. struct async_submit_bio *async;
  518. async = container_of(work, struct async_submit_bio, work);
  519. async->submit_bio_start(async->inode, async->rw, async->bio,
  520. async->mirror_num, async->bio_flags,
  521. async->bio_offset);
  522. }
  523. static void run_one_async_done(struct btrfs_work *work)
  524. {
  525. struct btrfs_fs_info *fs_info;
  526. struct async_submit_bio *async;
  527. int limit;
  528. async = container_of(work, struct async_submit_bio, work);
  529. fs_info = BTRFS_I(async->inode)->root->fs_info;
  530. limit = btrfs_async_submit_limit(fs_info);
  531. limit = limit * 2 / 3;
  532. atomic_dec(&fs_info->nr_async_submits);
  533. if (atomic_read(&fs_info->nr_async_submits) < limit &&
  534. waitqueue_active(&fs_info->async_submit_wait))
  535. wake_up(&fs_info->async_submit_wait);
  536. async->submit_bio_done(async->inode, async->rw, async->bio,
  537. async->mirror_num, async->bio_flags,
  538. async->bio_offset);
  539. }
  540. static void run_one_async_free(struct btrfs_work *work)
  541. {
  542. struct async_submit_bio *async;
  543. async = container_of(work, struct async_submit_bio, work);
  544. kfree(async);
  545. }
  546. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  547. int rw, struct bio *bio, int mirror_num,
  548. unsigned long bio_flags,
  549. u64 bio_offset,
  550. extent_submit_bio_hook_t *submit_bio_start,
  551. extent_submit_bio_hook_t *submit_bio_done)
  552. {
  553. struct async_submit_bio *async;
  554. async = kmalloc(sizeof(*async), GFP_NOFS);
  555. if (!async)
  556. return -ENOMEM;
  557. async->inode = inode;
  558. async->rw = rw;
  559. async->bio = bio;
  560. async->mirror_num = mirror_num;
  561. async->submit_bio_start = submit_bio_start;
  562. async->submit_bio_done = submit_bio_done;
  563. async->work.func = run_one_async_start;
  564. async->work.ordered_func = run_one_async_done;
  565. async->work.ordered_free = run_one_async_free;
  566. async->work.flags = 0;
  567. async->bio_flags = bio_flags;
  568. async->bio_offset = bio_offset;
  569. atomic_inc(&fs_info->nr_async_submits);
  570. if (rw & REQ_SYNC)
  571. btrfs_set_work_high_prio(&async->work);
  572. btrfs_queue_worker(&fs_info->workers, &async->work);
  573. while (atomic_read(&fs_info->async_submit_draining) &&
  574. atomic_read(&fs_info->nr_async_submits)) {
  575. wait_event(fs_info->async_submit_wait,
  576. (atomic_read(&fs_info->nr_async_submits) == 0));
  577. }
  578. return 0;
  579. }
  580. static int btree_csum_one_bio(struct bio *bio)
  581. {
  582. struct bio_vec *bvec = bio->bi_io_vec;
  583. int bio_index = 0;
  584. struct btrfs_root *root;
  585. WARN_ON(bio->bi_vcnt <= 0);
  586. while (bio_index < bio->bi_vcnt) {
  587. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  588. csum_dirty_buffer(root, bvec->bv_page);
  589. bio_index++;
  590. bvec++;
  591. }
  592. return 0;
  593. }
  594. static int __btree_submit_bio_start(struct inode *inode, int rw,
  595. struct bio *bio, int mirror_num,
  596. unsigned long bio_flags,
  597. u64 bio_offset)
  598. {
  599. /*
  600. * when we're called for a write, we're already in the async
  601. * submission context. Just jump into btrfs_map_bio
  602. */
  603. btree_csum_one_bio(bio);
  604. return 0;
  605. }
  606. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  607. int mirror_num, unsigned long bio_flags,
  608. u64 bio_offset)
  609. {
  610. /*
  611. * when we're called for a write, we're already in the async
  612. * submission context. Just jump into btrfs_map_bio
  613. */
  614. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  615. }
  616. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  617. int mirror_num, unsigned long bio_flags,
  618. u64 bio_offset)
  619. {
  620. int ret;
  621. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  622. bio, 1);
  623. BUG_ON(ret);
  624. if (!(rw & REQ_WRITE)) {
  625. /*
  626. * called for a read, do the setup so that checksum validation
  627. * can happen in the async kernel threads
  628. */
  629. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  630. mirror_num, 0);
  631. }
  632. /*
  633. * kthread helpers are used to submit writes so that checksumming
  634. * can happen in parallel across all CPUs
  635. */
  636. return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  637. inode, rw, bio, mirror_num, 0,
  638. bio_offset,
  639. __btree_submit_bio_start,
  640. __btree_submit_bio_done);
  641. }
  642. #ifdef CONFIG_MIGRATION
  643. static int btree_migratepage(struct address_space *mapping,
  644. struct page *newpage, struct page *page)
  645. {
  646. /*
  647. * we can't safely write a btree page from here,
  648. * we haven't done the locking hook
  649. */
  650. if (PageDirty(page))
  651. return -EAGAIN;
  652. /*
  653. * Buffers may be managed in a filesystem specific way.
  654. * We must have no buffers or drop them.
  655. */
  656. if (page_has_private(page) &&
  657. !try_to_release_page(page, GFP_KERNEL))
  658. return -EAGAIN;
  659. return migrate_page(mapping, newpage, page);
  660. }
  661. #endif
  662. static int btree_writepage(struct page *page, struct writeback_control *wbc)
  663. {
  664. struct extent_io_tree *tree;
  665. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  666. struct extent_buffer *eb;
  667. int was_dirty;
  668. tree = &BTRFS_I(page->mapping->host)->io_tree;
  669. if (!(current->flags & PF_MEMALLOC)) {
  670. return extent_write_full_page(tree, page,
  671. btree_get_extent, wbc);
  672. }
  673. redirty_page_for_writepage(wbc, page);
  674. eb = btrfs_find_tree_block(root, page_offset(page), PAGE_CACHE_SIZE);
  675. WARN_ON(!eb);
  676. was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
  677. if (!was_dirty) {
  678. spin_lock(&root->fs_info->delalloc_lock);
  679. root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
  680. spin_unlock(&root->fs_info->delalloc_lock);
  681. }
  682. free_extent_buffer(eb);
  683. unlock_page(page);
  684. return 0;
  685. }
  686. static int btree_writepages(struct address_space *mapping,
  687. struct writeback_control *wbc)
  688. {
  689. struct extent_io_tree *tree;
  690. tree = &BTRFS_I(mapping->host)->io_tree;
  691. if (wbc->sync_mode == WB_SYNC_NONE) {
  692. struct btrfs_root *root = BTRFS_I(mapping->host)->root;
  693. u64 num_dirty;
  694. unsigned long thresh = 32 * 1024 * 1024;
  695. if (wbc->for_kupdate)
  696. return 0;
  697. /* this is a bit racy, but that's ok */
  698. num_dirty = root->fs_info->dirty_metadata_bytes;
  699. if (num_dirty < thresh)
  700. return 0;
  701. }
  702. return extent_writepages(tree, mapping, btree_get_extent, wbc);
  703. }
  704. static int btree_readpage(struct file *file, struct page *page)
  705. {
  706. struct extent_io_tree *tree;
  707. tree = &BTRFS_I(page->mapping->host)->io_tree;
  708. return extent_read_full_page(tree, page, btree_get_extent);
  709. }
  710. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  711. {
  712. struct extent_io_tree *tree;
  713. struct extent_map_tree *map;
  714. int ret;
  715. if (PageWriteback(page) || PageDirty(page))
  716. return 0;
  717. tree = &BTRFS_I(page->mapping->host)->io_tree;
  718. map = &BTRFS_I(page->mapping->host)->extent_tree;
  719. ret = try_release_extent_state(map, tree, page, gfp_flags);
  720. if (!ret)
  721. return 0;
  722. ret = try_release_extent_buffer(tree, page);
  723. if (ret == 1) {
  724. ClearPagePrivate(page);
  725. set_page_private(page, 0);
  726. page_cache_release(page);
  727. }
  728. return ret;
  729. }
  730. static void btree_invalidatepage(struct page *page, unsigned long offset)
  731. {
  732. struct extent_io_tree *tree;
  733. tree = &BTRFS_I(page->mapping->host)->io_tree;
  734. extent_invalidatepage(tree, page, offset);
  735. btree_releasepage(page, GFP_NOFS);
  736. if (PagePrivate(page)) {
  737. printk(KERN_WARNING "btrfs warning page private not zero "
  738. "on page %llu\n", (unsigned long long)page_offset(page));
  739. ClearPagePrivate(page);
  740. set_page_private(page, 0);
  741. page_cache_release(page);
  742. }
  743. }
  744. static const struct address_space_operations btree_aops = {
  745. .readpage = btree_readpage,
  746. .writepage = btree_writepage,
  747. .writepages = btree_writepages,
  748. .releasepage = btree_releasepage,
  749. .invalidatepage = btree_invalidatepage,
  750. .sync_page = block_sync_page,
  751. #ifdef CONFIG_MIGRATION
  752. .migratepage = btree_migratepage,
  753. #endif
  754. };
  755. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  756. u64 parent_transid)
  757. {
  758. struct extent_buffer *buf = NULL;
  759. struct inode *btree_inode = root->fs_info->btree_inode;
  760. int ret = 0;
  761. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  762. if (!buf)
  763. return 0;
  764. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  765. buf, 0, 0, btree_get_extent, 0);
  766. free_extent_buffer(buf);
  767. return ret;
  768. }
  769. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  770. u64 bytenr, u32 blocksize)
  771. {
  772. struct inode *btree_inode = root->fs_info->btree_inode;
  773. struct extent_buffer *eb;
  774. eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  775. bytenr, blocksize, GFP_NOFS);
  776. return eb;
  777. }
  778. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  779. u64 bytenr, u32 blocksize)
  780. {
  781. struct inode *btree_inode = root->fs_info->btree_inode;
  782. struct extent_buffer *eb;
  783. eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  784. bytenr, blocksize, NULL, GFP_NOFS);
  785. return eb;
  786. }
  787. int btrfs_write_tree_block(struct extent_buffer *buf)
  788. {
  789. return filemap_fdatawrite_range(buf->first_page->mapping, buf->start,
  790. buf->start + buf->len - 1);
  791. }
  792. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  793. {
  794. return filemap_fdatawait_range(buf->first_page->mapping,
  795. buf->start, buf->start + buf->len - 1);
  796. }
  797. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  798. u32 blocksize, u64 parent_transid)
  799. {
  800. struct extent_buffer *buf = NULL;
  801. int ret;
  802. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  803. if (!buf)
  804. return NULL;
  805. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  806. if (ret == 0)
  807. set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
  808. return buf;
  809. }
  810. int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  811. struct extent_buffer *buf)
  812. {
  813. struct inode *btree_inode = root->fs_info->btree_inode;
  814. if (btrfs_header_generation(buf) ==
  815. root->fs_info->running_transaction->transid) {
  816. btrfs_assert_tree_locked(buf);
  817. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  818. spin_lock(&root->fs_info->delalloc_lock);
  819. if (root->fs_info->dirty_metadata_bytes >= buf->len)
  820. root->fs_info->dirty_metadata_bytes -= buf->len;
  821. else
  822. WARN_ON(1);
  823. spin_unlock(&root->fs_info->delalloc_lock);
  824. }
  825. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  826. btrfs_set_lock_blocking(buf);
  827. clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
  828. buf);
  829. }
  830. return 0;
  831. }
  832. static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  833. u32 stripesize, struct btrfs_root *root,
  834. struct btrfs_fs_info *fs_info,
  835. u64 objectid)
  836. {
  837. root->node = NULL;
  838. root->commit_root = NULL;
  839. root->sectorsize = sectorsize;
  840. root->nodesize = nodesize;
  841. root->leafsize = leafsize;
  842. root->stripesize = stripesize;
  843. root->ref_cows = 0;
  844. root->track_dirty = 0;
  845. root->in_radix = 0;
  846. root->orphan_item_inserted = 0;
  847. root->orphan_cleanup_state = 0;
  848. root->fs_info = fs_info;
  849. root->objectid = objectid;
  850. root->last_trans = 0;
  851. root->highest_objectid = 0;
  852. root->name = NULL;
  853. root->in_sysfs = 0;
  854. root->inode_tree = RB_ROOT;
  855. root->block_rsv = NULL;
  856. root->orphan_block_rsv = NULL;
  857. INIT_LIST_HEAD(&root->dirty_list);
  858. INIT_LIST_HEAD(&root->orphan_list);
  859. INIT_LIST_HEAD(&root->root_list);
  860. spin_lock_init(&root->node_lock);
  861. spin_lock_init(&root->orphan_lock);
  862. spin_lock_init(&root->inode_lock);
  863. spin_lock_init(&root->accounting_lock);
  864. mutex_init(&root->objectid_mutex);
  865. mutex_init(&root->log_mutex);
  866. init_waitqueue_head(&root->log_writer_wait);
  867. init_waitqueue_head(&root->log_commit_wait[0]);
  868. init_waitqueue_head(&root->log_commit_wait[1]);
  869. atomic_set(&root->log_commit[0], 0);
  870. atomic_set(&root->log_commit[1], 0);
  871. atomic_set(&root->log_writers, 0);
  872. root->log_batch = 0;
  873. root->log_transid = 0;
  874. root->last_log_commit = 0;
  875. extent_io_tree_init(&root->dirty_log_pages,
  876. fs_info->btree_inode->i_mapping, GFP_NOFS);
  877. memset(&root->root_key, 0, sizeof(root->root_key));
  878. memset(&root->root_item, 0, sizeof(root->root_item));
  879. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  880. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  881. root->defrag_trans_start = fs_info->generation;
  882. init_completion(&root->kobj_unregister);
  883. root->defrag_running = 0;
  884. root->root_key.objectid = objectid;
  885. root->anon_super.s_root = NULL;
  886. root->anon_super.s_dev = 0;
  887. INIT_LIST_HEAD(&root->anon_super.s_list);
  888. INIT_LIST_HEAD(&root->anon_super.s_instances);
  889. init_rwsem(&root->anon_super.s_umount);
  890. return 0;
  891. }
  892. static int find_and_setup_root(struct btrfs_root *tree_root,
  893. struct btrfs_fs_info *fs_info,
  894. u64 objectid,
  895. struct btrfs_root *root)
  896. {
  897. int ret;
  898. u32 blocksize;
  899. u64 generation;
  900. __setup_root(tree_root->nodesize, tree_root->leafsize,
  901. tree_root->sectorsize, tree_root->stripesize,
  902. root, fs_info, objectid);
  903. ret = btrfs_find_last_root(tree_root, objectid,
  904. &root->root_item, &root->root_key);
  905. if (ret > 0)
  906. return -ENOENT;
  907. BUG_ON(ret);
  908. generation = btrfs_root_generation(&root->root_item);
  909. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  910. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  911. blocksize, generation);
  912. if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) {
  913. free_extent_buffer(root->node);
  914. return -EIO;
  915. }
  916. root->commit_root = btrfs_root_node(root);
  917. return 0;
  918. }
  919. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  920. struct btrfs_fs_info *fs_info)
  921. {
  922. struct btrfs_root *root;
  923. struct btrfs_root *tree_root = fs_info->tree_root;
  924. struct extent_buffer *leaf;
  925. root = kzalloc(sizeof(*root), GFP_NOFS);
  926. if (!root)
  927. return ERR_PTR(-ENOMEM);
  928. __setup_root(tree_root->nodesize, tree_root->leafsize,
  929. tree_root->sectorsize, tree_root->stripesize,
  930. root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  931. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  932. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  933. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  934. /*
  935. * log trees do not get reference counted because they go away
  936. * before a real commit is actually done. They do store pointers
  937. * to file data extents, and those reference counts still get
  938. * updated (along with back refs to the log tree).
  939. */
  940. root->ref_cows = 0;
  941. leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  942. BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0);
  943. if (IS_ERR(leaf)) {
  944. kfree(root);
  945. return ERR_CAST(leaf);
  946. }
  947. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  948. btrfs_set_header_bytenr(leaf, leaf->start);
  949. btrfs_set_header_generation(leaf, trans->transid);
  950. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  951. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  952. root->node = leaf;
  953. write_extent_buffer(root->node, root->fs_info->fsid,
  954. (unsigned long)btrfs_header_fsid(root->node),
  955. BTRFS_FSID_SIZE);
  956. btrfs_mark_buffer_dirty(root->node);
  957. btrfs_tree_unlock(root->node);
  958. return root;
  959. }
  960. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  961. struct btrfs_fs_info *fs_info)
  962. {
  963. struct btrfs_root *log_root;
  964. log_root = alloc_log_tree(trans, fs_info);
  965. if (IS_ERR(log_root))
  966. return PTR_ERR(log_root);
  967. WARN_ON(fs_info->log_root_tree);
  968. fs_info->log_root_tree = log_root;
  969. return 0;
  970. }
  971. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  972. struct btrfs_root *root)
  973. {
  974. struct btrfs_root *log_root;
  975. struct btrfs_inode_item *inode_item;
  976. log_root = alloc_log_tree(trans, root->fs_info);
  977. if (IS_ERR(log_root))
  978. return PTR_ERR(log_root);
  979. log_root->last_trans = trans->transid;
  980. log_root->root_key.offset = root->root_key.objectid;
  981. inode_item = &log_root->root_item.inode;
  982. inode_item->generation = cpu_to_le64(1);
  983. inode_item->size = cpu_to_le64(3);
  984. inode_item->nlink = cpu_to_le32(1);
  985. inode_item->nbytes = cpu_to_le64(root->leafsize);
  986. inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
  987. btrfs_set_root_node(&log_root->root_item, log_root->node);
  988. WARN_ON(root->log_root);
  989. root->log_root = log_root;
  990. root->log_transid = 0;
  991. root->last_log_commit = 0;
  992. return 0;
  993. }
  994. struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
  995. struct btrfs_key *location)
  996. {
  997. struct btrfs_root *root;
  998. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  999. struct btrfs_path *path;
  1000. struct extent_buffer *l;
  1001. u64 generation;
  1002. u32 blocksize;
  1003. int ret = 0;
  1004. root = kzalloc(sizeof(*root), GFP_NOFS);
  1005. if (!root)
  1006. return ERR_PTR(-ENOMEM);
  1007. if (location->offset == (u64)-1) {
  1008. ret = find_and_setup_root(tree_root, fs_info,
  1009. location->objectid, root);
  1010. if (ret) {
  1011. kfree(root);
  1012. return ERR_PTR(ret);
  1013. }
  1014. goto out;
  1015. }
  1016. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1017. tree_root->sectorsize, tree_root->stripesize,
  1018. root, fs_info, location->objectid);
  1019. path = btrfs_alloc_path();
  1020. BUG_ON(!path);
  1021. ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
  1022. if (ret == 0) {
  1023. l = path->nodes[0];
  1024. read_extent_buffer(l, &root->root_item,
  1025. btrfs_item_ptr_offset(l, path->slots[0]),
  1026. sizeof(root->root_item));
  1027. memcpy(&root->root_key, location, sizeof(*location));
  1028. }
  1029. btrfs_free_path(path);
  1030. if (ret) {
  1031. kfree(root);
  1032. if (ret > 0)
  1033. ret = -ENOENT;
  1034. return ERR_PTR(ret);
  1035. }
  1036. generation = btrfs_root_generation(&root->root_item);
  1037. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1038. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1039. blocksize, generation);
  1040. root->commit_root = btrfs_root_node(root);
  1041. BUG_ON(!root->node);
  1042. out:
  1043. if (location->objectid != BTRFS_TREE_LOG_OBJECTID)
  1044. root->ref_cows = 1;
  1045. return root;
  1046. }
  1047. struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
  1048. u64 root_objectid)
  1049. {
  1050. struct btrfs_root *root;
  1051. if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
  1052. return fs_info->tree_root;
  1053. if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1054. return fs_info->extent_root;
  1055. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1056. (unsigned long)root_objectid);
  1057. return root;
  1058. }
  1059. struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
  1060. struct btrfs_key *location)
  1061. {
  1062. struct btrfs_root *root;
  1063. int ret;
  1064. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1065. return fs_info->tree_root;
  1066. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1067. return fs_info->extent_root;
  1068. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1069. return fs_info->chunk_root;
  1070. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1071. return fs_info->dev_root;
  1072. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1073. return fs_info->csum_root;
  1074. again:
  1075. spin_lock(&fs_info->fs_roots_radix_lock);
  1076. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1077. (unsigned long)location->objectid);
  1078. spin_unlock(&fs_info->fs_roots_radix_lock);
  1079. if (root)
  1080. return root;
  1081. root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
  1082. if (IS_ERR(root))
  1083. return root;
  1084. set_anon_super(&root->anon_super, NULL);
  1085. if (btrfs_root_refs(&root->root_item) == 0) {
  1086. ret = -ENOENT;
  1087. goto fail;
  1088. }
  1089. ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
  1090. if (ret < 0)
  1091. goto fail;
  1092. if (ret == 0)
  1093. root->orphan_item_inserted = 1;
  1094. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  1095. if (ret)
  1096. goto fail;
  1097. spin_lock(&fs_info->fs_roots_radix_lock);
  1098. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1099. (unsigned long)root->root_key.objectid,
  1100. root);
  1101. if (ret == 0)
  1102. root->in_radix = 1;
  1103. spin_unlock(&fs_info->fs_roots_radix_lock);
  1104. radix_tree_preload_end();
  1105. if (ret) {
  1106. if (ret == -EEXIST) {
  1107. free_fs_root(root);
  1108. goto again;
  1109. }
  1110. goto fail;
  1111. }
  1112. ret = btrfs_find_dead_roots(fs_info->tree_root,
  1113. root->root_key.objectid);
  1114. WARN_ON(ret);
  1115. return root;
  1116. fail:
  1117. free_fs_root(root);
  1118. return ERR_PTR(ret);
  1119. }
  1120. struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
  1121. struct btrfs_key *location,
  1122. const char *name, int namelen)
  1123. {
  1124. return btrfs_read_fs_root_no_name(fs_info, location);
  1125. #if 0
  1126. struct btrfs_root *root;
  1127. int ret;
  1128. root = btrfs_read_fs_root_no_name(fs_info, location);
  1129. if (!root)
  1130. return NULL;
  1131. if (root->in_sysfs)
  1132. return root;
  1133. ret = btrfs_set_root_name(root, name, namelen);
  1134. if (ret) {
  1135. free_extent_buffer(root->node);
  1136. kfree(root);
  1137. return ERR_PTR(ret);
  1138. }
  1139. ret = btrfs_sysfs_add_root(root);
  1140. if (ret) {
  1141. free_extent_buffer(root->node);
  1142. kfree(root->name);
  1143. kfree(root);
  1144. return ERR_PTR(ret);
  1145. }
  1146. root->in_sysfs = 1;
  1147. return root;
  1148. #endif
  1149. }
  1150. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1151. {
  1152. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1153. int ret = 0;
  1154. struct btrfs_device *device;
  1155. struct backing_dev_info *bdi;
  1156. list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
  1157. if (!device->bdev)
  1158. continue;
  1159. bdi = blk_get_backing_dev_info(device->bdev);
  1160. if (bdi && bdi_congested(bdi, bdi_bits)) {
  1161. ret = 1;
  1162. break;
  1163. }
  1164. }
  1165. return ret;
  1166. }
  1167. /*
  1168. * this unplugs every device on the box, and it is only used when page
  1169. * is null
  1170. */
  1171. static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
  1172. {
  1173. struct btrfs_device *device;
  1174. struct btrfs_fs_info *info;
  1175. info = (struct btrfs_fs_info *)bdi->unplug_io_data;
  1176. list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
  1177. if (!device->bdev)
  1178. continue;
  1179. bdi = blk_get_backing_dev_info(device->bdev);
  1180. if (bdi->unplug_io_fn)
  1181. bdi->unplug_io_fn(bdi, page);
  1182. }
  1183. }
  1184. static void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
  1185. {
  1186. struct inode *inode;
  1187. struct extent_map_tree *em_tree;
  1188. struct extent_map *em;
  1189. struct address_space *mapping;
  1190. u64 offset;
  1191. /* the generic O_DIRECT read code does this */
  1192. if (1 || !page) {
  1193. __unplug_io_fn(bdi, page);
  1194. return;
  1195. }
  1196. /*
  1197. * page->mapping may change at any time. Get a consistent copy
  1198. * and use that for everything below
  1199. */
  1200. smp_mb();
  1201. mapping = page->mapping;
  1202. if (!mapping)
  1203. return;
  1204. inode = mapping->host;
  1205. /*
  1206. * don't do the expensive searching for a small number of
  1207. * devices
  1208. */
  1209. if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) {
  1210. __unplug_io_fn(bdi, page);
  1211. return;
  1212. }
  1213. offset = page_offset(page);
  1214. em_tree = &BTRFS_I(inode)->extent_tree;
  1215. read_lock(&em_tree->lock);
  1216. em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
  1217. read_unlock(&em_tree->lock);
  1218. if (!em) {
  1219. __unplug_io_fn(bdi, page);
  1220. return;
  1221. }
  1222. if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
  1223. free_extent_map(em);
  1224. __unplug_io_fn(bdi, page);
  1225. return;
  1226. }
  1227. offset = offset - em->start;
  1228. btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
  1229. em->block_start + offset, page);
  1230. free_extent_map(em);
  1231. }
  1232. /*
  1233. * If this fails, caller must call bdi_destroy() to get rid of the
  1234. * bdi again.
  1235. */
  1236. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1237. {
  1238. int err;
  1239. bdi->capabilities = BDI_CAP_MAP_COPY;
  1240. err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
  1241. if (err)
  1242. return err;
  1243. bdi->ra_pages = default_backing_dev_info.ra_pages;
  1244. bdi->unplug_io_fn = btrfs_unplug_io_fn;
  1245. bdi->unplug_io_data = info;
  1246. bdi->congested_fn = btrfs_congested_fn;
  1247. bdi->congested_data = info;
  1248. return 0;
  1249. }
  1250. static int bio_ready_for_csum(struct bio *bio)
  1251. {
  1252. u64 length = 0;
  1253. u64 buf_len = 0;
  1254. u64 start = 0;
  1255. struct page *page;
  1256. struct extent_io_tree *io_tree = NULL;
  1257. struct bio_vec *bvec;
  1258. int i;
  1259. int ret;
  1260. bio_for_each_segment(bvec, bio, i) {
  1261. page = bvec->bv_page;
  1262. if (page->private == EXTENT_PAGE_PRIVATE) {
  1263. length += bvec->bv_len;
  1264. continue;
  1265. }
  1266. if (!page->private) {
  1267. length += bvec->bv_len;
  1268. continue;
  1269. }
  1270. length = bvec->bv_len;
  1271. buf_len = page->private >> 2;
  1272. start = page_offset(page) + bvec->bv_offset;
  1273. io_tree = &BTRFS_I(page->mapping->host)->io_tree;
  1274. }
  1275. /* are we fully contained in this bio? */
  1276. if (buf_len <= length)
  1277. return 1;
  1278. ret = extent_range_uptodate(io_tree, start + length,
  1279. start + buf_len - 1);
  1280. return ret;
  1281. }
  1282. /*
  1283. * called by the kthread helper functions to finally call the bio end_io
  1284. * functions. This is where read checksum verification actually happens
  1285. */
  1286. static void end_workqueue_fn(struct btrfs_work *work)
  1287. {
  1288. struct bio *bio;
  1289. struct end_io_wq *end_io_wq;
  1290. struct btrfs_fs_info *fs_info;
  1291. int error;
  1292. end_io_wq = container_of(work, struct end_io_wq, work);
  1293. bio = end_io_wq->bio;
  1294. fs_info = end_io_wq->info;
  1295. /* metadata bio reads are special because the whole tree block must
  1296. * be checksummed at once. This makes sure the entire block is in
  1297. * ram and up to date before trying to verify things. For
  1298. * blocksize <= pagesize, it is basically a noop
  1299. */
  1300. if (!(bio->bi_rw & REQ_WRITE) && end_io_wq->metadata &&
  1301. !bio_ready_for_csum(bio)) {
  1302. btrfs_queue_worker(&fs_info->endio_meta_workers,
  1303. &end_io_wq->work);
  1304. return;
  1305. }
  1306. error = end_io_wq->error;
  1307. bio->bi_private = end_io_wq->private;
  1308. bio->bi_end_io = end_io_wq->end_io;
  1309. kfree(end_io_wq);
  1310. bio_endio(bio, error);
  1311. }
  1312. static int cleaner_kthread(void *arg)
  1313. {
  1314. struct btrfs_root *root = arg;
  1315. do {
  1316. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1317. if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
  1318. mutex_trylock(&root->fs_info->cleaner_mutex)) {
  1319. btrfs_run_delayed_iputs(root);
  1320. btrfs_clean_old_snapshots(root);
  1321. mutex_unlock(&root->fs_info->cleaner_mutex);
  1322. }
  1323. if (freezing(current)) {
  1324. refrigerator();
  1325. } else {
  1326. set_current_state(TASK_INTERRUPTIBLE);
  1327. if (!kthread_should_stop())
  1328. schedule();
  1329. __set_current_state(TASK_RUNNING);
  1330. }
  1331. } while (!kthread_should_stop());
  1332. return 0;
  1333. }
  1334. static int transaction_kthread(void *arg)
  1335. {
  1336. struct btrfs_root *root = arg;
  1337. struct btrfs_trans_handle *trans;
  1338. struct btrfs_transaction *cur;
  1339. u64 transid;
  1340. unsigned long now;
  1341. unsigned long delay;
  1342. int ret;
  1343. do {
  1344. delay = HZ * 30;
  1345. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1346. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1347. spin_lock(&root->fs_info->new_trans_lock);
  1348. cur = root->fs_info->running_transaction;
  1349. if (!cur) {
  1350. spin_unlock(&root->fs_info->new_trans_lock);
  1351. goto sleep;
  1352. }
  1353. now = get_seconds();
  1354. if (!cur->blocked &&
  1355. (now < cur->start_time || now - cur->start_time < 30)) {
  1356. spin_unlock(&root->fs_info->new_trans_lock);
  1357. delay = HZ * 5;
  1358. goto sleep;
  1359. }
  1360. transid = cur->transid;
  1361. spin_unlock(&root->fs_info->new_trans_lock);
  1362. trans = btrfs_join_transaction(root, 1);
  1363. if (transid == trans->transid) {
  1364. ret = btrfs_commit_transaction(trans, root);
  1365. BUG_ON(ret);
  1366. } else {
  1367. btrfs_end_transaction(trans, root);
  1368. }
  1369. sleep:
  1370. wake_up_process(root->fs_info->cleaner_kthread);
  1371. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1372. if (freezing(current)) {
  1373. refrigerator();
  1374. } else {
  1375. set_current_state(TASK_INTERRUPTIBLE);
  1376. if (!kthread_should_stop() &&
  1377. !btrfs_transaction_blocked(root->fs_info))
  1378. schedule_timeout(delay);
  1379. __set_current_state(TASK_RUNNING);
  1380. }
  1381. } while (!kthread_should_stop());
  1382. return 0;
  1383. }
  1384. struct btrfs_root *open_ctree(struct super_block *sb,
  1385. struct btrfs_fs_devices *fs_devices,
  1386. char *options)
  1387. {
  1388. u32 sectorsize;
  1389. u32 nodesize;
  1390. u32 leafsize;
  1391. u32 blocksize;
  1392. u32 stripesize;
  1393. u64 generation;
  1394. u64 features;
  1395. struct btrfs_key location;
  1396. struct buffer_head *bh;
  1397. struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
  1398. GFP_NOFS);
  1399. struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
  1400. GFP_NOFS);
  1401. struct btrfs_root *tree_root = btrfs_sb(sb);
  1402. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1403. struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
  1404. GFP_NOFS);
  1405. struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
  1406. GFP_NOFS);
  1407. struct btrfs_root *log_tree_root;
  1408. int ret;
  1409. int err = -EINVAL;
  1410. struct btrfs_super_block *disk_super;
  1411. if (!extent_root || !tree_root || !fs_info ||
  1412. !chunk_root || !dev_root || !csum_root) {
  1413. err = -ENOMEM;
  1414. goto fail;
  1415. }
  1416. ret = init_srcu_struct(&fs_info->subvol_srcu);
  1417. if (ret) {
  1418. err = ret;
  1419. goto fail;
  1420. }
  1421. ret = setup_bdi(fs_info, &fs_info->bdi);
  1422. if (ret) {
  1423. err = ret;
  1424. goto fail_srcu;
  1425. }
  1426. fs_info->btree_inode = new_inode(sb);
  1427. if (!fs_info->btree_inode) {
  1428. err = -ENOMEM;
  1429. goto fail_bdi;
  1430. }
  1431. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  1432. INIT_LIST_HEAD(&fs_info->trans_list);
  1433. INIT_LIST_HEAD(&fs_info->dead_roots);
  1434. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  1435. INIT_LIST_HEAD(&fs_info->hashers);
  1436. INIT_LIST_HEAD(&fs_info->delalloc_inodes);
  1437. INIT_LIST_HEAD(&fs_info->ordered_operations);
  1438. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  1439. spin_lock_init(&fs_info->delalloc_lock);
  1440. spin_lock_init(&fs_info->new_trans_lock);
  1441. spin_lock_init(&fs_info->ref_cache_lock);
  1442. spin_lock_init(&fs_info->fs_roots_radix_lock);
  1443. spin_lock_init(&fs_info->delayed_iput_lock);
  1444. init_completion(&fs_info->kobj_unregister);
  1445. fs_info->tree_root = tree_root;
  1446. fs_info->extent_root = extent_root;
  1447. fs_info->csum_root = csum_root;
  1448. fs_info->chunk_root = chunk_root;
  1449. fs_info->dev_root = dev_root;
  1450. fs_info->fs_devices = fs_devices;
  1451. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1452. INIT_LIST_HEAD(&fs_info->space_info);
  1453. btrfs_mapping_init(&fs_info->mapping_tree);
  1454. btrfs_init_block_rsv(&fs_info->global_block_rsv);
  1455. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
  1456. btrfs_init_block_rsv(&fs_info->trans_block_rsv);
  1457. btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
  1458. btrfs_init_block_rsv(&fs_info->empty_block_rsv);
  1459. INIT_LIST_HEAD(&fs_info->durable_block_rsv_list);
  1460. mutex_init(&fs_info->durable_block_rsv_mutex);
  1461. atomic_set(&fs_info->nr_async_submits, 0);
  1462. atomic_set(&fs_info->async_delalloc_pages, 0);
  1463. atomic_set(&fs_info->async_submit_draining, 0);
  1464. atomic_set(&fs_info->nr_async_bios, 0);
  1465. fs_info->sb = sb;
  1466. fs_info->max_inline = 8192 * 1024;
  1467. fs_info->metadata_ratio = 0;
  1468. fs_info->thread_pool_size = min_t(unsigned long,
  1469. num_online_cpus() + 2, 8);
  1470. INIT_LIST_HEAD(&fs_info->ordered_extents);
  1471. spin_lock_init(&fs_info->ordered_extent_lock);
  1472. sb->s_blocksize = 4096;
  1473. sb->s_blocksize_bits = blksize_bits(4096);
  1474. sb->s_bdi = &fs_info->bdi;
  1475. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1476. fs_info->btree_inode->i_nlink = 1;
  1477. /*
  1478. * we set the i_size on the btree inode to the max possible int.
  1479. * the real end of the address space is determined by all of
  1480. * the devices in the system
  1481. */
  1482. fs_info->btree_inode->i_size = OFFSET_MAX;
  1483. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1484. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  1485. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1486. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1487. fs_info->btree_inode->i_mapping,
  1488. GFP_NOFS);
  1489. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
  1490. GFP_NOFS);
  1491. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1492. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1493. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1494. sizeof(struct btrfs_key));
  1495. BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
  1496. insert_inode_hash(fs_info->btree_inode);
  1497. spin_lock_init(&fs_info->block_group_cache_lock);
  1498. fs_info->block_group_cache_tree = RB_ROOT;
  1499. extent_io_tree_init(&fs_info->freed_extents[0],
  1500. fs_info->btree_inode->i_mapping, GFP_NOFS);
  1501. extent_io_tree_init(&fs_info->freed_extents[1],
  1502. fs_info->btree_inode->i_mapping, GFP_NOFS);
  1503. fs_info->pinned_extents = &fs_info->freed_extents[0];
  1504. fs_info->do_barriers = 1;
  1505. mutex_init(&fs_info->trans_mutex);
  1506. mutex_init(&fs_info->ordered_operations_mutex);
  1507. mutex_init(&fs_info->tree_log_mutex);
  1508. mutex_init(&fs_info->chunk_mutex);
  1509. mutex_init(&fs_info->transaction_kthread_mutex);
  1510. mutex_init(&fs_info->cleaner_mutex);
  1511. mutex_init(&fs_info->volume_mutex);
  1512. init_rwsem(&fs_info->extent_commit_sem);
  1513. init_rwsem(&fs_info->cleanup_work_sem);
  1514. init_rwsem(&fs_info->subvol_sem);
  1515. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  1516. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  1517. init_waitqueue_head(&fs_info->transaction_throttle);
  1518. init_waitqueue_head(&fs_info->transaction_wait);
  1519. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  1520. init_waitqueue_head(&fs_info->async_submit_wait);
  1521. __setup_root(4096, 4096, 4096, 4096, tree_root,
  1522. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  1523. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  1524. if (!bh) {
  1525. err = -EINVAL;
  1526. goto fail_iput;
  1527. }
  1528. memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
  1529. memcpy(&fs_info->super_for_commit, &fs_info->super_copy,
  1530. sizeof(fs_info->super_for_commit));
  1531. brelse(bh);
  1532. memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
  1533. disk_super = &fs_info->super_copy;
  1534. if (!btrfs_super_root(disk_super))
  1535. goto fail_iput;
  1536. /* check FS state, whether FS is broken. */
  1537. fs_info->fs_state |= btrfs_super_flags(disk_super);
  1538. btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  1539. ret = btrfs_parse_options(tree_root, options);
  1540. if (ret) {
  1541. err = ret;
  1542. goto fail_iput;
  1543. }
  1544. features = btrfs_super_incompat_flags(disk_super) &
  1545. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  1546. if (features) {
  1547. printk(KERN_ERR "BTRFS: couldn't mount because of "
  1548. "unsupported optional features (%Lx).\n",
  1549. (unsigned long long)features);
  1550. err = -EINVAL;
  1551. goto fail_iput;
  1552. }
  1553. features = btrfs_super_incompat_flags(disk_super);
  1554. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  1555. if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO)
  1556. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  1557. btrfs_set_super_incompat_flags(disk_super, features);
  1558. features = btrfs_super_compat_ro_flags(disk_super) &
  1559. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  1560. if (!(sb->s_flags & MS_RDONLY) && features) {
  1561. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  1562. "unsupported option features (%Lx).\n",
  1563. (unsigned long long)features);
  1564. err = -EINVAL;
  1565. goto fail_iput;
  1566. }
  1567. btrfs_init_workers(&fs_info->generic_worker,
  1568. "genwork", 1, NULL);
  1569. btrfs_init_workers(&fs_info->workers, "worker",
  1570. fs_info->thread_pool_size,
  1571. &fs_info->generic_worker);
  1572. btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
  1573. fs_info->thread_pool_size,
  1574. &fs_info->generic_worker);
  1575. btrfs_init_workers(&fs_info->submit_workers, "submit",
  1576. min_t(u64, fs_devices->num_devices,
  1577. fs_info->thread_pool_size),
  1578. &fs_info->generic_worker);
  1579. /* a higher idle thresh on the submit workers makes it much more
  1580. * likely that bios will be send down in a sane order to the
  1581. * devices
  1582. */
  1583. fs_info->submit_workers.idle_thresh = 64;
  1584. fs_info->workers.idle_thresh = 16;
  1585. fs_info->workers.ordered = 1;
  1586. fs_info->delalloc_workers.idle_thresh = 2;
  1587. fs_info->delalloc_workers.ordered = 1;
  1588. btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
  1589. &fs_info->generic_worker);
  1590. btrfs_init_workers(&fs_info->endio_workers, "endio",
  1591. fs_info->thread_pool_size,
  1592. &fs_info->generic_worker);
  1593. btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
  1594. fs_info->thread_pool_size,
  1595. &fs_info->generic_worker);
  1596. btrfs_init_workers(&fs_info->endio_meta_write_workers,
  1597. "endio-meta-write", fs_info->thread_pool_size,
  1598. &fs_info->generic_worker);
  1599. btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
  1600. fs_info->thread_pool_size,
  1601. &fs_info->generic_worker);
  1602. btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
  1603. 1, &fs_info->generic_worker);
  1604. /*
  1605. * endios are largely parallel and should have a very
  1606. * low idle thresh
  1607. */
  1608. fs_info->endio_workers.idle_thresh = 4;
  1609. fs_info->endio_meta_workers.idle_thresh = 4;
  1610. fs_info->endio_write_workers.idle_thresh = 2;
  1611. fs_info->endio_meta_write_workers.idle_thresh = 2;
  1612. btrfs_start_workers(&fs_info->workers, 1);
  1613. btrfs_start_workers(&fs_info->generic_worker, 1);
  1614. btrfs_start_workers(&fs_info->submit_workers, 1);
  1615. btrfs_start_workers(&fs_info->delalloc_workers, 1);
  1616. btrfs_start_workers(&fs_info->fixup_workers, 1);
  1617. btrfs_start_workers(&fs_info->endio_workers, 1);
  1618. btrfs_start_workers(&fs_info->endio_meta_workers, 1);
  1619. btrfs_start_workers(&fs_info->endio_meta_write_workers, 1);
  1620. btrfs_start_workers(&fs_info->endio_write_workers, 1);
  1621. btrfs_start_workers(&fs_info->endio_freespace_worker, 1);
  1622. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  1623. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  1624. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  1625. nodesize = btrfs_super_nodesize(disk_super);
  1626. leafsize = btrfs_super_leafsize(disk_super);
  1627. sectorsize = btrfs_super_sectorsize(disk_super);
  1628. stripesize = btrfs_super_stripesize(disk_super);
  1629. tree_root->nodesize = nodesize;
  1630. tree_root->leafsize = leafsize;
  1631. tree_root->sectorsize = sectorsize;
  1632. tree_root->stripesize = stripesize;
  1633. sb->s_blocksize = sectorsize;
  1634. sb->s_blocksize_bits = blksize_bits(sectorsize);
  1635. if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
  1636. sizeof(disk_super->magic))) {
  1637. printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
  1638. goto fail_sb_buffer;
  1639. }
  1640. mutex_lock(&fs_info->chunk_mutex);
  1641. ret = btrfs_read_sys_array(tree_root);
  1642. mutex_unlock(&fs_info->chunk_mutex);
  1643. if (ret) {
  1644. printk(KERN_WARNING "btrfs: failed to read the system "
  1645. "array on %s\n", sb->s_id);
  1646. goto fail_sb_buffer;
  1647. }
  1648. blocksize = btrfs_level_size(tree_root,
  1649. btrfs_super_chunk_root_level(disk_super));
  1650. generation = btrfs_super_chunk_root_generation(disk_super);
  1651. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  1652. chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  1653. chunk_root->node = read_tree_block(chunk_root,
  1654. btrfs_super_chunk_root(disk_super),
  1655. blocksize, generation);
  1656. BUG_ON(!chunk_root->node);
  1657. if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
  1658. printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
  1659. sb->s_id);
  1660. goto fail_chunk_root;
  1661. }
  1662. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  1663. chunk_root->commit_root = btrfs_root_node(chunk_root);
  1664. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  1665. (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
  1666. BTRFS_UUID_SIZE);
  1667. mutex_lock(&fs_info->chunk_mutex);
  1668. ret = btrfs_read_chunk_tree(chunk_root);
  1669. mutex_unlock(&fs_info->chunk_mutex);
  1670. if (ret) {
  1671. printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
  1672. sb->s_id);
  1673. goto fail_chunk_root;
  1674. }
  1675. btrfs_close_extra_devices(fs_devices);
  1676. blocksize = btrfs_level_size(tree_root,
  1677. btrfs_super_root_level(disk_super));
  1678. generation = btrfs_super_generation(disk_super);
  1679. tree_root->node = read_tree_block(tree_root,
  1680. btrfs_super_root(disk_super),
  1681. blocksize, generation);
  1682. if (!tree_root->node)
  1683. goto fail_chunk_root;
  1684. if (!test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
  1685. printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
  1686. sb->s_id);
  1687. goto fail_tree_root;
  1688. }
  1689. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  1690. tree_root->commit_root = btrfs_root_node(tree_root);
  1691. ret = find_and_setup_root(tree_root, fs_info,
  1692. BTRFS_EXTENT_TREE_OBJECTID, extent_root);
  1693. if (ret)
  1694. goto fail_tree_root;
  1695. extent_root->track_dirty = 1;
  1696. ret = find_and_setup_root(tree_root, fs_info,
  1697. BTRFS_DEV_TREE_OBJECTID, dev_root);
  1698. if (ret)
  1699. goto fail_extent_root;
  1700. dev_root->track_dirty = 1;
  1701. ret = find_and_setup_root(tree_root, fs_info,
  1702. BTRFS_CSUM_TREE_OBJECTID, csum_root);
  1703. if (ret)
  1704. goto fail_dev_root;
  1705. csum_root->track_dirty = 1;
  1706. fs_info->generation = generation;
  1707. fs_info->last_trans_committed = generation;
  1708. fs_info->data_alloc_profile = (u64)-1;
  1709. fs_info->metadata_alloc_profile = (u64)-1;
  1710. fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
  1711. ret = btrfs_read_block_groups(extent_root);
  1712. if (ret) {
  1713. printk(KERN_ERR "Failed to read block groups: %d\n", ret);
  1714. goto fail_block_groups;
  1715. }
  1716. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  1717. "btrfs-cleaner");
  1718. if (IS_ERR(fs_info->cleaner_kthread))
  1719. goto fail_block_groups;
  1720. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  1721. tree_root,
  1722. "btrfs-transaction");
  1723. if (IS_ERR(fs_info->transaction_kthread))
  1724. goto fail_cleaner;
  1725. if (!btrfs_test_opt(tree_root, SSD) &&
  1726. !btrfs_test_opt(tree_root, NOSSD) &&
  1727. !fs_info->fs_devices->rotating) {
  1728. printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
  1729. "mode\n");
  1730. btrfs_set_opt(fs_info->mount_opt, SSD);
  1731. }
  1732. /* do not make disk changes in broken FS */
  1733. if (btrfs_super_log_root(disk_super) != 0 &&
  1734. !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
  1735. u64 bytenr = btrfs_super_log_root(disk_super);
  1736. if (fs_devices->rw_devices == 0) {
  1737. printk(KERN_WARNING "Btrfs log replay required "
  1738. "on RO media\n");
  1739. err = -EIO;
  1740. goto fail_trans_kthread;
  1741. }
  1742. blocksize =
  1743. btrfs_level_size(tree_root,
  1744. btrfs_super_log_root_level(disk_super));
  1745. log_tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
  1746. if (!log_tree_root) {
  1747. err = -ENOMEM;
  1748. goto fail_trans_kthread;
  1749. }
  1750. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  1751. log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1752. log_tree_root->node = read_tree_block(tree_root, bytenr,
  1753. blocksize,
  1754. generation + 1);
  1755. ret = btrfs_recover_log_trees(log_tree_root);
  1756. BUG_ON(ret);
  1757. if (sb->s_flags & MS_RDONLY) {
  1758. ret = btrfs_commit_super(tree_root);
  1759. BUG_ON(ret);
  1760. }
  1761. }
  1762. ret = btrfs_find_orphan_roots(tree_root);
  1763. BUG_ON(ret);
  1764. if (!(sb->s_flags & MS_RDONLY)) {
  1765. ret = btrfs_cleanup_fs_roots(fs_info);
  1766. BUG_ON(ret);
  1767. ret = btrfs_recover_relocation(tree_root);
  1768. if (ret < 0) {
  1769. printk(KERN_WARNING
  1770. "btrfs: failed to recover relocation\n");
  1771. err = -EINVAL;
  1772. goto fail_trans_kthread;
  1773. }
  1774. }
  1775. location.objectid = BTRFS_FS_TREE_OBJECTID;
  1776. location.type = BTRFS_ROOT_ITEM_KEY;
  1777. location.offset = (u64)-1;
  1778. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  1779. if (!fs_info->fs_root)
  1780. goto fail_trans_kthread;
  1781. if (IS_ERR(fs_info->fs_root)) {
  1782. err = PTR_ERR(fs_info->fs_root);
  1783. goto fail_trans_kthread;
  1784. }
  1785. if (!(sb->s_flags & MS_RDONLY)) {
  1786. down_read(&fs_info->cleanup_work_sem);
  1787. btrfs_orphan_cleanup(fs_info->fs_root);
  1788. btrfs_orphan_cleanup(fs_info->tree_root);
  1789. up_read(&fs_info->cleanup_work_sem);
  1790. }
  1791. return tree_root;
  1792. fail_trans_kthread:
  1793. kthread_stop(fs_info->transaction_kthread);
  1794. fail_cleaner:
  1795. kthread_stop(fs_info->cleaner_kthread);
  1796. /*
  1797. * make sure we're done with the btree inode before we stop our
  1798. * kthreads
  1799. */
  1800. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  1801. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  1802. fail_block_groups:
  1803. btrfs_free_block_groups(fs_info);
  1804. free_extent_buffer(csum_root->node);
  1805. free_extent_buffer(csum_root->commit_root);
  1806. fail_dev_root:
  1807. free_extent_buffer(dev_root->node);
  1808. free_extent_buffer(dev_root->commit_root);
  1809. fail_extent_root:
  1810. free_extent_buffer(extent_root->node);
  1811. free_extent_buffer(extent_root->commit_root);
  1812. fail_tree_root:
  1813. free_extent_buffer(tree_root->node);
  1814. free_extent_buffer(tree_root->commit_root);
  1815. fail_chunk_root:
  1816. free_extent_buffer(chunk_root->node);
  1817. free_extent_buffer(chunk_root->commit_root);
  1818. fail_sb_buffer:
  1819. btrfs_stop_workers(&fs_info->generic_worker);
  1820. btrfs_stop_workers(&fs_info->fixup_workers);
  1821. btrfs_stop_workers(&fs_info->delalloc_workers);
  1822. btrfs_stop_workers(&fs_info->workers);
  1823. btrfs_stop_workers(&fs_info->endio_workers);
  1824. btrfs_stop_workers(&fs_info->endio_meta_workers);
  1825. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  1826. btrfs_stop_workers(&fs_info->endio_write_workers);
  1827. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  1828. btrfs_stop_workers(&fs_info->submit_workers);
  1829. fail_iput:
  1830. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  1831. iput(fs_info->btree_inode);
  1832. btrfs_close_devices(fs_info->fs_devices);
  1833. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  1834. fail_bdi:
  1835. bdi_destroy(&fs_info->bdi);
  1836. fail_srcu:
  1837. cleanup_srcu_struct(&fs_info->subvol_srcu);
  1838. fail:
  1839. kfree(extent_root);
  1840. kfree(tree_root);
  1841. kfree(fs_info);
  1842. kfree(chunk_root);
  1843. kfree(dev_root);
  1844. kfree(csum_root);
  1845. return ERR_PTR(err);
  1846. }
  1847. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  1848. {
  1849. char b[BDEVNAME_SIZE];
  1850. if (uptodate) {
  1851. set_buffer_uptodate(bh);
  1852. } else {
  1853. if (printk_ratelimit()) {
  1854. printk(KERN_WARNING "lost page write due to "
  1855. "I/O error on %s\n",
  1856. bdevname(bh->b_bdev, b));
  1857. }
  1858. /* note, we dont' set_buffer_write_io_error because we have
  1859. * our own ways of dealing with the IO errors
  1860. */
  1861. clear_buffer_uptodate(bh);
  1862. }
  1863. unlock_buffer(bh);
  1864. put_bh(bh);
  1865. }
  1866. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  1867. {
  1868. struct buffer_head *bh;
  1869. struct buffer_head *latest = NULL;
  1870. struct btrfs_super_block *super;
  1871. int i;
  1872. u64 transid = 0;
  1873. u64 bytenr;
  1874. /* we would like to check all the supers, but that would make
  1875. * a btrfs mount succeed after a mkfs from a different FS.
  1876. * So, we need to add a special mount option to scan for
  1877. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  1878. */
  1879. for (i = 0; i < 1; i++) {
  1880. bytenr = btrfs_sb_offset(i);
  1881. if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
  1882. break;
  1883. bh = __bread(bdev, bytenr / 4096, 4096);
  1884. if (!bh)
  1885. continue;
  1886. super = (struct btrfs_super_block *)bh->b_data;
  1887. if (btrfs_super_bytenr(super) != bytenr ||
  1888. strncmp((char *)(&super->magic), BTRFS_MAGIC,
  1889. sizeof(super->magic))) {
  1890. brelse(bh);
  1891. continue;
  1892. }
  1893. if (!latest || btrfs_super_generation(super) > transid) {
  1894. brelse(latest);
  1895. latest = bh;
  1896. transid = btrfs_super_generation(super);
  1897. } else {
  1898. brelse(bh);
  1899. }
  1900. }
  1901. return latest;
  1902. }
  1903. /*
  1904. * this should be called twice, once with wait == 0 and
  1905. * once with wait == 1. When wait == 0 is done, all the buffer heads
  1906. * we write are pinned.
  1907. *
  1908. * They are released when wait == 1 is done.
  1909. * max_mirrors must be the same for both runs, and it indicates how
  1910. * many supers on this one device should be written.
  1911. *
  1912. * max_mirrors == 0 means to write them all.
  1913. */
  1914. static int write_dev_supers(struct btrfs_device *device,
  1915. struct btrfs_super_block *sb,
  1916. int do_barriers, int wait, int max_mirrors)
  1917. {
  1918. struct buffer_head *bh;
  1919. int i;
  1920. int ret;
  1921. int errors = 0;
  1922. u32 crc;
  1923. u64 bytenr;
  1924. int last_barrier = 0;
  1925. if (max_mirrors == 0)
  1926. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  1927. /* make sure only the last submit_bh does a barrier */
  1928. if (do_barriers) {
  1929. for (i = 0; i < max_mirrors; i++) {
  1930. bytenr = btrfs_sb_offset(i);
  1931. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  1932. device->total_bytes)
  1933. break;
  1934. last_barrier = i;
  1935. }
  1936. }
  1937. for (i = 0; i < max_mirrors; i++) {
  1938. bytenr = btrfs_sb_offset(i);
  1939. if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
  1940. break;
  1941. if (wait) {
  1942. bh = __find_get_block(device->bdev, bytenr / 4096,
  1943. BTRFS_SUPER_INFO_SIZE);
  1944. BUG_ON(!bh);
  1945. wait_on_buffer(bh);
  1946. if (!buffer_uptodate(bh))
  1947. errors++;
  1948. /* drop our reference */
  1949. brelse(bh);
  1950. /* drop the reference from the wait == 0 run */
  1951. brelse(bh);
  1952. continue;
  1953. } else {
  1954. btrfs_set_super_bytenr(sb, bytenr);
  1955. crc = ~(u32)0;
  1956. crc = btrfs_csum_data(NULL, (char *)sb +
  1957. BTRFS_CSUM_SIZE, crc,
  1958. BTRFS_SUPER_INFO_SIZE -
  1959. BTRFS_CSUM_SIZE);
  1960. btrfs_csum_final(crc, sb->csum);
  1961. /*
  1962. * one reference for us, and we leave it for the
  1963. * caller
  1964. */
  1965. bh = __getblk(device->bdev, bytenr / 4096,
  1966. BTRFS_SUPER_INFO_SIZE);
  1967. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  1968. /* one reference for submit_bh */
  1969. get_bh(bh);
  1970. set_buffer_uptodate(bh);
  1971. lock_buffer(bh);
  1972. bh->b_end_io = btrfs_end_buffer_write_sync;
  1973. }
  1974. if (i == last_barrier && do_barriers)
  1975. ret = submit_bh(WRITE_FLUSH_FUA, bh);
  1976. else
  1977. ret = submit_bh(WRITE_SYNC, bh);
  1978. if (ret)
  1979. errors++;
  1980. }
  1981. return errors < i ? 0 : -1;
  1982. }
  1983. int write_all_supers(struct btrfs_root *root, int max_mirrors)
  1984. {
  1985. struct list_head *head;
  1986. struct btrfs_device *dev;
  1987. struct btrfs_super_block *sb;
  1988. struct btrfs_dev_item *dev_item;
  1989. int ret;
  1990. int do_barriers;
  1991. int max_errors;
  1992. int total_errors = 0;
  1993. u64 flags;
  1994. max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
  1995. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  1996. sb = &root->fs_info->super_for_commit;
  1997. dev_item = &sb->dev_item;
  1998. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  1999. head = &root->fs_info->fs_devices->devices;
  2000. list_for_each_entry(dev, head, dev_list) {
  2001. if (!dev->bdev) {
  2002. total_errors++;
  2003. continue;
  2004. }
  2005. if (!dev->in_fs_metadata || !dev->writeable)
  2006. continue;
  2007. btrfs_set_stack_device_generation(dev_item, 0);
  2008. btrfs_set_stack_device_type(dev_item, dev->type);
  2009. btrfs_set_stack_device_id(dev_item, dev->devid);
  2010. btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
  2011. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  2012. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  2013. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  2014. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  2015. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  2016. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  2017. flags = btrfs_super_flags(sb);
  2018. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  2019. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  2020. if (ret)
  2021. total_errors++;
  2022. }
  2023. if (total_errors > max_errors) {
  2024. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  2025. total_errors);
  2026. BUG();
  2027. }
  2028. total_errors = 0;
  2029. list_for_each_entry(dev, head, dev_list) {
  2030. if (!dev->bdev)
  2031. continue;
  2032. if (!dev->in_fs_metadata || !dev->writeable)
  2033. continue;
  2034. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  2035. if (ret)
  2036. total_errors++;
  2037. }
  2038. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  2039. if (total_errors > max_errors) {
  2040. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  2041. total_errors);
  2042. BUG();
  2043. }
  2044. return 0;
  2045. }
  2046. int write_ctree_super(struct btrfs_trans_handle *trans,
  2047. struct btrfs_root *root, int max_mirrors)
  2048. {
  2049. int ret;
  2050. ret = write_all_supers(root, max_mirrors);
  2051. return ret;
  2052. }
  2053. int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
  2054. {
  2055. spin_lock(&fs_info->fs_roots_radix_lock);
  2056. radix_tree_delete(&fs_info->fs_roots_radix,
  2057. (unsigned long)root->root_key.objectid);
  2058. spin_unlock(&fs_info->fs_roots_radix_lock);
  2059. if (btrfs_root_refs(&root->root_item) == 0)
  2060. synchronize_srcu(&fs_info->subvol_srcu);
  2061. free_fs_root(root);
  2062. return 0;
  2063. }
  2064. static void free_fs_root(struct btrfs_root *root)
  2065. {
  2066. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  2067. if (root->anon_super.s_dev) {
  2068. down_write(&root->anon_super.s_umount);
  2069. kill_anon_super(&root->anon_super);
  2070. }
  2071. free_extent_buffer(root->node);
  2072. free_extent_buffer(root->commit_root);
  2073. kfree(root->name);
  2074. kfree(root);
  2075. }
  2076. static int del_fs_roots(struct btrfs_fs_info *fs_info)
  2077. {
  2078. int ret;
  2079. struct btrfs_root *gang[8];
  2080. int i;
  2081. while (!list_empty(&fs_info->dead_roots)) {
  2082. gang[0] = list_entry(fs_info->dead_roots.next,
  2083. struct btrfs_root, root_list);
  2084. list_del(&gang[0]->root_list);
  2085. if (gang[0]->in_radix) {
  2086. btrfs_free_fs_root(fs_info, gang[0]);
  2087. } else {
  2088. free_extent_buffer(gang[0]->node);
  2089. free_extent_buffer(gang[0]->commit_root);
  2090. kfree(gang[0]);
  2091. }
  2092. }
  2093. while (1) {
  2094. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2095. (void **)gang, 0,
  2096. ARRAY_SIZE(gang));
  2097. if (!ret)
  2098. break;
  2099. for (i = 0; i < ret; i++)
  2100. btrfs_free_fs_root(fs_info, gang[i]);
  2101. }
  2102. return 0;
  2103. }
  2104. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  2105. {
  2106. u64 root_objectid = 0;
  2107. struct btrfs_root *gang[8];
  2108. int i;
  2109. int ret;
  2110. while (1) {
  2111. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2112. (void **)gang, root_objectid,
  2113. ARRAY_SIZE(gang));
  2114. if (!ret)
  2115. break;
  2116. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  2117. for (i = 0; i < ret; i++) {
  2118. root_objectid = gang[i]->root_key.objectid;
  2119. btrfs_orphan_cleanup(gang[i]);
  2120. }
  2121. root_objectid++;
  2122. }
  2123. return 0;
  2124. }
  2125. int btrfs_commit_super(struct btrfs_root *root)
  2126. {
  2127. struct btrfs_trans_handle *trans;
  2128. int ret;
  2129. mutex_lock(&root->fs_info->cleaner_mutex);
  2130. btrfs_run_delayed_iputs(root);
  2131. btrfs_clean_old_snapshots(root);
  2132. mutex_unlock(&root->fs_info->cleaner_mutex);
  2133. /* wait until ongoing cleanup work done */
  2134. down_write(&root->fs_info->cleanup_work_sem);
  2135. up_write(&root->fs_info->cleanup_work_sem);
  2136. trans = btrfs_join_transaction(root, 1);
  2137. ret = btrfs_commit_transaction(trans, root);
  2138. BUG_ON(ret);
  2139. /* run commit again to drop the original snapshot */
  2140. trans = btrfs_join_transaction(root, 1);
  2141. btrfs_commit_transaction(trans, root);
  2142. ret = btrfs_write_and_wait_transaction(NULL, root);
  2143. BUG_ON(ret);
  2144. ret = write_ctree_super(NULL, root, 0);
  2145. return ret;
  2146. }
  2147. int close_ctree(struct btrfs_root *root)
  2148. {
  2149. struct btrfs_fs_info *fs_info = root->fs_info;
  2150. int ret;
  2151. fs_info->closing = 1;
  2152. smp_mb();
  2153. btrfs_put_block_group_cache(fs_info);
  2154. /*
  2155. * Here come 2 situations when btrfs is broken to flip readonly:
  2156. *
  2157. * 1. when btrfs flips readonly somewhere else before
  2158. * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
  2159. * and btrfs will skip to write sb directly to keep
  2160. * ERROR state on disk.
  2161. *
  2162. * 2. when btrfs flips readonly just in btrfs_commit_super,
  2163. * and in such case, btrfs cannnot write sb via btrfs_commit_super,
  2164. * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
  2165. * btrfs will cleanup all FS resources first and write sb then.
  2166. */
  2167. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  2168. ret = btrfs_commit_super(root);
  2169. if (ret)
  2170. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  2171. }
  2172. if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
  2173. ret = btrfs_error_commit_super(root);
  2174. if (ret)
  2175. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  2176. }
  2177. kthread_stop(root->fs_info->transaction_kthread);
  2178. kthread_stop(root->fs_info->cleaner_kthread);
  2179. fs_info->closing = 2;
  2180. smp_mb();
  2181. if (fs_info->delalloc_bytes) {
  2182. printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
  2183. (unsigned long long)fs_info->delalloc_bytes);
  2184. }
  2185. if (fs_info->total_ref_cache_size) {
  2186. printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
  2187. (unsigned long long)fs_info->total_ref_cache_size);
  2188. }
  2189. free_extent_buffer(fs_info->extent_root->node);
  2190. free_extent_buffer(fs_info->extent_root->commit_root);
  2191. free_extent_buffer(fs_info->tree_root->node);
  2192. free_extent_buffer(fs_info->tree_root->commit_root);
  2193. free_extent_buffer(root->fs_info->chunk_root->node);
  2194. free_extent_buffer(root->fs_info->chunk_root->commit_root);
  2195. free_extent_buffer(root->fs_info->dev_root->node);
  2196. free_extent_buffer(root->fs_info->dev_root->commit_root);
  2197. free_extent_buffer(root->fs_info->csum_root->node);
  2198. free_extent_buffer(root->fs_info->csum_root->commit_root);
  2199. btrfs_free_block_groups(root->fs_info);
  2200. del_fs_roots(fs_info);
  2201. iput(fs_info->btree_inode);
  2202. btrfs_stop_workers(&fs_info->generic_worker);
  2203. btrfs_stop_workers(&fs_info->fixup_workers);
  2204. btrfs_stop_workers(&fs_info->delalloc_workers);
  2205. btrfs_stop_workers(&fs_info->workers);
  2206. btrfs_stop_workers(&fs_info->endio_workers);
  2207. btrfs_stop_workers(&fs_info->endio_meta_workers);
  2208. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  2209. btrfs_stop_workers(&fs_info->endio_write_workers);
  2210. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  2211. btrfs_stop_workers(&fs_info->submit_workers);
  2212. btrfs_close_devices(fs_info->fs_devices);
  2213. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2214. bdi_destroy(&fs_info->bdi);
  2215. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2216. kfree(fs_info->extent_root);
  2217. kfree(fs_info->tree_root);
  2218. kfree(fs_info->chunk_root);
  2219. kfree(fs_info->dev_root);
  2220. kfree(fs_info->csum_root);
  2221. return 0;
  2222. }
  2223. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
  2224. {
  2225. int ret;
  2226. struct inode *btree_inode = buf->first_page->mapping->host;
  2227. ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf,
  2228. NULL);
  2229. if (!ret)
  2230. return ret;
  2231. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  2232. parent_transid);
  2233. return !ret;
  2234. }
  2235. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  2236. {
  2237. struct inode *btree_inode = buf->first_page->mapping->host;
  2238. return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
  2239. buf);
  2240. }
  2241. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  2242. {
  2243. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  2244. u64 transid = btrfs_header_generation(buf);
  2245. struct inode *btree_inode = root->fs_info->btree_inode;
  2246. int was_dirty;
  2247. btrfs_assert_tree_locked(buf);
  2248. if (transid != root->fs_info->generation) {
  2249. printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
  2250. "found %llu running %llu\n",
  2251. (unsigned long long)buf->start,
  2252. (unsigned long long)transid,
  2253. (unsigned long long)root->fs_info->generation);
  2254. WARN_ON(1);
  2255. }
  2256. was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
  2257. buf);
  2258. if (!was_dirty) {
  2259. spin_lock(&root->fs_info->delalloc_lock);
  2260. root->fs_info->dirty_metadata_bytes += buf->len;
  2261. spin_unlock(&root->fs_info->delalloc_lock);
  2262. }
  2263. }
  2264. void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
  2265. {
  2266. /*
  2267. * looks as though older kernels can get into trouble with
  2268. * this code, they end up stuck in balance_dirty_pages forever
  2269. */
  2270. u64 num_dirty;
  2271. unsigned long thresh = 32 * 1024 * 1024;
  2272. if (current->flags & PF_MEMALLOC)
  2273. return;
  2274. num_dirty = root->fs_info->dirty_metadata_bytes;
  2275. if (num_dirty > thresh) {
  2276. balance_dirty_pages_ratelimited_nr(
  2277. root->fs_info->btree_inode->i_mapping, 1);
  2278. }
  2279. return;
  2280. }
  2281. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  2282. {
  2283. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  2284. int ret;
  2285. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  2286. if (ret == 0)
  2287. set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
  2288. return ret;
  2289. }
  2290. int btree_lock_page_hook(struct page *page)
  2291. {
  2292. struct inode *inode = page->mapping->host;
  2293. struct btrfs_root *root = BTRFS_I(inode)->root;
  2294. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  2295. struct extent_buffer *eb;
  2296. unsigned long len;
  2297. u64 bytenr = page_offset(page);
  2298. if (page->private == EXTENT_PAGE_PRIVATE)
  2299. goto out;
  2300. len = page->private >> 2;
  2301. eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS);
  2302. if (!eb)
  2303. goto out;
  2304. btrfs_tree_lock(eb);
  2305. btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
  2306. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
  2307. spin_lock(&root->fs_info->delalloc_lock);
  2308. if (root->fs_info->dirty_metadata_bytes >= eb->len)
  2309. root->fs_info->dirty_metadata_bytes -= eb->len;
  2310. else
  2311. WARN_ON(1);
  2312. spin_unlock(&root->fs_info->delalloc_lock);
  2313. }
  2314. btrfs_tree_unlock(eb);
  2315. free_extent_buffer(eb);
  2316. out:
  2317. lock_page(page);
  2318. return 0;
  2319. }
  2320. static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  2321. int read_only)
  2322. {
  2323. if (read_only)
  2324. return;
  2325. if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
  2326. printk(KERN_WARNING "warning: mount fs with errors, "
  2327. "running btrfsck is recommended\n");
  2328. }
  2329. int btrfs_error_commit_super(struct btrfs_root *root)
  2330. {
  2331. int ret;
  2332. mutex_lock(&root->fs_info->cleaner_mutex);
  2333. btrfs_run_delayed_iputs(root);
  2334. mutex_unlock(&root->fs_info->cleaner_mutex);
  2335. down_write(&root->fs_info->cleanup_work_sem);
  2336. up_write(&root->fs_info->cleanup_work_sem);
  2337. /* cleanup FS via transaction */
  2338. btrfs_cleanup_transaction(root);
  2339. ret = write_ctree_super(NULL, root, 0);
  2340. return ret;
  2341. }
  2342. static int btrfs_destroy_ordered_operations(struct btrfs_root *root)
  2343. {
  2344. struct btrfs_inode *btrfs_inode;
  2345. struct list_head splice;
  2346. INIT_LIST_HEAD(&splice);
  2347. mutex_lock(&root->fs_info->ordered_operations_mutex);
  2348. spin_lock(&root->fs_info->ordered_extent_lock);
  2349. list_splice_init(&root->fs_info->ordered_operations, &splice);
  2350. while (!list_empty(&splice)) {
  2351. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  2352. ordered_operations);
  2353. list_del_init(&btrfs_inode->ordered_operations);
  2354. btrfs_invalidate_inodes(btrfs_inode->root);
  2355. }
  2356. spin_unlock(&root->fs_info->ordered_extent_lock);
  2357. mutex_unlock(&root->fs_info->ordered_operations_mutex);
  2358. return 0;
  2359. }
  2360. static int btrfs_destroy_ordered_extents(struct btrfs_root *root)
  2361. {
  2362. struct list_head splice;
  2363. struct btrfs_ordered_extent *ordered;
  2364. struct inode *inode;
  2365. INIT_LIST_HEAD(&splice);
  2366. spin_lock(&root->fs_info->ordered_extent_lock);
  2367. list_splice_init(&root->fs_info->ordered_extents, &splice);
  2368. while (!list_empty(&splice)) {
  2369. ordered = list_entry(splice.next, struct btrfs_ordered_extent,
  2370. root_extent_list);
  2371. list_del_init(&ordered->root_extent_list);
  2372. atomic_inc(&ordered->refs);
  2373. /* the inode may be getting freed (in sys_unlink path). */
  2374. inode = igrab(ordered->inode);
  2375. spin_unlock(&root->fs_info->ordered_extent_lock);
  2376. if (inode)
  2377. iput(inode);
  2378. atomic_set(&ordered->refs, 1);
  2379. btrfs_put_ordered_extent(ordered);
  2380. spin_lock(&root->fs_info->ordered_extent_lock);
  2381. }
  2382. spin_unlock(&root->fs_info->ordered_extent_lock);
  2383. return 0;
  2384. }
  2385. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  2386. struct btrfs_root *root)
  2387. {
  2388. struct rb_node *node;
  2389. struct btrfs_delayed_ref_root *delayed_refs;
  2390. struct btrfs_delayed_ref_node *ref;
  2391. int ret = 0;
  2392. delayed_refs = &trans->delayed_refs;
  2393. spin_lock(&delayed_refs->lock);
  2394. if (delayed_refs->num_entries == 0) {
  2395. printk(KERN_INFO "delayed_refs has NO entry\n");
  2396. return ret;
  2397. }
  2398. node = rb_first(&delayed_refs->root);
  2399. while (node) {
  2400. ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
  2401. node = rb_next(node);
  2402. ref->in_tree = 0;
  2403. rb_erase(&ref->rb_node, &delayed_refs->root);
  2404. delayed_refs->num_entries--;
  2405. atomic_set(&ref->refs, 1);
  2406. if (btrfs_delayed_ref_is_head(ref)) {
  2407. struct btrfs_delayed_ref_head *head;
  2408. head = btrfs_delayed_node_to_head(ref);
  2409. mutex_lock(&head->mutex);
  2410. kfree(head->extent_op);
  2411. delayed_refs->num_heads--;
  2412. if (list_empty(&head->cluster))
  2413. delayed_refs->num_heads_ready--;
  2414. list_del_init(&head->cluster);
  2415. mutex_unlock(&head->mutex);
  2416. }
  2417. spin_unlock(&delayed_refs->lock);
  2418. btrfs_put_delayed_ref(ref);
  2419. cond_resched();
  2420. spin_lock(&delayed_refs->lock);
  2421. }
  2422. spin_unlock(&delayed_refs->lock);
  2423. return ret;
  2424. }
  2425. static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
  2426. {
  2427. struct btrfs_pending_snapshot *snapshot;
  2428. struct list_head splice;
  2429. INIT_LIST_HEAD(&splice);
  2430. list_splice_init(&t->pending_snapshots, &splice);
  2431. while (!list_empty(&splice)) {
  2432. snapshot = list_entry(splice.next,
  2433. struct btrfs_pending_snapshot,
  2434. list);
  2435. list_del_init(&snapshot->list);
  2436. kfree(snapshot);
  2437. }
  2438. return 0;
  2439. }
  2440. static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  2441. {
  2442. struct btrfs_inode *btrfs_inode;
  2443. struct list_head splice;
  2444. INIT_LIST_HEAD(&splice);
  2445. list_splice_init(&root->fs_info->delalloc_inodes, &splice);
  2446. spin_lock(&root->fs_info->delalloc_lock);
  2447. while (!list_empty(&splice)) {
  2448. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  2449. delalloc_inodes);
  2450. list_del_init(&btrfs_inode->delalloc_inodes);
  2451. btrfs_invalidate_inodes(btrfs_inode->root);
  2452. }
  2453. spin_unlock(&root->fs_info->delalloc_lock);
  2454. return 0;
  2455. }
  2456. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  2457. struct extent_io_tree *dirty_pages,
  2458. int mark)
  2459. {
  2460. int ret;
  2461. struct page *page;
  2462. struct inode *btree_inode = root->fs_info->btree_inode;
  2463. struct extent_buffer *eb;
  2464. u64 start = 0;
  2465. u64 end;
  2466. u64 offset;
  2467. unsigned long index;
  2468. while (1) {
  2469. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  2470. mark);
  2471. if (ret)
  2472. break;
  2473. clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
  2474. while (start <= end) {
  2475. index = start >> PAGE_CACHE_SHIFT;
  2476. start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
  2477. page = find_get_page(btree_inode->i_mapping, index);
  2478. if (!page)
  2479. continue;
  2480. offset = page_offset(page);
  2481. spin_lock(&dirty_pages->buffer_lock);
  2482. eb = radix_tree_lookup(
  2483. &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
  2484. offset >> PAGE_CACHE_SHIFT);
  2485. spin_unlock(&dirty_pages->buffer_lock);
  2486. if (eb) {
  2487. ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  2488. &eb->bflags);
  2489. atomic_set(&eb->refs, 1);
  2490. }
  2491. if (PageWriteback(page))
  2492. end_page_writeback(page);
  2493. lock_page(page);
  2494. if (PageDirty(page)) {
  2495. clear_page_dirty_for_io(page);
  2496. spin_lock_irq(&page->mapping->tree_lock);
  2497. radix_tree_tag_clear(&page->mapping->page_tree,
  2498. page_index(page),
  2499. PAGECACHE_TAG_DIRTY);
  2500. spin_unlock_irq(&page->mapping->tree_lock);
  2501. }
  2502. page->mapping->a_ops->invalidatepage(page, 0);
  2503. unlock_page(page);
  2504. }
  2505. }
  2506. return ret;
  2507. }
  2508. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  2509. struct extent_io_tree *pinned_extents)
  2510. {
  2511. struct extent_io_tree *unpin;
  2512. u64 start;
  2513. u64 end;
  2514. int ret;
  2515. unpin = pinned_extents;
  2516. while (1) {
  2517. ret = find_first_extent_bit(unpin, 0, &start, &end,
  2518. EXTENT_DIRTY);
  2519. if (ret)
  2520. break;
  2521. /* opt_discard */
  2522. ret = btrfs_error_discard_extent(root, start, end + 1 - start);
  2523. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  2524. btrfs_error_unpin_extent_range(root, start, end);
  2525. cond_resched();
  2526. }
  2527. return 0;
  2528. }
  2529. static int btrfs_cleanup_transaction(struct btrfs_root *root)
  2530. {
  2531. struct btrfs_transaction *t;
  2532. LIST_HEAD(list);
  2533. WARN_ON(1);
  2534. mutex_lock(&root->fs_info->trans_mutex);
  2535. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  2536. list_splice_init(&root->fs_info->trans_list, &list);
  2537. while (!list_empty(&list)) {
  2538. t = list_entry(list.next, struct btrfs_transaction, list);
  2539. if (!t)
  2540. break;
  2541. btrfs_destroy_ordered_operations(root);
  2542. btrfs_destroy_ordered_extents(root);
  2543. btrfs_destroy_delayed_refs(t, root);
  2544. btrfs_block_rsv_release(root,
  2545. &root->fs_info->trans_block_rsv,
  2546. t->dirty_pages.dirty_bytes);
  2547. /* FIXME: cleanup wait for commit */
  2548. t->in_commit = 1;
  2549. t->blocked = 1;
  2550. if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
  2551. wake_up(&root->fs_info->transaction_blocked_wait);
  2552. t->blocked = 0;
  2553. if (waitqueue_active(&root->fs_info->transaction_wait))
  2554. wake_up(&root->fs_info->transaction_wait);
  2555. mutex_unlock(&root->fs_info->trans_mutex);
  2556. mutex_lock(&root->fs_info->trans_mutex);
  2557. t->commit_done = 1;
  2558. if (waitqueue_active(&t->commit_wait))
  2559. wake_up(&t->commit_wait);
  2560. mutex_unlock(&root->fs_info->trans_mutex);
  2561. mutex_lock(&root->fs_info->trans_mutex);
  2562. btrfs_destroy_pending_snapshots(t);
  2563. btrfs_destroy_delalloc_inodes(root);
  2564. spin_lock(&root->fs_info->new_trans_lock);
  2565. root->fs_info->running_transaction = NULL;
  2566. spin_unlock(&root->fs_info->new_trans_lock);
  2567. btrfs_destroy_marked_extents(root, &t->dirty_pages,
  2568. EXTENT_DIRTY);
  2569. btrfs_destroy_pinned_extent(root,
  2570. root->fs_info->pinned_extents);
  2571. t->use_count = 0;
  2572. list_del_init(&t->list);
  2573. memset(t, 0, sizeof(*t));
  2574. kmem_cache_free(btrfs_transaction_cachep, t);
  2575. }
  2576. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  2577. mutex_unlock(&root->fs_info->trans_mutex);
  2578. return 0;
  2579. }
  2580. static struct extent_io_ops btree_extent_io_ops = {
  2581. .write_cache_pages_lock_hook = btree_lock_page_hook,
  2582. .readpage_end_io_hook = btree_readpage_end_io_hook,
  2583. .submit_bio_hook = btree_submit_bio_hook,
  2584. /* note we're sharing with inode.c for the merge bio hook */
  2585. .merge_bio_hook = btrfs_merge_bio_hook,
  2586. };