cm4000_cs.c 48 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925
  1. /*
  2. * A driver for the PCMCIA Smartcard Reader "Omnikey CardMan Mobile 4000"
  3. *
  4. * cm4000_cs.c support.linux@omnikey.com
  5. *
  6. * Tue Oct 23 11:32:43 GMT 2001 herp - cleaned up header files
  7. * Sun Jan 20 10:11:15 MET 2002 herp - added modversion header files
  8. * Thu Nov 14 16:34:11 GMT 2002 mh - added PPS functionality
  9. * Tue Nov 19 16:36:27 GMT 2002 mh - added SUSPEND/RESUME functionailty
  10. * Wed Jul 28 12:55:01 CEST 2004 mh - kernel 2.6 adjustments
  11. *
  12. * current version: 2.4.0gm4
  13. *
  14. * (C) 2000,2001,2002,2003,2004 Omnikey AG
  15. *
  16. * (C) 2005-2006 Harald Welte <laforge@gnumonks.org>
  17. * - Adhere to Kernel CodingStyle
  18. * - Port to 2.6.13 "new" style PCMCIA
  19. * - Check for copy_{from,to}_user return values
  20. * - Use nonseekable_open()
  21. * - add class interface for udev device creation
  22. *
  23. * All rights reserved. Licensed under dual BSD/GPL license.
  24. */
  25. #include <linux/kernel.h>
  26. #include <linux/module.h>
  27. #include <linux/slab.h>
  28. #include <linux/init.h>
  29. #include <linux/fs.h>
  30. #include <linux/delay.h>
  31. #include <linux/bitrev.h>
  32. #include <linux/mutex.h>
  33. #include <linux/uaccess.h>
  34. #include <linux/io.h>
  35. #include <pcmcia/cistpl.h>
  36. #include <pcmcia/cisreg.h>
  37. #include <pcmcia/ciscode.h>
  38. #include <pcmcia/ds.h>
  39. #include <linux/cm4000_cs.h>
  40. /* #define ATR_CSUM */
  41. #define reader_to_dev(x) (&x->p_dev->dev)
  42. /* n (debug level) is ignored */
  43. /* additional debug output may be enabled by re-compiling with
  44. * CM4000_DEBUG set */
  45. /* #define CM4000_DEBUG */
  46. #define DEBUGP(n, rdr, x, args...) do { \
  47. dev_dbg(reader_to_dev(rdr), "%s:" x, \
  48. __func__ , ## args); \
  49. } while (0)
  50. static DEFINE_MUTEX(cmm_mutex);
  51. #define T_1SEC (HZ)
  52. #define T_10MSEC msecs_to_jiffies(10)
  53. #define T_20MSEC msecs_to_jiffies(20)
  54. #define T_40MSEC msecs_to_jiffies(40)
  55. #define T_50MSEC msecs_to_jiffies(50)
  56. #define T_100MSEC msecs_to_jiffies(100)
  57. #define T_500MSEC msecs_to_jiffies(500)
  58. static void cm4000_release(struct pcmcia_device *link);
  59. static int major; /* major number we get from the kernel */
  60. /* note: the first state has to have number 0 always */
  61. #define M_FETCH_ATR 0
  62. #define M_TIMEOUT_WAIT 1
  63. #define M_READ_ATR_LEN 2
  64. #define M_READ_ATR 3
  65. #define M_ATR_PRESENT 4
  66. #define M_BAD_CARD 5
  67. #define M_CARDOFF 6
  68. #define LOCK_IO 0
  69. #define LOCK_MONITOR 1
  70. #define IS_AUTOPPS_ACT 6
  71. #define IS_PROCBYTE_PRESENT 7
  72. #define IS_INVREV 8
  73. #define IS_ANY_T0 9
  74. #define IS_ANY_T1 10
  75. #define IS_ATR_PRESENT 11
  76. #define IS_ATR_VALID 12
  77. #define IS_CMM_ABSENT 13
  78. #define IS_BAD_LENGTH 14
  79. #define IS_BAD_CSUM 15
  80. #define IS_BAD_CARD 16
  81. #define REG_FLAGS0(x) (x + 0)
  82. #define REG_FLAGS1(x) (x + 1)
  83. #define REG_NUM_BYTES(x) (x + 2)
  84. #define REG_BUF_ADDR(x) (x + 3)
  85. #define REG_BUF_DATA(x) (x + 4)
  86. #define REG_NUM_SEND(x) (x + 5)
  87. #define REG_BAUDRATE(x) (x + 6)
  88. #define REG_STOPBITS(x) (x + 7)
  89. struct cm4000_dev {
  90. struct pcmcia_device *p_dev;
  91. unsigned char atr[MAX_ATR];
  92. unsigned char rbuf[512];
  93. unsigned char sbuf[512];
  94. wait_queue_head_t devq; /* when removing cardman must not be
  95. zeroed! */
  96. wait_queue_head_t ioq; /* if IO is locked, wait on this Q */
  97. wait_queue_head_t atrq; /* wait for ATR valid */
  98. wait_queue_head_t readq; /* used by write to wake blk.read */
  99. /* warning: do not move this fields.
  100. * initialising to zero depends on it - see ZERO_DEV below. */
  101. unsigned char atr_csum;
  102. unsigned char atr_len_retry;
  103. unsigned short atr_len;
  104. unsigned short rlen; /* bytes avail. after write */
  105. unsigned short rpos; /* latest read pos. write zeroes */
  106. unsigned char procbyte; /* T=0 procedure byte */
  107. unsigned char mstate; /* state of card monitor */
  108. unsigned char cwarn; /* slow down warning */
  109. unsigned char flags0; /* cardman IO-flags 0 */
  110. unsigned char flags1; /* cardman IO-flags 1 */
  111. unsigned int mdelay; /* variable monitor speeds, in jiffies */
  112. unsigned int baudv; /* baud value for speed */
  113. unsigned char ta1;
  114. unsigned char proto; /* T=0, T=1, ... */
  115. unsigned long flags; /* lock+flags (MONITOR,IO,ATR) * for concurrent
  116. access */
  117. unsigned char pts[4];
  118. struct timer_list timer; /* used to keep monitor running */
  119. int monitor_running;
  120. };
  121. #define ZERO_DEV(dev) \
  122. memset(&dev->atr_csum,0, \
  123. sizeof(struct cm4000_dev) - \
  124. offsetof(struct cm4000_dev, atr_csum))
  125. static struct pcmcia_device *dev_table[CM4000_MAX_DEV];
  126. static struct class *cmm_class;
  127. /* This table doesn't use spaces after the comma between fields and thus
  128. * violates CodingStyle. However, I don't really think wrapping it around will
  129. * make it any clearer to read -HW */
  130. static unsigned char fi_di_table[10][14] = {
  131. /*FI 00 01 02 03 04 05 06 07 08 09 10 11 12 13 */
  132. /*DI */
  133. /* 0 */ {0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11},
  134. /* 1 */ {0x01,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x91,0x11,0x11,0x11,0x11},
  135. /* 2 */ {0x02,0x12,0x22,0x32,0x11,0x11,0x11,0x11,0x11,0x92,0xA2,0xB2,0x11,0x11},
  136. /* 3 */ {0x03,0x13,0x23,0x33,0x43,0x53,0x63,0x11,0x11,0x93,0xA3,0xB3,0xC3,0xD3},
  137. /* 4 */ {0x04,0x14,0x24,0x34,0x44,0x54,0x64,0x11,0x11,0x94,0xA4,0xB4,0xC4,0xD4},
  138. /* 5 */ {0x00,0x15,0x25,0x35,0x45,0x55,0x65,0x11,0x11,0x95,0xA5,0xB5,0xC5,0xD5},
  139. /* 6 */ {0x06,0x16,0x26,0x36,0x46,0x56,0x66,0x11,0x11,0x96,0xA6,0xB6,0xC6,0xD6},
  140. /* 7 */ {0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11},
  141. /* 8 */ {0x08,0x11,0x28,0x38,0x48,0x58,0x68,0x11,0x11,0x98,0xA8,0xB8,0xC8,0xD8},
  142. /* 9 */ {0x09,0x19,0x29,0x39,0x49,0x59,0x69,0x11,0x11,0x99,0xA9,0xB9,0xC9,0xD9}
  143. };
  144. #ifndef CM4000_DEBUG
  145. #define xoutb outb
  146. #define xinb inb
  147. #else
  148. static inline void xoutb(unsigned char val, unsigned short port)
  149. {
  150. pr_debug("outb(val=%.2x,port=%.4x)\n", val, port);
  151. outb(val, port);
  152. }
  153. static inline unsigned char xinb(unsigned short port)
  154. {
  155. unsigned char val;
  156. val = inb(port);
  157. pr_debug("%.2x=inb(%.4x)\n", val, port);
  158. return val;
  159. }
  160. #endif
  161. static inline unsigned char invert_revert(unsigned char ch)
  162. {
  163. return bitrev8(~ch);
  164. }
  165. static void str_invert_revert(unsigned char *b, int len)
  166. {
  167. int i;
  168. for (i = 0; i < len; i++)
  169. b[i] = invert_revert(b[i]);
  170. }
  171. #define ATRLENCK(dev,pos) \
  172. if (pos>=dev->atr_len || pos>=MAX_ATR) \
  173. goto return_0;
  174. static unsigned int calc_baudv(unsigned char fidi)
  175. {
  176. unsigned int wcrcf, wbrcf, fi_rfu, di_rfu;
  177. fi_rfu = 372;
  178. di_rfu = 1;
  179. /* FI */
  180. switch ((fidi >> 4) & 0x0F) {
  181. case 0x00:
  182. wcrcf = 372;
  183. break;
  184. case 0x01:
  185. wcrcf = 372;
  186. break;
  187. case 0x02:
  188. wcrcf = 558;
  189. break;
  190. case 0x03:
  191. wcrcf = 744;
  192. break;
  193. case 0x04:
  194. wcrcf = 1116;
  195. break;
  196. case 0x05:
  197. wcrcf = 1488;
  198. break;
  199. case 0x06:
  200. wcrcf = 1860;
  201. break;
  202. case 0x07:
  203. wcrcf = fi_rfu;
  204. break;
  205. case 0x08:
  206. wcrcf = fi_rfu;
  207. break;
  208. case 0x09:
  209. wcrcf = 512;
  210. break;
  211. case 0x0A:
  212. wcrcf = 768;
  213. break;
  214. case 0x0B:
  215. wcrcf = 1024;
  216. break;
  217. case 0x0C:
  218. wcrcf = 1536;
  219. break;
  220. case 0x0D:
  221. wcrcf = 2048;
  222. break;
  223. default:
  224. wcrcf = fi_rfu;
  225. break;
  226. }
  227. /* DI */
  228. switch (fidi & 0x0F) {
  229. case 0x00:
  230. wbrcf = di_rfu;
  231. break;
  232. case 0x01:
  233. wbrcf = 1;
  234. break;
  235. case 0x02:
  236. wbrcf = 2;
  237. break;
  238. case 0x03:
  239. wbrcf = 4;
  240. break;
  241. case 0x04:
  242. wbrcf = 8;
  243. break;
  244. case 0x05:
  245. wbrcf = 16;
  246. break;
  247. case 0x06:
  248. wbrcf = 32;
  249. break;
  250. case 0x07:
  251. wbrcf = di_rfu;
  252. break;
  253. case 0x08:
  254. wbrcf = 12;
  255. break;
  256. case 0x09:
  257. wbrcf = 20;
  258. break;
  259. default:
  260. wbrcf = di_rfu;
  261. break;
  262. }
  263. return (wcrcf / wbrcf);
  264. }
  265. static unsigned short io_read_num_rec_bytes(unsigned int iobase,
  266. unsigned short *s)
  267. {
  268. unsigned short tmp;
  269. tmp = *s = 0;
  270. do {
  271. *s = tmp;
  272. tmp = inb(REG_NUM_BYTES(iobase)) |
  273. (inb(REG_FLAGS0(iobase)) & 4 ? 0x100 : 0);
  274. } while (tmp != *s);
  275. return *s;
  276. }
  277. static int parse_atr(struct cm4000_dev *dev)
  278. {
  279. unsigned char any_t1, any_t0;
  280. unsigned char ch, ifno;
  281. int ix, done;
  282. DEBUGP(3, dev, "-> parse_atr: dev->atr_len = %i\n", dev->atr_len);
  283. if (dev->atr_len < 3) {
  284. DEBUGP(5, dev, "parse_atr: atr_len < 3\n");
  285. return 0;
  286. }
  287. if (dev->atr[0] == 0x3f)
  288. set_bit(IS_INVREV, &dev->flags);
  289. else
  290. clear_bit(IS_INVREV, &dev->flags);
  291. ix = 1;
  292. ifno = 1;
  293. ch = dev->atr[1];
  294. dev->proto = 0; /* XXX PROTO */
  295. any_t1 = any_t0 = done = 0;
  296. dev->ta1 = 0x11; /* defaults to 9600 baud */
  297. do {
  298. if (ifno == 1 && (ch & 0x10)) {
  299. /* read first interface byte and TA1 is present */
  300. dev->ta1 = dev->atr[2];
  301. DEBUGP(5, dev, "Card says FiDi is 0x%.2x\n", dev->ta1);
  302. ifno++;
  303. } else if ((ifno == 2) && (ch & 0x10)) { /* TA(2) */
  304. dev->ta1 = 0x11;
  305. ifno++;
  306. }
  307. DEBUGP(5, dev, "Yi=%.2x\n", ch & 0xf0);
  308. ix += ((ch & 0x10) >> 4) /* no of int.face chars */
  309. +((ch & 0x20) >> 5)
  310. + ((ch & 0x40) >> 6)
  311. + ((ch & 0x80) >> 7);
  312. /* ATRLENCK(dev,ix); */
  313. if (ch & 0x80) { /* TDi */
  314. ch = dev->atr[ix];
  315. if ((ch & 0x0f)) {
  316. any_t1 = 1;
  317. DEBUGP(5, dev, "card is capable of T=1\n");
  318. } else {
  319. any_t0 = 1;
  320. DEBUGP(5, dev, "card is capable of T=0\n");
  321. }
  322. } else
  323. done = 1;
  324. } while (!done);
  325. DEBUGP(5, dev, "ix=%d noHist=%d any_t1=%d\n",
  326. ix, dev->atr[1] & 15, any_t1);
  327. if (ix + 1 + (dev->atr[1] & 0x0f) + any_t1 != dev->atr_len) {
  328. DEBUGP(5, dev, "length error\n");
  329. return 0;
  330. }
  331. if (any_t0)
  332. set_bit(IS_ANY_T0, &dev->flags);
  333. if (any_t1) { /* compute csum */
  334. dev->atr_csum = 0;
  335. #ifdef ATR_CSUM
  336. for (i = 1; i < dev->atr_len; i++)
  337. dev->atr_csum ^= dev->atr[i];
  338. if (dev->atr_csum) {
  339. set_bit(IS_BAD_CSUM, &dev->flags);
  340. DEBUGP(5, dev, "bad checksum\n");
  341. goto return_0;
  342. }
  343. #endif
  344. if (any_t0 == 0)
  345. dev->proto = 1; /* XXX PROTO */
  346. set_bit(IS_ANY_T1, &dev->flags);
  347. }
  348. return 1;
  349. }
  350. struct card_fixup {
  351. char atr[12];
  352. u_int8_t atr_len;
  353. u_int8_t stopbits;
  354. };
  355. static struct card_fixup card_fixups[] = {
  356. { /* ACOS */
  357. .atr = { 0x3b, 0xb3, 0x11, 0x00, 0x00, 0x41, 0x01 },
  358. .atr_len = 7,
  359. .stopbits = 0x03,
  360. },
  361. { /* Motorola */
  362. .atr = {0x3b, 0x76, 0x13, 0x00, 0x00, 0x80, 0x62, 0x07,
  363. 0x41, 0x81, 0x81 },
  364. .atr_len = 11,
  365. .stopbits = 0x04,
  366. },
  367. };
  368. static void set_cardparameter(struct cm4000_dev *dev)
  369. {
  370. int i;
  371. unsigned int iobase = dev->p_dev->resource[0]->start;
  372. u_int8_t stopbits = 0x02; /* ISO default */
  373. DEBUGP(3, dev, "-> set_cardparameter\n");
  374. dev->flags1 = dev->flags1 | (((dev->baudv - 1) & 0x0100) >> 8);
  375. xoutb(dev->flags1, REG_FLAGS1(iobase));
  376. DEBUGP(5, dev, "flags1 = 0x%02x\n", dev->flags1);
  377. /* set baudrate */
  378. xoutb((unsigned char)((dev->baudv - 1) & 0xFF), REG_BAUDRATE(iobase));
  379. DEBUGP(5, dev, "baudv = %i -> write 0x%02x\n", dev->baudv,
  380. ((dev->baudv - 1) & 0xFF));
  381. /* set stopbits */
  382. for (i = 0; i < ARRAY_SIZE(card_fixups); i++) {
  383. if (!memcmp(dev->atr, card_fixups[i].atr,
  384. card_fixups[i].atr_len))
  385. stopbits = card_fixups[i].stopbits;
  386. }
  387. xoutb(stopbits, REG_STOPBITS(iobase));
  388. DEBUGP(3, dev, "<- set_cardparameter\n");
  389. }
  390. static int set_protocol(struct cm4000_dev *dev, struct ptsreq *ptsreq)
  391. {
  392. unsigned long tmp, i;
  393. unsigned short num_bytes_read;
  394. unsigned char pts_reply[4];
  395. ssize_t rc;
  396. unsigned int iobase = dev->p_dev->resource[0]->start;
  397. rc = 0;
  398. DEBUGP(3, dev, "-> set_protocol\n");
  399. DEBUGP(5, dev, "ptsreq->Protocol = 0x%.8x, ptsreq->Flags=0x%.8x, "
  400. "ptsreq->pts1=0x%.2x, ptsreq->pts2=0x%.2x, "
  401. "ptsreq->pts3=0x%.2x\n", (unsigned int)ptsreq->protocol,
  402. (unsigned int)ptsreq->flags, ptsreq->pts1, ptsreq->pts2,
  403. ptsreq->pts3);
  404. /* Fill PTS structure */
  405. dev->pts[0] = 0xff;
  406. dev->pts[1] = 0x00;
  407. tmp = ptsreq->protocol;
  408. while ((tmp = (tmp >> 1)) > 0)
  409. dev->pts[1]++;
  410. dev->proto = dev->pts[1]; /* Set new protocol */
  411. dev->pts[1] = (0x01 << 4) | (dev->pts[1]);
  412. /* Correct Fi/Di according to CM4000 Fi/Di table */
  413. DEBUGP(5, dev, "Ta(1) from ATR is 0x%.2x\n", dev->ta1);
  414. /* set Fi/Di according to ATR TA(1) */
  415. dev->pts[2] = fi_di_table[dev->ta1 & 0x0F][(dev->ta1 >> 4) & 0x0F];
  416. /* Calculate PCK character */
  417. dev->pts[3] = dev->pts[0] ^ dev->pts[1] ^ dev->pts[2];
  418. DEBUGP(5, dev, "pts0=%.2x, pts1=%.2x, pts2=%.2x, pts3=%.2x\n",
  419. dev->pts[0], dev->pts[1], dev->pts[2], dev->pts[3]);
  420. /* check card convention */
  421. if (test_bit(IS_INVREV, &dev->flags))
  422. str_invert_revert(dev->pts, 4);
  423. /* reset SM */
  424. xoutb(0x80, REG_FLAGS0(iobase));
  425. /* Enable access to the message buffer */
  426. DEBUGP(5, dev, "Enable access to the messages buffer\n");
  427. dev->flags1 = 0x20 /* T_Active */
  428. | (test_bit(IS_INVREV, &dev->flags) ? 0x02 : 0x00) /* inv parity */
  429. | ((dev->baudv >> 8) & 0x01); /* MSB-baud */
  430. xoutb(dev->flags1, REG_FLAGS1(iobase));
  431. DEBUGP(5, dev, "Enable message buffer -> flags1 = 0x%.2x\n",
  432. dev->flags1);
  433. /* write challenge to the buffer */
  434. DEBUGP(5, dev, "Write challenge to buffer: ");
  435. for (i = 0; i < 4; i++) {
  436. xoutb(i, REG_BUF_ADDR(iobase));
  437. xoutb(dev->pts[i], REG_BUF_DATA(iobase)); /* buf data */
  438. #ifdef CM4000_DEBUG
  439. pr_debug("0x%.2x ", dev->pts[i]);
  440. }
  441. pr_debug("\n");
  442. #else
  443. }
  444. #endif
  445. /* set number of bytes to write */
  446. DEBUGP(5, dev, "Set number of bytes to write\n");
  447. xoutb(0x04, REG_NUM_SEND(iobase));
  448. /* Trigger CARDMAN CONTROLLER */
  449. xoutb(0x50, REG_FLAGS0(iobase));
  450. /* Monitor progress */
  451. /* wait for xmit done */
  452. DEBUGP(5, dev, "Waiting for NumRecBytes getting valid\n");
  453. for (i = 0; i < 100; i++) {
  454. if (inb(REG_FLAGS0(iobase)) & 0x08) {
  455. DEBUGP(5, dev, "NumRecBytes is valid\n");
  456. break;
  457. }
  458. mdelay(10);
  459. }
  460. if (i == 100) {
  461. DEBUGP(5, dev, "Timeout waiting for NumRecBytes getting "
  462. "valid\n");
  463. rc = -EIO;
  464. goto exit_setprotocol;
  465. }
  466. DEBUGP(5, dev, "Reading NumRecBytes\n");
  467. for (i = 0; i < 100; i++) {
  468. io_read_num_rec_bytes(iobase, &num_bytes_read);
  469. if (num_bytes_read >= 4) {
  470. DEBUGP(2, dev, "NumRecBytes = %i\n", num_bytes_read);
  471. break;
  472. }
  473. mdelay(10);
  474. }
  475. /* check whether it is a short PTS reply? */
  476. if (num_bytes_read == 3)
  477. i = 0;
  478. if (i == 100) {
  479. DEBUGP(5, dev, "Timeout reading num_bytes_read\n");
  480. rc = -EIO;
  481. goto exit_setprotocol;
  482. }
  483. DEBUGP(5, dev, "Reset the CARDMAN CONTROLLER\n");
  484. xoutb(0x80, REG_FLAGS0(iobase));
  485. /* Read PPS reply */
  486. DEBUGP(5, dev, "Read PPS reply\n");
  487. for (i = 0; i < num_bytes_read; i++) {
  488. xoutb(i, REG_BUF_ADDR(iobase));
  489. pts_reply[i] = inb(REG_BUF_DATA(iobase));
  490. }
  491. #ifdef CM4000_DEBUG
  492. DEBUGP(2, dev, "PTSreply: ");
  493. for (i = 0; i < num_bytes_read; i++) {
  494. pr_debug("0x%.2x ", pts_reply[i]);
  495. }
  496. pr_debug("\n");
  497. #endif /* CM4000_DEBUG */
  498. DEBUGP(5, dev, "Clear Tactive in Flags1\n");
  499. xoutb(0x20, REG_FLAGS1(iobase));
  500. /* Compare ptsreq and ptsreply */
  501. if ((dev->pts[0] == pts_reply[0]) &&
  502. (dev->pts[1] == pts_reply[1]) &&
  503. (dev->pts[2] == pts_reply[2]) && (dev->pts[3] == pts_reply[3])) {
  504. /* setcardparameter according to PPS */
  505. dev->baudv = calc_baudv(dev->pts[2]);
  506. set_cardparameter(dev);
  507. } else if ((dev->pts[0] == pts_reply[0]) &&
  508. ((dev->pts[1] & 0xef) == pts_reply[1]) &&
  509. ((pts_reply[0] ^ pts_reply[1]) == pts_reply[2])) {
  510. /* short PTS reply, set card parameter to default values */
  511. dev->baudv = calc_baudv(0x11);
  512. set_cardparameter(dev);
  513. } else
  514. rc = -EIO;
  515. exit_setprotocol:
  516. DEBUGP(3, dev, "<- set_protocol\n");
  517. return rc;
  518. }
  519. static int io_detect_cm4000(unsigned int iobase, struct cm4000_dev *dev)
  520. {
  521. /* note: statemachine is assumed to be reset */
  522. if (inb(REG_FLAGS0(iobase)) & 8) {
  523. clear_bit(IS_ATR_VALID, &dev->flags);
  524. set_bit(IS_CMM_ABSENT, &dev->flags);
  525. return 0; /* detect CMM = 1 -> failure */
  526. }
  527. /* xoutb(0x40, REG_FLAGS1(iobase)); detectCMM */
  528. xoutb(dev->flags1 | 0x40, REG_FLAGS1(iobase));
  529. if ((inb(REG_FLAGS0(iobase)) & 8) == 0) {
  530. clear_bit(IS_ATR_VALID, &dev->flags);
  531. set_bit(IS_CMM_ABSENT, &dev->flags);
  532. return 0; /* detect CMM=0 -> failure */
  533. }
  534. /* clear detectCMM again by restoring original flags1 */
  535. xoutb(dev->flags1, REG_FLAGS1(iobase));
  536. return 1;
  537. }
  538. static void terminate_monitor(struct cm4000_dev *dev)
  539. {
  540. /* tell the monitor to stop and wait until
  541. * it terminates.
  542. */
  543. DEBUGP(3, dev, "-> terminate_monitor\n");
  544. wait_event_interruptible(dev->devq,
  545. test_and_set_bit(LOCK_MONITOR,
  546. (void *)&dev->flags));
  547. /* now, LOCK_MONITOR has been set.
  548. * allow a last cycle in the monitor.
  549. * the monitor will indicate that it has
  550. * finished by clearing this bit.
  551. */
  552. DEBUGP(5, dev, "Now allow last cycle of monitor!\n");
  553. while (test_bit(LOCK_MONITOR, (void *)&dev->flags))
  554. msleep(25);
  555. DEBUGP(5, dev, "Delete timer\n");
  556. del_timer_sync(&dev->timer);
  557. #ifdef CM4000_DEBUG
  558. dev->monitor_running = 0;
  559. #endif
  560. DEBUGP(3, dev, "<- terminate_monitor\n");
  561. }
  562. /*
  563. * monitor the card every 50msec. as a side-effect, retrieve the
  564. * atr once a card is inserted. another side-effect of retrieving the
  565. * atr is that the card will be powered on, so there is no need to
  566. * power on the card explictely from the application: the driver
  567. * is already doing that for you.
  568. */
  569. static void monitor_card(unsigned long p)
  570. {
  571. struct cm4000_dev *dev = (struct cm4000_dev *) p;
  572. unsigned int iobase = dev->p_dev->resource[0]->start;
  573. unsigned short s;
  574. struct ptsreq ptsreq;
  575. int i, atrc;
  576. DEBUGP(7, dev, "-> monitor_card\n");
  577. /* if someone has set the lock for us: we're done! */
  578. if (test_and_set_bit(LOCK_MONITOR, &dev->flags)) {
  579. DEBUGP(4, dev, "About to stop monitor\n");
  580. /* no */
  581. dev->rlen =
  582. dev->rpos =
  583. dev->atr_csum = dev->atr_len_retry = dev->cwarn = 0;
  584. dev->mstate = M_FETCH_ATR;
  585. clear_bit(LOCK_MONITOR, &dev->flags);
  586. /* close et al. are sleeping on devq, so wake it */
  587. wake_up_interruptible(&dev->devq);
  588. DEBUGP(2, dev, "<- monitor_card (we are done now)\n");
  589. return;
  590. }
  591. /* try to lock io: if it is already locked, just add another timer */
  592. if (test_and_set_bit(LOCK_IO, (void *)&dev->flags)) {
  593. DEBUGP(4, dev, "Couldn't get IO lock\n");
  594. goto return_with_timer;
  595. }
  596. /* is a card/a reader inserted at all ? */
  597. dev->flags0 = xinb(REG_FLAGS0(iobase));
  598. DEBUGP(7, dev, "dev->flags0 = 0x%2x\n", dev->flags0);
  599. DEBUGP(7, dev, "smartcard present: %s\n",
  600. dev->flags0 & 1 ? "yes" : "no");
  601. DEBUGP(7, dev, "cardman present: %s\n",
  602. dev->flags0 == 0xff ? "no" : "yes");
  603. if ((dev->flags0 & 1) == 0 /* no smartcard inserted */
  604. || dev->flags0 == 0xff) { /* no cardman inserted */
  605. /* no */
  606. dev->rlen =
  607. dev->rpos =
  608. dev->atr_csum = dev->atr_len_retry = dev->cwarn = 0;
  609. dev->mstate = M_FETCH_ATR;
  610. dev->flags &= 0x000000ff; /* only keep IO and MONITOR locks */
  611. if (dev->flags0 == 0xff) {
  612. DEBUGP(4, dev, "set IS_CMM_ABSENT bit\n");
  613. set_bit(IS_CMM_ABSENT, &dev->flags);
  614. } else if (test_bit(IS_CMM_ABSENT, &dev->flags)) {
  615. DEBUGP(4, dev, "clear IS_CMM_ABSENT bit "
  616. "(card is removed)\n");
  617. clear_bit(IS_CMM_ABSENT, &dev->flags);
  618. }
  619. goto release_io;
  620. } else if ((dev->flags0 & 1) && test_bit(IS_CMM_ABSENT, &dev->flags)) {
  621. /* cardman and card present but cardman was absent before
  622. * (after suspend with inserted card) */
  623. DEBUGP(4, dev, "clear IS_CMM_ABSENT bit (card is inserted)\n");
  624. clear_bit(IS_CMM_ABSENT, &dev->flags);
  625. }
  626. if (test_bit(IS_ATR_VALID, &dev->flags) == 1) {
  627. DEBUGP(7, dev, "believe ATR is already valid (do nothing)\n");
  628. goto release_io;
  629. }
  630. switch (dev->mstate) {
  631. unsigned char flags0;
  632. case M_CARDOFF:
  633. DEBUGP(4, dev, "M_CARDOFF\n");
  634. flags0 = inb(REG_FLAGS0(iobase));
  635. if (flags0 & 0x02) {
  636. /* wait until Flags0 indicate power is off */
  637. dev->mdelay = T_10MSEC;
  638. } else {
  639. /* Flags0 indicate power off and no card inserted now;
  640. * Reset CARDMAN CONTROLLER */
  641. xoutb(0x80, REG_FLAGS0(iobase));
  642. /* prepare for fetching ATR again: after card off ATR
  643. * is read again automatically */
  644. dev->rlen =
  645. dev->rpos =
  646. dev->atr_csum =
  647. dev->atr_len_retry = dev->cwarn = 0;
  648. dev->mstate = M_FETCH_ATR;
  649. /* minimal gap between CARDOFF and read ATR is 50msec */
  650. dev->mdelay = T_50MSEC;
  651. }
  652. break;
  653. case M_FETCH_ATR:
  654. DEBUGP(4, dev, "M_FETCH_ATR\n");
  655. xoutb(0x80, REG_FLAGS0(iobase));
  656. DEBUGP(4, dev, "Reset BAUDV to 9600\n");
  657. dev->baudv = 0x173; /* 9600 */
  658. xoutb(0x02, REG_STOPBITS(iobase)); /* stopbits=2 */
  659. xoutb(0x73, REG_BAUDRATE(iobase)); /* baud value */
  660. xoutb(0x21, REG_FLAGS1(iobase)); /* T_Active=1, baud
  661. value */
  662. /* warm start vs. power on: */
  663. xoutb(dev->flags0 & 2 ? 0x46 : 0x44, REG_FLAGS0(iobase));
  664. dev->mdelay = T_40MSEC;
  665. dev->mstate = M_TIMEOUT_WAIT;
  666. break;
  667. case M_TIMEOUT_WAIT:
  668. DEBUGP(4, dev, "M_TIMEOUT_WAIT\n");
  669. /* numRecBytes */
  670. io_read_num_rec_bytes(iobase, &dev->atr_len);
  671. dev->mdelay = T_10MSEC;
  672. dev->mstate = M_READ_ATR_LEN;
  673. break;
  674. case M_READ_ATR_LEN:
  675. DEBUGP(4, dev, "M_READ_ATR_LEN\n");
  676. /* infinite loop possible, since there is no timeout */
  677. #define MAX_ATR_LEN_RETRY 100
  678. if (dev->atr_len == io_read_num_rec_bytes(iobase, &s)) {
  679. if (dev->atr_len_retry++ >= MAX_ATR_LEN_RETRY) { /* + XX msec */
  680. dev->mdelay = T_10MSEC;
  681. dev->mstate = M_READ_ATR;
  682. }
  683. } else {
  684. dev->atr_len = s;
  685. dev->atr_len_retry = 0; /* set new timeout */
  686. }
  687. DEBUGP(4, dev, "Current ATR_LEN = %i\n", dev->atr_len);
  688. break;
  689. case M_READ_ATR:
  690. DEBUGP(4, dev, "M_READ_ATR\n");
  691. xoutb(0x80, REG_FLAGS0(iobase)); /* reset SM */
  692. for (i = 0; i < dev->atr_len; i++) {
  693. xoutb(i, REG_BUF_ADDR(iobase));
  694. dev->atr[i] = inb(REG_BUF_DATA(iobase));
  695. }
  696. /* Deactivate T_Active flags */
  697. DEBUGP(4, dev, "Deactivate T_Active flags\n");
  698. dev->flags1 = 0x01;
  699. xoutb(dev->flags1, REG_FLAGS1(iobase));
  700. /* atr is present (which doesnt mean it's valid) */
  701. set_bit(IS_ATR_PRESENT, &dev->flags);
  702. if (dev->atr[0] == 0x03)
  703. str_invert_revert(dev->atr, dev->atr_len);
  704. atrc = parse_atr(dev);
  705. if (atrc == 0) { /* atr invalid */
  706. dev->mdelay = 0;
  707. dev->mstate = M_BAD_CARD;
  708. } else {
  709. dev->mdelay = T_50MSEC;
  710. dev->mstate = M_ATR_PRESENT;
  711. set_bit(IS_ATR_VALID, &dev->flags);
  712. }
  713. if (test_bit(IS_ATR_VALID, &dev->flags) == 1) {
  714. DEBUGP(4, dev, "monitor_card: ATR valid\n");
  715. /* if ta1 == 0x11, no PPS necessary (default values) */
  716. /* do not do PPS with multi protocol cards */
  717. if ((test_bit(IS_AUTOPPS_ACT, &dev->flags) == 0) &&
  718. (dev->ta1 != 0x11) &&
  719. !(test_bit(IS_ANY_T0, &dev->flags) &&
  720. test_bit(IS_ANY_T1, &dev->flags))) {
  721. DEBUGP(4, dev, "Perform AUTOPPS\n");
  722. set_bit(IS_AUTOPPS_ACT, &dev->flags);
  723. ptsreq.protocol = ptsreq.protocol =
  724. (0x01 << dev->proto);
  725. ptsreq.flags = 0x01;
  726. ptsreq.pts1 = 0x00;
  727. ptsreq.pts2 = 0x00;
  728. ptsreq.pts3 = 0x00;
  729. if (set_protocol(dev, &ptsreq) == 0) {
  730. DEBUGP(4, dev, "AUTOPPS ret SUCC\n");
  731. clear_bit(IS_AUTOPPS_ACT, &dev->flags);
  732. wake_up_interruptible(&dev->atrq);
  733. } else {
  734. DEBUGP(4, dev, "AUTOPPS failed: "
  735. "repower using defaults\n");
  736. /* prepare for repowering */
  737. clear_bit(IS_ATR_PRESENT, &dev->flags);
  738. clear_bit(IS_ATR_VALID, &dev->flags);
  739. dev->rlen =
  740. dev->rpos =
  741. dev->atr_csum =
  742. dev->atr_len_retry = dev->cwarn = 0;
  743. dev->mstate = M_FETCH_ATR;
  744. dev->mdelay = T_50MSEC;
  745. }
  746. } else {
  747. /* for cards which use slightly different
  748. * params (extra guard time) */
  749. set_cardparameter(dev);
  750. if (test_bit(IS_AUTOPPS_ACT, &dev->flags) == 1)
  751. DEBUGP(4, dev, "AUTOPPS already active "
  752. "2nd try:use default values\n");
  753. if (dev->ta1 == 0x11)
  754. DEBUGP(4, dev, "No AUTOPPS necessary "
  755. "TA(1)==0x11\n");
  756. if (test_bit(IS_ANY_T0, &dev->flags)
  757. && test_bit(IS_ANY_T1, &dev->flags))
  758. DEBUGP(4, dev, "Do NOT perform AUTOPPS "
  759. "with multiprotocol cards\n");
  760. clear_bit(IS_AUTOPPS_ACT, &dev->flags);
  761. wake_up_interruptible(&dev->atrq);
  762. }
  763. } else {
  764. DEBUGP(4, dev, "ATR invalid\n");
  765. wake_up_interruptible(&dev->atrq);
  766. }
  767. break;
  768. case M_BAD_CARD:
  769. DEBUGP(4, dev, "M_BAD_CARD\n");
  770. /* slow down warning, but prompt immediately after insertion */
  771. if (dev->cwarn == 0 || dev->cwarn == 10) {
  772. set_bit(IS_BAD_CARD, &dev->flags);
  773. dev_warn(&dev->p_dev->dev, MODULE_NAME ": ");
  774. if (test_bit(IS_BAD_CSUM, &dev->flags)) {
  775. DEBUGP(4, dev, "ATR checksum (0x%.2x, should "
  776. "be zero) failed\n", dev->atr_csum);
  777. }
  778. #ifdef CM4000_DEBUG
  779. else if (test_bit(IS_BAD_LENGTH, &dev->flags)) {
  780. DEBUGP(4, dev, "ATR length error\n");
  781. } else {
  782. DEBUGP(4, dev, "card damaged or wrong way "
  783. "inserted\n");
  784. }
  785. #endif
  786. dev->cwarn = 0;
  787. wake_up_interruptible(&dev->atrq); /* wake open */
  788. }
  789. dev->cwarn++;
  790. dev->mdelay = T_100MSEC;
  791. dev->mstate = M_FETCH_ATR;
  792. break;
  793. default:
  794. DEBUGP(7, dev, "Unknown action\n");
  795. break; /* nothing */
  796. }
  797. release_io:
  798. DEBUGP(7, dev, "release_io\n");
  799. clear_bit(LOCK_IO, &dev->flags);
  800. wake_up_interruptible(&dev->ioq); /* whoever needs IO */
  801. return_with_timer:
  802. DEBUGP(7, dev, "<- monitor_card (returns with timer)\n");
  803. mod_timer(&dev->timer, jiffies + dev->mdelay);
  804. clear_bit(LOCK_MONITOR, &dev->flags);
  805. }
  806. /* Interface to userland (file_operations) */
  807. static ssize_t cmm_read(struct file *filp, __user char *buf, size_t count,
  808. loff_t *ppos)
  809. {
  810. struct cm4000_dev *dev = filp->private_data;
  811. unsigned int iobase = dev->p_dev->resource[0]->start;
  812. ssize_t rc;
  813. int i, j, k;
  814. DEBUGP(2, dev, "-> cmm_read(%s,%d)\n", current->comm, current->pid);
  815. if (count == 0) /* according to manpage */
  816. return 0;
  817. if (!pcmcia_dev_present(dev->p_dev) || /* device removed */
  818. test_bit(IS_CMM_ABSENT, &dev->flags))
  819. return -ENODEV;
  820. if (test_bit(IS_BAD_CSUM, &dev->flags))
  821. return -EIO;
  822. /* also see the note about this in cmm_write */
  823. if (wait_event_interruptible
  824. (dev->atrq,
  825. ((filp->f_flags & O_NONBLOCK)
  826. || (test_bit(IS_ATR_PRESENT, (void *)&dev->flags) != 0)))) {
  827. if (filp->f_flags & O_NONBLOCK)
  828. return -EAGAIN;
  829. return -ERESTARTSYS;
  830. }
  831. if (test_bit(IS_ATR_VALID, &dev->flags) == 0)
  832. return -EIO;
  833. /* this one implements blocking IO */
  834. if (wait_event_interruptible
  835. (dev->readq,
  836. ((filp->f_flags & O_NONBLOCK) || (dev->rpos < dev->rlen)))) {
  837. if (filp->f_flags & O_NONBLOCK)
  838. return -EAGAIN;
  839. return -ERESTARTSYS;
  840. }
  841. /* lock io */
  842. if (wait_event_interruptible
  843. (dev->ioq,
  844. ((filp->f_flags & O_NONBLOCK)
  845. || (test_and_set_bit(LOCK_IO, (void *)&dev->flags) == 0)))) {
  846. if (filp->f_flags & O_NONBLOCK)
  847. return -EAGAIN;
  848. return -ERESTARTSYS;
  849. }
  850. rc = 0;
  851. dev->flags0 = inb(REG_FLAGS0(iobase));
  852. if ((dev->flags0 & 1) == 0 /* no smartcard inserted */
  853. || dev->flags0 == 0xff) { /* no cardman inserted */
  854. clear_bit(IS_ATR_VALID, &dev->flags);
  855. if (dev->flags0 & 1) {
  856. set_bit(IS_CMM_ABSENT, &dev->flags);
  857. rc = -ENODEV;
  858. } else {
  859. rc = -EIO;
  860. }
  861. goto release_io;
  862. }
  863. DEBUGP(4, dev, "begin read answer\n");
  864. j = min(count, (size_t)(dev->rlen - dev->rpos));
  865. k = dev->rpos;
  866. if (k + j > 255)
  867. j = 256 - k;
  868. DEBUGP(4, dev, "read1 j=%d\n", j);
  869. for (i = 0; i < j; i++) {
  870. xoutb(k++, REG_BUF_ADDR(iobase));
  871. dev->rbuf[i] = xinb(REG_BUF_DATA(iobase));
  872. }
  873. j = min(count, (size_t)(dev->rlen - dev->rpos));
  874. if (k + j > 255) {
  875. DEBUGP(4, dev, "read2 j=%d\n", j);
  876. dev->flags1 |= 0x10; /* MSB buf addr set */
  877. xoutb(dev->flags1, REG_FLAGS1(iobase));
  878. for (; i < j; i++) {
  879. xoutb(k++, REG_BUF_ADDR(iobase));
  880. dev->rbuf[i] = xinb(REG_BUF_DATA(iobase));
  881. }
  882. }
  883. if (dev->proto == 0 && count > dev->rlen - dev->rpos && i) {
  884. DEBUGP(4, dev, "T=0 and count > buffer\n");
  885. dev->rbuf[i] = dev->rbuf[i - 1];
  886. dev->rbuf[i - 1] = dev->procbyte;
  887. j++;
  888. }
  889. count = j;
  890. dev->rpos = dev->rlen + 1;
  891. /* Clear T1Active */
  892. DEBUGP(4, dev, "Clear T1Active\n");
  893. dev->flags1 &= 0xdf;
  894. xoutb(dev->flags1, REG_FLAGS1(iobase));
  895. xoutb(0, REG_FLAGS1(iobase)); /* clear detectCMM */
  896. /* last check before exit */
  897. if (!io_detect_cm4000(iobase, dev)) {
  898. rc = -ENODEV;
  899. goto release_io;
  900. }
  901. if (test_bit(IS_INVREV, &dev->flags) && count > 0)
  902. str_invert_revert(dev->rbuf, count);
  903. if (copy_to_user(buf, dev->rbuf, count))
  904. rc = -EFAULT;
  905. release_io:
  906. clear_bit(LOCK_IO, &dev->flags);
  907. wake_up_interruptible(&dev->ioq);
  908. DEBUGP(2, dev, "<- cmm_read returns: rc = %Zi\n",
  909. (rc < 0 ? rc : count));
  910. return rc < 0 ? rc : count;
  911. }
  912. static ssize_t cmm_write(struct file *filp, const char __user *buf,
  913. size_t count, loff_t *ppos)
  914. {
  915. struct cm4000_dev *dev = filp->private_data;
  916. unsigned int iobase = dev->p_dev->resource[0]->start;
  917. unsigned short s;
  918. unsigned char tmp;
  919. unsigned char infolen;
  920. unsigned char sendT0;
  921. unsigned short nsend;
  922. unsigned short nr;
  923. ssize_t rc;
  924. int i;
  925. DEBUGP(2, dev, "-> cmm_write(%s,%d)\n", current->comm, current->pid);
  926. if (count == 0) /* according to manpage */
  927. return 0;
  928. if (dev->proto == 0 && count < 4) {
  929. /* T0 must have at least 4 bytes */
  930. DEBUGP(4, dev, "T0 short write\n");
  931. return -EIO;
  932. }
  933. nr = count & 0x1ff; /* max bytes to write */
  934. sendT0 = dev->proto ? 0 : nr > 5 ? 0x08 : 0;
  935. if (!pcmcia_dev_present(dev->p_dev) || /* device removed */
  936. test_bit(IS_CMM_ABSENT, &dev->flags))
  937. return -ENODEV;
  938. if (test_bit(IS_BAD_CSUM, &dev->flags)) {
  939. DEBUGP(4, dev, "bad csum\n");
  940. return -EIO;
  941. }
  942. /*
  943. * wait for atr to become valid.
  944. * note: it is important to lock this code. if we dont, the monitor
  945. * could be run between test_bit and the call to sleep on the
  946. * atr-queue. if *then* the monitor detects atr valid, it will wake up
  947. * any process on the atr-queue, *but* since we have been interrupted,
  948. * we do not yet sleep on this queue. this would result in a missed
  949. * wake_up and the calling process would sleep forever (until
  950. * interrupted). also, do *not* restore_flags before sleep_on, because
  951. * this could result in the same situation!
  952. */
  953. if (wait_event_interruptible
  954. (dev->atrq,
  955. ((filp->f_flags & O_NONBLOCK)
  956. || (test_bit(IS_ATR_PRESENT, (void *)&dev->flags) != 0)))) {
  957. if (filp->f_flags & O_NONBLOCK)
  958. return -EAGAIN;
  959. return -ERESTARTSYS;
  960. }
  961. if (test_bit(IS_ATR_VALID, &dev->flags) == 0) { /* invalid atr */
  962. DEBUGP(4, dev, "invalid ATR\n");
  963. return -EIO;
  964. }
  965. /* lock io */
  966. if (wait_event_interruptible
  967. (dev->ioq,
  968. ((filp->f_flags & O_NONBLOCK)
  969. || (test_and_set_bit(LOCK_IO, (void *)&dev->flags) == 0)))) {
  970. if (filp->f_flags & O_NONBLOCK)
  971. return -EAGAIN;
  972. return -ERESTARTSYS;
  973. }
  974. if (copy_from_user(dev->sbuf, buf, ((count > 512) ? 512 : count)))
  975. return -EFAULT;
  976. rc = 0;
  977. dev->flags0 = inb(REG_FLAGS0(iobase));
  978. if ((dev->flags0 & 1) == 0 /* no smartcard inserted */
  979. || dev->flags0 == 0xff) { /* no cardman inserted */
  980. clear_bit(IS_ATR_VALID, &dev->flags);
  981. if (dev->flags0 & 1) {
  982. set_bit(IS_CMM_ABSENT, &dev->flags);
  983. rc = -ENODEV;
  984. } else {
  985. DEBUGP(4, dev, "IO error\n");
  986. rc = -EIO;
  987. }
  988. goto release_io;
  989. }
  990. xoutb(0x80, REG_FLAGS0(iobase)); /* reset SM */
  991. if (!io_detect_cm4000(iobase, dev)) {
  992. rc = -ENODEV;
  993. goto release_io;
  994. }
  995. /* reflect T=0 send/read mode in flags1 */
  996. dev->flags1 |= (sendT0);
  997. set_cardparameter(dev);
  998. /* dummy read, reset flag procedure received */
  999. tmp = inb(REG_FLAGS1(iobase));
  1000. dev->flags1 = 0x20 /* T_Active */
  1001. | (sendT0)
  1002. | (test_bit(IS_INVREV, &dev->flags) ? 2 : 0)/* inverse parity */
  1003. | (((dev->baudv - 1) & 0x0100) >> 8); /* MSB-Baud */
  1004. DEBUGP(1, dev, "set dev->flags1 = 0x%.2x\n", dev->flags1);
  1005. xoutb(dev->flags1, REG_FLAGS1(iobase));
  1006. /* xmit data */
  1007. DEBUGP(4, dev, "Xmit data\n");
  1008. for (i = 0; i < nr; i++) {
  1009. if (i >= 256) {
  1010. dev->flags1 = 0x20 /* T_Active */
  1011. | (sendT0) /* SendT0 */
  1012. /* inverse parity: */
  1013. | (test_bit(IS_INVREV, &dev->flags) ? 2 : 0)
  1014. | (((dev->baudv - 1) & 0x0100) >> 8) /* MSB-Baud */
  1015. | 0x10; /* set address high */
  1016. DEBUGP(4, dev, "dev->flags = 0x%.2x - set address "
  1017. "high\n", dev->flags1);
  1018. xoutb(dev->flags1, REG_FLAGS1(iobase));
  1019. }
  1020. if (test_bit(IS_INVREV, &dev->flags)) {
  1021. DEBUGP(4, dev, "Apply inverse convention for 0x%.2x "
  1022. "-> 0x%.2x\n", (unsigned char)dev->sbuf[i],
  1023. invert_revert(dev->sbuf[i]));
  1024. xoutb(i, REG_BUF_ADDR(iobase));
  1025. xoutb(invert_revert(dev->sbuf[i]),
  1026. REG_BUF_DATA(iobase));
  1027. } else {
  1028. xoutb(i, REG_BUF_ADDR(iobase));
  1029. xoutb(dev->sbuf[i], REG_BUF_DATA(iobase));
  1030. }
  1031. }
  1032. DEBUGP(4, dev, "Xmit done\n");
  1033. if (dev->proto == 0) {
  1034. /* T=0 proto: 0 byte reply */
  1035. if (nr == 4) {
  1036. DEBUGP(4, dev, "T=0 assumes 0 byte reply\n");
  1037. xoutb(i, REG_BUF_ADDR(iobase));
  1038. if (test_bit(IS_INVREV, &dev->flags))
  1039. xoutb(0xff, REG_BUF_DATA(iobase));
  1040. else
  1041. xoutb(0x00, REG_BUF_DATA(iobase));
  1042. }
  1043. /* numSendBytes */
  1044. if (sendT0)
  1045. nsend = nr;
  1046. else {
  1047. if (nr == 4)
  1048. nsend = 5;
  1049. else {
  1050. nsend = 5 + (unsigned char)dev->sbuf[4];
  1051. if (dev->sbuf[4] == 0)
  1052. nsend += 0x100;
  1053. }
  1054. }
  1055. } else
  1056. nsend = nr;
  1057. /* T0: output procedure byte */
  1058. if (test_bit(IS_INVREV, &dev->flags)) {
  1059. DEBUGP(4, dev, "T=0 set Procedure byte (inverse-reverse) "
  1060. "0x%.2x\n", invert_revert(dev->sbuf[1]));
  1061. xoutb(invert_revert(dev->sbuf[1]), REG_NUM_BYTES(iobase));
  1062. } else {
  1063. DEBUGP(4, dev, "T=0 set Procedure byte 0x%.2x\n", dev->sbuf[1]);
  1064. xoutb(dev->sbuf[1], REG_NUM_BYTES(iobase));
  1065. }
  1066. DEBUGP(1, dev, "set NumSendBytes = 0x%.2x\n",
  1067. (unsigned char)(nsend & 0xff));
  1068. xoutb((unsigned char)(nsend & 0xff), REG_NUM_SEND(iobase));
  1069. DEBUGP(1, dev, "Trigger CARDMAN CONTROLLER (0x%.2x)\n",
  1070. 0x40 /* SM_Active */
  1071. | (dev->flags0 & 2 ? 0 : 4) /* power on if needed */
  1072. |(dev->proto ? 0x10 : 0x08) /* T=1/T=0 */
  1073. |(nsend & 0x100) >> 8 /* MSB numSendBytes */ );
  1074. xoutb(0x40 /* SM_Active */
  1075. | (dev->flags0 & 2 ? 0 : 4) /* power on if needed */
  1076. |(dev->proto ? 0x10 : 0x08) /* T=1/T=0 */
  1077. |(nsend & 0x100) >> 8, /* MSB numSendBytes */
  1078. REG_FLAGS0(iobase));
  1079. /* wait for xmit done */
  1080. if (dev->proto == 1) {
  1081. DEBUGP(4, dev, "Wait for xmit done\n");
  1082. for (i = 0; i < 1000; i++) {
  1083. if (inb(REG_FLAGS0(iobase)) & 0x08)
  1084. break;
  1085. msleep_interruptible(10);
  1086. }
  1087. if (i == 1000) {
  1088. DEBUGP(4, dev, "timeout waiting for xmit done\n");
  1089. rc = -EIO;
  1090. goto release_io;
  1091. }
  1092. }
  1093. /* T=1: wait for infoLen */
  1094. infolen = 0;
  1095. if (dev->proto) {
  1096. /* wait until infoLen is valid */
  1097. for (i = 0; i < 6000; i++) { /* max waiting time of 1 min */
  1098. io_read_num_rec_bytes(iobase, &s);
  1099. if (s >= 3) {
  1100. infolen = inb(REG_FLAGS1(iobase));
  1101. DEBUGP(4, dev, "infolen=%d\n", infolen);
  1102. break;
  1103. }
  1104. msleep_interruptible(10);
  1105. }
  1106. if (i == 6000) {
  1107. DEBUGP(4, dev, "timeout waiting for infoLen\n");
  1108. rc = -EIO;
  1109. goto release_io;
  1110. }
  1111. } else
  1112. clear_bit(IS_PROCBYTE_PRESENT, &dev->flags);
  1113. /* numRecBytes | bit9 of numRecytes */
  1114. io_read_num_rec_bytes(iobase, &dev->rlen);
  1115. for (i = 0; i < 600; i++) { /* max waiting time of 2 sec */
  1116. if (dev->proto) {
  1117. if (dev->rlen >= infolen + 4)
  1118. break;
  1119. }
  1120. msleep_interruptible(10);
  1121. /* numRecBytes | bit9 of numRecytes */
  1122. io_read_num_rec_bytes(iobase, &s);
  1123. if (s > dev->rlen) {
  1124. DEBUGP(1, dev, "NumRecBytes inc (reset timeout)\n");
  1125. i = 0; /* reset timeout */
  1126. dev->rlen = s;
  1127. }
  1128. /* T=0: we are done when numRecBytes doesn't
  1129. * increment any more and NoProcedureByte
  1130. * is set and numRecBytes == bytes sent + 6
  1131. * (header bytes + data + 1 for sw2)
  1132. * except when the card replies an error
  1133. * which means, no data will be sent back.
  1134. */
  1135. else if (dev->proto == 0) {
  1136. if ((inb(REG_BUF_ADDR(iobase)) & 0x80)) {
  1137. /* no procedure byte received since last read */
  1138. DEBUGP(1, dev, "NoProcedure byte set\n");
  1139. /* i=0; */
  1140. } else {
  1141. /* procedure byte received since last read */
  1142. DEBUGP(1, dev, "NoProcedure byte unset "
  1143. "(reset timeout)\n");
  1144. dev->procbyte = inb(REG_FLAGS1(iobase));
  1145. DEBUGP(1, dev, "Read procedure byte 0x%.2x\n",
  1146. dev->procbyte);
  1147. i = 0; /* resettimeout */
  1148. }
  1149. if (inb(REG_FLAGS0(iobase)) & 0x08) {
  1150. DEBUGP(1, dev, "T0Done flag (read reply)\n");
  1151. break;
  1152. }
  1153. }
  1154. if (dev->proto)
  1155. infolen = inb(REG_FLAGS1(iobase));
  1156. }
  1157. if (i == 600) {
  1158. DEBUGP(1, dev, "timeout waiting for numRecBytes\n");
  1159. rc = -EIO;
  1160. goto release_io;
  1161. } else {
  1162. if (dev->proto == 0) {
  1163. DEBUGP(1, dev, "Wait for T0Done bit to be set\n");
  1164. for (i = 0; i < 1000; i++) {
  1165. if (inb(REG_FLAGS0(iobase)) & 0x08)
  1166. break;
  1167. msleep_interruptible(10);
  1168. }
  1169. if (i == 1000) {
  1170. DEBUGP(1, dev, "timeout waiting for T0Done\n");
  1171. rc = -EIO;
  1172. goto release_io;
  1173. }
  1174. dev->procbyte = inb(REG_FLAGS1(iobase));
  1175. DEBUGP(4, dev, "Read procedure byte 0x%.2x\n",
  1176. dev->procbyte);
  1177. io_read_num_rec_bytes(iobase, &dev->rlen);
  1178. DEBUGP(4, dev, "Read NumRecBytes = %i\n", dev->rlen);
  1179. }
  1180. }
  1181. /* T=1: read offset=zero, T=0: read offset=after challenge */
  1182. dev->rpos = dev->proto ? 0 : nr == 4 ? 5 : nr > dev->rlen ? 5 : nr;
  1183. DEBUGP(4, dev, "dev->rlen = %i, dev->rpos = %i, nr = %i\n",
  1184. dev->rlen, dev->rpos, nr);
  1185. release_io:
  1186. DEBUGP(4, dev, "Reset SM\n");
  1187. xoutb(0x80, REG_FLAGS0(iobase)); /* reset SM */
  1188. if (rc < 0) {
  1189. DEBUGP(4, dev, "Write failed but clear T_Active\n");
  1190. dev->flags1 &= 0xdf;
  1191. xoutb(dev->flags1, REG_FLAGS1(iobase));
  1192. }
  1193. clear_bit(LOCK_IO, &dev->flags);
  1194. wake_up_interruptible(&dev->ioq);
  1195. wake_up_interruptible(&dev->readq); /* tell read we have data */
  1196. /* ITSEC E2: clear write buffer */
  1197. memset((char *)dev->sbuf, 0, 512);
  1198. /* return error or actually written bytes */
  1199. DEBUGP(2, dev, "<- cmm_write\n");
  1200. return rc < 0 ? rc : nr;
  1201. }
  1202. static void start_monitor(struct cm4000_dev *dev)
  1203. {
  1204. DEBUGP(3, dev, "-> start_monitor\n");
  1205. if (!dev->monitor_running) {
  1206. DEBUGP(5, dev, "create, init and add timer\n");
  1207. setup_timer(&dev->timer, monitor_card, (unsigned long)dev);
  1208. dev->monitor_running = 1;
  1209. mod_timer(&dev->timer, jiffies);
  1210. } else
  1211. DEBUGP(5, dev, "monitor already running\n");
  1212. DEBUGP(3, dev, "<- start_monitor\n");
  1213. }
  1214. static void stop_monitor(struct cm4000_dev *dev)
  1215. {
  1216. DEBUGP(3, dev, "-> stop_monitor\n");
  1217. if (dev->monitor_running) {
  1218. DEBUGP(5, dev, "stopping monitor\n");
  1219. terminate_monitor(dev);
  1220. /* reset monitor SM */
  1221. clear_bit(IS_ATR_VALID, &dev->flags);
  1222. clear_bit(IS_ATR_PRESENT, &dev->flags);
  1223. } else
  1224. DEBUGP(5, dev, "monitor already stopped\n");
  1225. DEBUGP(3, dev, "<- stop_monitor\n");
  1226. }
  1227. static long cmm_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
  1228. {
  1229. struct cm4000_dev *dev = filp->private_data;
  1230. unsigned int iobase = dev->p_dev->resource[0]->start;
  1231. struct inode *inode = filp->f_path.dentry->d_inode;
  1232. struct pcmcia_device *link;
  1233. int size;
  1234. int rc;
  1235. void __user *argp = (void __user *)arg;
  1236. #ifdef CM4000_DEBUG
  1237. char *ioctl_names[CM_IOC_MAXNR + 1] = {
  1238. [_IOC_NR(CM_IOCGSTATUS)] "CM_IOCGSTATUS",
  1239. [_IOC_NR(CM_IOCGATR)] "CM_IOCGATR",
  1240. [_IOC_NR(CM_IOCARDOFF)] "CM_IOCARDOFF",
  1241. [_IOC_NR(CM_IOCSPTS)] "CM_IOCSPTS",
  1242. [_IOC_NR(CM_IOSDBGLVL)] "CM4000_DBGLVL",
  1243. };
  1244. DEBUGP(3, dev, "cmm_ioctl(device=%d.%d) %s\n", imajor(inode),
  1245. iminor(inode), ioctl_names[_IOC_NR(cmd)]);
  1246. #endif
  1247. mutex_lock(&cmm_mutex);
  1248. rc = -ENODEV;
  1249. link = dev_table[iminor(inode)];
  1250. if (!pcmcia_dev_present(link)) {
  1251. DEBUGP(4, dev, "DEV_OK false\n");
  1252. goto out;
  1253. }
  1254. if (test_bit(IS_CMM_ABSENT, &dev->flags)) {
  1255. DEBUGP(4, dev, "CMM_ABSENT flag set\n");
  1256. goto out;
  1257. }
  1258. rc = -EINVAL;
  1259. if (_IOC_TYPE(cmd) != CM_IOC_MAGIC) {
  1260. DEBUGP(4, dev, "ioctype mismatch\n");
  1261. goto out;
  1262. }
  1263. if (_IOC_NR(cmd) > CM_IOC_MAXNR) {
  1264. DEBUGP(4, dev, "iocnr mismatch\n");
  1265. goto out;
  1266. }
  1267. size = _IOC_SIZE(cmd);
  1268. rc = -EFAULT;
  1269. DEBUGP(4, dev, "iocdir=%.4x iocr=%.4x iocw=%.4x iocsize=%d cmd=%.4x\n",
  1270. _IOC_DIR(cmd), _IOC_READ, _IOC_WRITE, size, cmd);
  1271. if (_IOC_DIR(cmd) & _IOC_READ) {
  1272. if (!access_ok(VERIFY_WRITE, argp, size))
  1273. goto out;
  1274. }
  1275. if (_IOC_DIR(cmd) & _IOC_WRITE) {
  1276. if (!access_ok(VERIFY_READ, argp, size))
  1277. goto out;
  1278. }
  1279. rc = 0;
  1280. switch (cmd) {
  1281. case CM_IOCGSTATUS:
  1282. DEBUGP(4, dev, " ... in CM_IOCGSTATUS\n");
  1283. {
  1284. int status;
  1285. /* clear other bits, but leave inserted & powered as
  1286. * they are */
  1287. status = dev->flags0 & 3;
  1288. if (test_bit(IS_ATR_PRESENT, &dev->flags))
  1289. status |= CM_ATR_PRESENT;
  1290. if (test_bit(IS_ATR_VALID, &dev->flags))
  1291. status |= CM_ATR_VALID;
  1292. if (test_bit(IS_CMM_ABSENT, &dev->flags))
  1293. status |= CM_NO_READER;
  1294. if (test_bit(IS_BAD_CARD, &dev->flags))
  1295. status |= CM_BAD_CARD;
  1296. if (copy_to_user(argp, &status, sizeof(int)))
  1297. rc = -EFAULT;
  1298. }
  1299. break;
  1300. case CM_IOCGATR:
  1301. DEBUGP(4, dev, "... in CM_IOCGATR\n");
  1302. {
  1303. struct atreq __user *atreq = argp;
  1304. int tmp;
  1305. /* allow nonblocking io and being interrupted */
  1306. if (wait_event_interruptible
  1307. (dev->atrq,
  1308. ((filp->f_flags & O_NONBLOCK)
  1309. || (test_bit(IS_ATR_PRESENT, (void *)&dev->flags)
  1310. != 0)))) {
  1311. if (filp->f_flags & O_NONBLOCK)
  1312. rc = -EAGAIN;
  1313. else
  1314. rc = -ERESTARTSYS;
  1315. break;
  1316. }
  1317. rc = -EFAULT;
  1318. if (test_bit(IS_ATR_VALID, &dev->flags) == 0) {
  1319. tmp = -1;
  1320. if (copy_to_user(&(atreq->atr_len), &tmp,
  1321. sizeof(int)))
  1322. break;
  1323. } else {
  1324. if (copy_to_user(atreq->atr, dev->atr,
  1325. dev->atr_len))
  1326. break;
  1327. tmp = dev->atr_len;
  1328. if (copy_to_user(&(atreq->atr_len), &tmp, sizeof(int)))
  1329. break;
  1330. }
  1331. rc = 0;
  1332. break;
  1333. }
  1334. case CM_IOCARDOFF:
  1335. #ifdef CM4000_DEBUG
  1336. DEBUGP(4, dev, "... in CM_IOCARDOFF\n");
  1337. if (dev->flags0 & 0x01) {
  1338. DEBUGP(4, dev, " Card inserted\n");
  1339. } else {
  1340. DEBUGP(2, dev, " No card inserted\n");
  1341. }
  1342. if (dev->flags0 & 0x02) {
  1343. DEBUGP(4, dev, " Card powered\n");
  1344. } else {
  1345. DEBUGP(2, dev, " Card not powered\n");
  1346. }
  1347. #endif
  1348. /* is a card inserted and powered? */
  1349. if ((dev->flags0 & 0x01) && (dev->flags0 & 0x02)) {
  1350. /* get IO lock */
  1351. if (wait_event_interruptible
  1352. (dev->ioq,
  1353. ((filp->f_flags & O_NONBLOCK)
  1354. || (test_and_set_bit(LOCK_IO, (void *)&dev->flags)
  1355. == 0)))) {
  1356. if (filp->f_flags & O_NONBLOCK)
  1357. rc = -EAGAIN;
  1358. else
  1359. rc = -ERESTARTSYS;
  1360. break;
  1361. }
  1362. /* Set Flags0 = 0x42 */
  1363. DEBUGP(4, dev, "Set Flags0=0x42 \n");
  1364. xoutb(0x42, REG_FLAGS0(iobase));
  1365. clear_bit(IS_ATR_PRESENT, &dev->flags);
  1366. clear_bit(IS_ATR_VALID, &dev->flags);
  1367. dev->mstate = M_CARDOFF;
  1368. clear_bit(LOCK_IO, &dev->flags);
  1369. if (wait_event_interruptible
  1370. (dev->atrq,
  1371. ((filp->f_flags & O_NONBLOCK)
  1372. || (test_bit(IS_ATR_VALID, (void *)&dev->flags) !=
  1373. 0)))) {
  1374. if (filp->f_flags & O_NONBLOCK)
  1375. rc = -EAGAIN;
  1376. else
  1377. rc = -ERESTARTSYS;
  1378. break;
  1379. }
  1380. }
  1381. /* release lock */
  1382. clear_bit(LOCK_IO, &dev->flags);
  1383. wake_up_interruptible(&dev->ioq);
  1384. rc = 0;
  1385. break;
  1386. case CM_IOCSPTS:
  1387. {
  1388. struct ptsreq krnptsreq;
  1389. if (copy_from_user(&krnptsreq, argp,
  1390. sizeof(struct ptsreq))) {
  1391. rc = -EFAULT;
  1392. break;
  1393. }
  1394. rc = 0;
  1395. DEBUGP(4, dev, "... in CM_IOCSPTS\n");
  1396. /* wait for ATR to get valid */
  1397. if (wait_event_interruptible
  1398. (dev->atrq,
  1399. ((filp->f_flags & O_NONBLOCK)
  1400. || (test_bit(IS_ATR_PRESENT, (void *)&dev->flags)
  1401. != 0)))) {
  1402. if (filp->f_flags & O_NONBLOCK)
  1403. rc = -EAGAIN;
  1404. else
  1405. rc = -ERESTARTSYS;
  1406. break;
  1407. }
  1408. /* get IO lock */
  1409. if (wait_event_interruptible
  1410. (dev->ioq,
  1411. ((filp->f_flags & O_NONBLOCK)
  1412. || (test_and_set_bit(LOCK_IO, (void *)&dev->flags)
  1413. == 0)))) {
  1414. if (filp->f_flags & O_NONBLOCK)
  1415. rc = -EAGAIN;
  1416. else
  1417. rc = -ERESTARTSYS;
  1418. break;
  1419. }
  1420. if ((rc = set_protocol(dev, &krnptsreq)) != 0) {
  1421. /* auto power_on again */
  1422. dev->mstate = M_FETCH_ATR;
  1423. clear_bit(IS_ATR_VALID, &dev->flags);
  1424. }
  1425. /* release lock */
  1426. clear_bit(LOCK_IO, &dev->flags);
  1427. wake_up_interruptible(&dev->ioq);
  1428. }
  1429. break;
  1430. #ifdef CM4000_DEBUG
  1431. case CM_IOSDBGLVL:
  1432. rc = -ENOTTY;
  1433. break;
  1434. #endif
  1435. default:
  1436. DEBUGP(4, dev, "... in default (unknown IOCTL code)\n");
  1437. rc = -ENOTTY;
  1438. }
  1439. out:
  1440. mutex_unlock(&cmm_mutex);
  1441. return rc;
  1442. }
  1443. static int cmm_open(struct inode *inode, struct file *filp)
  1444. {
  1445. struct cm4000_dev *dev;
  1446. struct pcmcia_device *link;
  1447. int minor = iminor(inode);
  1448. int ret;
  1449. if (minor >= CM4000_MAX_DEV)
  1450. return -ENODEV;
  1451. mutex_lock(&cmm_mutex);
  1452. link = dev_table[minor];
  1453. if (link == NULL || !pcmcia_dev_present(link)) {
  1454. ret = -ENODEV;
  1455. goto out;
  1456. }
  1457. if (link->open) {
  1458. ret = -EBUSY;
  1459. goto out;
  1460. }
  1461. dev = link->priv;
  1462. filp->private_data = dev;
  1463. DEBUGP(2, dev, "-> cmm_open(device=%d.%d process=%s,%d)\n",
  1464. imajor(inode), minor, current->comm, current->pid);
  1465. /* init device variables, they may be "polluted" after close
  1466. * or, the device may never have been closed (i.e. open failed)
  1467. */
  1468. ZERO_DEV(dev);
  1469. /* opening will always block since the
  1470. * monitor will be started by open, which
  1471. * means we have to wait for ATR becoming
  1472. * valid = block until valid (or card
  1473. * inserted)
  1474. */
  1475. if (filp->f_flags & O_NONBLOCK) {
  1476. ret = -EAGAIN;
  1477. goto out;
  1478. }
  1479. dev->mdelay = T_50MSEC;
  1480. /* start monitoring the cardstatus */
  1481. start_monitor(dev);
  1482. link->open = 1; /* only one open per device */
  1483. DEBUGP(2, dev, "<- cmm_open\n");
  1484. ret = nonseekable_open(inode, filp);
  1485. out:
  1486. mutex_unlock(&cmm_mutex);
  1487. return ret;
  1488. }
  1489. static int cmm_close(struct inode *inode, struct file *filp)
  1490. {
  1491. struct cm4000_dev *dev;
  1492. struct pcmcia_device *link;
  1493. int minor = iminor(inode);
  1494. if (minor >= CM4000_MAX_DEV)
  1495. return -ENODEV;
  1496. link = dev_table[minor];
  1497. if (link == NULL)
  1498. return -ENODEV;
  1499. dev = link->priv;
  1500. DEBUGP(2, dev, "-> cmm_close(maj/min=%d.%d)\n",
  1501. imajor(inode), minor);
  1502. stop_monitor(dev);
  1503. ZERO_DEV(dev);
  1504. link->open = 0; /* only one open per device */
  1505. wake_up(&dev->devq); /* socket removed? */
  1506. DEBUGP(2, dev, "cmm_close\n");
  1507. return 0;
  1508. }
  1509. static void cmm_cm4000_release(struct pcmcia_device * link)
  1510. {
  1511. struct cm4000_dev *dev = link->priv;
  1512. /* dont terminate the monitor, rather rely on
  1513. * close doing that for us.
  1514. */
  1515. DEBUGP(3, dev, "-> cmm_cm4000_release\n");
  1516. while (link->open) {
  1517. printk(KERN_INFO MODULE_NAME ": delaying release until "
  1518. "process has terminated\n");
  1519. /* note: don't interrupt us:
  1520. * close the applications which own
  1521. * the devices _first_ !
  1522. */
  1523. wait_event(dev->devq, (link->open == 0));
  1524. }
  1525. /* dev->devq=NULL; this cannot be zeroed earlier */
  1526. DEBUGP(3, dev, "<- cmm_cm4000_release\n");
  1527. return;
  1528. }
  1529. /*==== Interface to PCMCIA Layer =======================================*/
  1530. static int cm4000_config_check(struct pcmcia_device *p_dev, void *priv_data)
  1531. {
  1532. return pcmcia_request_io(p_dev);
  1533. }
  1534. static int cm4000_config(struct pcmcia_device * link, int devno)
  1535. {
  1536. struct cm4000_dev *dev;
  1537. link->config_flags |= CONF_AUTO_SET_IO;
  1538. /* read the config-tuples */
  1539. if (pcmcia_loop_config(link, cm4000_config_check, NULL))
  1540. goto cs_release;
  1541. if (pcmcia_enable_device(link))
  1542. goto cs_release;
  1543. dev = link->priv;
  1544. return 0;
  1545. cs_release:
  1546. cm4000_release(link);
  1547. return -ENODEV;
  1548. }
  1549. static int cm4000_suspend(struct pcmcia_device *link)
  1550. {
  1551. struct cm4000_dev *dev;
  1552. dev = link->priv;
  1553. stop_monitor(dev);
  1554. return 0;
  1555. }
  1556. static int cm4000_resume(struct pcmcia_device *link)
  1557. {
  1558. struct cm4000_dev *dev;
  1559. dev = link->priv;
  1560. if (link->open)
  1561. start_monitor(dev);
  1562. return 0;
  1563. }
  1564. static void cm4000_release(struct pcmcia_device *link)
  1565. {
  1566. cmm_cm4000_release(link); /* delay release until device closed */
  1567. pcmcia_disable_device(link);
  1568. }
  1569. static int cm4000_probe(struct pcmcia_device *link)
  1570. {
  1571. struct cm4000_dev *dev;
  1572. int i, ret;
  1573. for (i = 0; i < CM4000_MAX_DEV; i++)
  1574. if (dev_table[i] == NULL)
  1575. break;
  1576. if (i == CM4000_MAX_DEV) {
  1577. printk(KERN_NOTICE MODULE_NAME ": all devices in use\n");
  1578. return -ENODEV;
  1579. }
  1580. /* create a new cm4000_cs device */
  1581. dev = kzalloc(sizeof(struct cm4000_dev), GFP_KERNEL);
  1582. if (dev == NULL)
  1583. return -ENOMEM;
  1584. dev->p_dev = link;
  1585. link->priv = dev;
  1586. dev_table[i] = link;
  1587. init_waitqueue_head(&dev->devq);
  1588. init_waitqueue_head(&dev->ioq);
  1589. init_waitqueue_head(&dev->atrq);
  1590. init_waitqueue_head(&dev->readq);
  1591. ret = cm4000_config(link, i);
  1592. if (ret) {
  1593. dev_table[i] = NULL;
  1594. kfree(dev);
  1595. return ret;
  1596. }
  1597. device_create(cmm_class, NULL, MKDEV(major, i), NULL, "cmm%d", i);
  1598. return 0;
  1599. }
  1600. static void cm4000_detach(struct pcmcia_device *link)
  1601. {
  1602. struct cm4000_dev *dev = link->priv;
  1603. int devno;
  1604. /* find device */
  1605. for (devno = 0; devno < CM4000_MAX_DEV; devno++)
  1606. if (dev_table[devno] == link)
  1607. break;
  1608. if (devno == CM4000_MAX_DEV)
  1609. return;
  1610. stop_monitor(dev);
  1611. cm4000_release(link);
  1612. dev_table[devno] = NULL;
  1613. kfree(dev);
  1614. device_destroy(cmm_class, MKDEV(major, devno));
  1615. return;
  1616. }
  1617. static const struct file_operations cm4000_fops = {
  1618. .owner = THIS_MODULE,
  1619. .read = cmm_read,
  1620. .write = cmm_write,
  1621. .unlocked_ioctl = cmm_ioctl,
  1622. .open = cmm_open,
  1623. .release= cmm_close,
  1624. .llseek = no_llseek,
  1625. };
  1626. static struct pcmcia_device_id cm4000_ids[] = {
  1627. PCMCIA_DEVICE_MANF_CARD(0x0223, 0x0002),
  1628. PCMCIA_DEVICE_PROD_ID12("CardMan", "4000", 0x2FB368CA, 0xA2BD8C39),
  1629. PCMCIA_DEVICE_NULL,
  1630. };
  1631. MODULE_DEVICE_TABLE(pcmcia, cm4000_ids);
  1632. static struct pcmcia_driver cm4000_driver = {
  1633. .owner = THIS_MODULE,
  1634. .name = "cm4000_cs",
  1635. .probe = cm4000_probe,
  1636. .remove = cm4000_detach,
  1637. .suspend = cm4000_suspend,
  1638. .resume = cm4000_resume,
  1639. .id_table = cm4000_ids,
  1640. };
  1641. static int __init cmm_init(void)
  1642. {
  1643. int rc;
  1644. cmm_class = class_create(THIS_MODULE, "cardman_4000");
  1645. if (IS_ERR(cmm_class))
  1646. return PTR_ERR(cmm_class);
  1647. major = register_chrdev(0, DEVICE_NAME, &cm4000_fops);
  1648. if (major < 0) {
  1649. printk(KERN_WARNING MODULE_NAME
  1650. ": could not get major number\n");
  1651. class_destroy(cmm_class);
  1652. return major;
  1653. }
  1654. rc = pcmcia_register_driver(&cm4000_driver);
  1655. if (rc < 0) {
  1656. unregister_chrdev(major, DEVICE_NAME);
  1657. class_destroy(cmm_class);
  1658. return rc;
  1659. }
  1660. return 0;
  1661. }
  1662. static void __exit cmm_exit(void)
  1663. {
  1664. pcmcia_unregister_driver(&cm4000_driver);
  1665. unregister_chrdev(major, DEVICE_NAME);
  1666. class_destroy(cmm_class);
  1667. };
  1668. module_init(cmm_init);
  1669. module_exit(cmm_exit);
  1670. MODULE_LICENSE("Dual BSD/GPL");