dispc.c 78 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361
  1. /*
  2. * linux/drivers/video/omap2/dss/dispc.c
  3. *
  4. * Copyright (C) 2009 Nokia Corporation
  5. * Author: Tomi Valkeinen <tomi.valkeinen@nokia.com>
  6. *
  7. * Some code and ideas taken from drivers/video/omap/ driver
  8. * by Imre Deak.
  9. *
  10. * This program is free software; you can redistribute it and/or modify it
  11. * under the terms of the GNU General Public License version 2 as published by
  12. * the Free Software Foundation.
  13. *
  14. * This program is distributed in the hope that it will be useful, but WITHOUT
  15. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  16. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  17. * more details.
  18. *
  19. * You should have received a copy of the GNU General Public License along with
  20. * this program. If not, see <http://www.gnu.org/licenses/>.
  21. */
  22. #define DSS_SUBSYS_NAME "DISPC"
  23. #include <linux/kernel.h>
  24. #include <linux/dma-mapping.h>
  25. #include <linux/vmalloc.h>
  26. #include <linux/clk.h>
  27. #include <linux/io.h>
  28. #include <linux/jiffies.h>
  29. #include <linux/seq_file.h>
  30. #include <linux/delay.h>
  31. #include <linux/workqueue.h>
  32. #include <linux/hardirq.h>
  33. #include <plat/sram.h>
  34. #include <plat/clock.h>
  35. #include <plat/display.h>
  36. #include "dss.h"
  37. #include "dss_features.h"
  38. /* DISPC */
  39. #define DISPC_BASE 0x48050400
  40. #define DISPC_SZ_REGS SZ_4K
  41. struct dispc_reg { u16 idx; };
  42. #define DISPC_REG(idx) ((const struct dispc_reg) { idx })
  43. /*
  44. * DISPC common registers and
  45. * DISPC channel registers , ch = 0 for LCD, ch = 1 for
  46. * DIGIT, and ch = 2 for LCD2
  47. */
  48. #define DISPC_REVISION DISPC_REG(0x0000)
  49. #define DISPC_SYSCONFIG DISPC_REG(0x0010)
  50. #define DISPC_SYSSTATUS DISPC_REG(0x0014)
  51. #define DISPC_IRQSTATUS DISPC_REG(0x0018)
  52. #define DISPC_IRQENABLE DISPC_REG(0x001C)
  53. #define DISPC_CONTROL DISPC_REG(0x0040)
  54. #define DISPC_CONTROL2 DISPC_REG(0x0238)
  55. #define DISPC_CONFIG DISPC_REG(0x0044)
  56. #define DISPC_CONFIG2 DISPC_REG(0x0620)
  57. #define DISPC_CAPABLE DISPC_REG(0x0048)
  58. #define DISPC_DEFAULT_COLOR(ch) DISPC_REG(ch == 0 ? 0x004C : \
  59. (ch == 1 ? 0x0050 : 0x03AC))
  60. #define DISPC_TRANS_COLOR(ch) DISPC_REG(ch == 0 ? 0x0054 : \
  61. (ch == 1 ? 0x0058 : 0x03B0))
  62. #define DISPC_LINE_STATUS DISPC_REG(0x005C)
  63. #define DISPC_LINE_NUMBER DISPC_REG(0x0060)
  64. #define DISPC_TIMING_H(ch) DISPC_REG(ch != 2 ? 0x0064 : 0x0400)
  65. #define DISPC_TIMING_V(ch) DISPC_REG(ch != 2 ? 0x0068 : 0x0404)
  66. #define DISPC_POL_FREQ(ch) DISPC_REG(ch != 2 ? 0x006C : 0x0408)
  67. #define DISPC_DIVISOR(ch) DISPC_REG(ch != 2 ? 0x0070 : 0x040C)
  68. #define DISPC_GLOBAL_ALPHA DISPC_REG(0x0074)
  69. #define DISPC_SIZE_DIG DISPC_REG(0x0078)
  70. #define DISPC_SIZE_LCD(ch) DISPC_REG(ch != 2 ? 0x007C : 0x03CC)
  71. /* DISPC GFX plane */
  72. #define DISPC_GFX_BA0 DISPC_REG(0x0080)
  73. #define DISPC_GFX_BA1 DISPC_REG(0x0084)
  74. #define DISPC_GFX_POSITION DISPC_REG(0x0088)
  75. #define DISPC_GFX_SIZE DISPC_REG(0x008C)
  76. #define DISPC_GFX_ATTRIBUTES DISPC_REG(0x00A0)
  77. #define DISPC_GFX_FIFO_THRESHOLD DISPC_REG(0x00A4)
  78. #define DISPC_GFX_FIFO_SIZE_STATUS DISPC_REG(0x00A8)
  79. #define DISPC_GFX_ROW_INC DISPC_REG(0x00AC)
  80. #define DISPC_GFX_PIXEL_INC DISPC_REG(0x00B0)
  81. #define DISPC_GFX_WINDOW_SKIP DISPC_REG(0x00B4)
  82. #define DISPC_GFX_TABLE_BA DISPC_REG(0x00B8)
  83. #define DISPC_DATA_CYCLE1(ch) DISPC_REG(ch != 2 ? 0x01D4 : 0x03C0)
  84. #define DISPC_DATA_CYCLE2(ch) DISPC_REG(ch != 2 ? 0x01D8 : 0x03C4)
  85. #define DISPC_DATA_CYCLE3(ch) DISPC_REG(ch != 2 ? 0x01DC : 0x03C8)
  86. #define DISPC_CPR_COEF_R(ch) DISPC_REG(ch != 2 ? 0x0220 : 0x03BC)
  87. #define DISPC_CPR_COEF_G(ch) DISPC_REG(ch != 2 ? 0x0224 : 0x03B8)
  88. #define DISPC_CPR_COEF_B(ch) DISPC_REG(ch != 2 ? 0x0228 : 0x03B4)
  89. #define DISPC_GFX_PRELOAD DISPC_REG(0x022C)
  90. /* DISPC Video plane, n = 0 for VID1 and n = 1 for VID2 */
  91. #define DISPC_VID_REG(n, idx) DISPC_REG(0x00BC + (n)*0x90 + idx)
  92. #define DISPC_VID_BA0(n) DISPC_VID_REG(n, 0x0000)
  93. #define DISPC_VID_BA1(n) DISPC_VID_REG(n, 0x0004)
  94. #define DISPC_VID_POSITION(n) DISPC_VID_REG(n, 0x0008)
  95. #define DISPC_VID_SIZE(n) DISPC_VID_REG(n, 0x000C)
  96. #define DISPC_VID_ATTRIBUTES(n) DISPC_VID_REG(n, 0x0010)
  97. #define DISPC_VID_FIFO_THRESHOLD(n) DISPC_VID_REG(n, 0x0014)
  98. #define DISPC_VID_FIFO_SIZE_STATUS(n) DISPC_VID_REG(n, 0x0018)
  99. #define DISPC_VID_ROW_INC(n) DISPC_VID_REG(n, 0x001C)
  100. #define DISPC_VID_PIXEL_INC(n) DISPC_VID_REG(n, 0x0020)
  101. #define DISPC_VID_FIR(n) DISPC_VID_REG(n, 0x0024)
  102. #define DISPC_VID_PICTURE_SIZE(n) DISPC_VID_REG(n, 0x0028)
  103. #define DISPC_VID_ACCU0(n) DISPC_VID_REG(n, 0x002C)
  104. #define DISPC_VID_ACCU1(n) DISPC_VID_REG(n, 0x0030)
  105. /* coef index i = {0, 1, 2, 3, 4, 5, 6, 7} */
  106. #define DISPC_VID_FIR_COEF_H(n, i) DISPC_REG(0x00F0 + (n)*0x90 + (i)*0x8)
  107. /* coef index i = {0, 1, 2, 3, 4, 5, 6, 7} */
  108. #define DISPC_VID_FIR_COEF_HV(n, i) DISPC_REG(0x00F4 + (n)*0x90 + (i)*0x8)
  109. /* coef index i = {0, 1, 2, 3, 4} */
  110. #define DISPC_VID_CONV_COEF(n, i) DISPC_REG(0x0130 + (n)*0x90 + (i)*0x4)
  111. /* coef index i = {0, 1, 2, 3, 4, 5, 6, 7} */
  112. #define DISPC_VID_FIR_COEF_V(n, i) DISPC_REG(0x01E0 + (n)*0x20 + (i)*0x4)
  113. #define DISPC_VID_PRELOAD(n) DISPC_REG(0x230 + (n)*0x04)
  114. #define DISPC_IRQ_MASK_ERROR (DISPC_IRQ_GFX_FIFO_UNDERFLOW | \
  115. DISPC_IRQ_OCP_ERR | \
  116. DISPC_IRQ_VID1_FIFO_UNDERFLOW | \
  117. DISPC_IRQ_VID2_FIFO_UNDERFLOW | \
  118. DISPC_IRQ_SYNC_LOST | \
  119. DISPC_IRQ_SYNC_LOST_DIGIT)
  120. #define DISPC_MAX_NR_ISRS 8
  121. struct omap_dispc_isr_data {
  122. omap_dispc_isr_t isr;
  123. void *arg;
  124. u32 mask;
  125. };
  126. struct dispc_h_coef {
  127. s8 hc4;
  128. s8 hc3;
  129. u8 hc2;
  130. s8 hc1;
  131. s8 hc0;
  132. };
  133. struct dispc_v_coef {
  134. s8 vc22;
  135. s8 vc2;
  136. u8 vc1;
  137. s8 vc0;
  138. s8 vc00;
  139. };
  140. #define REG_GET(idx, start, end) \
  141. FLD_GET(dispc_read_reg(idx), start, end)
  142. #define REG_FLD_MOD(idx, val, start, end) \
  143. dispc_write_reg(idx, FLD_MOD(dispc_read_reg(idx), val, start, end))
  144. static const struct dispc_reg dispc_reg_att[] = { DISPC_GFX_ATTRIBUTES,
  145. DISPC_VID_ATTRIBUTES(0),
  146. DISPC_VID_ATTRIBUTES(1) };
  147. struct dispc_irq_stats {
  148. unsigned long last_reset;
  149. unsigned irq_count;
  150. unsigned irqs[32];
  151. };
  152. static struct {
  153. void __iomem *base;
  154. u32 fifo_size[3];
  155. spinlock_t irq_lock;
  156. u32 irq_error_mask;
  157. struct omap_dispc_isr_data registered_isr[DISPC_MAX_NR_ISRS];
  158. u32 error_irqs;
  159. struct work_struct error_work;
  160. u32 ctx[DISPC_SZ_REGS / sizeof(u32)];
  161. #ifdef CONFIG_OMAP2_DSS_COLLECT_IRQ_STATS
  162. spinlock_t irq_stats_lock;
  163. struct dispc_irq_stats irq_stats;
  164. #endif
  165. } dispc;
  166. static void _omap_dispc_set_irqs(void);
  167. static inline void dispc_write_reg(const struct dispc_reg idx, u32 val)
  168. {
  169. __raw_writel(val, dispc.base + idx.idx);
  170. }
  171. static inline u32 dispc_read_reg(const struct dispc_reg idx)
  172. {
  173. return __raw_readl(dispc.base + idx.idx);
  174. }
  175. #define SR(reg) \
  176. dispc.ctx[(DISPC_##reg).idx / sizeof(u32)] = dispc_read_reg(DISPC_##reg)
  177. #define RR(reg) \
  178. dispc_write_reg(DISPC_##reg, dispc.ctx[(DISPC_##reg).idx / sizeof(u32)])
  179. void dispc_save_context(void)
  180. {
  181. if (cpu_is_omap24xx())
  182. return;
  183. SR(SYSCONFIG);
  184. SR(IRQENABLE);
  185. SR(CONTROL);
  186. SR(CONFIG);
  187. SR(DEFAULT_COLOR(0));
  188. SR(DEFAULT_COLOR(1));
  189. SR(TRANS_COLOR(0));
  190. SR(TRANS_COLOR(1));
  191. SR(LINE_NUMBER);
  192. SR(TIMING_H(0));
  193. SR(TIMING_V(0));
  194. SR(POL_FREQ(0));
  195. SR(DIVISOR(0));
  196. SR(GLOBAL_ALPHA);
  197. SR(SIZE_DIG);
  198. SR(SIZE_LCD(0));
  199. if (dss_has_feature(FEAT_MGR_LCD2)) {
  200. SR(CONTROL2);
  201. SR(DEFAULT_COLOR(2));
  202. SR(TRANS_COLOR(2));
  203. SR(SIZE_LCD(2));
  204. SR(TIMING_H(2));
  205. SR(TIMING_V(2));
  206. SR(POL_FREQ(2));
  207. SR(DIVISOR(2));
  208. SR(CONFIG2);
  209. }
  210. SR(GFX_BA0);
  211. SR(GFX_BA1);
  212. SR(GFX_POSITION);
  213. SR(GFX_SIZE);
  214. SR(GFX_ATTRIBUTES);
  215. SR(GFX_FIFO_THRESHOLD);
  216. SR(GFX_ROW_INC);
  217. SR(GFX_PIXEL_INC);
  218. SR(GFX_WINDOW_SKIP);
  219. SR(GFX_TABLE_BA);
  220. SR(DATA_CYCLE1(0));
  221. SR(DATA_CYCLE2(0));
  222. SR(DATA_CYCLE3(0));
  223. SR(CPR_COEF_R(0));
  224. SR(CPR_COEF_G(0));
  225. SR(CPR_COEF_B(0));
  226. if (dss_has_feature(FEAT_MGR_LCD2)) {
  227. SR(CPR_COEF_B(2));
  228. SR(CPR_COEF_G(2));
  229. SR(CPR_COEF_R(2));
  230. SR(DATA_CYCLE1(2));
  231. SR(DATA_CYCLE2(2));
  232. SR(DATA_CYCLE3(2));
  233. }
  234. SR(GFX_PRELOAD);
  235. /* VID1 */
  236. SR(VID_BA0(0));
  237. SR(VID_BA1(0));
  238. SR(VID_POSITION(0));
  239. SR(VID_SIZE(0));
  240. SR(VID_ATTRIBUTES(0));
  241. SR(VID_FIFO_THRESHOLD(0));
  242. SR(VID_ROW_INC(0));
  243. SR(VID_PIXEL_INC(0));
  244. SR(VID_FIR(0));
  245. SR(VID_PICTURE_SIZE(0));
  246. SR(VID_ACCU0(0));
  247. SR(VID_ACCU1(0));
  248. SR(VID_FIR_COEF_H(0, 0));
  249. SR(VID_FIR_COEF_H(0, 1));
  250. SR(VID_FIR_COEF_H(0, 2));
  251. SR(VID_FIR_COEF_H(0, 3));
  252. SR(VID_FIR_COEF_H(0, 4));
  253. SR(VID_FIR_COEF_H(0, 5));
  254. SR(VID_FIR_COEF_H(0, 6));
  255. SR(VID_FIR_COEF_H(0, 7));
  256. SR(VID_FIR_COEF_HV(0, 0));
  257. SR(VID_FIR_COEF_HV(0, 1));
  258. SR(VID_FIR_COEF_HV(0, 2));
  259. SR(VID_FIR_COEF_HV(0, 3));
  260. SR(VID_FIR_COEF_HV(0, 4));
  261. SR(VID_FIR_COEF_HV(0, 5));
  262. SR(VID_FIR_COEF_HV(0, 6));
  263. SR(VID_FIR_COEF_HV(0, 7));
  264. SR(VID_CONV_COEF(0, 0));
  265. SR(VID_CONV_COEF(0, 1));
  266. SR(VID_CONV_COEF(0, 2));
  267. SR(VID_CONV_COEF(0, 3));
  268. SR(VID_CONV_COEF(0, 4));
  269. SR(VID_FIR_COEF_V(0, 0));
  270. SR(VID_FIR_COEF_V(0, 1));
  271. SR(VID_FIR_COEF_V(0, 2));
  272. SR(VID_FIR_COEF_V(0, 3));
  273. SR(VID_FIR_COEF_V(0, 4));
  274. SR(VID_FIR_COEF_V(0, 5));
  275. SR(VID_FIR_COEF_V(0, 6));
  276. SR(VID_FIR_COEF_V(0, 7));
  277. SR(VID_PRELOAD(0));
  278. /* VID2 */
  279. SR(VID_BA0(1));
  280. SR(VID_BA1(1));
  281. SR(VID_POSITION(1));
  282. SR(VID_SIZE(1));
  283. SR(VID_ATTRIBUTES(1));
  284. SR(VID_FIFO_THRESHOLD(1));
  285. SR(VID_ROW_INC(1));
  286. SR(VID_PIXEL_INC(1));
  287. SR(VID_FIR(1));
  288. SR(VID_PICTURE_SIZE(1));
  289. SR(VID_ACCU0(1));
  290. SR(VID_ACCU1(1));
  291. SR(VID_FIR_COEF_H(1, 0));
  292. SR(VID_FIR_COEF_H(1, 1));
  293. SR(VID_FIR_COEF_H(1, 2));
  294. SR(VID_FIR_COEF_H(1, 3));
  295. SR(VID_FIR_COEF_H(1, 4));
  296. SR(VID_FIR_COEF_H(1, 5));
  297. SR(VID_FIR_COEF_H(1, 6));
  298. SR(VID_FIR_COEF_H(1, 7));
  299. SR(VID_FIR_COEF_HV(1, 0));
  300. SR(VID_FIR_COEF_HV(1, 1));
  301. SR(VID_FIR_COEF_HV(1, 2));
  302. SR(VID_FIR_COEF_HV(1, 3));
  303. SR(VID_FIR_COEF_HV(1, 4));
  304. SR(VID_FIR_COEF_HV(1, 5));
  305. SR(VID_FIR_COEF_HV(1, 6));
  306. SR(VID_FIR_COEF_HV(1, 7));
  307. SR(VID_CONV_COEF(1, 0));
  308. SR(VID_CONV_COEF(1, 1));
  309. SR(VID_CONV_COEF(1, 2));
  310. SR(VID_CONV_COEF(1, 3));
  311. SR(VID_CONV_COEF(1, 4));
  312. SR(VID_FIR_COEF_V(1, 0));
  313. SR(VID_FIR_COEF_V(1, 1));
  314. SR(VID_FIR_COEF_V(1, 2));
  315. SR(VID_FIR_COEF_V(1, 3));
  316. SR(VID_FIR_COEF_V(1, 4));
  317. SR(VID_FIR_COEF_V(1, 5));
  318. SR(VID_FIR_COEF_V(1, 6));
  319. SR(VID_FIR_COEF_V(1, 7));
  320. SR(VID_PRELOAD(1));
  321. }
  322. void dispc_restore_context(void)
  323. {
  324. RR(SYSCONFIG);
  325. /*RR(IRQENABLE);*/
  326. /*RR(CONTROL);*/
  327. RR(CONFIG);
  328. RR(DEFAULT_COLOR(0));
  329. RR(DEFAULT_COLOR(1));
  330. RR(TRANS_COLOR(0));
  331. RR(TRANS_COLOR(1));
  332. RR(LINE_NUMBER);
  333. RR(TIMING_H(0));
  334. RR(TIMING_V(0));
  335. RR(POL_FREQ(0));
  336. RR(DIVISOR(0));
  337. RR(GLOBAL_ALPHA);
  338. RR(SIZE_DIG);
  339. RR(SIZE_LCD(0));
  340. if (dss_has_feature(FEAT_MGR_LCD2)) {
  341. RR(DEFAULT_COLOR(2));
  342. RR(TRANS_COLOR(2));
  343. RR(SIZE_LCD(2));
  344. RR(TIMING_H(2));
  345. RR(TIMING_V(2));
  346. RR(POL_FREQ(2));
  347. RR(DIVISOR(2));
  348. RR(CONFIG2);
  349. }
  350. RR(GFX_BA0);
  351. RR(GFX_BA1);
  352. RR(GFX_POSITION);
  353. RR(GFX_SIZE);
  354. RR(GFX_ATTRIBUTES);
  355. RR(GFX_FIFO_THRESHOLD);
  356. RR(GFX_ROW_INC);
  357. RR(GFX_PIXEL_INC);
  358. RR(GFX_WINDOW_SKIP);
  359. RR(GFX_TABLE_BA);
  360. RR(DATA_CYCLE1(0));
  361. RR(DATA_CYCLE2(0));
  362. RR(DATA_CYCLE3(0));
  363. RR(CPR_COEF_R(0));
  364. RR(CPR_COEF_G(0));
  365. RR(CPR_COEF_B(0));
  366. if (dss_has_feature(FEAT_MGR_LCD2)) {
  367. RR(DATA_CYCLE1(2));
  368. RR(DATA_CYCLE2(2));
  369. RR(DATA_CYCLE3(2));
  370. RR(CPR_COEF_B(2));
  371. RR(CPR_COEF_G(2));
  372. RR(CPR_COEF_R(2));
  373. }
  374. RR(GFX_PRELOAD);
  375. /* VID1 */
  376. RR(VID_BA0(0));
  377. RR(VID_BA1(0));
  378. RR(VID_POSITION(0));
  379. RR(VID_SIZE(0));
  380. RR(VID_ATTRIBUTES(0));
  381. RR(VID_FIFO_THRESHOLD(0));
  382. RR(VID_ROW_INC(0));
  383. RR(VID_PIXEL_INC(0));
  384. RR(VID_FIR(0));
  385. RR(VID_PICTURE_SIZE(0));
  386. RR(VID_ACCU0(0));
  387. RR(VID_ACCU1(0));
  388. RR(VID_FIR_COEF_H(0, 0));
  389. RR(VID_FIR_COEF_H(0, 1));
  390. RR(VID_FIR_COEF_H(0, 2));
  391. RR(VID_FIR_COEF_H(0, 3));
  392. RR(VID_FIR_COEF_H(0, 4));
  393. RR(VID_FIR_COEF_H(0, 5));
  394. RR(VID_FIR_COEF_H(0, 6));
  395. RR(VID_FIR_COEF_H(0, 7));
  396. RR(VID_FIR_COEF_HV(0, 0));
  397. RR(VID_FIR_COEF_HV(0, 1));
  398. RR(VID_FIR_COEF_HV(0, 2));
  399. RR(VID_FIR_COEF_HV(0, 3));
  400. RR(VID_FIR_COEF_HV(0, 4));
  401. RR(VID_FIR_COEF_HV(0, 5));
  402. RR(VID_FIR_COEF_HV(0, 6));
  403. RR(VID_FIR_COEF_HV(0, 7));
  404. RR(VID_CONV_COEF(0, 0));
  405. RR(VID_CONV_COEF(0, 1));
  406. RR(VID_CONV_COEF(0, 2));
  407. RR(VID_CONV_COEF(0, 3));
  408. RR(VID_CONV_COEF(0, 4));
  409. RR(VID_FIR_COEF_V(0, 0));
  410. RR(VID_FIR_COEF_V(0, 1));
  411. RR(VID_FIR_COEF_V(0, 2));
  412. RR(VID_FIR_COEF_V(0, 3));
  413. RR(VID_FIR_COEF_V(0, 4));
  414. RR(VID_FIR_COEF_V(0, 5));
  415. RR(VID_FIR_COEF_V(0, 6));
  416. RR(VID_FIR_COEF_V(0, 7));
  417. RR(VID_PRELOAD(0));
  418. /* VID2 */
  419. RR(VID_BA0(1));
  420. RR(VID_BA1(1));
  421. RR(VID_POSITION(1));
  422. RR(VID_SIZE(1));
  423. RR(VID_ATTRIBUTES(1));
  424. RR(VID_FIFO_THRESHOLD(1));
  425. RR(VID_ROW_INC(1));
  426. RR(VID_PIXEL_INC(1));
  427. RR(VID_FIR(1));
  428. RR(VID_PICTURE_SIZE(1));
  429. RR(VID_ACCU0(1));
  430. RR(VID_ACCU1(1));
  431. RR(VID_FIR_COEF_H(1, 0));
  432. RR(VID_FIR_COEF_H(1, 1));
  433. RR(VID_FIR_COEF_H(1, 2));
  434. RR(VID_FIR_COEF_H(1, 3));
  435. RR(VID_FIR_COEF_H(1, 4));
  436. RR(VID_FIR_COEF_H(1, 5));
  437. RR(VID_FIR_COEF_H(1, 6));
  438. RR(VID_FIR_COEF_H(1, 7));
  439. RR(VID_FIR_COEF_HV(1, 0));
  440. RR(VID_FIR_COEF_HV(1, 1));
  441. RR(VID_FIR_COEF_HV(1, 2));
  442. RR(VID_FIR_COEF_HV(1, 3));
  443. RR(VID_FIR_COEF_HV(1, 4));
  444. RR(VID_FIR_COEF_HV(1, 5));
  445. RR(VID_FIR_COEF_HV(1, 6));
  446. RR(VID_FIR_COEF_HV(1, 7));
  447. RR(VID_CONV_COEF(1, 0));
  448. RR(VID_CONV_COEF(1, 1));
  449. RR(VID_CONV_COEF(1, 2));
  450. RR(VID_CONV_COEF(1, 3));
  451. RR(VID_CONV_COEF(1, 4));
  452. RR(VID_FIR_COEF_V(1, 0));
  453. RR(VID_FIR_COEF_V(1, 1));
  454. RR(VID_FIR_COEF_V(1, 2));
  455. RR(VID_FIR_COEF_V(1, 3));
  456. RR(VID_FIR_COEF_V(1, 4));
  457. RR(VID_FIR_COEF_V(1, 5));
  458. RR(VID_FIR_COEF_V(1, 6));
  459. RR(VID_FIR_COEF_V(1, 7));
  460. RR(VID_PRELOAD(1));
  461. /* enable last, because LCD & DIGIT enable are here */
  462. RR(CONTROL);
  463. if (dss_has_feature(FEAT_MGR_LCD2))
  464. RR(CONTROL2);
  465. /* clear spurious SYNC_LOST_DIGIT interrupts */
  466. dispc_write_reg(DISPC_IRQSTATUS, DISPC_IRQ_SYNC_LOST_DIGIT);
  467. /*
  468. * enable last so IRQs won't trigger before
  469. * the context is fully restored
  470. */
  471. RR(IRQENABLE);
  472. }
  473. #undef SR
  474. #undef RR
  475. static inline void enable_clocks(bool enable)
  476. {
  477. if (enable)
  478. dss_clk_enable(DSS_CLK_ICK | DSS_CLK_FCK1);
  479. else
  480. dss_clk_disable(DSS_CLK_ICK | DSS_CLK_FCK1);
  481. }
  482. bool dispc_go_busy(enum omap_channel channel)
  483. {
  484. int bit;
  485. if (channel == OMAP_DSS_CHANNEL_LCD ||
  486. channel == OMAP_DSS_CHANNEL_LCD2)
  487. bit = 5; /* GOLCD */
  488. else
  489. bit = 6; /* GODIGIT */
  490. if (channel == OMAP_DSS_CHANNEL_LCD2)
  491. return REG_GET(DISPC_CONTROL2, bit, bit) == 1;
  492. else
  493. return REG_GET(DISPC_CONTROL, bit, bit) == 1;
  494. }
  495. void dispc_go(enum omap_channel channel)
  496. {
  497. int bit;
  498. bool enable_bit, go_bit;
  499. enable_clocks(1);
  500. if (channel == OMAP_DSS_CHANNEL_LCD ||
  501. channel == OMAP_DSS_CHANNEL_LCD2)
  502. bit = 0; /* LCDENABLE */
  503. else
  504. bit = 1; /* DIGITALENABLE */
  505. /* if the channel is not enabled, we don't need GO */
  506. if (channel == OMAP_DSS_CHANNEL_LCD2)
  507. enable_bit = REG_GET(DISPC_CONTROL2, bit, bit) == 1;
  508. else
  509. enable_bit = REG_GET(DISPC_CONTROL, bit, bit) == 1;
  510. if (!enable_bit)
  511. goto end;
  512. if (channel == OMAP_DSS_CHANNEL_LCD ||
  513. channel == OMAP_DSS_CHANNEL_LCD2)
  514. bit = 5; /* GOLCD */
  515. else
  516. bit = 6; /* GODIGIT */
  517. if (channel == OMAP_DSS_CHANNEL_LCD2)
  518. go_bit = REG_GET(DISPC_CONTROL2, bit, bit) == 1;
  519. else
  520. go_bit = REG_GET(DISPC_CONTROL, bit, bit) == 1;
  521. if (go_bit) {
  522. DSSERR("GO bit not down for channel %d\n", channel);
  523. goto end;
  524. }
  525. DSSDBG("GO %s\n", channel == OMAP_DSS_CHANNEL_LCD ? "LCD" :
  526. (channel == OMAP_DSS_CHANNEL_LCD2 ? "LCD2" : "DIGIT"));
  527. if (channel == OMAP_DSS_CHANNEL_LCD2)
  528. REG_FLD_MOD(DISPC_CONTROL2, 1, bit, bit);
  529. else
  530. REG_FLD_MOD(DISPC_CONTROL, 1, bit, bit);
  531. end:
  532. enable_clocks(0);
  533. }
  534. static void _dispc_write_firh_reg(enum omap_plane plane, int reg, u32 value)
  535. {
  536. BUG_ON(plane == OMAP_DSS_GFX);
  537. dispc_write_reg(DISPC_VID_FIR_COEF_H(plane-1, reg), value);
  538. }
  539. static void _dispc_write_firhv_reg(enum omap_plane plane, int reg, u32 value)
  540. {
  541. BUG_ON(plane == OMAP_DSS_GFX);
  542. dispc_write_reg(DISPC_VID_FIR_COEF_HV(plane-1, reg), value);
  543. }
  544. static void _dispc_write_firv_reg(enum omap_plane plane, int reg, u32 value)
  545. {
  546. BUG_ON(plane == OMAP_DSS_GFX);
  547. dispc_write_reg(DISPC_VID_FIR_COEF_V(plane-1, reg), value);
  548. }
  549. static void _dispc_set_scale_coef(enum omap_plane plane, int hscaleup,
  550. int vscaleup, int five_taps)
  551. {
  552. /* Coefficients for horizontal up-sampling */
  553. static const struct dispc_h_coef coef_hup[8] = {
  554. { 0, 0, 128, 0, 0 },
  555. { -1, 13, 124, -8, 0 },
  556. { -2, 30, 112, -11, -1 },
  557. { -5, 51, 95, -11, -2 },
  558. { 0, -9, 73, 73, -9 },
  559. { -2, -11, 95, 51, -5 },
  560. { -1, -11, 112, 30, -2 },
  561. { 0, -8, 124, 13, -1 },
  562. };
  563. /* Coefficients for vertical up-sampling */
  564. static const struct dispc_v_coef coef_vup_3tap[8] = {
  565. { 0, 0, 128, 0, 0 },
  566. { 0, 3, 123, 2, 0 },
  567. { 0, 12, 111, 5, 0 },
  568. { 0, 32, 89, 7, 0 },
  569. { 0, 0, 64, 64, 0 },
  570. { 0, 7, 89, 32, 0 },
  571. { 0, 5, 111, 12, 0 },
  572. { 0, 2, 123, 3, 0 },
  573. };
  574. static const struct dispc_v_coef coef_vup_5tap[8] = {
  575. { 0, 0, 128, 0, 0 },
  576. { -1, 13, 124, -8, 0 },
  577. { -2, 30, 112, -11, -1 },
  578. { -5, 51, 95, -11, -2 },
  579. { 0, -9, 73, 73, -9 },
  580. { -2, -11, 95, 51, -5 },
  581. { -1, -11, 112, 30, -2 },
  582. { 0, -8, 124, 13, -1 },
  583. };
  584. /* Coefficients for horizontal down-sampling */
  585. static const struct dispc_h_coef coef_hdown[8] = {
  586. { 0, 36, 56, 36, 0 },
  587. { 4, 40, 55, 31, -2 },
  588. { 8, 44, 54, 27, -5 },
  589. { 12, 48, 53, 22, -7 },
  590. { -9, 17, 52, 51, 17 },
  591. { -7, 22, 53, 48, 12 },
  592. { -5, 27, 54, 44, 8 },
  593. { -2, 31, 55, 40, 4 },
  594. };
  595. /* Coefficients for vertical down-sampling */
  596. static const struct dispc_v_coef coef_vdown_3tap[8] = {
  597. { 0, 36, 56, 36, 0 },
  598. { 0, 40, 57, 31, 0 },
  599. { 0, 45, 56, 27, 0 },
  600. { 0, 50, 55, 23, 0 },
  601. { 0, 18, 55, 55, 0 },
  602. { 0, 23, 55, 50, 0 },
  603. { 0, 27, 56, 45, 0 },
  604. { 0, 31, 57, 40, 0 },
  605. };
  606. static const struct dispc_v_coef coef_vdown_5tap[8] = {
  607. { 0, 36, 56, 36, 0 },
  608. { 4, 40, 55, 31, -2 },
  609. { 8, 44, 54, 27, -5 },
  610. { 12, 48, 53, 22, -7 },
  611. { -9, 17, 52, 51, 17 },
  612. { -7, 22, 53, 48, 12 },
  613. { -5, 27, 54, 44, 8 },
  614. { -2, 31, 55, 40, 4 },
  615. };
  616. const struct dispc_h_coef *h_coef;
  617. const struct dispc_v_coef *v_coef;
  618. int i;
  619. if (hscaleup)
  620. h_coef = coef_hup;
  621. else
  622. h_coef = coef_hdown;
  623. if (vscaleup)
  624. v_coef = five_taps ? coef_vup_5tap : coef_vup_3tap;
  625. else
  626. v_coef = five_taps ? coef_vdown_5tap : coef_vdown_3tap;
  627. for (i = 0; i < 8; i++) {
  628. u32 h, hv;
  629. h = FLD_VAL(h_coef[i].hc0, 7, 0)
  630. | FLD_VAL(h_coef[i].hc1, 15, 8)
  631. | FLD_VAL(h_coef[i].hc2, 23, 16)
  632. | FLD_VAL(h_coef[i].hc3, 31, 24);
  633. hv = FLD_VAL(h_coef[i].hc4, 7, 0)
  634. | FLD_VAL(v_coef[i].vc0, 15, 8)
  635. | FLD_VAL(v_coef[i].vc1, 23, 16)
  636. | FLD_VAL(v_coef[i].vc2, 31, 24);
  637. _dispc_write_firh_reg(plane, i, h);
  638. _dispc_write_firhv_reg(plane, i, hv);
  639. }
  640. if (five_taps) {
  641. for (i = 0; i < 8; i++) {
  642. u32 v;
  643. v = FLD_VAL(v_coef[i].vc00, 7, 0)
  644. | FLD_VAL(v_coef[i].vc22, 15, 8);
  645. _dispc_write_firv_reg(plane, i, v);
  646. }
  647. }
  648. }
  649. static void _dispc_setup_color_conv_coef(void)
  650. {
  651. const struct color_conv_coef {
  652. int ry, rcr, rcb, gy, gcr, gcb, by, bcr, bcb;
  653. int full_range;
  654. } ctbl_bt601_5 = {
  655. 298, 409, 0, 298, -208, -100, 298, 0, 517, 0,
  656. };
  657. const struct color_conv_coef *ct;
  658. #define CVAL(x, y) (FLD_VAL(x, 26, 16) | FLD_VAL(y, 10, 0))
  659. ct = &ctbl_bt601_5;
  660. dispc_write_reg(DISPC_VID_CONV_COEF(0, 0), CVAL(ct->rcr, ct->ry));
  661. dispc_write_reg(DISPC_VID_CONV_COEF(0, 1), CVAL(ct->gy, ct->rcb));
  662. dispc_write_reg(DISPC_VID_CONV_COEF(0, 2), CVAL(ct->gcb, ct->gcr));
  663. dispc_write_reg(DISPC_VID_CONV_COEF(0, 3), CVAL(ct->bcr, ct->by));
  664. dispc_write_reg(DISPC_VID_CONV_COEF(0, 4), CVAL(0, ct->bcb));
  665. dispc_write_reg(DISPC_VID_CONV_COEF(1, 0), CVAL(ct->rcr, ct->ry));
  666. dispc_write_reg(DISPC_VID_CONV_COEF(1, 1), CVAL(ct->gy, ct->rcb));
  667. dispc_write_reg(DISPC_VID_CONV_COEF(1, 2), CVAL(ct->gcb, ct->gcr));
  668. dispc_write_reg(DISPC_VID_CONV_COEF(1, 3), CVAL(ct->bcr, ct->by));
  669. dispc_write_reg(DISPC_VID_CONV_COEF(1, 4), CVAL(0, ct->bcb));
  670. #undef CVAL
  671. REG_FLD_MOD(DISPC_VID_ATTRIBUTES(0), ct->full_range, 11, 11);
  672. REG_FLD_MOD(DISPC_VID_ATTRIBUTES(1), ct->full_range, 11, 11);
  673. }
  674. static void _dispc_set_plane_ba0(enum omap_plane plane, u32 paddr)
  675. {
  676. const struct dispc_reg ba0_reg[] = { DISPC_GFX_BA0,
  677. DISPC_VID_BA0(0),
  678. DISPC_VID_BA0(1) };
  679. dispc_write_reg(ba0_reg[plane], paddr);
  680. }
  681. static void _dispc_set_plane_ba1(enum omap_plane plane, u32 paddr)
  682. {
  683. const struct dispc_reg ba1_reg[] = { DISPC_GFX_BA1,
  684. DISPC_VID_BA1(0),
  685. DISPC_VID_BA1(1) };
  686. dispc_write_reg(ba1_reg[plane], paddr);
  687. }
  688. static void _dispc_set_plane_pos(enum omap_plane plane, int x, int y)
  689. {
  690. const struct dispc_reg pos_reg[] = { DISPC_GFX_POSITION,
  691. DISPC_VID_POSITION(0),
  692. DISPC_VID_POSITION(1) };
  693. u32 val = FLD_VAL(y, 26, 16) | FLD_VAL(x, 10, 0);
  694. dispc_write_reg(pos_reg[plane], val);
  695. }
  696. static void _dispc_set_pic_size(enum omap_plane plane, int width, int height)
  697. {
  698. const struct dispc_reg siz_reg[] = { DISPC_GFX_SIZE,
  699. DISPC_VID_PICTURE_SIZE(0),
  700. DISPC_VID_PICTURE_SIZE(1) };
  701. u32 val = FLD_VAL(height - 1, 26, 16) | FLD_VAL(width - 1, 10, 0);
  702. dispc_write_reg(siz_reg[plane], val);
  703. }
  704. static void _dispc_set_vid_size(enum omap_plane plane, int width, int height)
  705. {
  706. u32 val;
  707. const struct dispc_reg vsi_reg[] = { DISPC_VID_SIZE(0),
  708. DISPC_VID_SIZE(1) };
  709. BUG_ON(plane == OMAP_DSS_GFX);
  710. val = FLD_VAL(height - 1, 26, 16) | FLD_VAL(width - 1, 10, 0);
  711. dispc_write_reg(vsi_reg[plane-1], val);
  712. }
  713. static void _dispc_set_pre_mult_alpha(enum omap_plane plane, bool enable)
  714. {
  715. if (!dss_has_feature(FEAT_PRE_MULT_ALPHA))
  716. return;
  717. if (!dss_has_feature(FEAT_GLOBAL_ALPHA_VID1) &&
  718. plane == OMAP_DSS_VIDEO1)
  719. return;
  720. REG_FLD_MOD(dispc_reg_att[plane], enable ? 1 : 0, 28, 28);
  721. }
  722. static void _dispc_setup_global_alpha(enum omap_plane plane, u8 global_alpha)
  723. {
  724. if (!dss_has_feature(FEAT_GLOBAL_ALPHA))
  725. return;
  726. if (!dss_has_feature(FEAT_GLOBAL_ALPHA_VID1) &&
  727. plane == OMAP_DSS_VIDEO1)
  728. return;
  729. if (plane == OMAP_DSS_GFX)
  730. REG_FLD_MOD(DISPC_GLOBAL_ALPHA, global_alpha, 7, 0);
  731. else if (plane == OMAP_DSS_VIDEO2)
  732. REG_FLD_MOD(DISPC_GLOBAL_ALPHA, global_alpha, 23, 16);
  733. }
  734. static void _dispc_set_pix_inc(enum omap_plane plane, s32 inc)
  735. {
  736. const struct dispc_reg ri_reg[] = { DISPC_GFX_PIXEL_INC,
  737. DISPC_VID_PIXEL_INC(0),
  738. DISPC_VID_PIXEL_INC(1) };
  739. dispc_write_reg(ri_reg[plane], inc);
  740. }
  741. static void _dispc_set_row_inc(enum omap_plane plane, s32 inc)
  742. {
  743. const struct dispc_reg ri_reg[] = { DISPC_GFX_ROW_INC,
  744. DISPC_VID_ROW_INC(0),
  745. DISPC_VID_ROW_INC(1) };
  746. dispc_write_reg(ri_reg[plane], inc);
  747. }
  748. static void _dispc_set_color_mode(enum omap_plane plane,
  749. enum omap_color_mode color_mode)
  750. {
  751. u32 m = 0;
  752. switch (color_mode) {
  753. case OMAP_DSS_COLOR_CLUT1:
  754. m = 0x0; break;
  755. case OMAP_DSS_COLOR_CLUT2:
  756. m = 0x1; break;
  757. case OMAP_DSS_COLOR_CLUT4:
  758. m = 0x2; break;
  759. case OMAP_DSS_COLOR_CLUT8:
  760. m = 0x3; break;
  761. case OMAP_DSS_COLOR_RGB12U:
  762. m = 0x4; break;
  763. case OMAP_DSS_COLOR_ARGB16:
  764. m = 0x5; break;
  765. case OMAP_DSS_COLOR_RGB16:
  766. m = 0x6; break;
  767. case OMAP_DSS_COLOR_RGB24U:
  768. m = 0x8; break;
  769. case OMAP_DSS_COLOR_RGB24P:
  770. m = 0x9; break;
  771. case OMAP_DSS_COLOR_YUV2:
  772. m = 0xa; break;
  773. case OMAP_DSS_COLOR_UYVY:
  774. m = 0xb; break;
  775. case OMAP_DSS_COLOR_ARGB32:
  776. m = 0xc; break;
  777. case OMAP_DSS_COLOR_RGBA32:
  778. m = 0xd; break;
  779. case OMAP_DSS_COLOR_RGBX32:
  780. m = 0xe; break;
  781. default:
  782. BUG(); break;
  783. }
  784. REG_FLD_MOD(dispc_reg_att[plane], m, 4, 1);
  785. }
  786. static void _dispc_set_channel_out(enum omap_plane plane,
  787. enum omap_channel channel)
  788. {
  789. int shift;
  790. u32 val;
  791. int chan = 0, chan2 = 0;
  792. switch (plane) {
  793. case OMAP_DSS_GFX:
  794. shift = 8;
  795. break;
  796. case OMAP_DSS_VIDEO1:
  797. case OMAP_DSS_VIDEO2:
  798. shift = 16;
  799. break;
  800. default:
  801. BUG();
  802. return;
  803. }
  804. val = dispc_read_reg(dispc_reg_att[plane]);
  805. if (dss_has_feature(FEAT_MGR_LCD2)) {
  806. switch (channel) {
  807. case OMAP_DSS_CHANNEL_LCD:
  808. chan = 0;
  809. chan2 = 0;
  810. break;
  811. case OMAP_DSS_CHANNEL_DIGIT:
  812. chan = 1;
  813. chan2 = 0;
  814. break;
  815. case OMAP_DSS_CHANNEL_LCD2:
  816. chan = 0;
  817. chan2 = 1;
  818. break;
  819. default:
  820. BUG();
  821. }
  822. val = FLD_MOD(val, chan, shift, shift);
  823. val = FLD_MOD(val, chan2, 31, 30);
  824. } else {
  825. val = FLD_MOD(val, channel, shift, shift);
  826. }
  827. dispc_write_reg(dispc_reg_att[plane], val);
  828. }
  829. void dispc_set_burst_size(enum omap_plane plane,
  830. enum omap_burst_size burst_size)
  831. {
  832. int shift;
  833. u32 val;
  834. enable_clocks(1);
  835. switch (plane) {
  836. case OMAP_DSS_GFX:
  837. shift = 6;
  838. break;
  839. case OMAP_DSS_VIDEO1:
  840. case OMAP_DSS_VIDEO2:
  841. shift = 14;
  842. break;
  843. default:
  844. BUG();
  845. return;
  846. }
  847. val = dispc_read_reg(dispc_reg_att[plane]);
  848. val = FLD_MOD(val, burst_size, shift+1, shift);
  849. dispc_write_reg(dispc_reg_att[plane], val);
  850. enable_clocks(0);
  851. }
  852. static void _dispc_set_vid_color_conv(enum omap_plane plane, bool enable)
  853. {
  854. u32 val;
  855. BUG_ON(plane == OMAP_DSS_GFX);
  856. val = dispc_read_reg(dispc_reg_att[plane]);
  857. val = FLD_MOD(val, enable, 9, 9);
  858. dispc_write_reg(dispc_reg_att[plane], val);
  859. }
  860. void dispc_enable_replication(enum omap_plane plane, bool enable)
  861. {
  862. int bit;
  863. if (plane == OMAP_DSS_GFX)
  864. bit = 5;
  865. else
  866. bit = 10;
  867. enable_clocks(1);
  868. REG_FLD_MOD(dispc_reg_att[plane], enable, bit, bit);
  869. enable_clocks(0);
  870. }
  871. void dispc_set_lcd_size(enum omap_channel channel, u16 width, u16 height)
  872. {
  873. u32 val;
  874. BUG_ON((width > (1 << 11)) || (height > (1 << 11)));
  875. val = FLD_VAL(height - 1, 26, 16) | FLD_VAL(width - 1, 10, 0);
  876. enable_clocks(1);
  877. dispc_write_reg(DISPC_SIZE_LCD(channel), val);
  878. enable_clocks(0);
  879. }
  880. void dispc_set_digit_size(u16 width, u16 height)
  881. {
  882. u32 val;
  883. BUG_ON((width > (1 << 11)) || (height > (1 << 11)));
  884. val = FLD_VAL(height - 1, 26, 16) | FLD_VAL(width - 1, 10, 0);
  885. enable_clocks(1);
  886. dispc_write_reg(DISPC_SIZE_DIG, val);
  887. enable_clocks(0);
  888. }
  889. static void dispc_read_plane_fifo_sizes(void)
  890. {
  891. const struct dispc_reg fsz_reg[] = { DISPC_GFX_FIFO_SIZE_STATUS,
  892. DISPC_VID_FIFO_SIZE_STATUS(0),
  893. DISPC_VID_FIFO_SIZE_STATUS(1) };
  894. u32 size;
  895. int plane;
  896. u8 start, end;
  897. enable_clocks(1);
  898. dss_feat_get_reg_field(FEAT_REG_FIFOSIZE, &start, &end);
  899. for (plane = 0; plane < ARRAY_SIZE(dispc.fifo_size); ++plane) {
  900. size = FLD_GET(dispc_read_reg(fsz_reg[plane]), start, end);
  901. dispc.fifo_size[plane] = size;
  902. }
  903. enable_clocks(0);
  904. }
  905. u32 dispc_get_plane_fifo_size(enum omap_plane plane)
  906. {
  907. return dispc.fifo_size[plane];
  908. }
  909. void dispc_setup_plane_fifo(enum omap_plane plane, u32 low, u32 high)
  910. {
  911. const struct dispc_reg ftrs_reg[] = { DISPC_GFX_FIFO_THRESHOLD,
  912. DISPC_VID_FIFO_THRESHOLD(0),
  913. DISPC_VID_FIFO_THRESHOLD(1) };
  914. u8 hi_start, hi_end, lo_start, lo_end;
  915. enable_clocks(1);
  916. DSSDBG("fifo(%d) low/high old %u/%u, new %u/%u\n",
  917. plane,
  918. REG_GET(ftrs_reg[plane], 11, 0),
  919. REG_GET(ftrs_reg[plane], 27, 16),
  920. low, high);
  921. dss_feat_get_reg_field(FEAT_REG_FIFOHIGHTHRESHOLD, &hi_start, &hi_end);
  922. dss_feat_get_reg_field(FEAT_REG_FIFOLOWTHRESHOLD, &lo_start, &lo_end);
  923. dispc_write_reg(ftrs_reg[plane],
  924. FLD_VAL(high, hi_start, hi_end) |
  925. FLD_VAL(low, lo_start, lo_end));
  926. enable_clocks(0);
  927. }
  928. void dispc_enable_fifomerge(bool enable)
  929. {
  930. enable_clocks(1);
  931. DSSDBG("FIFO merge %s\n", enable ? "enabled" : "disabled");
  932. REG_FLD_MOD(DISPC_CONFIG, enable ? 1 : 0, 14, 14);
  933. enable_clocks(0);
  934. }
  935. static void _dispc_set_fir(enum omap_plane plane, int hinc, int vinc)
  936. {
  937. u32 val;
  938. const struct dispc_reg fir_reg[] = { DISPC_VID_FIR(0),
  939. DISPC_VID_FIR(1) };
  940. u8 hinc_start, hinc_end, vinc_start, vinc_end;
  941. BUG_ON(plane == OMAP_DSS_GFX);
  942. dss_feat_get_reg_field(FEAT_REG_FIRHINC, &hinc_start, &hinc_end);
  943. dss_feat_get_reg_field(FEAT_REG_FIRVINC, &vinc_start, &vinc_end);
  944. val = FLD_VAL(vinc, vinc_start, vinc_end) |
  945. FLD_VAL(hinc, hinc_start, hinc_end);
  946. dispc_write_reg(fir_reg[plane-1], val);
  947. }
  948. static void _dispc_set_vid_accu0(enum omap_plane plane, int haccu, int vaccu)
  949. {
  950. u32 val;
  951. const struct dispc_reg ac0_reg[] = { DISPC_VID_ACCU0(0),
  952. DISPC_VID_ACCU0(1) };
  953. BUG_ON(plane == OMAP_DSS_GFX);
  954. val = FLD_VAL(vaccu, 25, 16) | FLD_VAL(haccu, 9, 0);
  955. dispc_write_reg(ac0_reg[plane-1], val);
  956. }
  957. static void _dispc_set_vid_accu1(enum omap_plane plane, int haccu, int vaccu)
  958. {
  959. u32 val;
  960. const struct dispc_reg ac1_reg[] = { DISPC_VID_ACCU1(0),
  961. DISPC_VID_ACCU1(1) };
  962. BUG_ON(plane == OMAP_DSS_GFX);
  963. val = FLD_VAL(vaccu, 25, 16) | FLD_VAL(haccu, 9, 0);
  964. dispc_write_reg(ac1_reg[plane-1], val);
  965. }
  966. static void _dispc_set_scaling(enum omap_plane plane,
  967. u16 orig_width, u16 orig_height,
  968. u16 out_width, u16 out_height,
  969. bool ilace, bool five_taps,
  970. bool fieldmode)
  971. {
  972. int fir_hinc;
  973. int fir_vinc;
  974. int hscaleup, vscaleup;
  975. int accu0 = 0;
  976. int accu1 = 0;
  977. u32 l;
  978. BUG_ON(plane == OMAP_DSS_GFX);
  979. hscaleup = orig_width <= out_width;
  980. vscaleup = orig_height <= out_height;
  981. _dispc_set_scale_coef(plane, hscaleup, vscaleup, five_taps);
  982. if (!orig_width || orig_width == out_width)
  983. fir_hinc = 0;
  984. else
  985. fir_hinc = 1024 * orig_width / out_width;
  986. if (!orig_height || orig_height == out_height)
  987. fir_vinc = 0;
  988. else
  989. fir_vinc = 1024 * orig_height / out_height;
  990. _dispc_set_fir(plane, fir_hinc, fir_vinc);
  991. l = dispc_read_reg(dispc_reg_att[plane]);
  992. l &= ~((0x0f << 5) | (0x3 << 21));
  993. l |= fir_hinc ? (1 << 5) : 0;
  994. l |= fir_vinc ? (1 << 6) : 0;
  995. l |= hscaleup ? 0 : (1 << 7);
  996. l |= vscaleup ? 0 : (1 << 8);
  997. l |= five_taps ? (1 << 21) : 0;
  998. l |= five_taps ? (1 << 22) : 0;
  999. dispc_write_reg(dispc_reg_att[plane], l);
  1000. /*
  1001. * field 0 = even field = bottom field
  1002. * field 1 = odd field = top field
  1003. */
  1004. if (ilace && !fieldmode) {
  1005. accu1 = 0;
  1006. accu0 = (fir_vinc / 2) & 0x3ff;
  1007. if (accu0 >= 1024/2) {
  1008. accu1 = 1024/2;
  1009. accu0 -= accu1;
  1010. }
  1011. }
  1012. _dispc_set_vid_accu0(plane, 0, accu0);
  1013. _dispc_set_vid_accu1(plane, 0, accu1);
  1014. }
  1015. static void _dispc_set_rotation_attrs(enum omap_plane plane, u8 rotation,
  1016. bool mirroring, enum omap_color_mode color_mode)
  1017. {
  1018. if (color_mode == OMAP_DSS_COLOR_YUV2 ||
  1019. color_mode == OMAP_DSS_COLOR_UYVY) {
  1020. int vidrot = 0;
  1021. if (mirroring) {
  1022. switch (rotation) {
  1023. case OMAP_DSS_ROT_0:
  1024. vidrot = 2;
  1025. break;
  1026. case OMAP_DSS_ROT_90:
  1027. vidrot = 1;
  1028. break;
  1029. case OMAP_DSS_ROT_180:
  1030. vidrot = 0;
  1031. break;
  1032. case OMAP_DSS_ROT_270:
  1033. vidrot = 3;
  1034. break;
  1035. }
  1036. } else {
  1037. switch (rotation) {
  1038. case OMAP_DSS_ROT_0:
  1039. vidrot = 0;
  1040. break;
  1041. case OMAP_DSS_ROT_90:
  1042. vidrot = 1;
  1043. break;
  1044. case OMAP_DSS_ROT_180:
  1045. vidrot = 2;
  1046. break;
  1047. case OMAP_DSS_ROT_270:
  1048. vidrot = 3;
  1049. break;
  1050. }
  1051. }
  1052. REG_FLD_MOD(dispc_reg_att[plane], vidrot, 13, 12);
  1053. if (rotation == OMAP_DSS_ROT_90 || rotation == OMAP_DSS_ROT_270)
  1054. REG_FLD_MOD(dispc_reg_att[plane], 0x1, 18, 18);
  1055. else
  1056. REG_FLD_MOD(dispc_reg_att[plane], 0x0, 18, 18);
  1057. } else {
  1058. REG_FLD_MOD(dispc_reg_att[plane], 0, 13, 12);
  1059. REG_FLD_MOD(dispc_reg_att[plane], 0, 18, 18);
  1060. }
  1061. }
  1062. static int color_mode_to_bpp(enum omap_color_mode color_mode)
  1063. {
  1064. switch (color_mode) {
  1065. case OMAP_DSS_COLOR_CLUT1:
  1066. return 1;
  1067. case OMAP_DSS_COLOR_CLUT2:
  1068. return 2;
  1069. case OMAP_DSS_COLOR_CLUT4:
  1070. return 4;
  1071. case OMAP_DSS_COLOR_CLUT8:
  1072. return 8;
  1073. case OMAP_DSS_COLOR_RGB12U:
  1074. case OMAP_DSS_COLOR_RGB16:
  1075. case OMAP_DSS_COLOR_ARGB16:
  1076. case OMAP_DSS_COLOR_YUV2:
  1077. case OMAP_DSS_COLOR_UYVY:
  1078. return 16;
  1079. case OMAP_DSS_COLOR_RGB24P:
  1080. return 24;
  1081. case OMAP_DSS_COLOR_RGB24U:
  1082. case OMAP_DSS_COLOR_ARGB32:
  1083. case OMAP_DSS_COLOR_RGBA32:
  1084. case OMAP_DSS_COLOR_RGBX32:
  1085. return 32;
  1086. default:
  1087. BUG();
  1088. }
  1089. }
  1090. static s32 pixinc(int pixels, u8 ps)
  1091. {
  1092. if (pixels == 1)
  1093. return 1;
  1094. else if (pixels > 1)
  1095. return 1 + (pixels - 1) * ps;
  1096. else if (pixels < 0)
  1097. return 1 - (-pixels + 1) * ps;
  1098. else
  1099. BUG();
  1100. }
  1101. static void calc_vrfb_rotation_offset(u8 rotation, bool mirror,
  1102. u16 screen_width,
  1103. u16 width, u16 height,
  1104. enum omap_color_mode color_mode, bool fieldmode,
  1105. unsigned int field_offset,
  1106. unsigned *offset0, unsigned *offset1,
  1107. s32 *row_inc, s32 *pix_inc)
  1108. {
  1109. u8 ps;
  1110. /* FIXME CLUT formats */
  1111. switch (color_mode) {
  1112. case OMAP_DSS_COLOR_CLUT1:
  1113. case OMAP_DSS_COLOR_CLUT2:
  1114. case OMAP_DSS_COLOR_CLUT4:
  1115. case OMAP_DSS_COLOR_CLUT8:
  1116. BUG();
  1117. return;
  1118. case OMAP_DSS_COLOR_YUV2:
  1119. case OMAP_DSS_COLOR_UYVY:
  1120. ps = 4;
  1121. break;
  1122. default:
  1123. ps = color_mode_to_bpp(color_mode) / 8;
  1124. break;
  1125. }
  1126. DSSDBG("calc_rot(%d): scrw %d, %dx%d\n", rotation, screen_width,
  1127. width, height);
  1128. /*
  1129. * field 0 = even field = bottom field
  1130. * field 1 = odd field = top field
  1131. */
  1132. switch (rotation + mirror * 4) {
  1133. case OMAP_DSS_ROT_0:
  1134. case OMAP_DSS_ROT_180:
  1135. /*
  1136. * If the pixel format is YUV or UYVY divide the width
  1137. * of the image by 2 for 0 and 180 degree rotation.
  1138. */
  1139. if (color_mode == OMAP_DSS_COLOR_YUV2 ||
  1140. color_mode == OMAP_DSS_COLOR_UYVY)
  1141. width = width >> 1;
  1142. case OMAP_DSS_ROT_90:
  1143. case OMAP_DSS_ROT_270:
  1144. *offset1 = 0;
  1145. if (field_offset)
  1146. *offset0 = field_offset * screen_width * ps;
  1147. else
  1148. *offset0 = 0;
  1149. *row_inc = pixinc(1 + (screen_width - width) +
  1150. (fieldmode ? screen_width : 0),
  1151. ps);
  1152. *pix_inc = pixinc(1, ps);
  1153. break;
  1154. case OMAP_DSS_ROT_0 + 4:
  1155. case OMAP_DSS_ROT_180 + 4:
  1156. /* If the pixel format is YUV or UYVY divide the width
  1157. * of the image by 2 for 0 degree and 180 degree
  1158. */
  1159. if (color_mode == OMAP_DSS_COLOR_YUV2 ||
  1160. color_mode == OMAP_DSS_COLOR_UYVY)
  1161. width = width >> 1;
  1162. case OMAP_DSS_ROT_90 + 4:
  1163. case OMAP_DSS_ROT_270 + 4:
  1164. *offset1 = 0;
  1165. if (field_offset)
  1166. *offset0 = field_offset * screen_width * ps;
  1167. else
  1168. *offset0 = 0;
  1169. *row_inc = pixinc(1 - (screen_width + width) -
  1170. (fieldmode ? screen_width : 0),
  1171. ps);
  1172. *pix_inc = pixinc(1, ps);
  1173. break;
  1174. default:
  1175. BUG();
  1176. }
  1177. }
  1178. static void calc_dma_rotation_offset(u8 rotation, bool mirror,
  1179. u16 screen_width,
  1180. u16 width, u16 height,
  1181. enum omap_color_mode color_mode, bool fieldmode,
  1182. unsigned int field_offset,
  1183. unsigned *offset0, unsigned *offset1,
  1184. s32 *row_inc, s32 *pix_inc)
  1185. {
  1186. u8 ps;
  1187. u16 fbw, fbh;
  1188. /* FIXME CLUT formats */
  1189. switch (color_mode) {
  1190. case OMAP_DSS_COLOR_CLUT1:
  1191. case OMAP_DSS_COLOR_CLUT2:
  1192. case OMAP_DSS_COLOR_CLUT4:
  1193. case OMAP_DSS_COLOR_CLUT8:
  1194. BUG();
  1195. return;
  1196. default:
  1197. ps = color_mode_to_bpp(color_mode) / 8;
  1198. break;
  1199. }
  1200. DSSDBG("calc_rot(%d): scrw %d, %dx%d\n", rotation, screen_width,
  1201. width, height);
  1202. /* width & height are overlay sizes, convert to fb sizes */
  1203. if (rotation == OMAP_DSS_ROT_0 || rotation == OMAP_DSS_ROT_180) {
  1204. fbw = width;
  1205. fbh = height;
  1206. } else {
  1207. fbw = height;
  1208. fbh = width;
  1209. }
  1210. /*
  1211. * field 0 = even field = bottom field
  1212. * field 1 = odd field = top field
  1213. */
  1214. switch (rotation + mirror * 4) {
  1215. case OMAP_DSS_ROT_0:
  1216. *offset1 = 0;
  1217. if (field_offset)
  1218. *offset0 = *offset1 + field_offset * screen_width * ps;
  1219. else
  1220. *offset0 = *offset1;
  1221. *row_inc = pixinc(1 + (screen_width - fbw) +
  1222. (fieldmode ? screen_width : 0),
  1223. ps);
  1224. *pix_inc = pixinc(1, ps);
  1225. break;
  1226. case OMAP_DSS_ROT_90:
  1227. *offset1 = screen_width * (fbh - 1) * ps;
  1228. if (field_offset)
  1229. *offset0 = *offset1 + field_offset * ps;
  1230. else
  1231. *offset0 = *offset1;
  1232. *row_inc = pixinc(screen_width * (fbh - 1) + 1 +
  1233. (fieldmode ? 1 : 0), ps);
  1234. *pix_inc = pixinc(-screen_width, ps);
  1235. break;
  1236. case OMAP_DSS_ROT_180:
  1237. *offset1 = (screen_width * (fbh - 1) + fbw - 1) * ps;
  1238. if (field_offset)
  1239. *offset0 = *offset1 - field_offset * screen_width * ps;
  1240. else
  1241. *offset0 = *offset1;
  1242. *row_inc = pixinc(-1 -
  1243. (screen_width - fbw) -
  1244. (fieldmode ? screen_width : 0),
  1245. ps);
  1246. *pix_inc = pixinc(-1, ps);
  1247. break;
  1248. case OMAP_DSS_ROT_270:
  1249. *offset1 = (fbw - 1) * ps;
  1250. if (field_offset)
  1251. *offset0 = *offset1 - field_offset * ps;
  1252. else
  1253. *offset0 = *offset1;
  1254. *row_inc = pixinc(-screen_width * (fbh - 1) - 1 -
  1255. (fieldmode ? 1 : 0), ps);
  1256. *pix_inc = pixinc(screen_width, ps);
  1257. break;
  1258. /* mirroring */
  1259. case OMAP_DSS_ROT_0 + 4:
  1260. *offset1 = (fbw - 1) * ps;
  1261. if (field_offset)
  1262. *offset0 = *offset1 + field_offset * screen_width * ps;
  1263. else
  1264. *offset0 = *offset1;
  1265. *row_inc = pixinc(screen_width * 2 - 1 +
  1266. (fieldmode ? screen_width : 0),
  1267. ps);
  1268. *pix_inc = pixinc(-1, ps);
  1269. break;
  1270. case OMAP_DSS_ROT_90 + 4:
  1271. *offset1 = 0;
  1272. if (field_offset)
  1273. *offset0 = *offset1 + field_offset * ps;
  1274. else
  1275. *offset0 = *offset1;
  1276. *row_inc = pixinc(-screen_width * (fbh - 1) + 1 +
  1277. (fieldmode ? 1 : 0),
  1278. ps);
  1279. *pix_inc = pixinc(screen_width, ps);
  1280. break;
  1281. case OMAP_DSS_ROT_180 + 4:
  1282. *offset1 = screen_width * (fbh - 1) * ps;
  1283. if (field_offset)
  1284. *offset0 = *offset1 - field_offset * screen_width * ps;
  1285. else
  1286. *offset0 = *offset1;
  1287. *row_inc = pixinc(1 - screen_width * 2 -
  1288. (fieldmode ? screen_width : 0),
  1289. ps);
  1290. *pix_inc = pixinc(1, ps);
  1291. break;
  1292. case OMAP_DSS_ROT_270 + 4:
  1293. *offset1 = (screen_width * (fbh - 1) + fbw - 1) * ps;
  1294. if (field_offset)
  1295. *offset0 = *offset1 - field_offset * ps;
  1296. else
  1297. *offset0 = *offset1;
  1298. *row_inc = pixinc(screen_width * (fbh - 1) - 1 -
  1299. (fieldmode ? 1 : 0),
  1300. ps);
  1301. *pix_inc = pixinc(-screen_width, ps);
  1302. break;
  1303. default:
  1304. BUG();
  1305. }
  1306. }
  1307. static unsigned long calc_fclk_five_taps(enum omap_channel channel, u16 width,
  1308. u16 height, u16 out_width, u16 out_height,
  1309. enum omap_color_mode color_mode)
  1310. {
  1311. u32 fclk = 0;
  1312. /* FIXME venc pclk? */
  1313. u64 tmp, pclk = dispc_pclk_rate(channel);
  1314. if (height > out_height) {
  1315. /* FIXME get real display PPL */
  1316. unsigned int ppl = 800;
  1317. tmp = pclk * height * out_width;
  1318. do_div(tmp, 2 * out_height * ppl);
  1319. fclk = tmp;
  1320. if (height > 2 * out_height) {
  1321. if (ppl == out_width)
  1322. return 0;
  1323. tmp = pclk * (height - 2 * out_height) * out_width;
  1324. do_div(tmp, 2 * out_height * (ppl - out_width));
  1325. fclk = max(fclk, (u32) tmp);
  1326. }
  1327. }
  1328. if (width > out_width) {
  1329. tmp = pclk * width;
  1330. do_div(tmp, out_width);
  1331. fclk = max(fclk, (u32) tmp);
  1332. if (color_mode == OMAP_DSS_COLOR_RGB24U)
  1333. fclk <<= 1;
  1334. }
  1335. return fclk;
  1336. }
  1337. static unsigned long calc_fclk(enum omap_channel channel, u16 width,
  1338. u16 height, u16 out_width, u16 out_height)
  1339. {
  1340. unsigned int hf, vf;
  1341. /*
  1342. * FIXME how to determine the 'A' factor
  1343. * for the no downscaling case ?
  1344. */
  1345. if (width > 3 * out_width)
  1346. hf = 4;
  1347. else if (width > 2 * out_width)
  1348. hf = 3;
  1349. else if (width > out_width)
  1350. hf = 2;
  1351. else
  1352. hf = 1;
  1353. if (height > out_height)
  1354. vf = 2;
  1355. else
  1356. vf = 1;
  1357. /* FIXME venc pclk? */
  1358. return dispc_pclk_rate(channel) * vf * hf;
  1359. }
  1360. void dispc_set_channel_out(enum omap_plane plane, enum omap_channel channel_out)
  1361. {
  1362. enable_clocks(1);
  1363. _dispc_set_channel_out(plane, channel_out);
  1364. enable_clocks(0);
  1365. }
  1366. static int _dispc_setup_plane(enum omap_plane plane,
  1367. u32 paddr, u16 screen_width,
  1368. u16 pos_x, u16 pos_y,
  1369. u16 width, u16 height,
  1370. u16 out_width, u16 out_height,
  1371. enum omap_color_mode color_mode,
  1372. bool ilace,
  1373. enum omap_dss_rotation_type rotation_type,
  1374. u8 rotation, int mirror,
  1375. u8 global_alpha, u8 pre_mult_alpha,
  1376. enum omap_channel channel)
  1377. {
  1378. const int maxdownscale = cpu_is_omap34xx() ? 4 : 2;
  1379. bool five_taps = 0;
  1380. bool fieldmode = 0;
  1381. int cconv = 0;
  1382. unsigned offset0, offset1;
  1383. s32 row_inc;
  1384. s32 pix_inc;
  1385. u16 frame_height = height;
  1386. unsigned int field_offset = 0;
  1387. if (paddr == 0)
  1388. return -EINVAL;
  1389. if (ilace && height == out_height)
  1390. fieldmode = 1;
  1391. if (ilace) {
  1392. if (fieldmode)
  1393. height /= 2;
  1394. pos_y /= 2;
  1395. out_height /= 2;
  1396. DSSDBG("adjusting for ilace: height %d, pos_y %d, "
  1397. "out_height %d\n",
  1398. height, pos_y, out_height);
  1399. }
  1400. if (!dss_feat_color_mode_supported(plane, color_mode))
  1401. return -EINVAL;
  1402. if (plane == OMAP_DSS_GFX) {
  1403. if (width != out_width || height != out_height)
  1404. return -EINVAL;
  1405. } else {
  1406. /* video plane */
  1407. unsigned long fclk = 0;
  1408. if (out_width < width / maxdownscale ||
  1409. out_width > width * 8)
  1410. return -EINVAL;
  1411. if (out_height < height / maxdownscale ||
  1412. out_height > height * 8)
  1413. return -EINVAL;
  1414. if (color_mode == OMAP_DSS_COLOR_YUV2 ||
  1415. color_mode == OMAP_DSS_COLOR_UYVY)
  1416. cconv = 1;
  1417. /* Must use 5-tap filter? */
  1418. five_taps = height > out_height * 2;
  1419. if (!five_taps) {
  1420. fclk = calc_fclk(channel, width, height, out_width,
  1421. out_height);
  1422. /* Try 5-tap filter if 3-tap fclk is too high */
  1423. if (cpu_is_omap34xx() && height > out_height &&
  1424. fclk > dispc_fclk_rate())
  1425. five_taps = true;
  1426. }
  1427. if (width > (2048 >> five_taps)) {
  1428. DSSERR("failed to set up scaling, fclk too low\n");
  1429. return -EINVAL;
  1430. }
  1431. if (five_taps)
  1432. fclk = calc_fclk_five_taps(channel, width, height,
  1433. out_width, out_height, color_mode);
  1434. DSSDBG("required fclk rate = %lu Hz\n", fclk);
  1435. DSSDBG("current fclk rate = %lu Hz\n", dispc_fclk_rate());
  1436. if (!fclk || fclk > dispc_fclk_rate()) {
  1437. DSSERR("failed to set up scaling, "
  1438. "required fclk rate = %lu Hz, "
  1439. "current fclk rate = %lu Hz\n",
  1440. fclk, dispc_fclk_rate());
  1441. return -EINVAL;
  1442. }
  1443. }
  1444. if (ilace && !fieldmode) {
  1445. /*
  1446. * when downscaling the bottom field may have to start several
  1447. * source lines below the top field. Unfortunately ACCUI
  1448. * registers will only hold the fractional part of the offset
  1449. * so the integer part must be added to the base address of the
  1450. * bottom field.
  1451. */
  1452. if (!height || height == out_height)
  1453. field_offset = 0;
  1454. else
  1455. field_offset = height / out_height / 2;
  1456. }
  1457. /* Fields are independent but interleaved in memory. */
  1458. if (fieldmode)
  1459. field_offset = 1;
  1460. if (rotation_type == OMAP_DSS_ROT_DMA)
  1461. calc_dma_rotation_offset(rotation, mirror,
  1462. screen_width, width, frame_height, color_mode,
  1463. fieldmode, field_offset,
  1464. &offset0, &offset1, &row_inc, &pix_inc);
  1465. else
  1466. calc_vrfb_rotation_offset(rotation, mirror,
  1467. screen_width, width, frame_height, color_mode,
  1468. fieldmode, field_offset,
  1469. &offset0, &offset1, &row_inc, &pix_inc);
  1470. DSSDBG("offset0 %u, offset1 %u, row_inc %d, pix_inc %d\n",
  1471. offset0, offset1, row_inc, pix_inc);
  1472. _dispc_set_color_mode(plane, color_mode);
  1473. _dispc_set_plane_ba0(plane, paddr + offset0);
  1474. _dispc_set_plane_ba1(plane, paddr + offset1);
  1475. _dispc_set_row_inc(plane, row_inc);
  1476. _dispc_set_pix_inc(plane, pix_inc);
  1477. DSSDBG("%d,%d %dx%d -> %dx%d\n", pos_x, pos_y, width, height,
  1478. out_width, out_height);
  1479. _dispc_set_plane_pos(plane, pos_x, pos_y);
  1480. _dispc_set_pic_size(plane, width, height);
  1481. if (plane != OMAP_DSS_GFX) {
  1482. _dispc_set_scaling(plane, width, height,
  1483. out_width, out_height,
  1484. ilace, five_taps, fieldmode);
  1485. _dispc_set_vid_size(plane, out_width, out_height);
  1486. _dispc_set_vid_color_conv(plane, cconv);
  1487. }
  1488. _dispc_set_rotation_attrs(plane, rotation, mirror, color_mode);
  1489. _dispc_set_pre_mult_alpha(plane, pre_mult_alpha);
  1490. _dispc_setup_global_alpha(plane, global_alpha);
  1491. return 0;
  1492. }
  1493. static void _dispc_enable_plane(enum omap_plane plane, bool enable)
  1494. {
  1495. REG_FLD_MOD(dispc_reg_att[plane], enable ? 1 : 0, 0, 0);
  1496. }
  1497. static void dispc_disable_isr(void *data, u32 mask)
  1498. {
  1499. struct completion *compl = data;
  1500. complete(compl);
  1501. }
  1502. static void _enable_lcd_out(enum omap_channel channel, bool enable)
  1503. {
  1504. if (channel == OMAP_DSS_CHANNEL_LCD2)
  1505. REG_FLD_MOD(DISPC_CONTROL2, enable ? 1 : 0, 0, 0);
  1506. else
  1507. REG_FLD_MOD(DISPC_CONTROL, enable ? 1 : 0, 0, 0);
  1508. }
  1509. static void dispc_enable_lcd_out(enum omap_channel channel, bool enable)
  1510. {
  1511. struct completion frame_done_completion;
  1512. bool is_on;
  1513. int r;
  1514. u32 irq;
  1515. enable_clocks(1);
  1516. /* When we disable LCD output, we need to wait until frame is done.
  1517. * Otherwise the DSS is still working, and turning off the clocks
  1518. * prevents DSS from going to OFF mode */
  1519. is_on = channel == OMAP_DSS_CHANNEL_LCD2 ?
  1520. REG_GET(DISPC_CONTROL2, 0, 0) :
  1521. REG_GET(DISPC_CONTROL, 0, 0);
  1522. irq = channel == OMAP_DSS_CHANNEL_LCD2 ? DISPC_IRQ_FRAMEDONE2 :
  1523. DISPC_IRQ_FRAMEDONE;
  1524. if (!enable && is_on) {
  1525. init_completion(&frame_done_completion);
  1526. r = omap_dispc_register_isr(dispc_disable_isr,
  1527. &frame_done_completion, irq);
  1528. if (r)
  1529. DSSERR("failed to register FRAMEDONE isr\n");
  1530. }
  1531. _enable_lcd_out(channel, enable);
  1532. if (!enable && is_on) {
  1533. if (!wait_for_completion_timeout(&frame_done_completion,
  1534. msecs_to_jiffies(100)))
  1535. DSSERR("timeout waiting for FRAME DONE\n");
  1536. r = omap_dispc_unregister_isr(dispc_disable_isr,
  1537. &frame_done_completion, irq);
  1538. if (r)
  1539. DSSERR("failed to unregister FRAMEDONE isr\n");
  1540. }
  1541. enable_clocks(0);
  1542. }
  1543. static void _enable_digit_out(bool enable)
  1544. {
  1545. REG_FLD_MOD(DISPC_CONTROL, enable ? 1 : 0, 1, 1);
  1546. }
  1547. static void dispc_enable_digit_out(bool enable)
  1548. {
  1549. struct completion frame_done_completion;
  1550. int r;
  1551. enable_clocks(1);
  1552. if (REG_GET(DISPC_CONTROL, 1, 1) == enable) {
  1553. enable_clocks(0);
  1554. return;
  1555. }
  1556. if (enable) {
  1557. unsigned long flags;
  1558. /* When we enable digit output, we'll get an extra digit
  1559. * sync lost interrupt, that we need to ignore */
  1560. spin_lock_irqsave(&dispc.irq_lock, flags);
  1561. dispc.irq_error_mask &= ~DISPC_IRQ_SYNC_LOST_DIGIT;
  1562. _omap_dispc_set_irqs();
  1563. spin_unlock_irqrestore(&dispc.irq_lock, flags);
  1564. }
  1565. /* When we disable digit output, we need to wait until fields are done.
  1566. * Otherwise the DSS is still working, and turning off the clocks
  1567. * prevents DSS from going to OFF mode. And when enabling, we need to
  1568. * wait for the extra sync losts */
  1569. init_completion(&frame_done_completion);
  1570. r = omap_dispc_register_isr(dispc_disable_isr, &frame_done_completion,
  1571. DISPC_IRQ_EVSYNC_EVEN | DISPC_IRQ_EVSYNC_ODD);
  1572. if (r)
  1573. DSSERR("failed to register EVSYNC isr\n");
  1574. _enable_digit_out(enable);
  1575. /* XXX I understand from TRM that we should only wait for the
  1576. * current field to complete. But it seems we have to wait
  1577. * for both fields */
  1578. if (!wait_for_completion_timeout(&frame_done_completion,
  1579. msecs_to_jiffies(100)))
  1580. DSSERR("timeout waiting for EVSYNC\n");
  1581. if (!wait_for_completion_timeout(&frame_done_completion,
  1582. msecs_to_jiffies(100)))
  1583. DSSERR("timeout waiting for EVSYNC\n");
  1584. r = omap_dispc_unregister_isr(dispc_disable_isr,
  1585. &frame_done_completion,
  1586. DISPC_IRQ_EVSYNC_EVEN | DISPC_IRQ_EVSYNC_ODD);
  1587. if (r)
  1588. DSSERR("failed to unregister EVSYNC isr\n");
  1589. if (enable) {
  1590. unsigned long flags;
  1591. spin_lock_irqsave(&dispc.irq_lock, flags);
  1592. dispc.irq_error_mask = DISPC_IRQ_MASK_ERROR;
  1593. if (dss_has_feature(FEAT_MGR_LCD2))
  1594. dispc.irq_error_mask |= DISPC_IRQ_SYNC_LOST2;
  1595. dispc_write_reg(DISPC_IRQSTATUS, DISPC_IRQ_SYNC_LOST_DIGIT);
  1596. _omap_dispc_set_irqs();
  1597. spin_unlock_irqrestore(&dispc.irq_lock, flags);
  1598. }
  1599. enable_clocks(0);
  1600. }
  1601. bool dispc_is_channel_enabled(enum omap_channel channel)
  1602. {
  1603. if (channel == OMAP_DSS_CHANNEL_LCD)
  1604. return !!REG_GET(DISPC_CONTROL, 0, 0);
  1605. else if (channel == OMAP_DSS_CHANNEL_DIGIT)
  1606. return !!REG_GET(DISPC_CONTROL, 1, 1);
  1607. else if (channel == OMAP_DSS_CHANNEL_LCD2)
  1608. return !!REG_GET(DISPC_CONTROL2, 0, 0);
  1609. else
  1610. BUG();
  1611. }
  1612. void dispc_enable_channel(enum omap_channel channel, bool enable)
  1613. {
  1614. if (channel == OMAP_DSS_CHANNEL_LCD ||
  1615. channel == OMAP_DSS_CHANNEL_LCD2)
  1616. dispc_enable_lcd_out(channel, enable);
  1617. else if (channel == OMAP_DSS_CHANNEL_DIGIT)
  1618. dispc_enable_digit_out(enable);
  1619. else
  1620. BUG();
  1621. }
  1622. void dispc_lcd_enable_signal_polarity(bool act_high)
  1623. {
  1624. if (!dss_has_feature(FEAT_LCDENABLEPOL))
  1625. return;
  1626. enable_clocks(1);
  1627. REG_FLD_MOD(DISPC_CONTROL, act_high ? 1 : 0, 29, 29);
  1628. enable_clocks(0);
  1629. }
  1630. void dispc_lcd_enable_signal(bool enable)
  1631. {
  1632. if (!dss_has_feature(FEAT_LCDENABLESIGNAL))
  1633. return;
  1634. enable_clocks(1);
  1635. REG_FLD_MOD(DISPC_CONTROL, enable ? 1 : 0, 28, 28);
  1636. enable_clocks(0);
  1637. }
  1638. void dispc_pck_free_enable(bool enable)
  1639. {
  1640. if (!dss_has_feature(FEAT_PCKFREEENABLE))
  1641. return;
  1642. enable_clocks(1);
  1643. REG_FLD_MOD(DISPC_CONTROL, enable ? 1 : 0, 27, 27);
  1644. enable_clocks(0);
  1645. }
  1646. void dispc_enable_fifohandcheck(enum omap_channel channel, bool enable)
  1647. {
  1648. enable_clocks(1);
  1649. if (channel == OMAP_DSS_CHANNEL_LCD2)
  1650. REG_FLD_MOD(DISPC_CONFIG2, enable ? 1 : 0, 16, 16);
  1651. else
  1652. REG_FLD_MOD(DISPC_CONFIG, enable ? 1 : 0, 16, 16);
  1653. enable_clocks(0);
  1654. }
  1655. void dispc_set_lcd_display_type(enum omap_channel channel,
  1656. enum omap_lcd_display_type type)
  1657. {
  1658. int mode;
  1659. switch (type) {
  1660. case OMAP_DSS_LCD_DISPLAY_STN:
  1661. mode = 0;
  1662. break;
  1663. case OMAP_DSS_LCD_DISPLAY_TFT:
  1664. mode = 1;
  1665. break;
  1666. default:
  1667. BUG();
  1668. return;
  1669. }
  1670. enable_clocks(1);
  1671. if (channel == OMAP_DSS_CHANNEL_LCD2)
  1672. REG_FLD_MOD(DISPC_CONTROL2, mode, 3, 3);
  1673. else
  1674. REG_FLD_MOD(DISPC_CONTROL, mode, 3, 3);
  1675. enable_clocks(0);
  1676. }
  1677. void dispc_set_loadmode(enum omap_dss_load_mode mode)
  1678. {
  1679. enable_clocks(1);
  1680. REG_FLD_MOD(DISPC_CONFIG, mode, 2, 1);
  1681. enable_clocks(0);
  1682. }
  1683. void dispc_set_default_color(enum omap_channel channel, u32 color)
  1684. {
  1685. enable_clocks(1);
  1686. dispc_write_reg(DISPC_DEFAULT_COLOR(channel), color);
  1687. enable_clocks(0);
  1688. }
  1689. u32 dispc_get_default_color(enum omap_channel channel)
  1690. {
  1691. u32 l;
  1692. BUG_ON(channel != OMAP_DSS_CHANNEL_DIGIT &&
  1693. channel != OMAP_DSS_CHANNEL_LCD &&
  1694. channel != OMAP_DSS_CHANNEL_LCD2);
  1695. enable_clocks(1);
  1696. l = dispc_read_reg(DISPC_DEFAULT_COLOR(channel));
  1697. enable_clocks(0);
  1698. return l;
  1699. }
  1700. void dispc_set_trans_key(enum omap_channel ch,
  1701. enum omap_dss_trans_key_type type,
  1702. u32 trans_key)
  1703. {
  1704. enable_clocks(1);
  1705. if (ch == OMAP_DSS_CHANNEL_LCD)
  1706. REG_FLD_MOD(DISPC_CONFIG, type, 11, 11);
  1707. else if (ch == OMAP_DSS_CHANNEL_DIGIT)
  1708. REG_FLD_MOD(DISPC_CONFIG, type, 13, 13);
  1709. else /* OMAP_DSS_CHANNEL_LCD2 */
  1710. REG_FLD_MOD(DISPC_CONFIG2, type, 11, 11);
  1711. dispc_write_reg(DISPC_TRANS_COLOR(ch), trans_key);
  1712. enable_clocks(0);
  1713. }
  1714. void dispc_get_trans_key(enum omap_channel ch,
  1715. enum omap_dss_trans_key_type *type,
  1716. u32 *trans_key)
  1717. {
  1718. enable_clocks(1);
  1719. if (type) {
  1720. if (ch == OMAP_DSS_CHANNEL_LCD)
  1721. *type = REG_GET(DISPC_CONFIG, 11, 11);
  1722. else if (ch == OMAP_DSS_CHANNEL_DIGIT)
  1723. *type = REG_GET(DISPC_CONFIG, 13, 13);
  1724. else if (ch == OMAP_DSS_CHANNEL_LCD2)
  1725. *type = REG_GET(DISPC_CONFIG2, 11, 11);
  1726. else
  1727. BUG();
  1728. }
  1729. if (trans_key)
  1730. *trans_key = dispc_read_reg(DISPC_TRANS_COLOR(ch));
  1731. enable_clocks(0);
  1732. }
  1733. void dispc_enable_trans_key(enum omap_channel ch, bool enable)
  1734. {
  1735. enable_clocks(1);
  1736. if (ch == OMAP_DSS_CHANNEL_LCD)
  1737. REG_FLD_MOD(DISPC_CONFIG, enable, 10, 10);
  1738. else if (ch == OMAP_DSS_CHANNEL_DIGIT)
  1739. REG_FLD_MOD(DISPC_CONFIG, enable, 12, 12);
  1740. else /* OMAP_DSS_CHANNEL_LCD2 */
  1741. REG_FLD_MOD(DISPC_CONFIG2, enable, 10, 10);
  1742. enable_clocks(0);
  1743. }
  1744. void dispc_enable_alpha_blending(enum omap_channel ch, bool enable)
  1745. {
  1746. if (!dss_has_feature(FEAT_GLOBAL_ALPHA))
  1747. return;
  1748. enable_clocks(1);
  1749. if (ch == OMAP_DSS_CHANNEL_LCD)
  1750. REG_FLD_MOD(DISPC_CONFIG, enable, 18, 18);
  1751. else if (ch == OMAP_DSS_CHANNEL_DIGIT)
  1752. REG_FLD_MOD(DISPC_CONFIG, enable, 19, 19);
  1753. else /* OMAP_DSS_CHANNEL_LCD2 */
  1754. REG_FLD_MOD(DISPC_CONFIG2, enable, 18, 18);
  1755. enable_clocks(0);
  1756. }
  1757. bool dispc_alpha_blending_enabled(enum omap_channel ch)
  1758. {
  1759. bool enabled;
  1760. if (!dss_has_feature(FEAT_GLOBAL_ALPHA))
  1761. return false;
  1762. enable_clocks(1);
  1763. if (ch == OMAP_DSS_CHANNEL_LCD)
  1764. enabled = REG_GET(DISPC_CONFIG, 18, 18);
  1765. else if (ch == OMAP_DSS_CHANNEL_DIGIT)
  1766. enabled = REG_GET(DISPC_CONFIG, 19, 19);
  1767. else if (ch == OMAP_DSS_CHANNEL_LCD2)
  1768. enabled = REG_GET(DISPC_CONFIG2, 18, 18);
  1769. else
  1770. BUG();
  1771. enable_clocks(0);
  1772. return enabled;
  1773. }
  1774. bool dispc_trans_key_enabled(enum omap_channel ch)
  1775. {
  1776. bool enabled;
  1777. enable_clocks(1);
  1778. if (ch == OMAP_DSS_CHANNEL_LCD)
  1779. enabled = REG_GET(DISPC_CONFIG, 10, 10);
  1780. else if (ch == OMAP_DSS_CHANNEL_DIGIT)
  1781. enabled = REG_GET(DISPC_CONFIG, 12, 12);
  1782. else if (ch == OMAP_DSS_CHANNEL_LCD2)
  1783. enabled = REG_GET(DISPC_CONFIG2, 10, 10);
  1784. else
  1785. BUG();
  1786. enable_clocks(0);
  1787. return enabled;
  1788. }
  1789. void dispc_set_tft_data_lines(enum omap_channel channel, u8 data_lines)
  1790. {
  1791. int code;
  1792. switch (data_lines) {
  1793. case 12:
  1794. code = 0;
  1795. break;
  1796. case 16:
  1797. code = 1;
  1798. break;
  1799. case 18:
  1800. code = 2;
  1801. break;
  1802. case 24:
  1803. code = 3;
  1804. break;
  1805. default:
  1806. BUG();
  1807. return;
  1808. }
  1809. enable_clocks(1);
  1810. if (channel == OMAP_DSS_CHANNEL_LCD2)
  1811. REG_FLD_MOD(DISPC_CONTROL2, code, 9, 8);
  1812. else
  1813. REG_FLD_MOD(DISPC_CONTROL, code, 9, 8);
  1814. enable_clocks(0);
  1815. }
  1816. void dispc_set_parallel_interface_mode(enum omap_channel channel,
  1817. enum omap_parallel_interface_mode mode)
  1818. {
  1819. u32 l;
  1820. int stallmode;
  1821. int gpout0 = 1;
  1822. int gpout1;
  1823. switch (mode) {
  1824. case OMAP_DSS_PARALLELMODE_BYPASS:
  1825. stallmode = 0;
  1826. gpout1 = 1;
  1827. break;
  1828. case OMAP_DSS_PARALLELMODE_RFBI:
  1829. stallmode = 1;
  1830. gpout1 = 0;
  1831. break;
  1832. case OMAP_DSS_PARALLELMODE_DSI:
  1833. stallmode = 1;
  1834. gpout1 = 1;
  1835. break;
  1836. default:
  1837. BUG();
  1838. return;
  1839. }
  1840. enable_clocks(1);
  1841. if (channel == OMAP_DSS_CHANNEL_LCD2) {
  1842. l = dispc_read_reg(DISPC_CONTROL2);
  1843. l = FLD_MOD(l, stallmode, 11, 11);
  1844. dispc_write_reg(DISPC_CONTROL2, l);
  1845. } else {
  1846. l = dispc_read_reg(DISPC_CONTROL);
  1847. l = FLD_MOD(l, stallmode, 11, 11);
  1848. l = FLD_MOD(l, gpout0, 15, 15);
  1849. l = FLD_MOD(l, gpout1, 16, 16);
  1850. dispc_write_reg(DISPC_CONTROL, l);
  1851. }
  1852. enable_clocks(0);
  1853. }
  1854. static bool _dispc_lcd_timings_ok(int hsw, int hfp, int hbp,
  1855. int vsw, int vfp, int vbp)
  1856. {
  1857. if (cpu_is_omap24xx() || omap_rev() < OMAP3430_REV_ES3_0) {
  1858. if (hsw < 1 || hsw > 64 ||
  1859. hfp < 1 || hfp > 256 ||
  1860. hbp < 1 || hbp > 256 ||
  1861. vsw < 1 || vsw > 64 ||
  1862. vfp < 0 || vfp > 255 ||
  1863. vbp < 0 || vbp > 255)
  1864. return false;
  1865. } else {
  1866. if (hsw < 1 || hsw > 256 ||
  1867. hfp < 1 || hfp > 4096 ||
  1868. hbp < 1 || hbp > 4096 ||
  1869. vsw < 1 || vsw > 256 ||
  1870. vfp < 0 || vfp > 4095 ||
  1871. vbp < 0 || vbp > 4095)
  1872. return false;
  1873. }
  1874. return true;
  1875. }
  1876. bool dispc_lcd_timings_ok(struct omap_video_timings *timings)
  1877. {
  1878. return _dispc_lcd_timings_ok(timings->hsw, timings->hfp,
  1879. timings->hbp, timings->vsw,
  1880. timings->vfp, timings->vbp);
  1881. }
  1882. static void _dispc_set_lcd_timings(enum omap_channel channel, int hsw,
  1883. int hfp, int hbp, int vsw, int vfp, int vbp)
  1884. {
  1885. u32 timing_h, timing_v;
  1886. if (cpu_is_omap24xx() || omap_rev() < OMAP3430_REV_ES3_0) {
  1887. timing_h = FLD_VAL(hsw-1, 5, 0) | FLD_VAL(hfp-1, 15, 8) |
  1888. FLD_VAL(hbp-1, 27, 20);
  1889. timing_v = FLD_VAL(vsw-1, 5, 0) | FLD_VAL(vfp, 15, 8) |
  1890. FLD_VAL(vbp, 27, 20);
  1891. } else {
  1892. timing_h = FLD_VAL(hsw-1, 7, 0) | FLD_VAL(hfp-1, 19, 8) |
  1893. FLD_VAL(hbp-1, 31, 20);
  1894. timing_v = FLD_VAL(vsw-1, 7, 0) | FLD_VAL(vfp, 19, 8) |
  1895. FLD_VAL(vbp, 31, 20);
  1896. }
  1897. enable_clocks(1);
  1898. dispc_write_reg(DISPC_TIMING_H(channel), timing_h);
  1899. dispc_write_reg(DISPC_TIMING_V(channel), timing_v);
  1900. enable_clocks(0);
  1901. }
  1902. /* change name to mode? */
  1903. void dispc_set_lcd_timings(enum omap_channel channel,
  1904. struct omap_video_timings *timings)
  1905. {
  1906. unsigned xtot, ytot;
  1907. unsigned long ht, vt;
  1908. if (!_dispc_lcd_timings_ok(timings->hsw, timings->hfp,
  1909. timings->hbp, timings->vsw,
  1910. timings->vfp, timings->vbp))
  1911. BUG();
  1912. _dispc_set_lcd_timings(channel, timings->hsw, timings->hfp,
  1913. timings->hbp, timings->vsw, timings->vfp,
  1914. timings->vbp);
  1915. dispc_set_lcd_size(channel, timings->x_res, timings->y_res);
  1916. xtot = timings->x_res + timings->hfp + timings->hsw + timings->hbp;
  1917. ytot = timings->y_res + timings->vfp + timings->vsw + timings->vbp;
  1918. ht = (timings->pixel_clock * 1000) / xtot;
  1919. vt = (timings->pixel_clock * 1000) / xtot / ytot;
  1920. DSSDBG("channel %d xres %u yres %u\n", channel, timings->x_res,
  1921. timings->y_res);
  1922. DSSDBG("pck %u\n", timings->pixel_clock);
  1923. DSSDBG("hsw %d hfp %d hbp %d vsw %d vfp %d vbp %d\n",
  1924. timings->hsw, timings->hfp, timings->hbp,
  1925. timings->vsw, timings->vfp, timings->vbp);
  1926. DSSDBG("hsync %luHz, vsync %luHz\n", ht, vt);
  1927. }
  1928. static void dispc_set_lcd_divisor(enum omap_channel channel, u16 lck_div,
  1929. u16 pck_div)
  1930. {
  1931. BUG_ON(lck_div < 1);
  1932. BUG_ON(pck_div < 2);
  1933. enable_clocks(1);
  1934. dispc_write_reg(DISPC_DIVISOR(channel),
  1935. FLD_VAL(lck_div, 23, 16) | FLD_VAL(pck_div, 7, 0));
  1936. enable_clocks(0);
  1937. }
  1938. static void dispc_get_lcd_divisor(enum omap_channel channel, int *lck_div,
  1939. int *pck_div)
  1940. {
  1941. u32 l;
  1942. l = dispc_read_reg(DISPC_DIVISOR(channel));
  1943. *lck_div = FLD_GET(l, 23, 16);
  1944. *pck_div = FLD_GET(l, 7, 0);
  1945. }
  1946. unsigned long dispc_fclk_rate(void)
  1947. {
  1948. unsigned long r = 0;
  1949. if (dss_get_dispc_clk_source() == DSS_SRC_DSS1_ALWON_FCLK)
  1950. r = dss_clk_get_rate(DSS_CLK_FCK1);
  1951. else
  1952. #ifdef CONFIG_OMAP2_DSS_DSI
  1953. r = dsi_get_dsi1_pll_rate();
  1954. #else
  1955. BUG();
  1956. #endif
  1957. return r;
  1958. }
  1959. unsigned long dispc_lclk_rate(enum omap_channel channel)
  1960. {
  1961. int lcd;
  1962. unsigned long r;
  1963. u32 l;
  1964. l = dispc_read_reg(DISPC_DIVISOR(channel));
  1965. lcd = FLD_GET(l, 23, 16);
  1966. r = dispc_fclk_rate();
  1967. return r / lcd;
  1968. }
  1969. unsigned long dispc_pclk_rate(enum omap_channel channel)
  1970. {
  1971. int lcd, pcd;
  1972. unsigned long r;
  1973. u32 l;
  1974. l = dispc_read_reg(DISPC_DIVISOR(channel));
  1975. lcd = FLD_GET(l, 23, 16);
  1976. pcd = FLD_GET(l, 7, 0);
  1977. r = dispc_fclk_rate();
  1978. return r / lcd / pcd;
  1979. }
  1980. void dispc_dump_clocks(struct seq_file *s)
  1981. {
  1982. int lcd, pcd;
  1983. enable_clocks(1);
  1984. seq_printf(s, "- DISPC -\n");
  1985. seq_printf(s, "dispc fclk source = %s\n",
  1986. dss_get_dispc_clk_source() == DSS_SRC_DSS1_ALWON_FCLK ?
  1987. "dss1_alwon_fclk" : "dsi1_pll_fclk");
  1988. seq_printf(s, "fck\t\t%-16lu\n", dispc_fclk_rate());
  1989. seq_printf(s, "- LCD1 -\n");
  1990. dispc_get_lcd_divisor(OMAP_DSS_CHANNEL_LCD, &lcd, &pcd);
  1991. seq_printf(s, "lck\t\t%-16lulck div\t%u\n",
  1992. dispc_lclk_rate(OMAP_DSS_CHANNEL_LCD), lcd);
  1993. seq_printf(s, "pck\t\t%-16lupck div\t%u\n",
  1994. dispc_pclk_rate(OMAP_DSS_CHANNEL_LCD), pcd);
  1995. if (dss_has_feature(FEAT_MGR_LCD2)) {
  1996. seq_printf(s, "- LCD2 -\n");
  1997. dispc_get_lcd_divisor(OMAP_DSS_CHANNEL_LCD2, &lcd, &pcd);
  1998. seq_printf(s, "lck\t\t%-16lulck div\t%u\n",
  1999. dispc_lclk_rate(OMAP_DSS_CHANNEL_LCD2), lcd);
  2000. seq_printf(s, "pck\t\t%-16lupck div\t%u\n",
  2001. dispc_pclk_rate(OMAP_DSS_CHANNEL_LCD2), pcd);
  2002. }
  2003. enable_clocks(0);
  2004. }
  2005. #ifdef CONFIG_OMAP2_DSS_COLLECT_IRQ_STATS
  2006. void dispc_dump_irqs(struct seq_file *s)
  2007. {
  2008. unsigned long flags;
  2009. struct dispc_irq_stats stats;
  2010. spin_lock_irqsave(&dispc.irq_stats_lock, flags);
  2011. stats = dispc.irq_stats;
  2012. memset(&dispc.irq_stats, 0, sizeof(dispc.irq_stats));
  2013. dispc.irq_stats.last_reset = jiffies;
  2014. spin_unlock_irqrestore(&dispc.irq_stats_lock, flags);
  2015. seq_printf(s, "period %u ms\n",
  2016. jiffies_to_msecs(jiffies - stats.last_reset));
  2017. seq_printf(s, "irqs %d\n", stats.irq_count);
  2018. #define PIS(x) \
  2019. seq_printf(s, "%-20s %10d\n", #x, stats.irqs[ffs(DISPC_IRQ_##x)-1]);
  2020. PIS(FRAMEDONE);
  2021. PIS(VSYNC);
  2022. PIS(EVSYNC_EVEN);
  2023. PIS(EVSYNC_ODD);
  2024. PIS(ACBIAS_COUNT_STAT);
  2025. PIS(PROG_LINE_NUM);
  2026. PIS(GFX_FIFO_UNDERFLOW);
  2027. PIS(GFX_END_WIN);
  2028. PIS(PAL_GAMMA_MASK);
  2029. PIS(OCP_ERR);
  2030. PIS(VID1_FIFO_UNDERFLOW);
  2031. PIS(VID1_END_WIN);
  2032. PIS(VID2_FIFO_UNDERFLOW);
  2033. PIS(VID2_END_WIN);
  2034. PIS(SYNC_LOST);
  2035. PIS(SYNC_LOST_DIGIT);
  2036. PIS(WAKEUP);
  2037. if (dss_has_feature(FEAT_MGR_LCD2)) {
  2038. PIS(FRAMEDONE2);
  2039. PIS(VSYNC2);
  2040. PIS(ACBIAS_COUNT_STAT2);
  2041. PIS(SYNC_LOST2);
  2042. }
  2043. #undef PIS
  2044. }
  2045. #endif
  2046. void dispc_dump_regs(struct seq_file *s)
  2047. {
  2048. #define DUMPREG(r) seq_printf(s, "%-35s %08x\n", #r, dispc_read_reg(r))
  2049. dss_clk_enable(DSS_CLK_ICK | DSS_CLK_FCK1);
  2050. DUMPREG(DISPC_REVISION);
  2051. DUMPREG(DISPC_SYSCONFIG);
  2052. DUMPREG(DISPC_SYSSTATUS);
  2053. DUMPREG(DISPC_IRQSTATUS);
  2054. DUMPREG(DISPC_IRQENABLE);
  2055. DUMPREG(DISPC_CONTROL);
  2056. DUMPREG(DISPC_CONFIG);
  2057. DUMPREG(DISPC_CAPABLE);
  2058. DUMPREG(DISPC_DEFAULT_COLOR(0));
  2059. DUMPREG(DISPC_DEFAULT_COLOR(1));
  2060. DUMPREG(DISPC_TRANS_COLOR(0));
  2061. DUMPREG(DISPC_TRANS_COLOR(1));
  2062. DUMPREG(DISPC_LINE_STATUS);
  2063. DUMPREG(DISPC_LINE_NUMBER);
  2064. DUMPREG(DISPC_TIMING_H(0));
  2065. DUMPREG(DISPC_TIMING_V(0));
  2066. DUMPREG(DISPC_POL_FREQ(0));
  2067. DUMPREG(DISPC_DIVISOR(0));
  2068. DUMPREG(DISPC_GLOBAL_ALPHA);
  2069. DUMPREG(DISPC_SIZE_DIG);
  2070. DUMPREG(DISPC_SIZE_LCD(0));
  2071. if (dss_has_feature(FEAT_MGR_LCD2)) {
  2072. DUMPREG(DISPC_CONTROL2);
  2073. DUMPREG(DISPC_CONFIG2);
  2074. DUMPREG(DISPC_DEFAULT_COLOR(2));
  2075. DUMPREG(DISPC_TRANS_COLOR(2));
  2076. DUMPREG(DISPC_TIMING_H(2));
  2077. DUMPREG(DISPC_TIMING_V(2));
  2078. DUMPREG(DISPC_POL_FREQ(2));
  2079. DUMPREG(DISPC_DIVISOR(2));
  2080. DUMPREG(DISPC_SIZE_LCD(2));
  2081. }
  2082. DUMPREG(DISPC_GFX_BA0);
  2083. DUMPREG(DISPC_GFX_BA1);
  2084. DUMPREG(DISPC_GFX_POSITION);
  2085. DUMPREG(DISPC_GFX_SIZE);
  2086. DUMPREG(DISPC_GFX_ATTRIBUTES);
  2087. DUMPREG(DISPC_GFX_FIFO_THRESHOLD);
  2088. DUMPREG(DISPC_GFX_FIFO_SIZE_STATUS);
  2089. DUMPREG(DISPC_GFX_ROW_INC);
  2090. DUMPREG(DISPC_GFX_PIXEL_INC);
  2091. DUMPREG(DISPC_GFX_WINDOW_SKIP);
  2092. DUMPREG(DISPC_GFX_TABLE_BA);
  2093. DUMPREG(DISPC_DATA_CYCLE1(0));
  2094. DUMPREG(DISPC_DATA_CYCLE2(0));
  2095. DUMPREG(DISPC_DATA_CYCLE3(0));
  2096. DUMPREG(DISPC_CPR_COEF_R(0));
  2097. DUMPREG(DISPC_CPR_COEF_G(0));
  2098. DUMPREG(DISPC_CPR_COEF_B(0));
  2099. if (dss_has_feature(FEAT_MGR_LCD2)) {
  2100. DUMPREG(DISPC_DATA_CYCLE1(2));
  2101. DUMPREG(DISPC_DATA_CYCLE2(2));
  2102. DUMPREG(DISPC_DATA_CYCLE3(2));
  2103. DUMPREG(DISPC_CPR_COEF_R(2));
  2104. DUMPREG(DISPC_CPR_COEF_G(2));
  2105. DUMPREG(DISPC_CPR_COEF_B(2));
  2106. }
  2107. DUMPREG(DISPC_GFX_PRELOAD);
  2108. DUMPREG(DISPC_VID_BA0(0));
  2109. DUMPREG(DISPC_VID_BA1(0));
  2110. DUMPREG(DISPC_VID_POSITION(0));
  2111. DUMPREG(DISPC_VID_SIZE(0));
  2112. DUMPREG(DISPC_VID_ATTRIBUTES(0));
  2113. DUMPREG(DISPC_VID_FIFO_THRESHOLD(0));
  2114. DUMPREG(DISPC_VID_FIFO_SIZE_STATUS(0));
  2115. DUMPREG(DISPC_VID_ROW_INC(0));
  2116. DUMPREG(DISPC_VID_PIXEL_INC(0));
  2117. DUMPREG(DISPC_VID_FIR(0));
  2118. DUMPREG(DISPC_VID_PICTURE_SIZE(0));
  2119. DUMPREG(DISPC_VID_ACCU0(0));
  2120. DUMPREG(DISPC_VID_ACCU1(0));
  2121. DUMPREG(DISPC_VID_BA0(1));
  2122. DUMPREG(DISPC_VID_BA1(1));
  2123. DUMPREG(DISPC_VID_POSITION(1));
  2124. DUMPREG(DISPC_VID_SIZE(1));
  2125. DUMPREG(DISPC_VID_ATTRIBUTES(1));
  2126. DUMPREG(DISPC_VID_FIFO_THRESHOLD(1));
  2127. DUMPREG(DISPC_VID_FIFO_SIZE_STATUS(1));
  2128. DUMPREG(DISPC_VID_ROW_INC(1));
  2129. DUMPREG(DISPC_VID_PIXEL_INC(1));
  2130. DUMPREG(DISPC_VID_FIR(1));
  2131. DUMPREG(DISPC_VID_PICTURE_SIZE(1));
  2132. DUMPREG(DISPC_VID_ACCU0(1));
  2133. DUMPREG(DISPC_VID_ACCU1(1));
  2134. DUMPREG(DISPC_VID_FIR_COEF_H(0, 0));
  2135. DUMPREG(DISPC_VID_FIR_COEF_H(0, 1));
  2136. DUMPREG(DISPC_VID_FIR_COEF_H(0, 2));
  2137. DUMPREG(DISPC_VID_FIR_COEF_H(0, 3));
  2138. DUMPREG(DISPC_VID_FIR_COEF_H(0, 4));
  2139. DUMPREG(DISPC_VID_FIR_COEF_H(0, 5));
  2140. DUMPREG(DISPC_VID_FIR_COEF_H(0, 6));
  2141. DUMPREG(DISPC_VID_FIR_COEF_H(0, 7));
  2142. DUMPREG(DISPC_VID_FIR_COEF_HV(0, 0));
  2143. DUMPREG(DISPC_VID_FIR_COEF_HV(0, 1));
  2144. DUMPREG(DISPC_VID_FIR_COEF_HV(0, 2));
  2145. DUMPREG(DISPC_VID_FIR_COEF_HV(0, 3));
  2146. DUMPREG(DISPC_VID_FIR_COEF_HV(0, 4));
  2147. DUMPREG(DISPC_VID_FIR_COEF_HV(0, 5));
  2148. DUMPREG(DISPC_VID_FIR_COEF_HV(0, 6));
  2149. DUMPREG(DISPC_VID_FIR_COEF_HV(0, 7));
  2150. DUMPREG(DISPC_VID_CONV_COEF(0, 0));
  2151. DUMPREG(DISPC_VID_CONV_COEF(0, 1));
  2152. DUMPREG(DISPC_VID_CONV_COEF(0, 2));
  2153. DUMPREG(DISPC_VID_CONV_COEF(0, 3));
  2154. DUMPREG(DISPC_VID_CONV_COEF(0, 4));
  2155. DUMPREG(DISPC_VID_FIR_COEF_V(0, 0));
  2156. DUMPREG(DISPC_VID_FIR_COEF_V(0, 1));
  2157. DUMPREG(DISPC_VID_FIR_COEF_V(0, 2));
  2158. DUMPREG(DISPC_VID_FIR_COEF_V(0, 3));
  2159. DUMPREG(DISPC_VID_FIR_COEF_V(0, 4));
  2160. DUMPREG(DISPC_VID_FIR_COEF_V(0, 5));
  2161. DUMPREG(DISPC_VID_FIR_COEF_V(0, 6));
  2162. DUMPREG(DISPC_VID_FIR_COEF_V(0, 7));
  2163. DUMPREG(DISPC_VID_FIR_COEF_H(1, 0));
  2164. DUMPREG(DISPC_VID_FIR_COEF_H(1, 1));
  2165. DUMPREG(DISPC_VID_FIR_COEF_H(1, 2));
  2166. DUMPREG(DISPC_VID_FIR_COEF_H(1, 3));
  2167. DUMPREG(DISPC_VID_FIR_COEF_H(1, 4));
  2168. DUMPREG(DISPC_VID_FIR_COEF_H(1, 5));
  2169. DUMPREG(DISPC_VID_FIR_COEF_H(1, 6));
  2170. DUMPREG(DISPC_VID_FIR_COEF_H(1, 7));
  2171. DUMPREG(DISPC_VID_FIR_COEF_HV(1, 0));
  2172. DUMPREG(DISPC_VID_FIR_COEF_HV(1, 1));
  2173. DUMPREG(DISPC_VID_FIR_COEF_HV(1, 2));
  2174. DUMPREG(DISPC_VID_FIR_COEF_HV(1, 3));
  2175. DUMPREG(DISPC_VID_FIR_COEF_HV(1, 4));
  2176. DUMPREG(DISPC_VID_FIR_COEF_HV(1, 5));
  2177. DUMPREG(DISPC_VID_FIR_COEF_HV(1, 6));
  2178. DUMPREG(DISPC_VID_FIR_COEF_HV(1, 7));
  2179. DUMPREG(DISPC_VID_CONV_COEF(1, 0));
  2180. DUMPREG(DISPC_VID_CONV_COEF(1, 1));
  2181. DUMPREG(DISPC_VID_CONV_COEF(1, 2));
  2182. DUMPREG(DISPC_VID_CONV_COEF(1, 3));
  2183. DUMPREG(DISPC_VID_CONV_COEF(1, 4));
  2184. DUMPREG(DISPC_VID_FIR_COEF_V(1, 0));
  2185. DUMPREG(DISPC_VID_FIR_COEF_V(1, 1));
  2186. DUMPREG(DISPC_VID_FIR_COEF_V(1, 2));
  2187. DUMPREG(DISPC_VID_FIR_COEF_V(1, 3));
  2188. DUMPREG(DISPC_VID_FIR_COEF_V(1, 4));
  2189. DUMPREG(DISPC_VID_FIR_COEF_V(1, 5));
  2190. DUMPREG(DISPC_VID_FIR_COEF_V(1, 6));
  2191. DUMPREG(DISPC_VID_FIR_COEF_V(1, 7));
  2192. DUMPREG(DISPC_VID_PRELOAD(0));
  2193. DUMPREG(DISPC_VID_PRELOAD(1));
  2194. dss_clk_disable(DSS_CLK_ICK | DSS_CLK_FCK1);
  2195. #undef DUMPREG
  2196. }
  2197. static void _dispc_set_pol_freq(enum omap_channel channel, bool onoff, bool rf,
  2198. bool ieo, bool ipc, bool ihs, bool ivs, u8 acbi, u8 acb)
  2199. {
  2200. u32 l = 0;
  2201. DSSDBG("onoff %d rf %d ieo %d ipc %d ihs %d ivs %d acbi %d acb %d\n",
  2202. onoff, rf, ieo, ipc, ihs, ivs, acbi, acb);
  2203. l |= FLD_VAL(onoff, 17, 17);
  2204. l |= FLD_VAL(rf, 16, 16);
  2205. l |= FLD_VAL(ieo, 15, 15);
  2206. l |= FLD_VAL(ipc, 14, 14);
  2207. l |= FLD_VAL(ihs, 13, 13);
  2208. l |= FLD_VAL(ivs, 12, 12);
  2209. l |= FLD_VAL(acbi, 11, 8);
  2210. l |= FLD_VAL(acb, 7, 0);
  2211. enable_clocks(1);
  2212. dispc_write_reg(DISPC_POL_FREQ(channel), l);
  2213. enable_clocks(0);
  2214. }
  2215. void dispc_set_pol_freq(enum omap_channel channel,
  2216. enum omap_panel_config config, u8 acbi, u8 acb)
  2217. {
  2218. _dispc_set_pol_freq(channel, (config & OMAP_DSS_LCD_ONOFF) != 0,
  2219. (config & OMAP_DSS_LCD_RF) != 0,
  2220. (config & OMAP_DSS_LCD_IEO) != 0,
  2221. (config & OMAP_DSS_LCD_IPC) != 0,
  2222. (config & OMAP_DSS_LCD_IHS) != 0,
  2223. (config & OMAP_DSS_LCD_IVS) != 0,
  2224. acbi, acb);
  2225. }
  2226. /* with fck as input clock rate, find dispc dividers that produce req_pck */
  2227. void dispc_find_clk_divs(bool is_tft, unsigned long req_pck, unsigned long fck,
  2228. struct dispc_clock_info *cinfo)
  2229. {
  2230. u16 pcd_min = is_tft ? 2 : 3;
  2231. unsigned long best_pck;
  2232. u16 best_ld, cur_ld;
  2233. u16 best_pd, cur_pd;
  2234. best_pck = 0;
  2235. best_ld = 0;
  2236. best_pd = 0;
  2237. for (cur_ld = 1; cur_ld <= 255; ++cur_ld) {
  2238. unsigned long lck = fck / cur_ld;
  2239. for (cur_pd = pcd_min; cur_pd <= 255; ++cur_pd) {
  2240. unsigned long pck = lck / cur_pd;
  2241. long old_delta = abs(best_pck - req_pck);
  2242. long new_delta = abs(pck - req_pck);
  2243. if (best_pck == 0 || new_delta < old_delta) {
  2244. best_pck = pck;
  2245. best_ld = cur_ld;
  2246. best_pd = cur_pd;
  2247. if (pck == req_pck)
  2248. goto found;
  2249. }
  2250. if (pck < req_pck)
  2251. break;
  2252. }
  2253. if (lck / pcd_min < req_pck)
  2254. break;
  2255. }
  2256. found:
  2257. cinfo->lck_div = best_ld;
  2258. cinfo->pck_div = best_pd;
  2259. cinfo->lck = fck / cinfo->lck_div;
  2260. cinfo->pck = cinfo->lck / cinfo->pck_div;
  2261. }
  2262. /* calculate clock rates using dividers in cinfo */
  2263. int dispc_calc_clock_rates(unsigned long dispc_fclk_rate,
  2264. struct dispc_clock_info *cinfo)
  2265. {
  2266. if (cinfo->lck_div > 255 || cinfo->lck_div == 0)
  2267. return -EINVAL;
  2268. if (cinfo->pck_div < 2 || cinfo->pck_div > 255)
  2269. return -EINVAL;
  2270. cinfo->lck = dispc_fclk_rate / cinfo->lck_div;
  2271. cinfo->pck = cinfo->lck / cinfo->pck_div;
  2272. return 0;
  2273. }
  2274. int dispc_set_clock_div(enum omap_channel channel,
  2275. struct dispc_clock_info *cinfo)
  2276. {
  2277. DSSDBG("lck = %lu (%u)\n", cinfo->lck, cinfo->lck_div);
  2278. DSSDBG("pck = %lu (%u)\n", cinfo->pck, cinfo->pck_div);
  2279. dispc_set_lcd_divisor(channel, cinfo->lck_div, cinfo->pck_div);
  2280. return 0;
  2281. }
  2282. int dispc_get_clock_div(enum omap_channel channel,
  2283. struct dispc_clock_info *cinfo)
  2284. {
  2285. unsigned long fck;
  2286. fck = dispc_fclk_rate();
  2287. cinfo->lck_div = REG_GET(DISPC_DIVISOR(channel), 23, 16);
  2288. cinfo->pck_div = REG_GET(DISPC_DIVISOR(channel), 7, 0);
  2289. cinfo->lck = fck / cinfo->lck_div;
  2290. cinfo->pck = cinfo->lck / cinfo->pck_div;
  2291. return 0;
  2292. }
  2293. /* dispc.irq_lock has to be locked by the caller */
  2294. static void _omap_dispc_set_irqs(void)
  2295. {
  2296. u32 mask;
  2297. u32 old_mask;
  2298. int i;
  2299. struct omap_dispc_isr_data *isr_data;
  2300. mask = dispc.irq_error_mask;
  2301. for (i = 0; i < DISPC_MAX_NR_ISRS; i++) {
  2302. isr_data = &dispc.registered_isr[i];
  2303. if (isr_data->isr == NULL)
  2304. continue;
  2305. mask |= isr_data->mask;
  2306. }
  2307. enable_clocks(1);
  2308. old_mask = dispc_read_reg(DISPC_IRQENABLE);
  2309. /* clear the irqstatus for newly enabled irqs */
  2310. dispc_write_reg(DISPC_IRQSTATUS, (mask ^ old_mask) & mask);
  2311. dispc_write_reg(DISPC_IRQENABLE, mask);
  2312. enable_clocks(0);
  2313. }
  2314. int omap_dispc_register_isr(omap_dispc_isr_t isr, void *arg, u32 mask)
  2315. {
  2316. int i;
  2317. int ret;
  2318. unsigned long flags;
  2319. struct omap_dispc_isr_data *isr_data;
  2320. if (isr == NULL)
  2321. return -EINVAL;
  2322. spin_lock_irqsave(&dispc.irq_lock, flags);
  2323. /* check for duplicate entry */
  2324. for (i = 0; i < DISPC_MAX_NR_ISRS; i++) {
  2325. isr_data = &dispc.registered_isr[i];
  2326. if (isr_data->isr == isr && isr_data->arg == arg &&
  2327. isr_data->mask == mask) {
  2328. ret = -EINVAL;
  2329. goto err;
  2330. }
  2331. }
  2332. isr_data = NULL;
  2333. ret = -EBUSY;
  2334. for (i = 0; i < DISPC_MAX_NR_ISRS; i++) {
  2335. isr_data = &dispc.registered_isr[i];
  2336. if (isr_data->isr != NULL)
  2337. continue;
  2338. isr_data->isr = isr;
  2339. isr_data->arg = arg;
  2340. isr_data->mask = mask;
  2341. ret = 0;
  2342. break;
  2343. }
  2344. _omap_dispc_set_irqs();
  2345. spin_unlock_irqrestore(&dispc.irq_lock, flags);
  2346. return 0;
  2347. err:
  2348. spin_unlock_irqrestore(&dispc.irq_lock, flags);
  2349. return ret;
  2350. }
  2351. EXPORT_SYMBOL(omap_dispc_register_isr);
  2352. int omap_dispc_unregister_isr(omap_dispc_isr_t isr, void *arg, u32 mask)
  2353. {
  2354. int i;
  2355. unsigned long flags;
  2356. int ret = -EINVAL;
  2357. struct omap_dispc_isr_data *isr_data;
  2358. spin_lock_irqsave(&dispc.irq_lock, flags);
  2359. for (i = 0; i < DISPC_MAX_NR_ISRS; i++) {
  2360. isr_data = &dispc.registered_isr[i];
  2361. if (isr_data->isr != isr || isr_data->arg != arg ||
  2362. isr_data->mask != mask)
  2363. continue;
  2364. /* found the correct isr */
  2365. isr_data->isr = NULL;
  2366. isr_data->arg = NULL;
  2367. isr_data->mask = 0;
  2368. ret = 0;
  2369. break;
  2370. }
  2371. if (ret == 0)
  2372. _omap_dispc_set_irqs();
  2373. spin_unlock_irqrestore(&dispc.irq_lock, flags);
  2374. return ret;
  2375. }
  2376. EXPORT_SYMBOL(omap_dispc_unregister_isr);
  2377. #ifdef DEBUG
  2378. static void print_irq_status(u32 status)
  2379. {
  2380. if ((status & dispc.irq_error_mask) == 0)
  2381. return;
  2382. printk(KERN_DEBUG "DISPC IRQ: 0x%x: ", status);
  2383. #define PIS(x) \
  2384. if (status & DISPC_IRQ_##x) \
  2385. printk(#x " ");
  2386. PIS(GFX_FIFO_UNDERFLOW);
  2387. PIS(OCP_ERR);
  2388. PIS(VID1_FIFO_UNDERFLOW);
  2389. PIS(VID2_FIFO_UNDERFLOW);
  2390. PIS(SYNC_LOST);
  2391. PIS(SYNC_LOST_DIGIT);
  2392. if (dss_has_feature(FEAT_MGR_LCD2))
  2393. PIS(SYNC_LOST2);
  2394. #undef PIS
  2395. printk("\n");
  2396. }
  2397. #endif
  2398. /* Called from dss.c. Note that we don't touch clocks here,
  2399. * but we presume they are on because we got an IRQ. However,
  2400. * an irq handler may turn the clocks off, so we may not have
  2401. * clock later in the function. */
  2402. void dispc_irq_handler(void)
  2403. {
  2404. int i;
  2405. u32 irqstatus;
  2406. u32 handledirqs = 0;
  2407. u32 unhandled_errors;
  2408. struct omap_dispc_isr_data *isr_data;
  2409. struct omap_dispc_isr_data registered_isr[DISPC_MAX_NR_ISRS];
  2410. spin_lock(&dispc.irq_lock);
  2411. irqstatus = dispc_read_reg(DISPC_IRQSTATUS);
  2412. #ifdef CONFIG_OMAP2_DSS_COLLECT_IRQ_STATS
  2413. spin_lock(&dispc.irq_stats_lock);
  2414. dispc.irq_stats.irq_count++;
  2415. dss_collect_irq_stats(irqstatus, dispc.irq_stats.irqs);
  2416. spin_unlock(&dispc.irq_stats_lock);
  2417. #endif
  2418. #ifdef DEBUG
  2419. if (dss_debug)
  2420. print_irq_status(irqstatus);
  2421. #endif
  2422. /* Ack the interrupt. Do it here before clocks are possibly turned
  2423. * off */
  2424. dispc_write_reg(DISPC_IRQSTATUS, irqstatus);
  2425. /* flush posted write */
  2426. dispc_read_reg(DISPC_IRQSTATUS);
  2427. /* make a copy and unlock, so that isrs can unregister
  2428. * themselves */
  2429. memcpy(registered_isr, dispc.registered_isr,
  2430. sizeof(registered_isr));
  2431. spin_unlock(&dispc.irq_lock);
  2432. for (i = 0; i < DISPC_MAX_NR_ISRS; i++) {
  2433. isr_data = &registered_isr[i];
  2434. if (!isr_data->isr)
  2435. continue;
  2436. if (isr_data->mask & irqstatus) {
  2437. isr_data->isr(isr_data->arg, irqstatus);
  2438. handledirqs |= isr_data->mask;
  2439. }
  2440. }
  2441. spin_lock(&dispc.irq_lock);
  2442. unhandled_errors = irqstatus & ~handledirqs & dispc.irq_error_mask;
  2443. if (unhandled_errors) {
  2444. dispc.error_irqs |= unhandled_errors;
  2445. dispc.irq_error_mask &= ~unhandled_errors;
  2446. _omap_dispc_set_irqs();
  2447. schedule_work(&dispc.error_work);
  2448. }
  2449. spin_unlock(&dispc.irq_lock);
  2450. }
  2451. static void dispc_error_worker(struct work_struct *work)
  2452. {
  2453. int i;
  2454. u32 errors;
  2455. unsigned long flags;
  2456. spin_lock_irqsave(&dispc.irq_lock, flags);
  2457. errors = dispc.error_irqs;
  2458. dispc.error_irqs = 0;
  2459. spin_unlock_irqrestore(&dispc.irq_lock, flags);
  2460. if (errors & DISPC_IRQ_GFX_FIFO_UNDERFLOW) {
  2461. DSSERR("GFX_FIFO_UNDERFLOW, disabling GFX\n");
  2462. for (i = 0; i < omap_dss_get_num_overlays(); ++i) {
  2463. struct omap_overlay *ovl;
  2464. ovl = omap_dss_get_overlay(i);
  2465. if (!(ovl->caps & OMAP_DSS_OVL_CAP_DISPC))
  2466. continue;
  2467. if (ovl->id == 0) {
  2468. dispc_enable_plane(ovl->id, 0);
  2469. dispc_go(ovl->manager->id);
  2470. mdelay(50);
  2471. break;
  2472. }
  2473. }
  2474. }
  2475. if (errors & DISPC_IRQ_VID1_FIFO_UNDERFLOW) {
  2476. DSSERR("VID1_FIFO_UNDERFLOW, disabling VID1\n");
  2477. for (i = 0; i < omap_dss_get_num_overlays(); ++i) {
  2478. struct omap_overlay *ovl;
  2479. ovl = omap_dss_get_overlay(i);
  2480. if (!(ovl->caps & OMAP_DSS_OVL_CAP_DISPC))
  2481. continue;
  2482. if (ovl->id == 1) {
  2483. dispc_enable_plane(ovl->id, 0);
  2484. dispc_go(ovl->manager->id);
  2485. mdelay(50);
  2486. break;
  2487. }
  2488. }
  2489. }
  2490. if (errors & DISPC_IRQ_VID2_FIFO_UNDERFLOW) {
  2491. DSSERR("VID2_FIFO_UNDERFLOW, disabling VID2\n");
  2492. for (i = 0; i < omap_dss_get_num_overlays(); ++i) {
  2493. struct omap_overlay *ovl;
  2494. ovl = omap_dss_get_overlay(i);
  2495. if (!(ovl->caps & OMAP_DSS_OVL_CAP_DISPC))
  2496. continue;
  2497. if (ovl->id == 2) {
  2498. dispc_enable_plane(ovl->id, 0);
  2499. dispc_go(ovl->manager->id);
  2500. mdelay(50);
  2501. break;
  2502. }
  2503. }
  2504. }
  2505. if (errors & DISPC_IRQ_SYNC_LOST) {
  2506. struct omap_overlay_manager *manager = NULL;
  2507. bool enable = false;
  2508. DSSERR("SYNC_LOST, disabling LCD\n");
  2509. for (i = 0; i < omap_dss_get_num_overlay_managers(); ++i) {
  2510. struct omap_overlay_manager *mgr;
  2511. mgr = omap_dss_get_overlay_manager(i);
  2512. if (mgr->id == OMAP_DSS_CHANNEL_LCD) {
  2513. manager = mgr;
  2514. enable = mgr->device->state ==
  2515. OMAP_DSS_DISPLAY_ACTIVE;
  2516. mgr->device->driver->disable(mgr->device);
  2517. break;
  2518. }
  2519. }
  2520. if (manager) {
  2521. struct omap_dss_device *dssdev = manager->device;
  2522. for (i = 0; i < omap_dss_get_num_overlays(); ++i) {
  2523. struct omap_overlay *ovl;
  2524. ovl = omap_dss_get_overlay(i);
  2525. if (!(ovl->caps & OMAP_DSS_OVL_CAP_DISPC))
  2526. continue;
  2527. if (ovl->id != 0 && ovl->manager == manager)
  2528. dispc_enable_plane(ovl->id, 0);
  2529. }
  2530. dispc_go(manager->id);
  2531. mdelay(50);
  2532. if (enable)
  2533. dssdev->driver->enable(dssdev);
  2534. }
  2535. }
  2536. if (errors & DISPC_IRQ_SYNC_LOST_DIGIT) {
  2537. struct omap_overlay_manager *manager = NULL;
  2538. bool enable = false;
  2539. DSSERR("SYNC_LOST_DIGIT, disabling TV\n");
  2540. for (i = 0; i < omap_dss_get_num_overlay_managers(); ++i) {
  2541. struct omap_overlay_manager *mgr;
  2542. mgr = omap_dss_get_overlay_manager(i);
  2543. if (mgr->id == OMAP_DSS_CHANNEL_DIGIT) {
  2544. manager = mgr;
  2545. enable = mgr->device->state ==
  2546. OMAP_DSS_DISPLAY_ACTIVE;
  2547. mgr->device->driver->disable(mgr->device);
  2548. break;
  2549. }
  2550. }
  2551. if (manager) {
  2552. struct omap_dss_device *dssdev = manager->device;
  2553. for (i = 0; i < omap_dss_get_num_overlays(); ++i) {
  2554. struct omap_overlay *ovl;
  2555. ovl = omap_dss_get_overlay(i);
  2556. if (!(ovl->caps & OMAP_DSS_OVL_CAP_DISPC))
  2557. continue;
  2558. if (ovl->id != 0 && ovl->manager == manager)
  2559. dispc_enable_plane(ovl->id, 0);
  2560. }
  2561. dispc_go(manager->id);
  2562. mdelay(50);
  2563. if (enable)
  2564. dssdev->driver->enable(dssdev);
  2565. }
  2566. }
  2567. if (errors & DISPC_IRQ_SYNC_LOST2) {
  2568. struct omap_overlay_manager *manager = NULL;
  2569. bool enable = false;
  2570. DSSERR("SYNC_LOST for LCD2, disabling LCD2\n");
  2571. for (i = 0; i < omap_dss_get_num_overlay_managers(); ++i) {
  2572. struct omap_overlay_manager *mgr;
  2573. mgr = omap_dss_get_overlay_manager(i);
  2574. if (mgr->id == OMAP_DSS_CHANNEL_LCD2) {
  2575. manager = mgr;
  2576. enable = mgr->device->state ==
  2577. OMAP_DSS_DISPLAY_ACTIVE;
  2578. mgr->device->driver->disable(mgr->device);
  2579. break;
  2580. }
  2581. }
  2582. if (manager) {
  2583. struct omap_dss_device *dssdev = manager->device;
  2584. for (i = 0; i < omap_dss_get_num_overlays(); ++i) {
  2585. struct omap_overlay *ovl;
  2586. ovl = omap_dss_get_overlay(i);
  2587. if (!(ovl->caps & OMAP_DSS_OVL_CAP_DISPC))
  2588. continue;
  2589. if (ovl->id != 0 && ovl->manager == manager)
  2590. dispc_enable_plane(ovl->id, 0);
  2591. }
  2592. dispc_go(manager->id);
  2593. mdelay(50);
  2594. if (enable)
  2595. dssdev->driver->enable(dssdev);
  2596. }
  2597. }
  2598. if (errors & DISPC_IRQ_OCP_ERR) {
  2599. DSSERR("OCP_ERR\n");
  2600. for (i = 0; i < omap_dss_get_num_overlay_managers(); ++i) {
  2601. struct omap_overlay_manager *mgr;
  2602. mgr = omap_dss_get_overlay_manager(i);
  2603. if (mgr->caps & OMAP_DSS_OVL_CAP_DISPC)
  2604. mgr->device->driver->disable(mgr->device);
  2605. }
  2606. }
  2607. spin_lock_irqsave(&dispc.irq_lock, flags);
  2608. dispc.irq_error_mask |= errors;
  2609. _omap_dispc_set_irqs();
  2610. spin_unlock_irqrestore(&dispc.irq_lock, flags);
  2611. }
  2612. int omap_dispc_wait_for_irq_timeout(u32 irqmask, unsigned long timeout)
  2613. {
  2614. void dispc_irq_wait_handler(void *data, u32 mask)
  2615. {
  2616. complete((struct completion *)data);
  2617. }
  2618. int r;
  2619. DECLARE_COMPLETION_ONSTACK(completion);
  2620. r = omap_dispc_register_isr(dispc_irq_wait_handler, &completion,
  2621. irqmask);
  2622. if (r)
  2623. return r;
  2624. timeout = wait_for_completion_timeout(&completion, timeout);
  2625. omap_dispc_unregister_isr(dispc_irq_wait_handler, &completion, irqmask);
  2626. if (timeout == 0)
  2627. return -ETIMEDOUT;
  2628. if (timeout == -ERESTARTSYS)
  2629. return -ERESTARTSYS;
  2630. return 0;
  2631. }
  2632. int omap_dispc_wait_for_irq_interruptible_timeout(u32 irqmask,
  2633. unsigned long timeout)
  2634. {
  2635. void dispc_irq_wait_handler(void *data, u32 mask)
  2636. {
  2637. complete((struct completion *)data);
  2638. }
  2639. int r;
  2640. DECLARE_COMPLETION_ONSTACK(completion);
  2641. r = omap_dispc_register_isr(dispc_irq_wait_handler, &completion,
  2642. irqmask);
  2643. if (r)
  2644. return r;
  2645. timeout = wait_for_completion_interruptible_timeout(&completion,
  2646. timeout);
  2647. omap_dispc_unregister_isr(dispc_irq_wait_handler, &completion, irqmask);
  2648. if (timeout == 0)
  2649. return -ETIMEDOUT;
  2650. if (timeout == -ERESTARTSYS)
  2651. return -ERESTARTSYS;
  2652. return 0;
  2653. }
  2654. #ifdef CONFIG_OMAP2_DSS_FAKE_VSYNC
  2655. void dispc_fake_vsync_irq(void)
  2656. {
  2657. u32 irqstatus = DISPC_IRQ_VSYNC;
  2658. int i;
  2659. WARN_ON(!in_interrupt());
  2660. for (i = 0; i < DISPC_MAX_NR_ISRS; i++) {
  2661. struct omap_dispc_isr_data *isr_data;
  2662. isr_data = &dispc.registered_isr[i];
  2663. if (!isr_data->isr)
  2664. continue;
  2665. if (isr_data->mask & irqstatus)
  2666. isr_data->isr(isr_data->arg, irqstatus);
  2667. }
  2668. }
  2669. #endif
  2670. static void _omap_dispc_initialize_irq(void)
  2671. {
  2672. unsigned long flags;
  2673. spin_lock_irqsave(&dispc.irq_lock, flags);
  2674. memset(dispc.registered_isr, 0, sizeof(dispc.registered_isr));
  2675. dispc.irq_error_mask = DISPC_IRQ_MASK_ERROR;
  2676. if (dss_has_feature(FEAT_MGR_LCD2))
  2677. dispc.irq_error_mask |= DISPC_IRQ_SYNC_LOST2;
  2678. /* there's SYNC_LOST_DIGIT waiting after enabling the DSS,
  2679. * so clear it */
  2680. dispc_write_reg(DISPC_IRQSTATUS, dispc_read_reg(DISPC_IRQSTATUS));
  2681. _omap_dispc_set_irqs();
  2682. spin_unlock_irqrestore(&dispc.irq_lock, flags);
  2683. }
  2684. void dispc_enable_sidle(void)
  2685. {
  2686. REG_FLD_MOD(DISPC_SYSCONFIG, 2, 4, 3); /* SIDLEMODE: smart idle */
  2687. }
  2688. void dispc_disable_sidle(void)
  2689. {
  2690. REG_FLD_MOD(DISPC_SYSCONFIG, 1, 4, 3); /* SIDLEMODE: no idle */
  2691. }
  2692. static void _omap_dispc_initial_config(void)
  2693. {
  2694. u32 l;
  2695. l = dispc_read_reg(DISPC_SYSCONFIG);
  2696. l = FLD_MOD(l, 2, 13, 12); /* MIDLEMODE: smart standby */
  2697. l = FLD_MOD(l, 2, 4, 3); /* SIDLEMODE: smart idle */
  2698. l = FLD_MOD(l, 1, 2, 2); /* ENWAKEUP */
  2699. l = FLD_MOD(l, 1, 0, 0); /* AUTOIDLE */
  2700. dispc_write_reg(DISPC_SYSCONFIG, l);
  2701. /* FUNCGATED */
  2702. if (dss_has_feature(FEAT_FUNCGATED))
  2703. REG_FLD_MOD(DISPC_CONFIG, 1, 9, 9);
  2704. /* L3 firewall setting: enable access to OCM RAM */
  2705. /* XXX this should be somewhere in plat-omap */
  2706. if (cpu_is_omap24xx())
  2707. __raw_writel(0x402000b0, OMAP2_L3_IO_ADDRESS(0x680050a0));
  2708. _dispc_setup_color_conv_coef();
  2709. dispc_set_loadmode(OMAP_DSS_LOAD_FRAME_ONLY);
  2710. dispc_read_plane_fifo_sizes();
  2711. }
  2712. int dispc_init(void)
  2713. {
  2714. u32 rev;
  2715. spin_lock_init(&dispc.irq_lock);
  2716. #ifdef CONFIG_OMAP2_DSS_COLLECT_IRQ_STATS
  2717. spin_lock_init(&dispc.irq_stats_lock);
  2718. dispc.irq_stats.last_reset = jiffies;
  2719. #endif
  2720. INIT_WORK(&dispc.error_work, dispc_error_worker);
  2721. dispc.base = ioremap(DISPC_BASE, DISPC_SZ_REGS);
  2722. if (!dispc.base) {
  2723. DSSERR("can't ioremap DISPC\n");
  2724. return -ENOMEM;
  2725. }
  2726. enable_clocks(1);
  2727. _omap_dispc_initial_config();
  2728. _omap_dispc_initialize_irq();
  2729. dispc_save_context();
  2730. rev = dispc_read_reg(DISPC_REVISION);
  2731. printk(KERN_INFO "OMAP DISPC rev %d.%d\n",
  2732. FLD_GET(rev, 7, 4), FLD_GET(rev, 3, 0));
  2733. enable_clocks(0);
  2734. return 0;
  2735. }
  2736. void dispc_exit(void)
  2737. {
  2738. iounmap(dispc.base);
  2739. }
  2740. int dispc_enable_plane(enum omap_plane plane, bool enable)
  2741. {
  2742. DSSDBG("dispc_enable_plane %d, %d\n", plane, enable);
  2743. enable_clocks(1);
  2744. _dispc_enable_plane(plane, enable);
  2745. enable_clocks(0);
  2746. return 0;
  2747. }
  2748. int dispc_setup_plane(enum omap_plane plane,
  2749. u32 paddr, u16 screen_width,
  2750. u16 pos_x, u16 pos_y,
  2751. u16 width, u16 height,
  2752. u16 out_width, u16 out_height,
  2753. enum omap_color_mode color_mode,
  2754. bool ilace,
  2755. enum omap_dss_rotation_type rotation_type,
  2756. u8 rotation, bool mirror, u8 global_alpha,
  2757. u8 pre_mult_alpha, enum omap_channel channel)
  2758. {
  2759. int r = 0;
  2760. DSSDBG("dispc_setup_plane %d, pa %x, sw %d, %d,%d, %dx%d -> "
  2761. "%dx%d, ilace %d, cmode %x, rot %d, mir %d chan %d\n",
  2762. plane, paddr, screen_width, pos_x, pos_y,
  2763. width, height,
  2764. out_width, out_height,
  2765. ilace, color_mode,
  2766. rotation, mirror, channel);
  2767. enable_clocks(1);
  2768. r = _dispc_setup_plane(plane,
  2769. paddr, screen_width,
  2770. pos_x, pos_y,
  2771. width, height,
  2772. out_width, out_height,
  2773. color_mode, ilace,
  2774. rotation_type,
  2775. rotation, mirror,
  2776. global_alpha,
  2777. pre_mult_alpha, channel);
  2778. enable_clocks(0);
  2779. return r;
  2780. }