ste_dma40.c 77 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067
  1. /*
  2. * Copyright (C) Ericsson AB 2007-2008
  3. * Copyright (C) ST-Ericsson SA 2008-2010
  4. * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
  5. * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
  6. * License terms: GNU General Public License (GPL) version 2
  7. */
  8. #include <linux/kernel.h>
  9. #include <linux/slab.h>
  10. #include <linux/dmaengine.h>
  11. #include <linux/platform_device.h>
  12. #include <linux/clk.h>
  13. #include <linux/delay.h>
  14. #include <linux/err.h>
  15. #include <plat/ste_dma40.h>
  16. #include "ste_dma40_ll.h"
  17. #define D40_NAME "dma40"
  18. #define D40_PHY_CHAN -1
  19. /* For masking out/in 2 bit channel positions */
  20. #define D40_CHAN_POS(chan) (2 * (chan / 2))
  21. #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
  22. /* Maximum iterations taken before giving up suspending a channel */
  23. #define D40_SUSPEND_MAX_IT 500
  24. /* Hardware requirement on LCLA alignment */
  25. #define LCLA_ALIGNMENT 0x40000
  26. /* Max number of links per event group */
  27. #define D40_LCLA_LINK_PER_EVENT_GRP 128
  28. #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
  29. /* Attempts before giving up to trying to get pages that are aligned */
  30. #define MAX_LCLA_ALLOC_ATTEMPTS 256
  31. /* Bit markings for allocation map */
  32. #define D40_ALLOC_FREE (1 << 31)
  33. #define D40_ALLOC_PHY (1 << 30)
  34. #define D40_ALLOC_LOG_FREE 0
  35. /* Hardware designer of the block */
  36. #define D40_HW_DESIGNER 0x8
  37. /**
  38. * enum 40_command - The different commands and/or statuses.
  39. *
  40. * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
  41. * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
  42. * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
  43. * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
  44. */
  45. enum d40_command {
  46. D40_DMA_STOP = 0,
  47. D40_DMA_RUN = 1,
  48. D40_DMA_SUSPEND_REQ = 2,
  49. D40_DMA_SUSPENDED = 3
  50. };
  51. /**
  52. * struct d40_lli_pool - Structure for keeping LLIs in memory
  53. *
  54. * @base: Pointer to memory area when the pre_alloc_lli's are not large
  55. * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
  56. * pre_alloc_lli is used.
  57. * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
  58. * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
  59. * one buffer to one buffer.
  60. */
  61. struct d40_lli_pool {
  62. void *base;
  63. int size;
  64. /* Space for dst and src, plus an extra for padding */
  65. u8 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
  66. };
  67. /**
  68. * struct d40_desc - A descriptor is one DMA job.
  69. *
  70. * @lli_phy: LLI settings for physical channel. Both src and dst=
  71. * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
  72. * lli_len equals one.
  73. * @lli_log: Same as above but for logical channels.
  74. * @lli_pool: The pool with two entries pre-allocated.
  75. * @lli_len: Number of llis of current descriptor.
  76. * @lli_current: Number of transfered llis.
  77. * @lcla_alloc: Number of LCLA entries allocated.
  78. * @txd: DMA engine struct. Used for among other things for communication
  79. * during a transfer.
  80. * @node: List entry.
  81. * @is_in_client_list: true if the client owns this descriptor.
  82. * @is_hw_linked: true if this job will automatically be continued for
  83. * the previous one.
  84. *
  85. * This descriptor is used for both logical and physical transfers.
  86. */
  87. struct d40_desc {
  88. /* LLI physical */
  89. struct d40_phy_lli_bidir lli_phy;
  90. /* LLI logical */
  91. struct d40_log_lli_bidir lli_log;
  92. struct d40_lli_pool lli_pool;
  93. int lli_len;
  94. int lli_current;
  95. int lcla_alloc;
  96. struct dma_async_tx_descriptor txd;
  97. struct list_head node;
  98. bool is_in_client_list;
  99. bool is_hw_linked;
  100. };
  101. /**
  102. * struct d40_lcla_pool - LCLA pool settings and data.
  103. *
  104. * @base: The virtual address of LCLA. 18 bit aligned.
  105. * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
  106. * This pointer is only there for clean-up on error.
  107. * @pages: The number of pages needed for all physical channels.
  108. * Only used later for clean-up on error
  109. * @lock: Lock to protect the content in this struct.
  110. * @alloc_map: big map over which LCLA entry is own by which job.
  111. */
  112. struct d40_lcla_pool {
  113. void *base;
  114. void *base_unaligned;
  115. int pages;
  116. spinlock_t lock;
  117. struct d40_desc **alloc_map;
  118. };
  119. /**
  120. * struct d40_phy_res - struct for handling eventlines mapped to physical
  121. * channels.
  122. *
  123. * @lock: A lock protection this entity.
  124. * @num: The physical channel number of this entity.
  125. * @allocated_src: Bit mapped to show which src event line's are mapped to
  126. * this physical channel. Can also be free or physically allocated.
  127. * @allocated_dst: Same as for src but is dst.
  128. * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
  129. * event line number.
  130. */
  131. struct d40_phy_res {
  132. spinlock_t lock;
  133. int num;
  134. u32 allocated_src;
  135. u32 allocated_dst;
  136. };
  137. struct d40_base;
  138. /**
  139. * struct d40_chan - Struct that describes a channel.
  140. *
  141. * @lock: A spinlock to protect this struct.
  142. * @log_num: The logical number, if any of this channel.
  143. * @completed: Starts with 1, after first interrupt it is set to dma engine's
  144. * current cookie.
  145. * @pending_tx: The number of pending transfers. Used between interrupt handler
  146. * and tasklet.
  147. * @busy: Set to true when transfer is ongoing on this channel.
  148. * @phy_chan: Pointer to physical channel which this instance runs on. If this
  149. * point is NULL, then the channel is not allocated.
  150. * @chan: DMA engine handle.
  151. * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
  152. * transfer and call client callback.
  153. * @client: Cliented owned descriptor list.
  154. * @active: Active descriptor.
  155. * @queue: Queued jobs.
  156. * @dma_cfg: The client configuration of this dma channel.
  157. * @configured: whether the dma_cfg configuration is valid
  158. * @base: Pointer to the device instance struct.
  159. * @src_def_cfg: Default cfg register setting for src.
  160. * @dst_def_cfg: Default cfg register setting for dst.
  161. * @log_def: Default logical channel settings.
  162. * @lcla: Space for one dst src pair for logical channel transfers.
  163. * @lcpa: Pointer to dst and src lcpa settings.
  164. *
  165. * This struct can either "be" a logical or a physical channel.
  166. */
  167. struct d40_chan {
  168. spinlock_t lock;
  169. int log_num;
  170. /* ID of the most recent completed transfer */
  171. int completed;
  172. int pending_tx;
  173. bool busy;
  174. struct d40_phy_res *phy_chan;
  175. struct dma_chan chan;
  176. struct tasklet_struct tasklet;
  177. struct list_head client;
  178. struct list_head active;
  179. struct list_head queue;
  180. struct stedma40_chan_cfg dma_cfg;
  181. bool configured;
  182. struct d40_base *base;
  183. /* Default register configurations */
  184. u32 src_def_cfg;
  185. u32 dst_def_cfg;
  186. struct d40_def_lcsp log_def;
  187. struct d40_log_lli_full *lcpa;
  188. /* Runtime reconfiguration */
  189. dma_addr_t runtime_addr;
  190. enum dma_data_direction runtime_direction;
  191. };
  192. /**
  193. * struct d40_base - The big global struct, one for each probe'd instance.
  194. *
  195. * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
  196. * @execmd_lock: Lock for execute command usage since several channels share
  197. * the same physical register.
  198. * @dev: The device structure.
  199. * @virtbase: The virtual base address of the DMA's register.
  200. * @rev: silicon revision detected.
  201. * @clk: Pointer to the DMA clock structure.
  202. * @phy_start: Physical memory start of the DMA registers.
  203. * @phy_size: Size of the DMA register map.
  204. * @irq: The IRQ number.
  205. * @num_phy_chans: The number of physical channels. Read from HW. This
  206. * is the number of available channels for this driver, not counting "Secure
  207. * mode" allocated physical channels.
  208. * @num_log_chans: The number of logical channels. Calculated from
  209. * num_phy_chans.
  210. * @dma_both: dma_device channels that can do both memcpy and slave transfers.
  211. * @dma_slave: dma_device channels that can do only do slave transfers.
  212. * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
  213. * @log_chans: Room for all possible logical channels in system.
  214. * @lookup_log_chans: Used to map interrupt number to logical channel. Points
  215. * to log_chans entries.
  216. * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
  217. * to phy_chans entries.
  218. * @plat_data: Pointer to provided platform_data which is the driver
  219. * configuration.
  220. * @phy_res: Vector containing all physical channels.
  221. * @lcla_pool: lcla pool settings and data.
  222. * @lcpa_base: The virtual mapped address of LCPA.
  223. * @phy_lcpa: The physical address of the LCPA.
  224. * @lcpa_size: The size of the LCPA area.
  225. * @desc_slab: cache for descriptors.
  226. */
  227. struct d40_base {
  228. spinlock_t interrupt_lock;
  229. spinlock_t execmd_lock;
  230. struct device *dev;
  231. void __iomem *virtbase;
  232. u8 rev:4;
  233. struct clk *clk;
  234. phys_addr_t phy_start;
  235. resource_size_t phy_size;
  236. int irq;
  237. int num_phy_chans;
  238. int num_log_chans;
  239. struct dma_device dma_both;
  240. struct dma_device dma_slave;
  241. struct dma_device dma_memcpy;
  242. struct d40_chan *phy_chans;
  243. struct d40_chan *log_chans;
  244. struct d40_chan **lookup_log_chans;
  245. struct d40_chan **lookup_phy_chans;
  246. struct stedma40_platform_data *plat_data;
  247. /* Physical half channels */
  248. struct d40_phy_res *phy_res;
  249. struct d40_lcla_pool lcla_pool;
  250. void *lcpa_base;
  251. dma_addr_t phy_lcpa;
  252. resource_size_t lcpa_size;
  253. struct kmem_cache *desc_slab;
  254. };
  255. /**
  256. * struct d40_interrupt_lookup - lookup table for interrupt handler
  257. *
  258. * @src: Interrupt mask register.
  259. * @clr: Interrupt clear register.
  260. * @is_error: true if this is an error interrupt.
  261. * @offset: start delta in the lookup_log_chans in d40_base. If equals to
  262. * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
  263. */
  264. struct d40_interrupt_lookup {
  265. u32 src;
  266. u32 clr;
  267. bool is_error;
  268. int offset;
  269. };
  270. /**
  271. * struct d40_reg_val - simple lookup struct
  272. *
  273. * @reg: The register.
  274. * @val: The value that belongs to the register in reg.
  275. */
  276. struct d40_reg_val {
  277. unsigned int reg;
  278. unsigned int val;
  279. };
  280. static int d40_pool_lli_alloc(struct d40_desc *d40d,
  281. int lli_len, bool is_log)
  282. {
  283. u32 align;
  284. void *base;
  285. if (is_log)
  286. align = sizeof(struct d40_log_lli);
  287. else
  288. align = sizeof(struct d40_phy_lli);
  289. if (lli_len == 1) {
  290. base = d40d->lli_pool.pre_alloc_lli;
  291. d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
  292. d40d->lli_pool.base = NULL;
  293. } else {
  294. d40d->lli_pool.size = ALIGN(lli_len * 2 * align, align);
  295. base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
  296. d40d->lli_pool.base = base;
  297. if (d40d->lli_pool.base == NULL)
  298. return -ENOMEM;
  299. }
  300. if (is_log) {
  301. d40d->lli_log.src = PTR_ALIGN((struct d40_log_lli *) base,
  302. align);
  303. d40d->lli_log.dst = PTR_ALIGN(d40d->lli_log.src + lli_len,
  304. align);
  305. } else {
  306. d40d->lli_phy.src = PTR_ALIGN((struct d40_phy_lli *)base,
  307. align);
  308. d40d->lli_phy.dst = PTR_ALIGN(d40d->lli_phy.src + lli_len,
  309. align);
  310. }
  311. return 0;
  312. }
  313. static void d40_pool_lli_free(struct d40_desc *d40d)
  314. {
  315. kfree(d40d->lli_pool.base);
  316. d40d->lli_pool.base = NULL;
  317. d40d->lli_pool.size = 0;
  318. d40d->lli_log.src = NULL;
  319. d40d->lli_log.dst = NULL;
  320. d40d->lli_phy.src = NULL;
  321. d40d->lli_phy.dst = NULL;
  322. }
  323. static int d40_lcla_alloc_one(struct d40_chan *d40c,
  324. struct d40_desc *d40d)
  325. {
  326. unsigned long flags;
  327. int i;
  328. int ret = -EINVAL;
  329. int p;
  330. spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
  331. p = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP;
  332. /*
  333. * Allocate both src and dst at the same time, therefore the half
  334. * start on 1 since 0 can't be used since zero is used as end marker.
  335. */
  336. for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
  337. if (!d40c->base->lcla_pool.alloc_map[p + i]) {
  338. d40c->base->lcla_pool.alloc_map[p + i] = d40d;
  339. d40d->lcla_alloc++;
  340. ret = i;
  341. break;
  342. }
  343. }
  344. spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
  345. return ret;
  346. }
  347. static int d40_lcla_free_all(struct d40_chan *d40c,
  348. struct d40_desc *d40d)
  349. {
  350. unsigned long flags;
  351. int i;
  352. int ret = -EINVAL;
  353. if (d40c->log_num == D40_PHY_CHAN)
  354. return 0;
  355. spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
  356. for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
  357. if (d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
  358. D40_LCLA_LINK_PER_EVENT_GRP + i] == d40d) {
  359. d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
  360. D40_LCLA_LINK_PER_EVENT_GRP + i] = NULL;
  361. d40d->lcla_alloc--;
  362. if (d40d->lcla_alloc == 0) {
  363. ret = 0;
  364. break;
  365. }
  366. }
  367. }
  368. spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
  369. return ret;
  370. }
  371. static void d40_desc_remove(struct d40_desc *d40d)
  372. {
  373. list_del(&d40d->node);
  374. }
  375. static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
  376. {
  377. struct d40_desc *desc = NULL;
  378. if (!list_empty(&d40c->client)) {
  379. struct d40_desc *d;
  380. struct d40_desc *_d;
  381. list_for_each_entry_safe(d, _d, &d40c->client, node)
  382. if (async_tx_test_ack(&d->txd)) {
  383. d40_pool_lli_free(d);
  384. d40_desc_remove(d);
  385. desc = d;
  386. memset(desc, 0, sizeof(*desc));
  387. break;
  388. }
  389. }
  390. if (!desc)
  391. desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
  392. if (desc)
  393. INIT_LIST_HEAD(&desc->node);
  394. return desc;
  395. }
  396. static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
  397. {
  398. d40_lcla_free_all(d40c, d40d);
  399. kmem_cache_free(d40c->base->desc_slab, d40d);
  400. }
  401. static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
  402. {
  403. list_add_tail(&desc->node, &d40c->active);
  404. }
  405. static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
  406. {
  407. int curr_lcla = -EINVAL, next_lcla;
  408. if (d40c->log_num == D40_PHY_CHAN) {
  409. d40_phy_lli_write(d40c->base->virtbase,
  410. d40c->phy_chan->num,
  411. d40d->lli_phy.dst,
  412. d40d->lli_phy.src);
  413. d40d->lli_current = d40d->lli_len;
  414. } else {
  415. if ((d40d->lli_len - d40d->lli_current) > 1)
  416. curr_lcla = d40_lcla_alloc_one(d40c, d40d);
  417. d40_log_lli_lcpa_write(d40c->lcpa,
  418. &d40d->lli_log.dst[d40d->lli_current],
  419. &d40d->lli_log.src[d40d->lli_current],
  420. curr_lcla);
  421. d40d->lli_current++;
  422. for (; d40d->lli_current < d40d->lli_len; d40d->lli_current++) {
  423. struct d40_log_lli *lcla;
  424. if (d40d->lli_current + 1 < d40d->lli_len)
  425. next_lcla = d40_lcla_alloc_one(d40c, d40d);
  426. else
  427. next_lcla = -EINVAL;
  428. lcla = d40c->base->lcla_pool.base +
  429. d40c->phy_chan->num * 1024 +
  430. 8 * curr_lcla * 2;
  431. d40_log_lli_lcla_write(lcla,
  432. &d40d->lli_log.dst[d40d->lli_current],
  433. &d40d->lli_log.src[d40d->lli_current],
  434. next_lcla);
  435. (void) dma_map_single(d40c->base->dev, lcla,
  436. 2 * sizeof(struct d40_log_lli),
  437. DMA_TO_DEVICE);
  438. curr_lcla = next_lcla;
  439. if (curr_lcla == -EINVAL) {
  440. d40d->lli_current++;
  441. break;
  442. }
  443. }
  444. }
  445. }
  446. static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
  447. {
  448. struct d40_desc *d;
  449. if (list_empty(&d40c->active))
  450. return NULL;
  451. d = list_first_entry(&d40c->active,
  452. struct d40_desc,
  453. node);
  454. return d;
  455. }
  456. static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
  457. {
  458. list_add_tail(&desc->node, &d40c->queue);
  459. }
  460. static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
  461. {
  462. struct d40_desc *d;
  463. if (list_empty(&d40c->queue))
  464. return NULL;
  465. d = list_first_entry(&d40c->queue,
  466. struct d40_desc,
  467. node);
  468. return d;
  469. }
  470. static struct d40_desc *d40_last_queued(struct d40_chan *d40c)
  471. {
  472. struct d40_desc *d;
  473. if (list_empty(&d40c->queue))
  474. return NULL;
  475. list_for_each_entry(d, &d40c->queue, node)
  476. if (list_is_last(&d->node, &d40c->queue))
  477. break;
  478. return d;
  479. }
  480. static int d40_psize_2_burst_size(bool is_log, int psize)
  481. {
  482. if (is_log) {
  483. if (psize == STEDMA40_PSIZE_LOG_1)
  484. return 1;
  485. } else {
  486. if (psize == STEDMA40_PSIZE_PHY_1)
  487. return 1;
  488. }
  489. return 2 << psize;
  490. }
  491. /*
  492. * The dma only supports transmitting packages up to
  493. * STEDMA40_MAX_SEG_SIZE << data_width. Calculate the total number of
  494. * dma elements required to send the entire sg list
  495. */
  496. static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
  497. {
  498. int dmalen;
  499. u32 max_w = max(data_width1, data_width2);
  500. u32 min_w = min(data_width1, data_width2);
  501. u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w);
  502. if (seg_max > STEDMA40_MAX_SEG_SIZE)
  503. seg_max -= (1 << max_w);
  504. if (!IS_ALIGNED(size, 1 << max_w))
  505. return -EINVAL;
  506. if (size <= seg_max)
  507. dmalen = 1;
  508. else {
  509. dmalen = size / seg_max;
  510. if (dmalen * seg_max < size)
  511. dmalen++;
  512. }
  513. return dmalen;
  514. }
  515. static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
  516. u32 data_width1, u32 data_width2)
  517. {
  518. struct scatterlist *sg;
  519. int i;
  520. int len = 0;
  521. int ret;
  522. for_each_sg(sgl, sg, sg_len, i) {
  523. ret = d40_size_2_dmalen(sg_dma_len(sg),
  524. data_width1, data_width2);
  525. if (ret < 0)
  526. return ret;
  527. len += ret;
  528. }
  529. return len;
  530. }
  531. /* Support functions for logical channels */
  532. static int d40_channel_execute_command(struct d40_chan *d40c,
  533. enum d40_command command)
  534. {
  535. u32 status;
  536. int i;
  537. void __iomem *active_reg;
  538. int ret = 0;
  539. unsigned long flags;
  540. u32 wmask;
  541. spin_lock_irqsave(&d40c->base->execmd_lock, flags);
  542. if (d40c->phy_chan->num % 2 == 0)
  543. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  544. else
  545. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  546. if (command == D40_DMA_SUSPEND_REQ) {
  547. status = (readl(active_reg) &
  548. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  549. D40_CHAN_POS(d40c->phy_chan->num);
  550. if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
  551. goto done;
  552. }
  553. wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
  554. writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
  555. active_reg);
  556. if (command == D40_DMA_SUSPEND_REQ) {
  557. for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
  558. status = (readl(active_reg) &
  559. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  560. D40_CHAN_POS(d40c->phy_chan->num);
  561. cpu_relax();
  562. /*
  563. * Reduce the number of bus accesses while
  564. * waiting for the DMA to suspend.
  565. */
  566. udelay(3);
  567. if (status == D40_DMA_STOP ||
  568. status == D40_DMA_SUSPENDED)
  569. break;
  570. }
  571. if (i == D40_SUSPEND_MAX_IT) {
  572. dev_err(&d40c->chan.dev->device,
  573. "[%s]: unable to suspend the chl %d (log: %d) status %x\n",
  574. __func__, d40c->phy_chan->num, d40c->log_num,
  575. status);
  576. dump_stack();
  577. ret = -EBUSY;
  578. }
  579. }
  580. done:
  581. spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
  582. return ret;
  583. }
  584. static void d40_term_all(struct d40_chan *d40c)
  585. {
  586. struct d40_desc *d40d;
  587. /* Release active descriptors */
  588. while ((d40d = d40_first_active_get(d40c))) {
  589. d40_desc_remove(d40d);
  590. d40_desc_free(d40c, d40d);
  591. }
  592. /* Release queued descriptors waiting for transfer */
  593. while ((d40d = d40_first_queued(d40c))) {
  594. d40_desc_remove(d40d);
  595. d40_desc_free(d40c, d40d);
  596. }
  597. d40c->pending_tx = 0;
  598. d40c->busy = false;
  599. }
  600. static void d40_config_set_event(struct d40_chan *d40c, bool do_enable)
  601. {
  602. u32 val;
  603. unsigned long flags;
  604. /* Notice, that disable requires the physical channel to be stopped */
  605. if (do_enable)
  606. val = D40_ACTIVATE_EVENTLINE;
  607. else
  608. val = D40_DEACTIVATE_EVENTLINE;
  609. spin_lock_irqsave(&d40c->phy_chan->lock, flags);
  610. /* Enable event line connected to device (or memcpy) */
  611. if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
  612. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
  613. u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  614. writel((val << D40_EVENTLINE_POS(event)) |
  615. ~D40_EVENTLINE_MASK(event),
  616. d40c->base->virtbase + D40_DREG_PCBASE +
  617. d40c->phy_chan->num * D40_DREG_PCDELTA +
  618. D40_CHAN_REG_SSLNK);
  619. }
  620. if (d40c->dma_cfg.dir != STEDMA40_PERIPH_TO_MEM) {
  621. u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  622. writel((val << D40_EVENTLINE_POS(event)) |
  623. ~D40_EVENTLINE_MASK(event),
  624. d40c->base->virtbase + D40_DREG_PCBASE +
  625. d40c->phy_chan->num * D40_DREG_PCDELTA +
  626. D40_CHAN_REG_SDLNK);
  627. }
  628. spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
  629. }
  630. static u32 d40_chan_has_events(struct d40_chan *d40c)
  631. {
  632. u32 val;
  633. val = readl(d40c->base->virtbase + D40_DREG_PCBASE +
  634. d40c->phy_chan->num * D40_DREG_PCDELTA +
  635. D40_CHAN_REG_SSLNK);
  636. val |= readl(d40c->base->virtbase + D40_DREG_PCBASE +
  637. d40c->phy_chan->num * D40_DREG_PCDELTA +
  638. D40_CHAN_REG_SDLNK);
  639. return val;
  640. }
  641. static u32 d40_get_prmo(struct d40_chan *d40c)
  642. {
  643. static const unsigned int phy_map[] = {
  644. [STEDMA40_PCHAN_BASIC_MODE]
  645. = D40_DREG_PRMO_PCHAN_BASIC,
  646. [STEDMA40_PCHAN_MODULO_MODE]
  647. = D40_DREG_PRMO_PCHAN_MODULO,
  648. [STEDMA40_PCHAN_DOUBLE_DST_MODE]
  649. = D40_DREG_PRMO_PCHAN_DOUBLE_DST,
  650. };
  651. static const unsigned int log_map[] = {
  652. [STEDMA40_LCHAN_SRC_PHY_DST_LOG]
  653. = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
  654. [STEDMA40_LCHAN_SRC_LOG_DST_PHY]
  655. = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
  656. [STEDMA40_LCHAN_SRC_LOG_DST_LOG]
  657. = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
  658. };
  659. if (d40c->log_num == D40_PHY_CHAN)
  660. return phy_map[d40c->dma_cfg.mode_opt];
  661. else
  662. return log_map[d40c->dma_cfg.mode_opt];
  663. }
  664. static void d40_config_write(struct d40_chan *d40c)
  665. {
  666. u32 addr_base;
  667. u32 var;
  668. /* Odd addresses are even addresses + 4 */
  669. addr_base = (d40c->phy_chan->num % 2) * 4;
  670. /* Setup channel mode to logical or physical */
  671. var = ((u32)(d40c->log_num != D40_PHY_CHAN) + 1) <<
  672. D40_CHAN_POS(d40c->phy_chan->num);
  673. writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
  674. /* Setup operational mode option register */
  675. var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
  676. writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
  677. if (d40c->log_num != D40_PHY_CHAN) {
  678. /* Set default config for CFG reg */
  679. writel(d40c->src_def_cfg,
  680. d40c->base->virtbase + D40_DREG_PCBASE +
  681. d40c->phy_chan->num * D40_DREG_PCDELTA +
  682. D40_CHAN_REG_SSCFG);
  683. writel(d40c->dst_def_cfg,
  684. d40c->base->virtbase + D40_DREG_PCBASE +
  685. d40c->phy_chan->num * D40_DREG_PCDELTA +
  686. D40_CHAN_REG_SDCFG);
  687. /* Set LIDX for lcla */
  688. writel((d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS) &
  689. D40_SREG_ELEM_LOG_LIDX_MASK,
  690. d40c->base->virtbase + D40_DREG_PCBASE +
  691. d40c->phy_chan->num * D40_DREG_PCDELTA +
  692. D40_CHAN_REG_SDELT);
  693. writel((d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS) &
  694. D40_SREG_ELEM_LOG_LIDX_MASK,
  695. d40c->base->virtbase + D40_DREG_PCBASE +
  696. d40c->phy_chan->num * D40_DREG_PCDELTA +
  697. D40_CHAN_REG_SSELT);
  698. }
  699. }
  700. static u32 d40_residue(struct d40_chan *d40c)
  701. {
  702. u32 num_elt;
  703. if (d40c->log_num != D40_PHY_CHAN)
  704. num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
  705. >> D40_MEM_LCSP2_ECNT_POS;
  706. else
  707. num_elt = (readl(d40c->base->virtbase + D40_DREG_PCBASE +
  708. d40c->phy_chan->num * D40_DREG_PCDELTA +
  709. D40_CHAN_REG_SDELT) &
  710. D40_SREG_ELEM_PHY_ECNT_MASK) >>
  711. D40_SREG_ELEM_PHY_ECNT_POS;
  712. return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
  713. }
  714. static bool d40_tx_is_linked(struct d40_chan *d40c)
  715. {
  716. bool is_link;
  717. if (d40c->log_num != D40_PHY_CHAN)
  718. is_link = readl(&d40c->lcpa->lcsp3) & D40_MEM_LCSP3_DLOS_MASK;
  719. else
  720. is_link = readl(d40c->base->virtbase + D40_DREG_PCBASE +
  721. d40c->phy_chan->num * D40_DREG_PCDELTA +
  722. D40_CHAN_REG_SDLNK) &
  723. D40_SREG_LNK_PHYS_LNK_MASK;
  724. return is_link;
  725. }
  726. static int d40_pause(struct dma_chan *chan)
  727. {
  728. struct d40_chan *d40c =
  729. container_of(chan, struct d40_chan, chan);
  730. int res = 0;
  731. unsigned long flags;
  732. if (!d40c->busy)
  733. return 0;
  734. spin_lock_irqsave(&d40c->lock, flags);
  735. res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
  736. if (res == 0) {
  737. if (d40c->log_num != D40_PHY_CHAN) {
  738. d40_config_set_event(d40c, false);
  739. /* Resume the other logical channels if any */
  740. if (d40_chan_has_events(d40c))
  741. res = d40_channel_execute_command(d40c,
  742. D40_DMA_RUN);
  743. }
  744. }
  745. spin_unlock_irqrestore(&d40c->lock, flags);
  746. return res;
  747. }
  748. static int d40_resume(struct dma_chan *chan)
  749. {
  750. struct d40_chan *d40c =
  751. container_of(chan, struct d40_chan, chan);
  752. int res = 0;
  753. unsigned long flags;
  754. if (!d40c->busy)
  755. return 0;
  756. spin_lock_irqsave(&d40c->lock, flags);
  757. if (d40c->base->rev == 0)
  758. if (d40c->log_num != D40_PHY_CHAN) {
  759. res = d40_channel_execute_command(d40c,
  760. D40_DMA_SUSPEND_REQ);
  761. goto no_suspend;
  762. }
  763. /* If bytes left to transfer or linked tx resume job */
  764. if (d40_residue(d40c) || d40_tx_is_linked(d40c)) {
  765. if (d40c->log_num != D40_PHY_CHAN)
  766. d40_config_set_event(d40c, true);
  767. res = d40_channel_execute_command(d40c, D40_DMA_RUN);
  768. }
  769. no_suspend:
  770. spin_unlock_irqrestore(&d40c->lock, flags);
  771. return res;
  772. }
  773. static void d40_tx_submit_log(struct d40_chan *d40c, struct d40_desc *d40d)
  774. {
  775. /* TODO: Write */
  776. }
  777. static void d40_tx_submit_phy(struct d40_chan *d40c, struct d40_desc *d40d)
  778. {
  779. struct d40_desc *d40d_prev = NULL;
  780. int i;
  781. u32 val;
  782. if (!list_empty(&d40c->queue))
  783. d40d_prev = d40_last_queued(d40c);
  784. else if (!list_empty(&d40c->active))
  785. d40d_prev = d40_first_active_get(d40c);
  786. if (!d40d_prev)
  787. return;
  788. /* Here we try to join this job with previous jobs */
  789. val = readl(d40c->base->virtbase + D40_DREG_PCBASE +
  790. d40c->phy_chan->num * D40_DREG_PCDELTA +
  791. D40_CHAN_REG_SSLNK);
  792. /* Figure out which link we're currently transmitting */
  793. for (i = 0; i < d40d_prev->lli_len; i++)
  794. if (val == d40d_prev->lli_phy.src[i].reg_lnk)
  795. break;
  796. val = readl(d40c->base->virtbase + D40_DREG_PCBASE +
  797. d40c->phy_chan->num * D40_DREG_PCDELTA +
  798. D40_CHAN_REG_SSELT) >> D40_SREG_ELEM_LOG_ECNT_POS;
  799. if (i == (d40d_prev->lli_len - 1) && val > 0) {
  800. /* Change the current one */
  801. writel(virt_to_phys(d40d->lli_phy.src),
  802. d40c->base->virtbase + D40_DREG_PCBASE +
  803. d40c->phy_chan->num * D40_DREG_PCDELTA +
  804. D40_CHAN_REG_SSLNK);
  805. writel(virt_to_phys(d40d->lli_phy.dst),
  806. d40c->base->virtbase + D40_DREG_PCBASE +
  807. d40c->phy_chan->num * D40_DREG_PCDELTA +
  808. D40_CHAN_REG_SDLNK);
  809. d40d->is_hw_linked = true;
  810. } else if (i < d40d_prev->lli_len) {
  811. (void) dma_unmap_single(d40c->base->dev,
  812. virt_to_phys(d40d_prev->lli_phy.src),
  813. d40d_prev->lli_pool.size,
  814. DMA_TO_DEVICE);
  815. /* Keep the settings */
  816. val = d40d_prev->lli_phy.src[d40d_prev->lli_len - 1].reg_lnk &
  817. ~D40_SREG_LNK_PHYS_LNK_MASK;
  818. d40d_prev->lli_phy.src[d40d_prev->lli_len - 1].reg_lnk =
  819. val | virt_to_phys(d40d->lli_phy.src);
  820. val = d40d_prev->lli_phy.dst[d40d_prev->lli_len - 1].reg_lnk &
  821. ~D40_SREG_LNK_PHYS_LNK_MASK;
  822. d40d_prev->lli_phy.dst[d40d_prev->lli_len - 1].reg_lnk =
  823. val | virt_to_phys(d40d->lli_phy.dst);
  824. (void) dma_map_single(d40c->base->dev,
  825. d40d_prev->lli_phy.src,
  826. d40d_prev->lli_pool.size,
  827. DMA_TO_DEVICE);
  828. d40d->is_hw_linked = true;
  829. }
  830. }
  831. static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
  832. {
  833. struct d40_chan *d40c = container_of(tx->chan,
  834. struct d40_chan,
  835. chan);
  836. struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
  837. unsigned long flags;
  838. (void) d40_pause(&d40c->chan);
  839. spin_lock_irqsave(&d40c->lock, flags);
  840. d40c->chan.cookie++;
  841. if (d40c->chan.cookie < 0)
  842. d40c->chan.cookie = 1;
  843. d40d->txd.cookie = d40c->chan.cookie;
  844. if (d40c->log_num == D40_PHY_CHAN)
  845. d40_tx_submit_phy(d40c, d40d);
  846. else
  847. d40_tx_submit_log(d40c, d40d);
  848. d40_desc_queue(d40c, d40d);
  849. spin_unlock_irqrestore(&d40c->lock, flags);
  850. (void) d40_resume(&d40c->chan);
  851. return tx->cookie;
  852. }
  853. static int d40_start(struct d40_chan *d40c)
  854. {
  855. if (d40c->base->rev == 0) {
  856. int err;
  857. if (d40c->log_num != D40_PHY_CHAN) {
  858. err = d40_channel_execute_command(d40c,
  859. D40_DMA_SUSPEND_REQ);
  860. if (err)
  861. return err;
  862. }
  863. }
  864. if (d40c->log_num != D40_PHY_CHAN)
  865. d40_config_set_event(d40c, true);
  866. return d40_channel_execute_command(d40c, D40_DMA_RUN);
  867. }
  868. static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
  869. {
  870. struct d40_desc *d40d;
  871. int err;
  872. /* Start queued jobs, if any */
  873. d40d = d40_first_queued(d40c);
  874. if (d40d != NULL) {
  875. d40c->busy = true;
  876. /* Remove from queue */
  877. d40_desc_remove(d40d);
  878. /* Add to active queue */
  879. d40_desc_submit(d40c, d40d);
  880. /*
  881. * If this job is already linked in hw,
  882. * do not submit it.
  883. */
  884. if (!d40d->is_hw_linked) {
  885. /* Initiate DMA job */
  886. d40_desc_load(d40c, d40d);
  887. /* Start dma job */
  888. err = d40_start(d40c);
  889. if (err)
  890. return NULL;
  891. }
  892. }
  893. return d40d;
  894. }
  895. /* called from interrupt context */
  896. static void dma_tc_handle(struct d40_chan *d40c)
  897. {
  898. struct d40_desc *d40d;
  899. /* Get first active entry from list */
  900. d40d = d40_first_active_get(d40c);
  901. if (d40d == NULL)
  902. return;
  903. d40_lcla_free_all(d40c, d40d);
  904. if (d40d->lli_current < d40d->lli_len) {
  905. d40_desc_load(d40c, d40d);
  906. /* Start dma job */
  907. (void) d40_start(d40c);
  908. return;
  909. }
  910. if (d40_queue_start(d40c) == NULL)
  911. d40c->busy = false;
  912. d40c->pending_tx++;
  913. tasklet_schedule(&d40c->tasklet);
  914. }
  915. static void dma_tasklet(unsigned long data)
  916. {
  917. struct d40_chan *d40c = (struct d40_chan *) data;
  918. struct d40_desc *d40d;
  919. unsigned long flags;
  920. dma_async_tx_callback callback;
  921. void *callback_param;
  922. spin_lock_irqsave(&d40c->lock, flags);
  923. /* Get first active entry from list */
  924. d40d = d40_first_active_get(d40c);
  925. if (d40d == NULL)
  926. goto err;
  927. d40c->completed = d40d->txd.cookie;
  928. /*
  929. * If terminating a channel pending_tx is set to zero.
  930. * This prevents any finished active jobs to return to the client.
  931. */
  932. if (d40c->pending_tx == 0) {
  933. spin_unlock_irqrestore(&d40c->lock, flags);
  934. return;
  935. }
  936. /* Callback to client */
  937. callback = d40d->txd.callback;
  938. callback_param = d40d->txd.callback_param;
  939. if (async_tx_test_ack(&d40d->txd)) {
  940. d40_pool_lli_free(d40d);
  941. d40_desc_remove(d40d);
  942. d40_desc_free(d40c, d40d);
  943. } else {
  944. if (!d40d->is_in_client_list) {
  945. d40_desc_remove(d40d);
  946. d40_lcla_free_all(d40c, d40d);
  947. list_add_tail(&d40d->node, &d40c->client);
  948. d40d->is_in_client_list = true;
  949. }
  950. }
  951. d40c->pending_tx--;
  952. if (d40c->pending_tx)
  953. tasklet_schedule(&d40c->tasklet);
  954. spin_unlock_irqrestore(&d40c->lock, flags);
  955. if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
  956. callback(callback_param);
  957. return;
  958. err:
  959. /* Rescue manouver if receiving double interrupts */
  960. if (d40c->pending_tx > 0)
  961. d40c->pending_tx--;
  962. spin_unlock_irqrestore(&d40c->lock, flags);
  963. }
  964. static irqreturn_t d40_handle_interrupt(int irq, void *data)
  965. {
  966. static const struct d40_interrupt_lookup il[] = {
  967. {D40_DREG_LCTIS0, D40_DREG_LCICR0, false, 0},
  968. {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
  969. {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
  970. {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
  971. {D40_DREG_LCEIS0, D40_DREG_LCICR0, true, 0},
  972. {D40_DREG_LCEIS1, D40_DREG_LCICR1, true, 32},
  973. {D40_DREG_LCEIS2, D40_DREG_LCICR2, true, 64},
  974. {D40_DREG_LCEIS3, D40_DREG_LCICR3, true, 96},
  975. {D40_DREG_PCTIS, D40_DREG_PCICR, false, D40_PHY_CHAN},
  976. {D40_DREG_PCEIS, D40_DREG_PCICR, true, D40_PHY_CHAN},
  977. };
  978. int i;
  979. u32 regs[ARRAY_SIZE(il)];
  980. u32 idx;
  981. u32 row;
  982. long chan = -1;
  983. struct d40_chan *d40c;
  984. unsigned long flags;
  985. struct d40_base *base = data;
  986. spin_lock_irqsave(&base->interrupt_lock, flags);
  987. /* Read interrupt status of both logical and physical channels */
  988. for (i = 0; i < ARRAY_SIZE(il); i++)
  989. regs[i] = readl(base->virtbase + il[i].src);
  990. for (;;) {
  991. chan = find_next_bit((unsigned long *)regs,
  992. BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);
  993. /* No more set bits found? */
  994. if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
  995. break;
  996. row = chan / BITS_PER_LONG;
  997. idx = chan & (BITS_PER_LONG - 1);
  998. /* ACK interrupt */
  999. writel(1 << idx, base->virtbase + il[row].clr);
  1000. if (il[row].offset == D40_PHY_CHAN)
  1001. d40c = base->lookup_phy_chans[idx];
  1002. else
  1003. d40c = base->lookup_log_chans[il[row].offset + idx];
  1004. spin_lock(&d40c->lock);
  1005. if (!il[row].is_error)
  1006. dma_tc_handle(d40c);
  1007. else
  1008. dev_err(base->dev,
  1009. "[%s] IRQ chan: %ld offset %d idx %d\n",
  1010. __func__, chan, il[row].offset, idx);
  1011. spin_unlock(&d40c->lock);
  1012. }
  1013. spin_unlock_irqrestore(&base->interrupt_lock, flags);
  1014. return IRQ_HANDLED;
  1015. }
  1016. static int d40_validate_conf(struct d40_chan *d40c,
  1017. struct stedma40_chan_cfg *conf)
  1018. {
  1019. int res = 0;
  1020. u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
  1021. u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
  1022. bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
  1023. if (!conf->dir) {
  1024. dev_err(&d40c->chan.dev->device, "[%s] Invalid direction.\n",
  1025. __func__);
  1026. res = -EINVAL;
  1027. }
  1028. if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
  1029. d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
  1030. d40c->runtime_addr == 0) {
  1031. dev_err(&d40c->chan.dev->device,
  1032. "[%s] Invalid TX channel address (%d)\n",
  1033. __func__, conf->dst_dev_type);
  1034. res = -EINVAL;
  1035. }
  1036. if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
  1037. d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
  1038. d40c->runtime_addr == 0) {
  1039. dev_err(&d40c->chan.dev->device,
  1040. "[%s] Invalid RX channel address (%d)\n",
  1041. __func__, conf->src_dev_type);
  1042. res = -EINVAL;
  1043. }
  1044. if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
  1045. dst_event_group == STEDMA40_DEV_DST_MEMORY) {
  1046. dev_err(&d40c->chan.dev->device, "[%s] Invalid dst\n",
  1047. __func__);
  1048. res = -EINVAL;
  1049. }
  1050. if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
  1051. src_event_group == STEDMA40_DEV_SRC_MEMORY) {
  1052. dev_err(&d40c->chan.dev->device, "[%s] Invalid src\n",
  1053. __func__);
  1054. res = -EINVAL;
  1055. }
  1056. if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
  1057. dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
  1058. dev_err(&d40c->chan.dev->device,
  1059. "[%s] No event line\n", __func__);
  1060. res = -EINVAL;
  1061. }
  1062. if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
  1063. (src_event_group != dst_event_group)) {
  1064. dev_err(&d40c->chan.dev->device,
  1065. "[%s] Invalid event group\n", __func__);
  1066. res = -EINVAL;
  1067. }
  1068. if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
  1069. /*
  1070. * DMAC HW supports it. Will be added to this driver,
  1071. * in case any dma client requires it.
  1072. */
  1073. dev_err(&d40c->chan.dev->device,
  1074. "[%s] periph to periph not supported\n",
  1075. __func__);
  1076. res = -EINVAL;
  1077. }
  1078. if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
  1079. (1 << conf->src_info.data_width) !=
  1080. d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
  1081. (1 << conf->dst_info.data_width)) {
  1082. /*
  1083. * The DMAC hardware only supports
  1084. * src (burst x width) == dst (burst x width)
  1085. */
  1086. dev_err(&d40c->chan.dev->device,
  1087. "[%s] src (burst x width) != dst (burst x width)\n",
  1088. __func__);
  1089. res = -EINVAL;
  1090. }
  1091. return res;
  1092. }
  1093. static bool d40_alloc_mask_set(struct d40_phy_res *phy, bool is_src,
  1094. int log_event_line, bool is_log)
  1095. {
  1096. unsigned long flags;
  1097. spin_lock_irqsave(&phy->lock, flags);
  1098. if (!is_log) {
  1099. /* Physical interrupts are masked per physical full channel */
  1100. if (phy->allocated_src == D40_ALLOC_FREE &&
  1101. phy->allocated_dst == D40_ALLOC_FREE) {
  1102. phy->allocated_dst = D40_ALLOC_PHY;
  1103. phy->allocated_src = D40_ALLOC_PHY;
  1104. goto found;
  1105. } else
  1106. goto not_found;
  1107. }
  1108. /* Logical channel */
  1109. if (is_src) {
  1110. if (phy->allocated_src == D40_ALLOC_PHY)
  1111. goto not_found;
  1112. if (phy->allocated_src == D40_ALLOC_FREE)
  1113. phy->allocated_src = D40_ALLOC_LOG_FREE;
  1114. if (!(phy->allocated_src & (1 << log_event_line))) {
  1115. phy->allocated_src |= 1 << log_event_line;
  1116. goto found;
  1117. } else
  1118. goto not_found;
  1119. } else {
  1120. if (phy->allocated_dst == D40_ALLOC_PHY)
  1121. goto not_found;
  1122. if (phy->allocated_dst == D40_ALLOC_FREE)
  1123. phy->allocated_dst = D40_ALLOC_LOG_FREE;
  1124. if (!(phy->allocated_dst & (1 << log_event_line))) {
  1125. phy->allocated_dst |= 1 << log_event_line;
  1126. goto found;
  1127. } else
  1128. goto not_found;
  1129. }
  1130. not_found:
  1131. spin_unlock_irqrestore(&phy->lock, flags);
  1132. return false;
  1133. found:
  1134. spin_unlock_irqrestore(&phy->lock, flags);
  1135. return true;
  1136. }
  1137. static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
  1138. int log_event_line)
  1139. {
  1140. unsigned long flags;
  1141. bool is_free = false;
  1142. spin_lock_irqsave(&phy->lock, flags);
  1143. if (!log_event_line) {
  1144. phy->allocated_dst = D40_ALLOC_FREE;
  1145. phy->allocated_src = D40_ALLOC_FREE;
  1146. is_free = true;
  1147. goto out;
  1148. }
  1149. /* Logical channel */
  1150. if (is_src) {
  1151. phy->allocated_src &= ~(1 << log_event_line);
  1152. if (phy->allocated_src == D40_ALLOC_LOG_FREE)
  1153. phy->allocated_src = D40_ALLOC_FREE;
  1154. } else {
  1155. phy->allocated_dst &= ~(1 << log_event_line);
  1156. if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
  1157. phy->allocated_dst = D40_ALLOC_FREE;
  1158. }
  1159. is_free = ((phy->allocated_src | phy->allocated_dst) ==
  1160. D40_ALLOC_FREE);
  1161. out:
  1162. spin_unlock_irqrestore(&phy->lock, flags);
  1163. return is_free;
  1164. }
  1165. static int d40_allocate_channel(struct d40_chan *d40c)
  1166. {
  1167. int dev_type;
  1168. int event_group;
  1169. int event_line;
  1170. struct d40_phy_res *phys;
  1171. int i;
  1172. int j;
  1173. int log_num;
  1174. bool is_src;
  1175. bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
  1176. phys = d40c->base->phy_res;
  1177. if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1178. dev_type = d40c->dma_cfg.src_dev_type;
  1179. log_num = 2 * dev_type;
  1180. is_src = true;
  1181. } else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1182. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1183. /* dst event lines are used for logical memcpy */
  1184. dev_type = d40c->dma_cfg.dst_dev_type;
  1185. log_num = 2 * dev_type + 1;
  1186. is_src = false;
  1187. } else
  1188. return -EINVAL;
  1189. event_group = D40_TYPE_TO_GROUP(dev_type);
  1190. event_line = D40_TYPE_TO_EVENT(dev_type);
  1191. if (!is_log) {
  1192. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1193. /* Find physical half channel */
  1194. for (i = 0; i < d40c->base->num_phy_chans; i++) {
  1195. if (d40_alloc_mask_set(&phys[i], is_src,
  1196. 0, is_log))
  1197. goto found_phy;
  1198. }
  1199. } else
  1200. for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
  1201. int phy_num = j + event_group * 2;
  1202. for (i = phy_num; i < phy_num + 2; i++) {
  1203. if (d40_alloc_mask_set(&phys[i],
  1204. is_src,
  1205. 0,
  1206. is_log))
  1207. goto found_phy;
  1208. }
  1209. }
  1210. return -EINVAL;
  1211. found_phy:
  1212. d40c->phy_chan = &phys[i];
  1213. d40c->log_num = D40_PHY_CHAN;
  1214. goto out;
  1215. }
  1216. if (dev_type == -1)
  1217. return -EINVAL;
  1218. /* Find logical channel */
  1219. for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
  1220. int phy_num = j + event_group * 2;
  1221. /*
  1222. * Spread logical channels across all available physical rather
  1223. * than pack every logical channel at the first available phy
  1224. * channels.
  1225. */
  1226. if (is_src) {
  1227. for (i = phy_num; i < phy_num + 2; i++) {
  1228. if (d40_alloc_mask_set(&phys[i], is_src,
  1229. event_line, is_log))
  1230. goto found_log;
  1231. }
  1232. } else {
  1233. for (i = phy_num + 1; i >= phy_num; i--) {
  1234. if (d40_alloc_mask_set(&phys[i], is_src,
  1235. event_line, is_log))
  1236. goto found_log;
  1237. }
  1238. }
  1239. }
  1240. return -EINVAL;
  1241. found_log:
  1242. d40c->phy_chan = &phys[i];
  1243. d40c->log_num = log_num;
  1244. out:
  1245. if (is_log)
  1246. d40c->base->lookup_log_chans[d40c->log_num] = d40c;
  1247. else
  1248. d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
  1249. return 0;
  1250. }
  1251. static int d40_config_memcpy(struct d40_chan *d40c)
  1252. {
  1253. dma_cap_mask_t cap = d40c->chan.device->cap_mask;
  1254. if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
  1255. d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
  1256. d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
  1257. d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
  1258. memcpy[d40c->chan.chan_id];
  1259. } else if (dma_has_cap(DMA_MEMCPY, cap) &&
  1260. dma_has_cap(DMA_SLAVE, cap)) {
  1261. d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
  1262. } else {
  1263. dev_err(&d40c->chan.dev->device, "[%s] No memcpy\n",
  1264. __func__);
  1265. return -EINVAL;
  1266. }
  1267. return 0;
  1268. }
  1269. static int d40_free_dma(struct d40_chan *d40c)
  1270. {
  1271. int res = 0;
  1272. u32 event;
  1273. struct d40_phy_res *phy = d40c->phy_chan;
  1274. bool is_src;
  1275. struct d40_desc *d;
  1276. struct d40_desc *_d;
  1277. /* Terminate all queued and active transfers */
  1278. d40_term_all(d40c);
  1279. /* Release client owned descriptors */
  1280. if (!list_empty(&d40c->client))
  1281. list_for_each_entry_safe(d, _d, &d40c->client, node) {
  1282. d40_pool_lli_free(d);
  1283. d40_desc_remove(d);
  1284. d40_desc_free(d40c, d);
  1285. }
  1286. if (phy == NULL) {
  1287. dev_err(&d40c->chan.dev->device, "[%s] phy == null\n",
  1288. __func__);
  1289. return -EINVAL;
  1290. }
  1291. if (phy->allocated_src == D40_ALLOC_FREE &&
  1292. phy->allocated_dst == D40_ALLOC_FREE) {
  1293. dev_err(&d40c->chan.dev->device, "[%s] channel already free\n",
  1294. __func__);
  1295. return -EINVAL;
  1296. }
  1297. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1298. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1299. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  1300. is_src = false;
  1301. } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1302. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  1303. is_src = true;
  1304. } else {
  1305. dev_err(&d40c->chan.dev->device,
  1306. "[%s] Unknown direction\n", __func__);
  1307. return -EINVAL;
  1308. }
  1309. res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
  1310. if (res) {
  1311. dev_err(&d40c->chan.dev->device, "[%s] suspend failed\n",
  1312. __func__);
  1313. return res;
  1314. }
  1315. if (d40c->log_num != D40_PHY_CHAN) {
  1316. /* Release logical channel, deactivate the event line */
  1317. d40_config_set_event(d40c, false);
  1318. d40c->base->lookup_log_chans[d40c->log_num] = NULL;
  1319. /*
  1320. * Check if there are more logical allocation
  1321. * on this phy channel.
  1322. */
  1323. if (!d40_alloc_mask_free(phy, is_src, event)) {
  1324. /* Resume the other logical channels if any */
  1325. if (d40_chan_has_events(d40c)) {
  1326. res = d40_channel_execute_command(d40c,
  1327. D40_DMA_RUN);
  1328. if (res) {
  1329. dev_err(&d40c->chan.dev->device,
  1330. "[%s] Executing RUN command\n",
  1331. __func__);
  1332. return res;
  1333. }
  1334. }
  1335. return 0;
  1336. }
  1337. } else {
  1338. (void) d40_alloc_mask_free(phy, is_src, 0);
  1339. }
  1340. /* Release physical channel */
  1341. res = d40_channel_execute_command(d40c, D40_DMA_STOP);
  1342. if (res) {
  1343. dev_err(&d40c->chan.dev->device,
  1344. "[%s] Failed to stop channel\n", __func__);
  1345. return res;
  1346. }
  1347. d40c->phy_chan = NULL;
  1348. d40c->configured = false;
  1349. d40c->base->lookup_phy_chans[phy->num] = NULL;
  1350. return 0;
  1351. }
  1352. static bool d40_is_paused(struct d40_chan *d40c)
  1353. {
  1354. bool is_paused = false;
  1355. unsigned long flags;
  1356. void __iomem *active_reg;
  1357. u32 status;
  1358. u32 event;
  1359. spin_lock_irqsave(&d40c->lock, flags);
  1360. if (d40c->log_num == D40_PHY_CHAN) {
  1361. if (d40c->phy_chan->num % 2 == 0)
  1362. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  1363. else
  1364. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  1365. status = (readl(active_reg) &
  1366. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  1367. D40_CHAN_POS(d40c->phy_chan->num);
  1368. if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
  1369. is_paused = true;
  1370. goto _exit;
  1371. }
  1372. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1373. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1374. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  1375. status = readl(d40c->base->virtbase + D40_DREG_PCBASE +
  1376. d40c->phy_chan->num * D40_DREG_PCDELTA +
  1377. D40_CHAN_REG_SDLNK);
  1378. } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1379. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  1380. status = readl(d40c->base->virtbase + D40_DREG_PCBASE +
  1381. d40c->phy_chan->num * D40_DREG_PCDELTA +
  1382. D40_CHAN_REG_SSLNK);
  1383. } else {
  1384. dev_err(&d40c->chan.dev->device,
  1385. "[%s] Unknown direction\n", __func__);
  1386. goto _exit;
  1387. }
  1388. status = (status & D40_EVENTLINE_MASK(event)) >>
  1389. D40_EVENTLINE_POS(event);
  1390. if (status != D40_DMA_RUN)
  1391. is_paused = true;
  1392. _exit:
  1393. spin_unlock_irqrestore(&d40c->lock, flags);
  1394. return is_paused;
  1395. }
  1396. static u32 stedma40_residue(struct dma_chan *chan)
  1397. {
  1398. struct d40_chan *d40c =
  1399. container_of(chan, struct d40_chan, chan);
  1400. u32 bytes_left;
  1401. unsigned long flags;
  1402. spin_lock_irqsave(&d40c->lock, flags);
  1403. bytes_left = d40_residue(d40c);
  1404. spin_unlock_irqrestore(&d40c->lock, flags);
  1405. return bytes_left;
  1406. }
  1407. struct dma_async_tx_descriptor *stedma40_memcpy_sg(struct dma_chan *chan,
  1408. struct scatterlist *sgl_dst,
  1409. struct scatterlist *sgl_src,
  1410. unsigned int sgl_len,
  1411. unsigned long dma_flags)
  1412. {
  1413. int res;
  1414. struct d40_desc *d40d;
  1415. struct d40_chan *d40c = container_of(chan, struct d40_chan,
  1416. chan);
  1417. unsigned long flags;
  1418. if (d40c->phy_chan == NULL) {
  1419. dev_err(&d40c->chan.dev->device,
  1420. "[%s] Unallocated channel.\n", __func__);
  1421. return ERR_PTR(-EINVAL);
  1422. }
  1423. spin_lock_irqsave(&d40c->lock, flags);
  1424. d40d = d40_desc_get(d40c);
  1425. if (d40d == NULL)
  1426. goto err;
  1427. d40d->lli_len = d40_sg_2_dmalen(sgl_dst, sgl_len,
  1428. d40c->dma_cfg.src_info.data_width,
  1429. d40c->dma_cfg.dst_info.data_width);
  1430. if (d40d->lli_len < 0) {
  1431. dev_err(&d40c->chan.dev->device,
  1432. "[%s] Unaligned size\n", __func__);
  1433. goto err;
  1434. }
  1435. d40d->lli_current = 0;
  1436. d40d->txd.flags = dma_flags;
  1437. if (d40c->log_num != D40_PHY_CHAN) {
  1438. if (d40_pool_lli_alloc(d40d, d40d->lli_len, true) < 0) {
  1439. dev_err(&d40c->chan.dev->device,
  1440. "[%s] Out of memory\n", __func__);
  1441. goto err;
  1442. }
  1443. (void) d40_log_sg_to_lli(sgl_src,
  1444. sgl_len,
  1445. d40d->lli_log.src,
  1446. d40c->log_def.lcsp1,
  1447. d40c->dma_cfg.src_info.data_width,
  1448. d40c->dma_cfg.dst_info.data_width);
  1449. (void) d40_log_sg_to_lli(sgl_dst,
  1450. sgl_len,
  1451. d40d->lli_log.dst,
  1452. d40c->log_def.lcsp3,
  1453. d40c->dma_cfg.dst_info.data_width,
  1454. d40c->dma_cfg.src_info.data_width);
  1455. } else {
  1456. if (d40_pool_lli_alloc(d40d, d40d->lli_len, false) < 0) {
  1457. dev_err(&d40c->chan.dev->device,
  1458. "[%s] Out of memory\n", __func__);
  1459. goto err;
  1460. }
  1461. res = d40_phy_sg_to_lli(sgl_src,
  1462. sgl_len,
  1463. 0,
  1464. d40d->lli_phy.src,
  1465. virt_to_phys(d40d->lli_phy.src),
  1466. d40c->src_def_cfg,
  1467. d40c->dma_cfg.src_info.data_width,
  1468. d40c->dma_cfg.dst_info.data_width,
  1469. d40c->dma_cfg.src_info.psize);
  1470. if (res < 0)
  1471. goto err;
  1472. res = d40_phy_sg_to_lli(sgl_dst,
  1473. sgl_len,
  1474. 0,
  1475. d40d->lli_phy.dst,
  1476. virt_to_phys(d40d->lli_phy.dst),
  1477. d40c->dst_def_cfg,
  1478. d40c->dma_cfg.dst_info.data_width,
  1479. d40c->dma_cfg.src_info.data_width,
  1480. d40c->dma_cfg.dst_info.psize);
  1481. if (res < 0)
  1482. goto err;
  1483. (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
  1484. d40d->lli_pool.size, DMA_TO_DEVICE);
  1485. }
  1486. dma_async_tx_descriptor_init(&d40d->txd, chan);
  1487. d40d->txd.tx_submit = d40_tx_submit;
  1488. spin_unlock_irqrestore(&d40c->lock, flags);
  1489. return &d40d->txd;
  1490. err:
  1491. if (d40d)
  1492. d40_desc_free(d40c, d40d);
  1493. spin_unlock_irqrestore(&d40c->lock, flags);
  1494. return NULL;
  1495. }
  1496. EXPORT_SYMBOL(stedma40_memcpy_sg);
  1497. bool stedma40_filter(struct dma_chan *chan, void *data)
  1498. {
  1499. struct stedma40_chan_cfg *info = data;
  1500. struct d40_chan *d40c =
  1501. container_of(chan, struct d40_chan, chan);
  1502. int err;
  1503. if (data) {
  1504. err = d40_validate_conf(d40c, info);
  1505. if (!err)
  1506. d40c->dma_cfg = *info;
  1507. } else
  1508. err = d40_config_memcpy(d40c);
  1509. if (!err)
  1510. d40c->configured = true;
  1511. return err == 0;
  1512. }
  1513. EXPORT_SYMBOL(stedma40_filter);
  1514. /* DMA ENGINE functions */
  1515. static int d40_alloc_chan_resources(struct dma_chan *chan)
  1516. {
  1517. int err;
  1518. unsigned long flags;
  1519. struct d40_chan *d40c =
  1520. container_of(chan, struct d40_chan, chan);
  1521. bool is_free_phy;
  1522. spin_lock_irqsave(&d40c->lock, flags);
  1523. d40c->completed = chan->cookie = 1;
  1524. /* If no dma configuration is set use default configuration (memcpy) */
  1525. if (!d40c->configured) {
  1526. err = d40_config_memcpy(d40c);
  1527. if (err) {
  1528. dev_err(&d40c->chan.dev->device,
  1529. "[%s] Failed to configure memcpy channel\n",
  1530. __func__);
  1531. goto fail;
  1532. }
  1533. }
  1534. is_free_phy = (d40c->phy_chan == NULL);
  1535. err = d40_allocate_channel(d40c);
  1536. if (err) {
  1537. dev_err(&d40c->chan.dev->device,
  1538. "[%s] Failed to allocate channel\n", __func__);
  1539. goto fail;
  1540. }
  1541. /* Fill in basic CFG register values */
  1542. d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
  1543. &d40c->dst_def_cfg, d40c->log_num != D40_PHY_CHAN);
  1544. if (d40c->log_num != D40_PHY_CHAN) {
  1545. d40_log_cfg(&d40c->dma_cfg,
  1546. &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
  1547. if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
  1548. d40c->lcpa = d40c->base->lcpa_base +
  1549. d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
  1550. else
  1551. d40c->lcpa = d40c->base->lcpa_base +
  1552. d40c->dma_cfg.dst_dev_type *
  1553. D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
  1554. }
  1555. /*
  1556. * Only write channel configuration to the DMA if the physical
  1557. * resource is free. In case of multiple logical channels
  1558. * on the same physical resource, only the first write is necessary.
  1559. */
  1560. if (is_free_phy)
  1561. d40_config_write(d40c);
  1562. fail:
  1563. spin_unlock_irqrestore(&d40c->lock, flags);
  1564. return err;
  1565. }
  1566. static void d40_free_chan_resources(struct dma_chan *chan)
  1567. {
  1568. struct d40_chan *d40c =
  1569. container_of(chan, struct d40_chan, chan);
  1570. int err;
  1571. unsigned long flags;
  1572. if (d40c->phy_chan == NULL) {
  1573. dev_err(&d40c->chan.dev->device,
  1574. "[%s] Cannot free unallocated channel\n", __func__);
  1575. return;
  1576. }
  1577. spin_lock_irqsave(&d40c->lock, flags);
  1578. err = d40_free_dma(d40c);
  1579. if (err)
  1580. dev_err(&d40c->chan.dev->device,
  1581. "[%s] Failed to free channel\n", __func__);
  1582. spin_unlock_irqrestore(&d40c->lock, flags);
  1583. }
  1584. static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
  1585. dma_addr_t dst,
  1586. dma_addr_t src,
  1587. size_t size,
  1588. unsigned long dma_flags)
  1589. {
  1590. struct d40_desc *d40d;
  1591. struct d40_chan *d40c = container_of(chan, struct d40_chan,
  1592. chan);
  1593. unsigned long flags;
  1594. if (d40c->phy_chan == NULL) {
  1595. dev_err(&d40c->chan.dev->device,
  1596. "[%s] Channel is not allocated.\n", __func__);
  1597. return ERR_PTR(-EINVAL);
  1598. }
  1599. spin_lock_irqsave(&d40c->lock, flags);
  1600. d40d = d40_desc_get(d40c);
  1601. if (d40d == NULL) {
  1602. dev_err(&d40c->chan.dev->device,
  1603. "[%s] Descriptor is NULL\n", __func__);
  1604. goto err;
  1605. }
  1606. d40d->txd.flags = dma_flags;
  1607. d40d->lli_len = d40_size_2_dmalen(size,
  1608. d40c->dma_cfg.src_info.data_width,
  1609. d40c->dma_cfg.dst_info.data_width);
  1610. if (d40d->lli_len < 0) {
  1611. dev_err(&d40c->chan.dev->device,
  1612. "[%s] Unaligned size\n", __func__);
  1613. goto err;
  1614. }
  1615. dma_async_tx_descriptor_init(&d40d->txd, chan);
  1616. d40d->txd.tx_submit = d40_tx_submit;
  1617. if (d40c->log_num != D40_PHY_CHAN) {
  1618. if (d40_pool_lli_alloc(d40d, d40d->lli_len, true) < 0) {
  1619. dev_err(&d40c->chan.dev->device,
  1620. "[%s] Out of memory\n", __func__);
  1621. goto err;
  1622. }
  1623. d40d->lli_current = 0;
  1624. if (d40_log_buf_to_lli(d40d->lli_log.src,
  1625. src,
  1626. size,
  1627. d40c->log_def.lcsp1,
  1628. d40c->dma_cfg.src_info.data_width,
  1629. d40c->dma_cfg.dst_info.data_width,
  1630. true) == NULL)
  1631. goto err;
  1632. if (d40_log_buf_to_lli(d40d->lli_log.dst,
  1633. dst,
  1634. size,
  1635. d40c->log_def.lcsp3,
  1636. d40c->dma_cfg.dst_info.data_width,
  1637. d40c->dma_cfg.src_info.data_width,
  1638. true) == NULL)
  1639. goto err;
  1640. } else {
  1641. if (d40_pool_lli_alloc(d40d, d40d->lli_len, false) < 0) {
  1642. dev_err(&d40c->chan.dev->device,
  1643. "[%s] Out of memory\n", __func__);
  1644. goto err;
  1645. }
  1646. if (d40_phy_buf_to_lli(d40d->lli_phy.src,
  1647. src,
  1648. size,
  1649. d40c->dma_cfg.src_info.psize,
  1650. 0,
  1651. d40c->src_def_cfg,
  1652. true,
  1653. d40c->dma_cfg.src_info.data_width,
  1654. d40c->dma_cfg.dst_info.data_width,
  1655. false) == NULL)
  1656. goto err;
  1657. if (d40_phy_buf_to_lli(d40d->lli_phy.dst,
  1658. dst,
  1659. size,
  1660. d40c->dma_cfg.dst_info.psize,
  1661. 0,
  1662. d40c->dst_def_cfg,
  1663. true,
  1664. d40c->dma_cfg.dst_info.data_width,
  1665. d40c->dma_cfg.src_info.data_width,
  1666. false) == NULL)
  1667. goto err;
  1668. (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
  1669. d40d->lli_pool.size, DMA_TO_DEVICE);
  1670. }
  1671. spin_unlock_irqrestore(&d40c->lock, flags);
  1672. return &d40d->txd;
  1673. err:
  1674. if (d40d)
  1675. d40_desc_free(d40c, d40d);
  1676. spin_unlock_irqrestore(&d40c->lock, flags);
  1677. return NULL;
  1678. }
  1679. static struct dma_async_tx_descriptor *
  1680. d40_prep_sg(struct dma_chan *chan,
  1681. struct scatterlist *dst_sg, unsigned int dst_nents,
  1682. struct scatterlist *src_sg, unsigned int src_nents,
  1683. unsigned long dma_flags)
  1684. {
  1685. if (dst_nents != src_nents)
  1686. return NULL;
  1687. return stedma40_memcpy_sg(chan, dst_sg, src_sg, dst_nents, dma_flags);
  1688. }
  1689. static int d40_prep_slave_sg_log(struct d40_desc *d40d,
  1690. struct d40_chan *d40c,
  1691. struct scatterlist *sgl,
  1692. unsigned int sg_len,
  1693. enum dma_data_direction direction,
  1694. unsigned long dma_flags)
  1695. {
  1696. dma_addr_t dev_addr = 0;
  1697. int total_size;
  1698. d40d->lli_len = d40_sg_2_dmalen(sgl, sg_len,
  1699. d40c->dma_cfg.src_info.data_width,
  1700. d40c->dma_cfg.dst_info.data_width);
  1701. if (d40d->lli_len < 0) {
  1702. dev_err(&d40c->chan.dev->device,
  1703. "[%s] Unaligned size\n", __func__);
  1704. return -EINVAL;
  1705. }
  1706. if (d40_pool_lli_alloc(d40d, d40d->lli_len, true) < 0) {
  1707. dev_err(&d40c->chan.dev->device,
  1708. "[%s] Out of memory\n", __func__);
  1709. return -ENOMEM;
  1710. }
  1711. d40d->lli_current = 0;
  1712. if (direction == DMA_FROM_DEVICE)
  1713. if (d40c->runtime_addr)
  1714. dev_addr = d40c->runtime_addr;
  1715. else
  1716. dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type];
  1717. else if (direction == DMA_TO_DEVICE)
  1718. if (d40c->runtime_addr)
  1719. dev_addr = d40c->runtime_addr;
  1720. else
  1721. dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type];
  1722. else
  1723. return -EINVAL;
  1724. total_size = d40_log_sg_to_dev(sgl, sg_len,
  1725. &d40d->lli_log,
  1726. &d40c->log_def,
  1727. d40c->dma_cfg.src_info.data_width,
  1728. d40c->dma_cfg.dst_info.data_width,
  1729. direction,
  1730. dev_addr);
  1731. if (total_size < 0)
  1732. return -EINVAL;
  1733. return 0;
  1734. }
  1735. static int d40_prep_slave_sg_phy(struct d40_desc *d40d,
  1736. struct d40_chan *d40c,
  1737. struct scatterlist *sgl,
  1738. unsigned int sgl_len,
  1739. enum dma_data_direction direction,
  1740. unsigned long dma_flags)
  1741. {
  1742. dma_addr_t src_dev_addr;
  1743. dma_addr_t dst_dev_addr;
  1744. int res;
  1745. d40d->lli_len = d40_sg_2_dmalen(sgl, sgl_len,
  1746. d40c->dma_cfg.src_info.data_width,
  1747. d40c->dma_cfg.dst_info.data_width);
  1748. if (d40d->lli_len < 0) {
  1749. dev_err(&d40c->chan.dev->device,
  1750. "[%s] Unaligned size\n", __func__);
  1751. return -EINVAL;
  1752. }
  1753. if (d40_pool_lli_alloc(d40d, d40d->lli_len, false) < 0) {
  1754. dev_err(&d40c->chan.dev->device,
  1755. "[%s] Out of memory\n", __func__);
  1756. return -ENOMEM;
  1757. }
  1758. d40d->lli_current = 0;
  1759. if (direction == DMA_FROM_DEVICE) {
  1760. dst_dev_addr = 0;
  1761. if (d40c->runtime_addr)
  1762. src_dev_addr = d40c->runtime_addr;
  1763. else
  1764. src_dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type];
  1765. } else if (direction == DMA_TO_DEVICE) {
  1766. if (d40c->runtime_addr)
  1767. dst_dev_addr = d40c->runtime_addr;
  1768. else
  1769. dst_dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type];
  1770. src_dev_addr = 0;
  1771. } else
  1772. return -EINVAL;
  1773. res = d40_phy_sg_to_lli(sgl,
  1774. sgl_len,
  1775. src_dev_addr,
  1776. d40d->lli_phy.src,
  1777. virt_to_phys(d40d->lli_phy.src),
  1778. d40c->src_def_cfg,
  1779. d40c->dma_cfg.src_info.data_width,
  1780. d40c->dma_cfg.dst_info.data_width,
  1781. d40c->dma_cfg.src_info.psize);
  1782. if (res < 0)
  1783. return res;
  1784. res = d40_phy_sg_to_lli(sgl,
  1785. sgl_len,
  1786. dst_dev_addr,
  1787. d40d->lli_phy.dst,
  1788. virt_to_phys(d40d->lli_phy.dst),
  1789. d40c->dst_def_cfg,
  1790. d40c->dma_cfg.dst_info.data_width,
  1791. d40c->dma_cfg.src_info.data_width,
  1792. d40c->dma_cfg.dst_info.psize);
  1793. if (res < 0)
  1794. return res;
  1795. (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
  1796. d40d->lli_pool.size, DMA_TO_DEVICE);
  1797. return 0;
  1798. }
  1799. static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
  1800. struct scatterlist *sgl,
  1801. unsigned int sg_len,
  1802. enum dma_data_direction direction,
  1803. unsigned long dma_flags)
  1804. {
  1805. struct d40_desc *d40d;
  1806. struct d40_chan *d40c = container_of(chan, struct d40_chan,
  1807. chan);
  1808. unsigned long flags;
  1809. int err;
  1810. if (d40c->phy_chan == NULL) {
  1811. dev_err(&d40c->chan.dev->device,
  1812. "[%s] Cannot prepare unallocated channel\n", __func__);
  1813. return ERR_PTR(-EINVAL);
  1814. }
  1815. spin_lock_irqsave(&d40c->lock, flags);
  1816. d40d = d40_desc_get(d40c);
  1817. if (d40d == NULL)
  1818. goto err;
  1819. if (d40c->log_num != D40_PHY_CHAN)
  1820. err = d40_prep_slave_sg_log(d40d, d40c, sgl, sg_len,
  1821. direction, dma_flags);
  1822. else
  1823. err = d40_prep_slave_sg_phy(d40d, d40c, sgl, sg_len,
  1824. direction, dma_flags);
  1825. if (err) {
  1826. dev_err(&d40c->chan.dev->device,
  1827. "[%s] Failed to prepare %s slave sg job: %d\n",
  1828. __func__,
  1829. d40c->log_num != D40_PHY_CHAN ? "log" : "phy", err);
  1830. goto err;
  1831. }
  1832. d40d->txd.flags = dma_flags;
  1833. dma_async_tx_descriptor_init(&d40d->txd, chan);
  1834. d40d->txd.tx_submit = d40_tx_submit;
  1835. spin_unlock_irqrestore(&d40c->lock, flags);
  1836. return &d40d->txd;
  1837. err:
  1838. if (d40d)
  1839. d40_desc_free(d40c, d40d);
  1840. spin_unlock_irqrestore(&d40c->lock, flags);
  1841. return NULL;
  1842. }
  1843. static enum dma_status d40_tx_status(struct dma_chan *chan,
  1844. dma_cookie_t cookie,
  1845. struct dma_tx_state *txstate)
  1846. {
  1847. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1848. dma_cookie_t last_used;
  1849. dma_cookie_t last_complete;
  1850. int ret;
  1851. if (d40c->phy_chan == NULL) {
  1852. dev_err(&d40c->chan.dev->device,
  1853. "[%s] Cannot read status of unallocated channel\n",
  1854. __func__);
  1855. return -EINVAL;
  1856. }
  1857. last_complete = d40c->completed;
  1858. last_used = chan->cookie;
  1859. if (d40_is_paused(d40c))
  1860. ret = DMA_PAUSED;
  1861. else
  1862. ret = dma_async_is_complete(cookie, last_complete, last_used);
  1863. dma_set_tx_state(txstate, last_complete, last_used,
  1864. stedma40_residue(chan));
  1865. return ret;
  1866. }
  1867. static void d40_issue_pending(struct dma_chan *chan)
  1868. {
  1869. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1870. unsigned long flags;
  1871. if (d40c->phy_chan == NULL) {
  1872. dev_err(&d40c->chan.dev->device,
  1873. "[%s] Channel is not allocated!\n", __func__);
  1874. return;
  1875. }
  1876. spin_lock_irqsave(&d40c->lock, flags);
  1877. /* Busy means that pending jobs are already being processed */
  1878. if (!d40c->busy)
  1879. (void) d40_queue_start(d40c);
  1880. spin_unlock_irqrestore(&d40c->lock, flags);
  1881. }
  1882. /* Runtime reconfiguration extension */
  1883. static void d40_set_runtime_config(struct dma_chan *chan,
  1884. struct dma_slave_config *config)
  1885. {
  1886. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1887. struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
  1888. enum dma_slave_buswidth config_addr_width;
  1889. dma_addr_t config_addr;
  1890. u32 config_maxburst;
  1891. enum stedma40_periph_data_width addr_width;
  1892. int psize;
  1893. if (config->direction == DMA_FROM_DEVICE) {
  1894. dma_addr_t dev_addr_rx =
  1895. d40c->base->plat_data->dev_rx[cfg->src_dev_type];
  1896. config_addr = config->src_addr;
  1897. if (dev_addr_rx)
  1898. dev_dbg(d40c->base->dev,
  1899. "channel has a pre-wired RX address %08x "
  1900. "overriding with %08x\n",
  1901. dev_addr_rx, config_addr);
  1902. if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
  1903. dev_dbg(d40c->base->dev,
  1904. "channel was not configured for peripheral "
  1905. "to memory transfer (%d) overriding\n",
  1906. cfg->dir);
  1907. cfg->dir = STEDMA40_PERIPH_TO_MEM;
  1908. config_addr_width = config->src_addr_width;
  1909. config_maxburst = config->src_maxburst;
  1910. } else if (config->direction == DMA_TO_DEVICE) {
  1911. dma_addr_t dev_addr_tx =
  1912. d40c->base->plat_data->dev_tx[cfg->dst_dev_type];
  1913. config_addr = config->dst_addr;
  1914. if (dev_addr_tx)
  1915. dev_dbg(d40c->base->dev,
  1916. "channel has a pre-wired TX address %08x "
  1917. "overriding with %08x\n",
  1918. dev_addr_tx, config_addr);
  1919. if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
  1920. dev_dbg(d40c->base->dev,
  1921. "channel was not configured for memory "
  1922. "to peripheral transfer (%d) overriding\n",
  1923. cfg->dir);
  1924. cfg->dir = STEDMA40_MEM_TO_PERIPH;
  1925. config_addr_width = config->dst_addr_width;
  1926. config_maxburst = config->dst_maxburst;
  1927. } else {
  1928. dev_err(d40c->base->dev,
  1929. "unrecognized channel direction %d\n",
  1930. config->direction);
  1931. return;
  1932. }
  1933. switch (config_addr_width) {
  1934. case DMA_SLAVE_BUSWIDTH_1_BYTE:
  1935. addr_width = STEDMA40_BYTE_WIDTH;
  1936. break;
  1937. case DMA_SLAVE_BUSWIDTH_2_BYTES:
  1938. addr_width = STEDMA40_HALFWORD_WIDTH;
  1939. break;
  1940. case DMA_SLAVE_BUSWIDTH_4_BYTES:
  1941. addr_width = STEDMA40_WORD_WIDTH;
  1942. break;
  1943. case DMA_SLAVE_BUSWIDTH_8_BYTES:
  1944. addr_width = STEDMA40_DOUBLEWORD_WIDTH;
  1945. break;
  1946. default:
  1947. dev_err(d40c->base->dev,
  1948. "illegal peripheral address width "
  1949. "requested (%d)\n",
  1950. config->src_addr_width);
  1951. return;
  1952. }
  1953. if (d40c->log_num != D40_PHY_CHAN) {
  1954. if (config_maxburst >= 16)
  1955. psize = STEDMA40_PSIZE_LOG_16;
  1956. else if (config_maxburst >= 8)
  1957. psize = STEDMA40_PSIZE_LOG_8;
  1958. else if (config_maxburst >= 4)
  1959. psize = STEDMA40_PSIZE_LOG_4;
  1960. else
  1961. psize = STEDMA40_PSIZE_LOG_1;
  1962. } else {
  1963. if (config_maxburst >= 16)
  1964. psize = STEDMA40_PSIZE_PHY_16;
  1965. else if (config_maxburst >= 8)
  1966. psize = STEDMA40_PSIZE_PHY_8;
  1967. else if (config_maxburst >= 4)
  1968. psize = STEDMA40_PSIZE_PHY_4;
  1969. else if (config_maxburst >= 2)
  1970. psize = STEDMA40_PSIZE_PHY_2;
  1971. else
  1972. psize = STEDMA40_PSIZE_PHY_1;
  1973. }
  1974. /* Set up all the endpoint configs */
  1975. cfg->src_info.data_width = addr_width;
  1976. cfg->src_info.psize = psize;
  1977. cfg->src_info.big_endian = false;
  1978. cfg->src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
  1979. cfg->dst_info.data_width = addr_width;
  1980. cfg->dst_info.psize = psize;
  1981. cfg->dst_info.big_endian = false;
  1982. cfg->dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
  1983. /* Fill in register values */
  1984. if (d40c->log_num != D40_PHY_CHAN)
  1985. d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
  1986. else
  1987. d40_phy_cfg(cfg, &d40c->src_def_cfg,
  1988. &d40c->dst_def_cfg, false);
  1989. /* These settings will take precedence later */
  1990. d40c->runtime_addr = config_addr;
  1991. d40c->runtime_direction = config->direction;
  1992. dev_dbg(d40c->base->dev,
  1993. "configured channel %s for %s, data width %d, "
  1994. "maxburst %d bytes, LE, no flow control\n",
  1995. dma_chan_name(chan),
  1996. (config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
  1997. config_addr_width,
  1998. config_maxburst);
  1999. }
  2000. static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  2001. unsigned long arg)
  2002. {
  2003. unsigned long flags;
  2004. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  2005. if (d40c->phy_chan == NULL) {
  2006. dev_err(&d40c->chan.dev->device,
  2007. "[%s] Channel is not allocated!\n", __func__);
  2008. return -EINVAL;
  2009. }
  2010. switch (cmd) {
  2011. case DMA_TERMINATE_ALL:
  2012. spin_lock_irqsave(&d40c->lock, flags);
  2013. d40_term_all(d40c);
  2014. spin_unlock_irqrestore(&d40c->lock, flags);
  2015. return 0;
  2016. case DMA_PAUSE:
  2017. return d40_pause(chan);
  2018. case DMA_RESUME:
  2019. return d40_resume(chan);
  2020. case DMA_SLAVE_CONFIG:
  2021. d40_set_runtime_config(chan,
  2022. (struct dma_slave_config *) arg);
  2023. return 0;
  2024. default:
  2025. break;
  2026. }
  2027. /* Other commands are unimplemented */
  2028. return -ENXIO;
  2029. }
  2030. /* Initialization functions */
  2031. static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
  2032. struct d40_chan *chans, int offset,
  2033. int num_chans)
  2034. {
  2035. int i = 0;
  2036. struct d40_chan *d40c;
  2037. INIT_LIST_HEAD(&dma->channels);
  2038. for (i = offset; i < offset + num_chans; i++) {
  2039. d40c = &chans[i];
  2040. d40c->base = base;
  2041. d40c->chan.device = dma;
  2042. spin_lock_init(&d40c->lock);
  2043. d40c->log_num = D40_PHY_CHAN;
  2044. INIT_LIST_HEAD(&d40c->active);
  2045. INIT_LIST_HEAD(&d40c->queue);
  2046. INIT_LIST_HEAD(&d40c->client);
  2047. tasklet_init(&d40c->tasklet, dma_tasklet,
  2048. (unsigned long) d40c);
  2049. list_add_tail(&d40c->chan.device_node,
  2050. &dma->channels);
  2051. }
  2052. }
  2053. static int __init d40_dmaengine_init(struct d40_base *base,
  2054. int num_reserved_chans)
  2055. {
  2056. int err ;
  2057. d40_chan_init(base, &base->dma_slave, base->log_chans,
  2058. 0, base->num_log_chans);
  2059. dma_cap_zero(base->dma_slave.cap_mask);
  2060. dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
  2061. base->dma_slave.device_alloc_chan_resources = d40_alloc_chan_resources;
  2062. base->dma_slave.device_free_chan_resources = d40_free_chan_resources;
  2063. base->dma_slave.device_prep_dma_memcpy = d40_prep_memcpy;
  2064. base->dma_slave.device_prep_dma_sg = d40_prep_sg;
  2065. base->dma_slave.device_prep_slave_sg = d40_prep_slave_sg;
  2066. base->dma_slave.device_tx_status = d40_tx_status;
  2067. base->dma_slave.device_issue_pending = d40_issue_pending;
  2068. base->dma_slave.device_control = d40_control;
  2069. base->dma_slave.dev = base->dev;
  2070. err = dma_async_device_register(&base->dma_slave);
  2071. if (err) {
  2072. dev_err(base->dev,
  2073. "[%s] Failed to register slave channels\n",
  2074. __func__);
  2075. goto failure1;
  2076. }
  2077. d40_chan_init(base, &base->dma_memcpy, base->log_chans,
  2078. base->num_log_chans, base->plat_data->memcpy_len);
  2079. dma_cap_zero(base->dma_memcpy.cap_mask);
  2080. dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
  2081. dma_cap_set(DMA_SG, base->dma_slave.cap_mask);
  2082. base->dma_memcpy.device_alloc_chan_resources = d40_alloc_chan_resources;
  2083. base->dma_memcpy.device_free_chan_resources = d40_free_chan_resources;
  2084. base->dma_memcpy.device_prep_dma_memcpy = d40_prep_memcpy;
  2085. base->dma_slave.device_prep_dma_sg = d40_prep_sg;
  2086. base->dma_memcpy.device_prep_slave_sg = d40_prep_slave_sg;
  2087. base->dma_memcpy.device_tx_status = d40_tx_status;
  2088. base->dma_memcpy.device_issue_pending = d40_issue_pending;
  2089. base->dma_memcpy.device_control = d40_control;
  2090. base->dma_memcpy.dev = base->dev;
  2091. /*
  2092. * This controller can only access address at even
  2093. * 32bit boundaries, i.e. 2^2
  2094. */
  2095. base->dma_memcpy.copy_align = 2;
  2096. err = dma_async_device_register(&base->dma_memcpy);
  2097. if (err) {
  2098. dev_err(base->dev,
  2099. "[%s] Failed to regsiter memcpy only channels\n",
  2100. __func__);
  2101. goto failure2;
  2102. }
  2103. d40_chan_init(base, &base->dma_both, base->phy_chans,
  2104. 0, num_reserved_chans);
  2105. dma_cap_zero(base->dma_both.cap_mask);
  2106. dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
  2107. dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
  2108. dma_cap_set(DMA_SG, base->dma_slave.cap_mask);
  2109. base->dma_both.device_alloc_chan_resources = d40_alloc_chan_resources;
  2110. base->dma_both.device_free_chan_resources = d40_free_chan_resources;
  2111. base->dma_both.device_prep_dma_memcpy = d40_prep_memcpy;
  2112. base->dma_slave.device_prep_dma_sg = d40_prep_sg;
  2113. base->dma_both.device_prep_slave_sg = d40_prep_slave_sg;
  2114. base->dma_both.device_tx_status = d40_tx_status;
  2115. base->dma_both.device_issue_pending = d40_issue_pending;
  2116. base->dma_both.device_control = d40_control;
  2117. base->dma_both.dev = base->dev;
  2118. base->dma_both.copy_align = 2;
  2119. err = dma_async_device_register(&base->dma_both);
  2120. if (err) {
  2121. dev_err(base->dev,
  2122. "[%s] Failed to register logical and physical capable channels\n",
  2123. __func__);
  2124. goto failure3;
  2125. }
  2126. return 0;
  2127. failure3:
  2128. dma_async_device_unregister(&base->dma_memcpy);
  2129. failure2:
  2130. dma_async_device_unregister(&base->dma_slave);
  2131. failure1:
  2132. return err;
  2133. }
  2134. /* Initialization functions. */
  2135. static int __init d40_phy_res_init(struct d40_base *base)
  2136. {
  2137. int i;
  2138. int num_phy_chans_avail = 0;
  2139. u32 val[2];
  2140. int odd_even_bit = -2;
  2141. val[0] = readl(base->virtbase + D40_DREG_PRSME);
  2142. val[1] = readl(base->virtbase + D40_DREG_PRSMO);
  2143. for (i = 0; i < base->num_phy_chans; i++) {
  2144. base->phy_res[i].num = i;
  2145. odd_even_bit += 2 * ((i % 2) == 0);
  2146. if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
  2147. /* Mark security only channels as occupied */
  2148. base->phy_res[i].allocated_src = D40_ALLOC_PHY;
  2149. base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
  2150. } else {
  2151. base->phy_res[i].allocated_src = D40_ALLOC_FREE;
  2152. base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
  2153. num_phy_chans_avail++;
  2154. }
  2155. spin_lock_init(&base->phy_res[i].lock);
  2156. }
  2157. /* Mark disabled channels as occupied */
  2158. for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
  2159. int chan = base->plat_data->disabled_channels[i];
  2160. base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
  2161. base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
  2162. num_phy_chans_avail--;
  2163. }
  2164. dev_info(base->dev, "%d of %d physical DMA channels available\n",
  2165. num_phy_chans_avail, base->num_phy_chans);
  2166. /* Verify settings extended vs standard */
  2167. val[0] = readl(base->virtbase + D40_DREG_PRTYP);
  2168. for (i = 0; i < base->num_phy_chans; i++) {
  2169. if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
  2170. (val[0] & 0x3) != 1)
  2171. dev_info(base->dev,
  2172. "[%s] INFO: channel %d is misconfigured (%d)\n",
  2173. __func__, i, val[0] & 0x3);
  2174. val[0] = val[0] >> 2;
  2175. }
  2176. return num_phy_chans_avail;
  2177. }
  2178. static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
  2179. {
  2180. static const struct d40_reg_val dma_id_regs[] = {
  2181. /* Peripheral Id */
  2182. { .reg = D40_DREG_PERIPHID0, .val = 0x0040},
  2183. { .reg = D40_DREG_PERIPHID1, .val = 0x0000},
  2184. /*
  2185. * D40_DREG_PERIPHID2 Depends on HW revision:
  2186. * MOP500/HREF ED has 0x0008,
  2187. * ? has 0x0018,
  2188. * HREF V1 has 0x0028
  2189. */
  2190. { .reg = D40_DREG_PERIPHID3, .val = 0x0000},
  2191. /* PCell Id */
  2192. { .reg = D40_DREG_CELLID0, .val = 0x000d},
  2193. { .reg = D40_DREG_CELLID1, .val = 0x00f0},
  2194. { .reg = D40_DREG_CELLID2, .val = 0x0005},
  2195. { .reg = D40_DREG_CELLID3, .val = 0x00b1}
  2196. };
  2197. struct stedma40_platform_data *plat_data;
  2198. struct clk *clk = NULL;
  2199. void __iomem *virtbase = NULL;
  2200. struct resource *res = NULL;
  2201. struct d40_base *base = NULL;
  2202. int num_log_chans = 0;
  2203. int num_phy_chans;
  2204. int i;
  2205. u32 val;
  2206. u32 rev;
  2207. clk = clk_get(&pdev->dev, NULL);
  2208. if (IS_ERR(clk)) {
  2209. dev_err(&pdev->dev, "[%s] No matching clock found\n",
  2210. __func__);
  2211. goto failure;
  2212. }
  2213. clk_enable(clk);
  2214. /* Get IO for DMAC base address */
  2215. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
  2216. if (!res)
  2217. goto failure;
  2218. if (request_mem_region(res->start, resource_size(res),
  2219. D40_NAME " I/O base") == NULL)
  2220. goto failure;
  2221. virtbase = ioremap(res->start, resource_size(res));
  2222. if (!virtbase)
  2223. goto failure;
  2224. /* HW version check */
  2225. for (i = 0; i < ARRAY_SIZE(dma_id_regs); i++) {
  2226. if (dma_id_regs[i].val !=
  2227. readl(virtbase + dma_id_regs[i].reg)) {
  2228. dev_err(&pdev->dev,
  2229. "[%s] Unknown hardware! Expected 0x%x at 0x%x but got 0x%x\n",
  2230. __func__,
  2231. dma_id_regs[i].val,
  2232. dma_id_regs[i].reg,
  2233. readl(virtbase + dma_id_regs[i].reg));
  2234. goto failure;
  2235. }
  2236. }
  2237. /* Get silicon revision and designer */
  2238. val = readl(virtbase + D40_DREG_PERIPHID2);
  2239. if ((val & D40_DREG_PERIPHID2_DESIGNER_MASK) !=
  2240. D40_HW_DESIGNER) {
  2241. dev_err(&pdev->dev,
  2242. "[%s] Unknown designer! Got %x wanted %x\n",
  2243. __func__, val & D40_DREG_PERIPHID2_DESIGNER_MASK,
  2244. D40_HW_DESIGNER);
  2245. goto failure;
  2246. }
  2247. rev = (val & D40_DREG_PERIPHID2_REV_MASK) >>
  2248. D40_DREG_PERIPHID2_REV_POS;
  2249. /* The number of physical channels on this HW */
  2250. num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
  2251. dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
  2252. rev, res->start);
  2253. plat_data = pdev->dev.platform_data;
  2254. /* Count the number of logical channels in use */
  2255. for (i = 0; i < plat_data->dev_len; i++)
  2256. if (plat_data->dev_rx[i] != 0)
  2257. num_log_chans++;
  2258. for (i = 0; i < plat_data->dev_len; i++)
  2259. if (plat_data->dev_tx[i] != 0)
  2260. num_log_chans++;
  2261. base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
  2262. (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
  2263. sizeof(struct d40_chan), GFP_KERNEL);
  2264. if (base == NULL) {
  2265. dev_err(&pdev->dev, "[%s] Out of memory\n", __func__);
  2266. goto failure;
  2267. }
  2268. base->rev = rev;
  2269. base->clk = clk;
  2270. base->num_phy_chans = num_phy_chans;
  2271. base->num_log_chans = num_log_chans;
  2272. base->phy_start = res->start;
  2273. base->phy_size = resource_size(res);
  2274. base->virtbase = virtbase;
  2275. base->plat_data = plat_data;
  2276. base->dev = &pdev->dev;
  2277. base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
  2278. base->log_chans = &base->phy_chans[num_phy_chans];
  2279. base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
  2280. GFP_KERNEL);
  2281. if (!base->phy_res)
  2282. goto failure;
  2283. base->lookup_phy_chans = kzalloc(num_phy_chans *
  2284. sizeof(struct d40_chan *),
  2285. GFP_KERNEL);
  2286. if (!base->lookup_phy_chans)
  2287. goto failure;
  2288. if (num_log_chans + plat_data->memcpy_len) {
  2289. /*
  2290. * The max number of logical channels are event lines for all
  2291. * src devices and dst devices
  2292. */
  2293. base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
  2294. sizeof(struct d40_chan *),
  2295. GFP_KERNEL);
  2296. if (!base->lookup_log_chans)
  2297. goto failure;
  2298. }
  2299. base->lcla_pool.alloc_map = kzalloc(num_phy_chans *
  2300. sizeof(struct d40_desc *) *
  2301. D40_LCLA_LINK_PER_EVENT_GRP,
  2302. GFP_KERNEL);
  2303. if (!base->lcla_pool.alloc_map)
  2304. goto failure;
  2305. base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
  2306. 0, SLAB_HWCACHE_ALIGN,
  2307. NULL);
  2308. if (base->desc_slab == NULL)
  2309. goto failure;
  2310. return base;
  2311. failure:
  2312. if (!IS_ERR(clk)) {
  2313. clk_disable(clk);
  2314. clk_put(clk);
  2315. }
  2316. if (virtbase)
  2317. iounmap(virtbase);
  2318. if (res)
  2319. release_mem_region(res->start,
  2320. resource_size(res));
  2321. if (virtbase)
  2322. iounmap(virtbase);
  2323. if (base) {
  2324. kfree(base->lcla_pool.alloc_map);
  2325. kfree(base->lookup_log_chans);
  2326. kfree(base->lookup_phy_chans);
  2327. kfree(base->phy_res);
  2328. kfree(base);
  2329. }
  2330. return NULL;
  2331. }
  2332. static void __init d40_hw_init(struct d40_base *base)
  2333. {
  2334. static const struct d40_reg_val dma_init_reg[] = {
  2335. /* Clock every part of the DMA block from start */
  2336. { .reg = D40_DREG_GCC, .val = 0x0000ff01},
  2337. /* Interrupts on all logical channels */
  2338. { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
  2339. { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
  2340. { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
  2341. { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
  2342. { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
  2343. { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
  2344. { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
  2345. { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
  2346. { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
  2347. { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
  2348. { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
  2349. { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
  2350. };
  2351. int i;
  2352. u32 prmseo[2] = {0, 0};
  2353. u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
  2354. u32 pcmis = 0;
  2355. u32 pcicr = 0;
  2356. for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
  2357. writel(dma_init_reg[i].val,
  2358. base->virtbase + dma_init_reg[i].reg);
  2359. /* Configure all our dma channels to default settings */
  2360. for (i = 0; i < base->num_phy_chans; i++) {
  2361. activeo[i % 2] = activeo[i % 2] << 2;
  2362. if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
  2363. == D40_ALLOC_PHY) {
  2364. activeo[i % 2] |= 3;
  2365. continue;
  2366. }
  2367. /* Enable interrupt # */
  2368. pcmis = (pcmis << 1) | 1;
  2369. /* Clear interrupt # */
  2370. pcicr = (pcicr << 1) | 1;
  2371. /* Set channel to physical mode */
  2372. prmseo[i % 2] = prmseo[i % 2] << 2;
  2373. prmseo[i % 2] |= 1;
  2374. }
  2375. writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
  2376. writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
  2377. writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
  2378. writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
  2379. /* Write which interrupt to enable */
  2380. writel(pcmis, base->virtbase + D40_DREG_PCMIS);
  2381. /* Write which interrupt to clear */
  2382. writel(pcicr, base->virtbase + D40_DREG_PCICR);
  2383. }
  2384. static int __init d40_lcla_allocate(struct d40_base *base)
  2385. {
  2386. unsigned long *page_list;
  2387. int i, j;
  2388. int ret = 0;
  2389. /*
  2390. * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
  2391. * To full fill this hardware requirement without wasting 256 kb
  2392. * we allocate pages until we get an aligned one.
  2393. */
  2394. page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
  2395. GFP_KERNEL);
  2396. if (!page_list) {
  2397. ret = -ENOMEM;
  2398. goto failure;
  2399. }
  2400. /* Calculating how many pages that are required */
  2401. base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
  2402. for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
  2403. page_list[i] = __get_free_pages(GFP_KERNEL,
  2404. base->lcla_pool.pages);
  2405. if (!page_list[i]) {
  2406. dev_err(base->dev,
  2407. "[%s] Failed to allocate %d pages.\n",
  2408. __func__, base->lcla_pool.pages);
  2409. for (j = 0; j < i; j++)
  2410. free_pages(page_list[j], base->lcla_pool.pages);
  2411. goto failure;
  2412. }
  2413. if ((virt_to_phys((void *)page_list[i]) &
  2414. (LCLA_ALIGNMENT - 1)) == 0)
  2415. break;
  2416. }
  2417. for (j = 0; j < i; j++)
  2418. free_pages(page_list[j], base->lcla_pool.pages);
  2419. if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
  2420. base->lcla_pool.base = (void *)page_list[i];
  2421. } else {
  2422. /*
  2423. * After many attempts and no succees with finding the correct
  2424. * alignment, try with allocating a big buffer.
  2425. */
  2426. dev_warn(base->dev,
  2427. "[%s] Failed to get %d pages @ 18 bit align.\n",
  2428. __func__, base->lcla_pool.pages);
  2429. base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
  2430. base->num_phy_chans +
  2431. LCLA_ALIGNMENT,
  2432. GFP_KERNEL);
  2433. if (!base->lcla_pool.base_unaligned) {
  2434. ret = -ENOMEM;
  2435. goto failure;
  2436. }
  2437. base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
  2438. LCLA_ALIGNMENT);
  2439. }
  2440. writel(virt_to_phys(base->lcla_pool.base),
  2441. base->virtbase + D40_DREG_LCLA);
  2442. failure:
  2443. kfree(page_list);
  2444. return ret;
  2445. }
  2446. static int __init d40_probe(struct platform_device *pdev)
  2447. {
  2448. int err;
  2449. int ret = -ENOENT;
  2450. struct d40_base *base;
  2451. struct resource *res = NULL;
  2452. int num_reserved_chans;
  2453. u32 val;
  2454. base = d40_hw_detect_init(pdev);
  2455. if (!base)
  2456. goto failure;
  2457. num_reserved_chans = d40_phy_res_init(base);
  2458. platform_set_drvdata(pdev, base);
  2459. spin_lock_init(&base->interrupt_lock);
  2460. spin_lock_init(&base->execmd_lock);
  2461. /* Get IO for logical channel parameter address */
  2462. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
  2463. if (!res) {
  2464. ret = -ENOENT;
  2465. dev_err(&pdev->dev,
  2466. "[%s] No \"lcpa\" memory resource\n",
  2467. __func__);
  2468. goto failure;
  2469. }
  2470. base->lcpa_size = resource_size(res);
  2471. base->phy_lcpa = res->start;
  2472. if (request_mem_region(res->start, resource_size(res),
  2473. D40_NAME " I/O lcpa") == NULL) {
  2474. ret = -EBUSY;
  2475. dev_err(&pdev->dev,
  2476. "[%s] Failed to request LCPA region 0x%x-0x%x\n",
  2477. __func__, res->start, res->end);
  2478. goto failure;
  2479. }
  2480. /* We make use of ESRAM memory for this. */
  2481. val = readl(base->virtbase + D40_DREG_LCPA);
  2482. if (res->start != val && val != 0) {
  2483. dev_warn(&pdev->dev,
  2484. "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
  2485. __func__, val, res->start);
  2486. } else
  2487. writel(res->start, base->virtbase + D40_DREG_LCPA);
  2488. base->lcpa_base = ioremap(res->start, resource_size(res));
  2489. if (!base->lcpa_base) {
  2490. ret = -ENOMEM;
  2491. dev_err(&pdev->dev,
  2492. "[%s] Failed to ioremap LCPA region\n",
  2493. __func__);
  2494. goto failure;
  2495. }
  2496. ret = d40_lcla_allocate(base);
  2497. if (ret) {
  2498. dev_err(&pdev->dev, "[%s] Failed to allocate LCLA area\n",
  2499. __func__);
  2500. goto failure;
  2501. }
  2502. spin_lock_init(&base->lcla_pool.lock);
  2503. base->irq = platform_get_irq(pdev, 0);
  2504. ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
  2505. if (ret) {
  2506. dev_err(&pdev->dev, "[%s] No IRQ defined\n", __func__);
  2507. goto failure;
  2508. }
  2509. err = d40_dmaengine_init(base, num_reserved_chans);
  2510. if (err)
  2511. goto failure;
  2512. d40_hw_init(base);
  2513. dev_info(base->dev, "initialized\n");
  2514. return 0;
  2515. failure:
  2516. if (base) {
  2517. if (base->desc_slab)
  2518. kmem_cache_destroy(base->desc_slab);
  2519. if (base->virtbase)
  2520. iounmap(base->virtbase);
  2521. if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
  2522. free_pages((unsigned long)base->lcla_pool.base,
  2523. base->lcla_pool.pages);
  2524. kfree(base->lcla_pool.base_unaligned);
  2525. if (base->phy_lcpa)
  2526. release_mem_region(base->phy_lcpa,
  2527. base->lcpa_size);
  2528. if (base->phy_start)
  2529. release_mem_region(base->phy_start,
  2530. base->phy_size);
  2531. if (base->clk) {
  2532. clk_disable(base->clk);
  2533. clk_put(base->clk);
  2534. }
  2535. kfree(base->lcla_pool.alloc_map);
  2536. kfree(base->lookup_log_chans);
  2537. kfree(base->lookup_phy_chans);
  2538. kfree(base->phy_res);
  2539. kfree(base);
  2540. }
  2541. dev_err(&pdev->dev, "[%s] probe failed\n", __func__);
  2542. return ret;
  2543. }
  2544. static struct platform_driver d40_driver = {
  2545. .driver = {
  2546. .owner = THIS_MODULE,
  2547. .name = D40_NAME,
  2548. },
  2549. };
  2550. int __init stedma40_init(void)
  2551. {
  2552. return platform_driver_probe(&d40_driver, d40_probe);
  2553. }
  2554. arch_initcall(stedma40_init);