cfg80211.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866
  1. /*
  2. * Intel Wireless Multicomm 3200 WiFi driver
  3. *
  4. * Copyright (C) 2009 Intel Corporation <ilw@linux.intel.com>
  5. * Samuel Ortiz <samuel.ortiz@intel.com>
  6. * Zhu Yi <yi.zhu@intel.com>
  7. *
  8. * This program is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU General Public License version
  10. * 2 as published by the Free Software Foundation.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
  20. * 02110-1301, USA.
  21. *
  22. */
  23. #include <linux/kernel.h>
  24. #include <linux/netdevice.h>
  25. #include <linux/sched.h>
  26. #include <linux/etherdevice.h>
  27. #include <linux/wireless.h>
  28. #include <linux/ieee80211.h>
  29. #include <linux/slab.h>
  30. #include <net/cfg80211.h>
  31. #include "iwm.h"
  32. #include "commands.h"
  33. #include "cfg80211.h"
  34. #include "debug.h"
  35. #define RATETAB_ENT(_rate, _rateid, _flags) \
  36. { \
  37. .bitrate = (_rate), \
  38. .hw_value = (_rateid), \
  39. .flags = (_flags), \
  40. }
  41. #define CHAN2G(_channel, _freq, _flags) { \
  42. .band = IEEE80211_BAND_2GHZ, \
  43. .center_freq = (_freq), \
  44. .hw_value = (_channel), \
  45. .flags = (_flags), \
  46. .max_antenna_gain = 0, \
  47. .max_power = 30, \
  48. }
  49. #define CHAN5G(_channel, _flags) { \
  50. .band = IEEE80211_BAND_5GHZ, \
  51. .center_freq = 5000 + (5 * (_channel)), \
  52. .hw_value = (_channel), \
  53. .flags = (_flags), \
  54. .max_antenna_gain = 0, \
  55. .max_power = 30, \
  56. }
  57. static struct ieee80211_rate iwm_rates[] = {
  58. RATETAB_ENT(10, 0x1, 0),
  59. RATETAB_ENT(20, 0x2, 0),
  60. RATETAB_ENT(55, 0x4, 0),
  61. RATETAB_ENT(110, 0x8, 0),
  62. RATETAB_ENT(60, 0x10, 0),
  63. RATETAB_ENT(90, 0x20, 0),
  64. RATETAB_ENT(120, 0x40, 0),
  65. RATETAB_ENT(180, 0x80, 0),
  66. RATETAB_ENT(240, 0x100, 0),
  67. RATETAB_ENT(360, 0x200, 0),
  68. RATETAB_ENT(480, 0x400, 0),
  69. RATETAB_ENT(540, 0x800, 0),
  70. };
  71. #define iwm_a_rates (iwm_rates + 4)
  72. #define iwm_a_rates_size 8
  73. #define iwm_g_rates (iwm_rates + 0)
  74. #define iwm_g_rates_size 12
  75. static struct ieee80211_channel iwm_2ghz_channels[] = {
  76. CHAN2G(1, 2412, 0),
  77. CHAN2G(2, 2417, 0),
  78. CHAN2G(3, 2422, 0),
  79. CHAN2G(4, 2427, 0),
  80. CHAN2G(5, 2432, 0),
  81. CHAN2G(6, 2437, 0),
  82. CHAN2G(7, 2442, 0),
  83. CHAN2G(8, 2447, 0),
  84. CHAN2G(9, 2452, 0),
  85. CHAN2G(10, 2457, 0),
  86. CHAN2G(11, 2462, 0),
  87. CHAN2G(12, 2467, 0),
  88. CHAN2G(13, 2472, 0),
  89. CHAN2G(14, 2484, 0),
  90. };
  91. static struct ieee80211_channel iwm_5ghz_a_channels[] = {
  92. CHAN5G(34, 0), CHAN5G(36, 0),
  93. CHAN5G(38, 0), CHAN5G(40, 0),
  94. CHAN5G(42, 0), CHAN5G(44, 0),
  95. CHAN5G(46, 0), CHAN5G(48, 0),
  96. CHAN5G(52, 0), CHAN5G(56, 0),
  97. CHAN5G(60, 0), CHAN5G(64, 0),
  98. CHAN5G(100, 0), CHAN5G(104, 0),
  99. CHAN5G(108, 0), CHAN5G(112, 0),
  100. CHAN5G(116, 0), CHAN5G(120, 0),
  101. CHAN5G(124, 0), CHAN5G(128, 0),
  102. CHAN5G(132, 0), CHAN5G(136, 0),
  103. CHAN5G(140, 0), CHAN5G(149, 0),
  104. CHAN5G(153, 0), CHAN5G(157, 0),
  105. CHAN5G(161, 0), CHAN5G(165, 0),
  106. CHAN5G(184, 0), CHAN5G(188, 0),
  107. CHAN5G(192, 0), CHAN5G(196, 0),
  108. CHAN5G(200, 0), CHAN5G(204, 0),
  109. CHAN5G(208, 0), CHAN5G(212, 0),
  110. CHAN5G(216, 0),
  111. };
  112. static struct ieee80211_supported_band iwm_band_2ghz = {
  113. .channels = iwm_2ghz_channels,
  114. .n_channels = ARRAY_SIZE(iwm_2ghz_channels),
  115. .bitrates = iwm_g_rates,
  116. .n_bitrates = iwm_g_rates_size,
  117. };
  118. static struct ieee80211_supported_band iwm_band_5ghz = {
  119. .channels = iwm_5ghz_a_channels,
  120. .n_channels = ARRAY_SIZE(iwm_5ghz_a_channels),
  121. .bitrates = iwm_a_rates,
  122. .n_bitrates = iwm_a_rates_size,
  123. };
  124. static int iwm_key_init(struct iwm_key *key, u8 key_index,
  125. const u8 *mac_addr, struct key_params *params)
  126. {
  127. key->hdr.key_idx = key_index;
  128. if (!mac_addr || is_broadcast_ether_addr(mac_addr)) {
  129. key->hdr.multicast = 1;
  130. memset(key->hdr.mac, 0xff, ETH_ALEN);
  131. } else {
  132. key->hdr.multicast = 0;
  133. memcpy(key->hdr.mac, mac_addr, ETH_ALEN);
  134. }
  135. if (params) {
  136. if (params->key_len > WLAN_MAX_KEY_LEN ||
  137. params->seq_len > IW_ENCODE_SEQ_MAX_SIZE)
  138. return -EINVAL;
  139. key->cipher = params->cipher;
  140. key->key_len = params->key_len;
  141. key->seq_len = params->seq_len;
  142. memcpy(key->key, params->key, key->key_len);
  143. memcpy(key->seq, params->seq, key->seq_len);
  144. }
  145. return 0;
  146. }
  147. static int iwm_cfg80211_add_key(struct wiphy *wiphy, struct net_device *ndev,
  148. u8 key_index, bool pairwise, const u8 *mac_addr,
  149. struct key_params *params)
  150. {
  151. struct iwm_priv *iwm = ndev_to_iwm(ndev);
  152. struct iwm_key *key = &iwm->keys[key_index];
  153. int ret;
  154. IWM_DBG_WEXT(iwm, DBG, "Adding key for %pM\n", mac_addr);
  155. memset(key, 0, sizeof(struct iwm_key));
  156. ret = iwm_key_init(key, key_index, mac_addr, params);
  157. if (ret < 0) {
  158. IWM_ERR(iwm, "Invalid key_params\n");
  159. return ret;
  160. }
  161. return iwm_set_key(iwm, 0, key);
  162. }
  163. static int iwm_cfg80211_get_key(struct wiphy *wiphy, struct net_device *ndev,
  164. u8 key_index, bool pairwise, const u8 *mac_addr,
  165. void *cookie,
  166. void (*callback)(void *cookie,
  167. struct key_params*))
  168. {
  169. struct iwm_priv *iwm = ndev_to_iwm(ndev);
  170. struct iwm_key *key = &iwm->keys[key_index];
  171. struct key_params params;
  172. IWM_DBG_WEXT(iwm, DBG, "Getting key %d\n", key_index);
  173. memset(&params, 0, sizeof(params));
  174. params.cipher = key->cipher;
  175. params.key_len = key->key_len;
  176. params.seq_len = key->seq_len;
  177. params.seq = key->seq;
  178. params.key = key->key;
  179. callback(cookie, &params);
  180. return key->key_len ? 0 : -ENOENT;
  181. }
  182. static int iwm_cfg80211_del_key(struct wiphy *wiphy, struct net_device *ndev,
  183. u8 key_index, bool pairwise, const u8 *mac_addr)
  184. {
  185. struct iwm_priv *iwm = ndev_to_iwm(ndev);
  186. struct iwm_key *key = &iwm->keys[key_index];
  187. if (!iwm->keys[key_index].key_len) {
  188. IWM_DBG_WEXT(iwm, DBG, "Key %d not used\n", key_index);
  189. return 0;
  190. }
  191. if (key_index == iwm->default_key)
  192. iwm->default_key = -1;
  193. return iwm_set_key(iwm, 1, key);
  194. }
  195. static int iwm_cfg80211_set_default_key(struct wiphy *wiphy,
  196. struct net_device *ndev,
  197. u8 key_index, bool unicast,
  198. bool multicast)
  199. {
  200. struct iwm_priv *iwm = ndev_to_iwm(ndev);
  201. IWM_DBG_WEXT(iwm, DBG, "Default key index is: %d\n", key_index);
  202. if (!iwm->keys[key_index].key_len) {
  203. IWM_ERR(iwm, "Key %d not used\n", key_index);
  204. return -EINVAL;
  205. }
  206. iwm->default_key = key_index;
  207. return iwm_set_tx_key(iwm, key_index);
  208. }
  209. static int iwm_cfg80211_get_station(struct wiphy *wiphy,
  210. struct net_device *ndev,
  211. u8 *mac, struct station_info *sinfo)
  212. {
  213. struct iwm_priv *iwm = ndev_to_iwm(ndev);
  214. if (memcmp(mac, iwm->bssid, ETH_ALEN))
  215. return -ENOENT;
  216. sinfo->filled |= STATION_INFO_TX_BITRATE;
  217. sinfo->txrate.legacy = iwm->rate * 10;
  218. if (test_bit(IWM_STATUS_ASSOCIATED, &iwm->status)) {
  219. sinfo->filled |= STATION_INFO_SIGNAL;
  220. sinfo->signal = iwm->wstats.qual.level;
  221. }
  222. return 0;
  223. }
  224. int iwm_cfg80211_inform_bss(struct iwm_priv *iwm)
  225. {
  226. struct wiphy *wiphy = iwm_to_wiphy(iwm);
  227. struct iwm_bss_info *bss;
  228. struct iwm_umac_notif_bss_info *umac_bss;
  229. struct ieee80211_mgmt *mgmt;
  230. struct ieee80211_channel *channel;
  231. struct ieee80211_supported_band *band;
  232. s32 signal;
  233. int freq;
  234. list_for_each_entry(bss, &iwm->bss_list, node) {
  235. umac_bss = bss->bss;
  236. mgmt = (struct ieee80211_mgmt *)(umac_bss->frame_buf);
  237. if (umac_bss->band == UMAC_BAND_2GHZ)
  238. band = wiphy->bands[IEEE80211_BAND_2GHZ];
  239. else if (umac_bss->band == UMAC_BAND_5GHZ)
  240. band = wiphy->bands[IEEE80211_BAND_5GHZ];
  241. else {
  242. IWM_ERR(iwm, "Invalid band: %d\n", umac_bss->band);
  243. return -EINVAL;
  244. }
  245. freq = ieee80211_channel_to_frequency(umac_bss->channel);
  246. channel = ieee80211_get_channel(wiphy, freq);
  247. signal = umac_bss->rssi * 100;
  248. if (!cfg80211_inform_bss_frame(wiphy, channel, mgmt,
  249. le16_to_cpu(umac_bss->frame_len),
  250. signal, GFP_KERNEL))
  251. return -EINVAL;
  252. }
  253. return 0;
  254. }
  255. static int iwm_cfg80211_change_iface(struct wiphy *wiphy,
  256. struct net_device *ndev,
  257. enum nl80211_iftype type, u32 *flags,
  258. struct vif_params *params)
  259. {
  260. struct wireless_dev *wdev;
  261. struct iwm_priv *iwm;
  262. u32 old_mode;
  263. wdev = ndev->ieee80211_ptr;
  264. iwm = ndev_to_iwm(ndev);
  265. old_mode = iwm->conf.mode;
  266. switch (type) {
  267. case NL80211_IFTYPE_STATION:
  268. iwm->conf.mode = UMAC_MODE_BSS;
  269. break;
  270. case NL80211_IFTYPE_ADHOC:
  271. iwm->conf.mode = UMAC_MODE_IBSS;
  272. break;
  273. default:
  274. return -EOPNOTSUPP;
  275. }
  276. wdev->iftype = type;
  277. if ((old_mode == iwm->conf.mode) || !iwm->umac_profile)
  278. return 0;
  279. iwm->umac_profile->mode = cpu_to_le32(iwm->conf.mode);
  280. if (iwm->umac_profile_active)
  281. iwm_invalidate_mlme_profile(iwm);
  282. return 0;
  283. }
  284. static int iwm_cfg80211_scan(struct wiphy *wiphy, struct net_device *ndev,
  285. struct cfg80211_scan_request *request)
  286. {
  287. struct iwm_priv *iwm = ndev_to_iwm(ndev);
  288. int ret;
  289. if (!test_bit(IWM_STATUS_READY, &iwm->status)) {
  290. IWM_ERR(iwm, "Scan while device is not ready\n");
  291. return -EIO;
  292. }
  293. if (test_bit(IWM_STATUS_SCANNING, &iwm->status)) {
  294. IWM_ERR(iwm, "Scanning already\n");
  295. return -EAGAIN;
  296. }
  297. if (test_bit(IWM_STATUS_SCAN_ABORTING, &iwm->status)) {
  298. IWM_ERR(iwm, "Scanning being aborted\n");
  299. return -EAGAIN;
  300. }
  301. set_bit(IWM_STATUS_SCANNING, &iwm->status);
  302. ret = iwm_scan_ssids(iwm, request->ssids, request->n_ssids);
  303. if (ret) {
  304. clear_bit(IWM_STATUS_SCANNING, &iwm->status);
  305. return ret;
  306. }
  307. iwm->scan_request = request;
  308. return 0;
  309. }
  310. static int iwm_cfg80211_set_wiphy_params(struct wiphy *wiphy, u32 changed)
  311. {
  312. struct iwm_priv *iwm = wiphy_to_iwm(wiphy);
  313. if (changed & WIPHY_PARAM_RTS_THRESHOLD &&
  314. (iwm->conf.rts_threshold != wiphy->rts_threshold)) {
  315. int ret;
  316. iwm->conf.rts_threshold = wiphy->rts_threshold;
  317. ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_CFG_FIX,
  318. CFG_RTS_THRESHOLD,
  319. iwm->conf.rts_threshold);
  320. if (ret < 0)
  321. return ret;
  322. }
  323. if (changed & WIPHY_PARAM_FRAG_THRESHOLD &&
  324. (iwm->conf.frag_threshold != wiphy->frag_threshold)) {
  325. int ret;
  326. iwm->conf.frag_threshold = wiphy->frag_threshold;
  327. ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_FA_CFG_FIX,
  328. CFG_FRAG_THRESHOLD,
  329. iwm->conf.frag_threshold);
  330. if (ret < 0)
  331. return ret;
  332. }
  333. return 0;
  334. }
  335. static int iwm_cfg80211_join_ibss(struct wiphy *wiphy, struct net_device *dev,
  336. struct cfg80211_ibss_params *params)
  337. {
  338. struct iwm_priv *iwm = wiphy_to_iwm(wiphy);
  339. struct ieee80211_channel *chan = params->channel;
  340. if (!test_bit(IWM_STATUS_READY, &iwm->status))
  341. return -EIO;
  342. /* UMAC doesn't support creating or joining an IBSS network
  343. * with specified bssid. */
  344. if (params->bssid)
  345. return -EOPNOTSUPP;
  346. iwm->channel = ieee80211_frequency_to_channel(chan->center_freq);
  347. iwm->umac_profile->ibss.band = chan->band;
  348. iwm->umac_profile->ibss.channel = iwm->channel;
  349. iwm->umac_profile->ssid.ssid_len = params->ssid_len;
  350. memcpy(iwm->umac_profile->ssid.ssid, params->ssid, params->ssid_len);
  351. return iwm_send_mlme_profile(iwm);
  352. }
  353. static int iwm_cfg80211_leave_ibss(struct wiphy *wiphy, struct net_device *dev)
  354. {
  355. struct iwm_priv *iwm = wiphy_to_iwm(wiphy);
  356. if (iwm->umac_profile_active)
  357. return iwm_invalidate_mlme_profile(iwm);
  358. return 0;
  359. }
  360. static int iwm_set_auth_type(struct iwm_priv *iwm,
  361. enum nl80211_auth_type sme_auth_type)
  362. {
  363. u8 *auth_type = &iwm->umac_profile->sec.auth_type;
  364. switch (sme_auth_type) {
  365. case NL80211_AUTHTYPE_AUTOMATIC:
  366. case NL80211_AUTHTYPE_OPEN_SYSTEM:
  367. IWM_DBG_WEXT(iwm, DBG, "OPEN auth\n");
  368. *auth_type = UMAC_AUTH_TYPE_OPEN;
  369. break;
  370. case NL80211_AUTHTYPE_SHARED_KEY:
  371. if (iwm->umac_profile->sec.flags &
  372. (UMAC_SEC_FLG_WPA_ON_MSK | UMAC_SEC_FLG_RSNA_ON_MSK)) {
  373. IWM_DBG_WEXT(iwm, DBG, "WPA auth alg\n");
  374. *auth_type = UMAC_AUTH_TYPE_RSNA_PSK;
  375. } else {
  376. IWM_DBG_WEXT(iwm, DBG, "WEP shared key auth alg\n");
  377. *auth_type = UMAC_AUTH_TYPE_LEGACY_PSK;
  378. }
  379. break;
  380. default:
  381. IWM_ERR(iwm, "Unsupported auth alg: 0x%x\n", sme_auth_type);
  382. return -ENOTSUPP;
  383. }
  384. return 0;
  385. }
  386. static int iwm_set_wpa_version(struct iwm_priv *iwm, u32 wpa_version)
  387. {
  388. IWM_DBG_WEXT(iwm, DBG, "wpa_version: %d\n", wpa_version);
  389. if (!wpa_version) {
  390. iwm->umac_profile->sec.flags = UMAC_SEC_FLG_LEGACY_PROFILE;
  391. return 0;
  392. }
  393. if (wpa_version & NL80211_WPA_VERSION_1)
  394. iwm->umac_profile->sec.flags = UMAC_SEC_FLG_WPA_ON_MSK;
  395. if (wpa_version & NL80211_WPA_VERSION_2)
  396. iwm->umac_profile->sec.flags = UMAC_SEC_FLG_RSNA_ON_MSK;
  397. return 0;
  398. }
  399. static int iwm_set_cipher(struct iwm_priv *iwm, u32 cipher, bool ucast)
  400. {
  401. u8 *profile_cipher = ucast ? &iwm->umac_profile->sec.ucast_cipher :
  402. &iwm->umac_profile->sec.mcast_cipher;
  403. if (!cipher) {
  404. *profile_cipher = UMAC_CIPHER_TYPE_NONE;
  405. return 0;
  406. }
  407. IWM_DBG_WEXT(iwm, DBG, "%ccast cipher is 0x%x\n", ucast ? 'u' : 'm',
  408. cipher);
  409. switch (cipher) {
  410. case IW_AUTH_CIPHER_NONE:
  411. *profile_cipher = UMAC_CIPHER_TYPE_NONE;
  412. break;
  413. case WLAN_CIPHER_SUITE_WEP40:
  414. *profile_cipher = UMAC_CIPHER_TYPE_WEP_40;
  415. break;
  416. case WLAN_CIPHER_SUITE_WEP104:
  417. *profile_cipher = UMAC_CIPHER_TYPE_WEP_104;
  418. break;
  419. case WLAN_CIPHER_SUITE_TKIP:
  420. *profile_cipher = UMAC_CIPHER_TYPE_TKIP;
  421. break;
  422. case WLAN_CIPHER_SUITE_CCMP:
  423. *profile_cipher = UMAC_CIPHER_TYPE_CCMP;
  424. break;
  425. default:
  426. IWM_ERR(iwm, "Unsupported cipher: 0x%x\n", cipher);
  427. return -ENOTSUPP;
  428. }
  429. return 0;
  430. }
  431. static int iwm_set_key_mgt(struct iwm_priv *iwm, u32 key_mgt)
  432. {
  433. u8 *auth_type = &iwm->umac_profile->sec.auth_type;
  434. IWM_DBG_WEXT(iwm, DBG, "key_mgt: 0x%x\n", key_mgt);
  435. if (key_mgt == WLAN_AKM_SUITE_8021X)
  436. *auth_type = UMAC_AUTH_TYPE_8021X;
  437. else if (key_mgt == WLAN_AKM_SUITE_PSK) {
  438. if (iwm->umac_profile->sec.flags &
  439. (UMAC_SEC_FLG_WPA_ON_MSK | UMAC_SEC_FLG_RSNA_ON_MSK))
  440. *auth_type = UMAC_AUTH_TYPE_RSNA_PSK;
  441. else
  442. *auth_type = UMAC_AUTH_TYPE_LEGACY_PSK;
  443. } else {
  444. IWM_ERR(iwm, "Invalid key mgt: 0x%x\n", key_mgt);
  445. return -EINVAL;
  446. }
  447. return 0;
  448. }
  449. static int iwm_cfg80211_connect(struct wiphy *wiphy, struct net_device *dev,
  450. struct cfg80211_connect_params *sme)
  451. {
  452. struct iwm_priv *iwm = wiphy_to_iwm(wiphy);
  453. struct ieee80211_channel *chan = sme->channel;
  454. struct key_params key_param;
  455. int ret;
  456. if (!test_bit(IWM_STATUS_READY, &iwm->status))
  457. return -EIO;
  458. if (!sme->ssid)
  459. return -EINVAL;
  460. if (iwm->umac_profile_active) {
  461. ret = iwm_invalidate_mlme_profile(iwm);
  462. if (ret) {
  463. IWM_ERR(iwm, "Couldn't invalidate profile\n");
  464. return ret;
  465. }
  466. }
  467. if (chan)
  468. iwm->channel =
  469. ieee80211_frequency_to_channel(chan->center_freq);
  470. iwm->umac_profile->ssid.ssid_len = sme->ssid_len;
  471. memcpy(iwm->umac_profile->ssid.ssid, sme->ssid, sme->ssid_len);
  472. if (sme->bssid) {
  473. IWM_DBG_WEXT(iwm, DBG, "BSSID: %pM\n", sme->bssid);
  474. memcpy(&iwm->umac_profile->bssid[0], sme->bssid, ETH_ALEN);
  475. iwm->umac_profile->bss_num = 1;
  476. } else {
  477. memset(&iwm->umac_profile->bssid[0], 0, ETH_ALEN);
  478. iwm->umac_profile->bss_num = 0;
  479. }
  480. ret = iwm_set_wpa_version(iwm, sme->crypto.wpa_versions);
  481. if (ret < 0)
  482. return ret;
  483. ret = iwm_set_auth_type(iwm, sme->auth_type);
  484. if (ret < 0)
  485. return ret;
  486. if (sme->crypto.n_ciphers_pairwise) {
  487. ret = iwm_set_cipher(iwm, sme->crypto.ciphers_pairwise[0],
  488. true);
  489. if (ret < 0)
  490. return ret;
  491. }
  492. ret = iwm_set_cipher(iwm, sme->crypto.cipher_group, false);
  493. if (ret < 0)
  494. return ret;
  495. if (sme->crypto.n_akm_suites) {
  496. ret = iwm_set_key_mgt(iwm, sme->crypto.akm_suites[0]);
  497. if (ret < 0)
  498. return ret;
  499. }
  500. /*
  501. * We save the WEP key in case we want to do shared authentication.
  502. * We have to do it so because UMAC will assert whenever it gets a
  503. * key before a profile.
  504. */
  505. if (sme->key) {
  506. key_param.key = kmemdup(sme->key, sme->key_len, GFP_KERNEL);
  507. if (key_param.key == NULL)
  508. return -ENOMEM;
  509. key_param.key_len = sme->key_len;
  510. key_param.seq_len = 0;
  511. key_param.cipher = sme->crypto.ciphers_pairwise[0];
  512. ret = iwm_key_init(&iwm->keys[sme->key_idx], sme->key_idx,
  513. NULL, &key_param);
  514. kfree(key_param.key);
  515. if (ret < 0) {
  516. IWM_ERR(iwm, "Invalid key_params\n");
  517. return ret;
  518. }
  519. iwm->default_key = sme->key_idx;
  520. }
  521. /* WPA and open AUTH type from wpa_s means WPS (a.k.a. WSC) */
  522. if ((iwm->umac_profile->sec.flags &
  523. (UMAC_SEC_FLG_WPA_ON_MSK | UMAC_SEC_FLG_RSNA_ON_MSK)) &&
  524. iwm->umac_profile->sec.auth_type == UMAC_AUTH_TYPE_OPEN) {
  525. iwm->umac_profile->sec.flags = UMAC_SEC_FLG_WSC_ON_MSK;
  526. }
  527. ret = iwm_send_mlme_profile(iwm);
  528. if (iwm->umac_profile->sec.auth_type != UMAC_AUTH_TYPE_LEGACY_PSK ||
  529. sme->key == NULL)
  530. return ret;
  531. /*
  532. * We want to do shared auth.
  533. * We need to actually set the key we previously cached,
  534. * and then tell the UMAC it's the default one.
  535. * That will trigger the auth+assoc UMAC machinery, and again,
  536. * this must be done after setting the profile.
  537. */
  538. ret = iwm_set_key(iwm, 0, &iwm->keys[sme->key_idx]);
  539. if (ret < 0)
  540. return ret;
  541. return iwm_set_tx_key(iwm, iwm->default_key);
  542. }
  543. static int iwm_cfg80211_disconnect(struct wiphy *wiphy, struct net_device *dev,
  544. u16 reason_code)
  545. {
  546. struct iwm_priv *iwm = wiphy_to_iwm(wiphy);
  547. IWM_DBG_WEXT(iwm, DBG, "Active: %d\n", iwm->umac_profile_active);
  548. if (iwm->umac_profile_active)
  549. iwm_invalidate_mlme_profile(iwm);
  550. return 0;
  551. }
  552. static int iwm_cfg80211_set_txpower(struct wiphy *wiphy,
  553. enum nl80211_tx_power_setting type, int mbm)
  554. {
  555. struct iwm_priv *iwm = wiphy_to_iwm(wiphy);
  556. int ret;
  557. switch (type) {
  558. case NL80211_TX_POWER_AUTOMATIC:
  559. return 0;
  560. case NL80211_TX_POWER_FIXED:
  561. if (mbm < 0 || (mbm % 100))
  562. return -EOPNOTSUPP;
  563. if (!test_bit(IWM_STATUS_READY, &iwm->status))
  564. return 0;
  565. ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_CFG_FIX,
  566. CFG_TX_PWR_LIMIT_USR,
  567. MBM_TO_DBM(mbm) * 2);
  568. if (ret < 0)
  569. return ret;
  570. return iwm_tx_power_trigger(iwm);
  571. default:
  572. IWM_ERR(iwm, "Unsupported power type: %d\n", type);
  573. return -EOPNOTSUPP;
  574. }
  575. return 0;
  576. }
  577. static int iwm_cfg80211_get_txpower(struct wiphy *wiphy, int *dbm)
  578. {
  579. struct iwm_priv *iwm = wiphy_to_iwm(wiphy);
  580. *dbm = iwm->txpower >> 1;
  581. return 0;
  582. }
  583. static int iwm_cfg80211_set_power_mgmt(struct wiphy *wiphy,
  584. struct net_device *dev,
  585. bool enabled, int timeout)
  586. {
  587. struct iwm_priv *iwm = wiphy_to_iwm(wiphy);
  588. u32 power_index;
  589. if (enabled)
  590. power_index = IWM_POWER_INDEX_DEFAULT;
  591. else
  592. power_index = IWM_POWER_INDEX_MIN;
  593. if (power_index == iwm->conf.power_index)
  594. return 0;
  595. iwm->conf.power_index = power_index;
  596. return iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_CFG_FIX,
  597. CFG_POWER_INDEX, iwm->conf.power_index);
  598. }
  599. static int iwm_cfg80211_set_pmksa(struct wiphy *wiphy,
  600. struct net_device *netdev,
  601. struct cfg80211_pmksa *pmksa)
  602. {
  603. struct iwm_priv *iwm = wiphy_to_iwm(wiphy);
  604. return iwm_send_pmkid_update(iwm, pmksa, IWM_CMD_PMKID_ADD);
  605. }
  606. static int iwm_cfg80211_del_pmksa(struct wiphy *wiphy,
  607. struct net_device *netdev,
  608. struct cfg80211_pmksa *pmksa)
  609. {
  610. struct iwm_priv *iwm = wiphy_to_iwm(wiphy);
  611. return iwm_send_pmkid_update(iwm, pmksa, IWM_CMD_PMKID_DEL);
  612. }
  613. static int iwm_cfg80211_flush_pmksa(struct wiphy *wiphy,
  614. struct net_device *netdev)
  615. {
  616. struct iwm_priv *iwm = wiphy_to_iwm(wiphy);
  617. struct cfg80211_pmksa pmksa;
  618. memset(&pmksa, 0, sizeof(struct cfg80211_pmksa));
  619. return iwm_send_pmkid_update(iwm, &pmksa, IWM_CMD_PMKID_FLUSH);
  620. }
  621. static struct cfg80211_ops iwm_cfg80211_ops = {
  622. .change_virtual_intf = iwm_cfg80211_change_iface,
  623. .add_key = iwm_cfg80211_add_key,
  624. .get_key = iwm_cfg80211_get_key,
  625. .del_key = iwm_cfg80211_del_key,
  626. .set_default_key = iwm_cfg80211_set_default_key,
  627. .get_station = iwm_cfg80211_get_station,
  628. .scan = iwm_cfg80211_scan,
  629. .set_wiphy_params = iwm_cfg80211_set_wiphy_params,
  630. .connect = iwm_cfg80211_connect,
  631. .disconnect = iwm_cfg80211_disconnect,
  632. .join_ibss = iwm_cfg80211_join_ibss,
  633. .leave_ibss = iwm_cfg80211_leave_ibss,
  634. .set_tx_power = iwm_cfg80211_set_txpower,
  635. .get_tx_power = iwm_cfg80211_get_txpower,
  636. .set_power_mgmt = iwm_cfg80211_set_power_mgmt,
  637. .set_pmksa = iwm_cfg80211_set_pmksa,
  638. .del_pmksa = iwm_cfg80211_del_pmksa,
  639. .flush_pmksa = iwm_cfg80211_flush_pmksa,
  640. };
  641. static const u32 cipher_suites[] = {
  642. WLAN_CIPHER_SUITE_WEP40,
  643. WLAN_CIPHER_SUITE_WEP104,
  644. WLAN_CIPHER_SUITE_TKIP,
  645. WLAN_CIPHER_SUITE_CCMP,
  646. };
  647. struct wireless_dev *iwm_wdev_alloc(int sizeof_bus, struct device *dev)
  648. {
  649. int ret = 0;
  650. struct wireless_dev *wdev;
  651. /*
  652. * We're trying to have the following memory
  653. * layout:
  654. *
  655. * +-------------------------+
  656. * | struct wiphy |
  657. * +-------------------------+
  658. * | struct iwm_priv |
  659. * +-------------------------+
  660. * | bus private data |
  661. * | (e.g. iwm_priv_sdio) |
  662. * +-------------------------+
  663. *
  664. */
  665. wdev = kzalloc(sizeof(struct wireless_dev), GFP_KERNEL);
  666. if (!wdev) {
  667. dev_err(dev, "Couldn't allocate wireless device\n");
  668. return ERR_PTR(-ENOMEM);
  669. }
  670. wdev->wiphy = wiphy_new(&iwm_cfg80211_ops,
  671. sizeof(struct iwm_priv) + sizeof_bus);
  672. if (!wdev->wiphy) {
  673. dev_err(dev, "Couldn't allocate wiphy device\n");
  674. ret = -ENOMEM;
  675. goto out_err_new;
  676. }
  677. set_wiphy_dev(wdev->wiphy, dev);
  678. wdev->wiphy->max_scan_ssids = UMAC_WIFI_IF_PROBE_OPTION_MAX;
  679. wdev->wiphy->max_num_pmkids = UMAC_MAX_NUM_PMKIDS;
  680. wdev->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) |
  681. BIT(NL80211_IFTYPE_ADHOC);
  682. wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = &iwm_band_2ghz;
  683. wdev->wiphy->bands[IEEE80211_BAND_5GHZ] = &iwm_band_5ghz;
  684. wdev->wiphy->signal_type = CFG80211_SIGNAL_TYPE_MBM;
  685. wdev->wiphy->cipher_suites = cipher_suites;
  686. wdev->wiphy->n_cipher_suites = ARRAY_SIZE(cipher_suites);
  687. ret = wiphy_register(wdev->wiphy);
  688. if (ret < 0) {
  689. dev_err(dev, "Couldn't register wiphy device\n");
  690. goto out_err_register;
  691. }
  692. return wdev;
  693. out_err_register:
  694. wiphy_free(wdev->wiphy);
  695. out_err_new:
  696. kfree(wdev);
  697. return ERR_PTR(ret);
  698. }
  699. void iwm_wdev_free(struct iwm_priv *iwm)
  700. {
  701. struct wireless_dev *wdev = iwm_to_wdev(iwm);
  702. if (!wdev)
  703. return;
  704. wiphy_unregister(wdev->wiphy);
  705. wiphy_free(wdev->wiphy);
  706. kfree(wdev);
  707. }