ipmi_si_intf.c 89 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576
  1. /*
  2. * ipmi_si.c
  3. *
  4. * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
  5. * BT).
  6. *
  7. * Author: MontaVista Software, Inc.
  8. * Corey Minyard <minyard@mvista.com>
  9. * source@mvista.com
  10. *
  11. * Copyright 2002 MontaVista Software Inc.
  12. * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
  13. *
  14. * This program is free software; you can redistribute it and/or modify it
  15. * under the terms of the GNU General Public License as published by the
  16. * Free Software Foundation; either version 2 of the License, or (at your
  17. * option) any later version.
  18. *
  19. *
  20. * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  21. * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
  22. * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
  23. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
  24. * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
  25. * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
  26. * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
  27. * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
  28. * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  29. * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  30. *
  31. * You should have received a copy of the GNU General Public License along
  32. * with this program; if not, write to the Free Software Foundation, Inc.,
  33. * 675 Mass Ave, Cambridge, MA 02139, USA.
  34. */
  35. /*
  36. * This file holds the "policy" for the interface to the SMI state
  37. * machine. It does the configuration, handles timers and interrupts,
  38. * and drives the real SMI state machine.
  39. */
  40. #include <linux/module.h>
  41. #include <linux/moduleparam.h>
  42. #include <asm/system.h>
  43. #include <linux/sched.h>
  44. #include <linux/timer.h>
  45. #include <linux/errno.h>
  46. #include <linux/spinlock.h>
  47. #include <linux/slab.h>
  48. #include <linux/delay.h>
  49. #include <linux/list.h>
  50. #include <linux/pci.h>
  51. #include <linux/ioport.h>
  52. #include <linux/notifier.h>
  53. #include <linux/mutex.h>
  54. #include <linux/kthread.h>
  55. #include <asm/irq.h>
  56. #include <linux/interrupt.h>
  57. #include <linux/rcupdate.h>
  58. #include <linux/ipmi.h>
  59. #include <linux/ipmi_smi.h>
  60. #include <asm/io.h>
  61. #include "ipmi_si_sm.h"
  62. #include <linux/init.h>
  63. #include <linux/dmi.h>
  64. #include <linux/string.h>
  65. #include <linux/ctype.h>
  66. #include <linux/pnp.h>
  67. #ifdef CONFIG_PPC_OF
  68. #include <linux/of_device.h>
  69. #include <linux/of_platform.h>
  70. #include <linux/of_address.h>
  71. #include <linux/of_irq.h>
  72. #endif
  73. #define PFX "ipmi_si: "
  74. /* Measure times between events in the driver. */
  75. #undef DEBUG_TIMING
  76. /* Call every 10 ms. */
  77. #define SI_TIMEOUT_TIME_USEC 10000
  78. #define SI_USEC_PER_JIFFY (1000000/HZ)
  79. #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
  80. #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
  81. short timeout */
  82. enum si_intf_state {
  83. SI_NORMAL,
  84. SI_GETTING_FLAGS,
  85. SI_GETTING_EVENTS,
  86. SI_CLEARING_FLAGS,
  87. SI_CLEARING_FLAGS_THEN_SET_IRQ,
  88. SI_GETTING_MESSAGES,
  89. SI_ENABLE_INTERRUPTS1,
  90. SI_ENABLE_INTERRUPTS2,
  91. SI_DISABLE_INTERRUPTS1,
  92. SI_DISABLE_INTERRUPTS2
  93. /* FIXME - add watchdog stuff. */
  94. };
  95. /* Some BT-specific defines we need here. */
  96. #define IPMI_BT_INTMASK_REG 2
  97. #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
  98. #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
  99. enum si_type {
  100. SI_KCS, SI_SMIC, SI_BT
  101. };
  102. static char *si_to_str[] = { "kcs", "smic", "bt" };
  103. static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI",
  104. "ACPI", "SMBIOS", "PCI",
  105. "device-tree", "default" };
  106. #define DEVICE_NAME "ipmi_si"
  107. static struct platform_driver ipmi_driver = {
  108. .driver = {
  109. .name = DEVICE_NAME,
  110. .bus = &platform_bus_type
  111. }
  112. };
  113. /*
  114. * Indexes into stats[] in smi_info below.
  115. */
  116. enum si_stat_indexes {
  117. /*
  118. * Number of times the driver requested a timer while an operation
  119. * was in progress.
  120. */
  121. SI_STAT_short_timeouts = 0,
  122. /*
  123. * Number of times the driver requested a timer while nothing was in
  124. * progress.
  125. */
  126. SI_STAT_long_timeouts,
  127. /* Number of times the interface was idle while being polled. */
  128. SI_STAT_idles,
  129. /* Number of interrupts the driver handled. */
  130. SI_STAT_interrupts,
  131. /* Number of time the driver got an ATTN from the hardware. */
  132. SI_STAT_attentions,
  133. /* Number of times the driver requested flags from the hardware. */
  134. SI_STAT_flag_fetches,
  135. /* Number of times the hardware didn't follow the state machine. */
  136. SI_STAT_hosed_count,
  137. /* Number of completed messages. */
  138. SI_STAT_complete_transactions,
  139. /* Number of IPMI events received from the hardware. */
  140. SI_STAT_events,
  141. /* Number of watchdog pretimeouts. */
  142. SI_STAT_watchdog_pretimeouts,
  143. /* Number of asyncronous messages received. */
  144. SI_STAT_incoming_messages,
  145. /* This *must* remain last, add new values above this. */
  146. SI_NUM_STATS
  147. };
  148. struct smi_info {
  149. int intf_num;
  150. ipmi_smi_t intf;
  151. struct si_sm_data *si_sm;
  152. struct si_sm_handlers *handlers;
  153. enum si_type si_type;
  154. spinlock_t si_lock;
  155. spinlock_t msg_lock;
  156. struct list_head xmit_msgs;
  157. struct list_head hp_xmit_msgs;
  158. struct ipmi_smi_msg *curr_msg;
  159. enum si_intf_state si_state;
  160. /*
  161. * Used to handle the various types of I/O that can occur with
  162. * IPMI
  163. */
  164. struct si_sm_io io;
  165. int (*io_setup)(struct smi_info *info);
  166. void (*io_cleanup)(struct smi_info *info);
  167. int (*irq_setup)(struct smi_info *info);
  168. void (*irq_cleanup)(struct smi_info *info);
  169. unsigned int io_size;
  170. enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
  171. void (*addr_source_cleanup)(struct smi_info *info);
  172. void *addr_source_data;
  173. /*
  174. * Per-OEM handler, called from handle_flags(). Returns 1
  175. * when handle_flags() needs to be re-run or 0 indicating it
  176. * set si_state itself.
  177. */
  178. int (*oem_data_avail_handler)(struct smi_info *smi_info);
  179. /*
  180. * Flags from the last GET_MSG_FLAGS command, used when an ATTN
  181. * is set to hold the flags until we are done handling everything
  182. * from the flags.
  183. */
  184. #define RECEIVE_MSG_AVAIL 0x01
  185. #define EVENT_MSG_BUFFER_FULL 0x02
  186. #define WDT_PRE_TIMEOUT_INT 0x08
  187. #define OEM0_DATA_AVAIL 0x20
  188. #define OEM1_DATA_AVAIL 0x40
  189. #define OEM2_DATA_AVAIL 0x80
  190. #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
  191. OEM1_DATA_AVAIL | \
  192. OEM2_DATA_AVAIL)
  193. unsigned char msg_flags;
  194. /* Does the BMC have an event buffer? */
  195. char has_event_buffer;
  196. /*
  197. * If set to true, this will request events the next time the
  198. * state machine is idle.
  199. */
  200. atomic_t req_events;
  201. /*
  202. * If true, run the state machine to completion on every send
  203. * call. Generally used after a panic to make sure stuff goes
  204. * out.
  205. */
  206. int run_to_completion;
  207. /* The I/O port of an SI interface. */
  208. int port;
  209. /*
  210. * The space between start addresses of the two ports. For
  211. * instance, if the first port is 0xca2 and the spacing is 4, then
  212. * the second port is 0xca6.
  213. */
  214. unsigned int spacing;
  215. /* zero if no irq; */
  216. int irq;
  217. /* The timer for this si. */
  218. struct timer_list si_timer;
  219. /* The time (in jiffies) the last timeout occurred at. */
  220. unsigned long last_timeout_jiffies;
  221. /* Used to gracefully stop the timer without race conditions. */
  222. atomic_t stop_operation;
  223. /*
  224. * The driver will disable interrupts when it gets into a
  225. * situation where it cannot handle messages due to lack of
  226. * memory. Once that situation clears up, it will re-enable
  227. * interrupts.
  228. */
  229. int interrupt_disabled;
  230. /* From the get device id response... */
  231. struct ipmi_device_id device_id;
  232. /* Driver model stuff. */
  233. struct device *dev;
  234. struct platform_device *pdev;
  235. /*
  236. * True if we allocated the device, false if it came from
  237. * someplace else (like PCI).
  238. */
  239. int dev_registered;
  240. /* Slave address, could be reported from DMI. */
  241. unsigned char slave_addr;
  242. /* Counters and things for the proc filesystem. */
  243. atomic_t stats[SI_NUM_STATS];
  244. struct task_struct *thread;
  245. struct list_head link;
  246. union ipmi_smi_info_union addr_info;
  247. };
  248. #define smi_inc_stat(smi, stat) \
  249. atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
  250. #define smi_get_stat(smi, stat) \
  251. ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
  252. #define SI_MAX_PARMS 4
  253. static int force_kipmid[SI_MAX_PARMS];
  254. static int num_force_kipmid;
  255. #ifdef CONFIG_PCI
  256. static int pci_registered;
  257. #endif
  258. #ifdef CONFIG_ACPI
  259. static int pnp_registered;
  260. #endif
  261. #ifdef CONFIG_PPC_OF
  262. static int of_registered;
  263. #endif
  264. static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
  265. static int num_max_busy_us;
  266. static int unload_when_empty = 1;
  267. static int add_smi(struct smi_info *smi);
  268. static int try_smi_init(struct smi_info *smi);
  269. static void cleanup_one_si(struct smi_info *to_clean);
  270. static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
  271. static int register_xaction_notifier(struct notifier_block *nb)
  272. {
  273. return atomic_notifier_chain_register(&xaction_notifier_list, nb);
  274. }
  275. static void deliver_recv_msg(struct smi_info *smi_info,
  276. struct ipmi_smi_msg *msg)
  277. {
  278. /* Deliver the message to the upper layer with the lock
  279. released. */
  280. if (smi_info->run_to_completion) {
  281. ipmi_smi_msg_received(smi_info->intf, msg);
  282. } else {
  283. spin_unlock(&(smi_info->si_lock));
  284. ipmi_smi_msg_received(smi_info->intf, msg);
  285. spin_lock(&(smi_info->si_lock));
  286. }
  287. }
  288. static void return_hosed_msg(struct smi_info *smi_info, int cCode)
  289. {
  290. struct ipmi_smi_msg *msg = smi_info->curr_msg;
  291. if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
  292. cCode = IPMI_ERR_UNSPECIFIED;
  293. /* else use it as is */
  294. /* Make it a reponse */
  295. msg->rsp[0] = msg->data[0] | 4;
  296. msg->rsp[1] = msg->data[1];
  297. msg->rsp[2] = cCode;
  298. msg->rsp_size = 3;
  299. smi_info->curr_msg = NULL;
  300. deliver_recv_msg(smi_info, msg);
  301. }
  302. static enum si_sm_result start_next_msg(struct smi_info *smi_info)
  303. {
  304. int rv;
  305. struct list_head *entry = NULL;
  306. #ifdef DEBUG_TIMING
  307. struct timeval t;
  308. #endif
  309. /*
  310. * No need to save flags, we aleady have interrupts off and we
  311. * already hold the SMI lock.
  312. */
  313. if (!smi_info->run_to_completion)
  314. spin_lock(&(smi_info->msg_lock));
  315. /* Pick the high priority queue first. */
  316. if (!list_empty(&(smi_info->hp_xmit_msgs))) {
  317. entry = smi_info->hp_xmit_msgs.next;
  318. } else if (!list_empty(&(smi_info->xmit_msgs))) {
  319. entry = smi_info->xmit_msgs.next;
  320. }
  321. if (!entry) {
  322. smi_info->curr_msg = NULL;
  323. rv = SI_SM_IDLE;
  324. } else {
  325. int err;
  326. list_del(entry);
  327. smi_info->curr_msg = list_entry(entry,
  328. struct ipmi_smi_msg,
  329. link);
  330. #ifdef DEBUG_TIMING
  331. do_gettimeofday(&t);
  332. printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
  333. #endif
  334. err = atomic_notifier_call_chain(&xaction_notifier_list,
  335. 0, smi_info);
  336. if (err & NOTIFY_STOP_MASK) {
  337. rv = SI_SM_CALL_WITHOUT_DELAY;
  338. goto out;
  339. }
  340. err = smi_info->handlers->start_transaction(
  341. smi_info->si_sm,
  342. smi_info->curr_msg->data,
  343. smi_info->curr_msg->data_size);
  344. if (err)
  345. return_hosed_msg(smi_info, err);
  346. rv = SI_SM_CALL_WITHOUT_DELAY;
  347. }
  348. out:
  349. if (!smi_info->run_to_completion)
  350. spin_unlock(&(smi_info->msg_lock));
  351. return rv;
  352. }
  353. static void start_enable_irq(struct smi_info *smi_info)
  354. {
  355. unsigned char msg[2];
  356. /*
  357. * If we are enabling interrupts, we have to tell the
  358. * BMC to use them.
  359. */
  360. msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
  361. msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
  362. smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
  363. smi_info->si_state = SI_ENABLE_INTERRUPTS1;
  364. }
  365. static void start_disable_irq(struct smi_info *smi_info)
  366. {
  367. unsigned char msg[2];
  368. msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
  369. msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
  370. smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
  371. smi_info->si_state = SI_DISABLE_INTERRUPTS1;
  372. }
  373. static void start_clear_flags(struct smi_info *smi_info)
  374. {
  375. unsigned char msg[3];
  376. /* Make sure the watchdog pre-timeout flag is not set at startup. */
  377. msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
  378. msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
  379. msg[2] = WDT_PRE_TIMEOUT_INT;
  380. smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
  381. smi_info->si_state = SI_CLEARING_FLAGS;
  382. }
  383. /*
  384. * When we have a situtaion where we run out of memory and cannot
  385. * allocate messages, we just leave them in the BMC and run the system
  386. * polled until we can allocate some memory. Once we have some
  387. * memory, we will re-enable the interrupt.
  388. */
  389. static inline void disable_si_irq(struct smi_info *smi_info)
  390. {
  391. if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
  392. start_disable_irq(smi_info);
  393. smi_info->interrupt_disabled = 1;
  394. if (!atomic_read(&smi_info->stop_operation))
  395. mod_timer(&smi_info->si_timer,
  396. jiffies + SI_TIMEOUT_JIFFIES);
  397. }
  398. }
  399. static inline void enable_si_irq(struct smi_info *smi_info)
  400. {
  401. if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
  402. start_enable_irq(smi_info);
  403. smi_info->interrupt_disabled = 0;
  404. }
  405. }
  406. static void handle_flags(struct smi_info *smi_info)
  407. {
  408. retry:
  409. if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
  410. /* Watchdog pre-timeout */
  411. smi_inc_stat(smi_info, watchdog_pretimeouts);
  412. start_clear_flags(smi_info);
  413. smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
  414. spin_unlock(&(smi_info->si_lock));
  415. ipmi_smi_watchdog_pretimeout(smi_info->intf);
  416. spin_lock(&(smi_info->si_lock));
  417. } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
  418. /* Messages available. */
  419. smi_info->curr_msg = ipmi_alloc_smi_msg();
  420. if (!smi_info->curr_msg) {
  421. disable_si_irq(smi_info);
  422. smi_info->si_state = SI_NORMAL;
  423. return;
  424. }
  425. enable_si_irq(smi_info);
  426. smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
  427. smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
  428. smi_info->curr_msg->data_size = 2;
  429. smi_info->handlers->start_transaction(
  430. smi_info->si_sm,
  431. smi_info->curr_msg->data,
  432. smi_info->curr_msg->data_size);
  433. smi_info->si_state = SI_GETTING_MESSAGES;
  434. } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
  435. /* Events available. */
  436. smi_info->curr_msg = ipmi_alloc_smi_msg();
  437. if (!smi_info->curr_msg) {
  438. disable_si_irq(smi_info);
  439. smi_info->si_state = SI_NORMAL;
  440. return;
  441. }
  442. enable_si_irq(smi_info);
  443. smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
  444. smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
  445. smi_info->curr_msg->data_size = 2;
  446. smi_info->handlers->start_transaction(
  447. smi_info->si_sm,
  448. smi_info->curr_msg->data,
  449. smi_info->curr_msg->data_size);
  450. smi_info->si_state = SI_GETTING_EVENTS;
  451. } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
  452. smi_info->oem_data_avail_handler) {
  453. if (smi_info->oem_data_avail_handler(smi_info))
  454. goto retry;
  455. } else
  456. smi_info->si_state = SI_NORMAL;
  457. }
  458. static void handle_transaction_done(struct smi_info *smi_info)
  459. {
  460. struct ipmi_smi_msg *msg;
  461. #ifdef DEBUG_TIMING
  462. struct timeval t;
  463. do_gettimeofday(&t);
  464. printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
  465. #endif
  466. switch (smi_info->si_state) {
  467. case SI_NORMAL:
  468. if (!smi_info->curr_msg)
  469. break;
  470. smi_info->curr_msg->rsp_size
  471. = smi_info->handlers->get_result(
  472. smi_info->si_sm,
  473. smi_info->curr_msg->rsp,
  474. IPMI_MAX_MSG_LENGTH);
  475. /*
  476. * Do this here becase deliver_recv_msg() releases the
  477. * lock, and a new message can be put in during the
  478. * time the lock is released.
  479. */
  480. msg = smi_info->curr_msg;
  481. smi_info->curr_msg = NULL;
  482. deliver_recv_msg(smi_info, msg);
  483. break;
  484. case SI_GETTING_FLAGS:
  485. {
  486. unsigned char msg[4];
  487. unsigned int len;
  488. /* We got the flags from the SMI, now handle them. */
  489. len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
  490. if (msg[2] != 0) {
  491. /* Error fetching flags, just give up for now. */
  492. smi_info->si_state = SI_NORMAL;
  493. } else if (len < 4) {
  494. /*
  495. * Hmm, no flags. That's technically illegal, but
  496. * don't use uninitialized data.
  497. */
  498. smi_info->si_state = SI_NORMAL;
  499. } else {
  500. smi_info->msg_flags = msg[3];
  501. handle_flags(smi_info);
  502. }
  503. break;
  504. }
  505. case SI_CLEARING_FLAGS:
  506. case SI_CLEARING_FLAGS_THEN_SET_IRQ:
  507. {
  508. unsigned char msg[3];
  509. /* We cleared the flags. */
  510. smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
  511. if (msg[2] != 0) {
  512. /* Error clearing flags */
  513. dev_warn(smi_info->dev,
  514. "Error clearing flags: %2.2x\n", msg[2]);
  515. }
  516. if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
  517. start_enable_irq(smi_info);
  518. else
  519. smi_info->si_state = SI_NORMAL;
  520. break;
  521. }
  522. case SI_GETTING_EVENTS:
  523. {
  524. smi_info->curr_msg->rsp_size
  525. = smi_info->handlers->get_result(
  526. smi_info->si_sm,
  527. smi_info->curr_msg->rsp,
  528. IPMI_MAX_MSG_LENGTH);
  529. /*
  530. * Do this here becase deliver_recv_msg() releases the
  531. * lock, and a new message can be put in during the
  532. * time the lock is released.
  533. */
  534. msg = smi_info->curr_msg;
  535. smi_info->curr_msg = NULL;
  536. if (msg->rsp[2] != 0) {
  537. /* Error getting event, probably done. */
  538. msg->done(msg);
  539. /* Take off the event flag. */
  540. smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
  541. handle_flags(smi_info);
  542. } else {
  543. smi_inc_stat(smi_info, events);
  544. /*
  545. * Do this before we deliver the message
  546. * because delivering the message releases the
  547. * lock and something else can mess with the
  548. * state.
  549. */
  550. handle_flags(smi_info);
  551. deliver_recv_msg(smi_info, msg);
  552. }
  553. break;
  554. }
  555. case SI_GETTING_MESSAGES:
  556. {
  557. smi_info->curr_msg->rsp_size
  558. = smi_info->handlers->get_result(
  559. smi_info->si_sm,
  560. smi_info->curr_msg->rsp,
  561. IPMI_MAX_MSG_LENGTH);
  562. /*
  563. * Do this here becase deliver_recv_msg() releases the
  564. * lock, and a new message can be put in during the
  565. * time the lock is released.
  566. */
  567. msg = smi_info->curr_msg;
  568. smi_info->curr_msg = NULL;
  569. if (msg->rsp[2] != 0) {
  570. /* Error getting event, probably done. */
  571. msg->done(msg);
  572. /* Take off the msg flag. */
  573. smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
  574. handle_flags(smi_info);
  575. } else {
  576. smi_inc_stat(smi_info, incoming_messages);
  577. /*
  578. * Do this before we deliver the message
  579. * because delivering the message releases the
  580. * lock and something else can mess with the
  581. * state.
  582. */
  583. handle_flags(smi_info);
  584. deliver_recv_msg(smi_info, msg);
  585. }
  586. break;
  587. }
  588. case SI_ENABLE_INTERRUPTS1:
  589. {
  590. unsigned char msg[4];
  591. /* We got the flags from the SMI, now handle them. */
  592. smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
  593. if (msg[2] != 0) {
  594. dev_warn(smi_info->dev, "Could not enable interrupts"
  595. ", failed get, using polled mode.\n");
  596. smi_info->si_state = SI_NORMAL;
  597. } else {
  598. msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
  599. msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
  600. msg[2] = (msg[3] |
  601. IPMI_BMC_RCV_MSG_INTR |
  602. IPMI_BMC_EVT_MSG_INTR);
  603. smi_info->handlers->start_transaction(
  604. smi_info->si_sm, msg, 3);
  605. smi_info->si_state = SI_ENABLE_INTERRUPTS2;
  606. }
  607. break;
  608. }
  609. case SI_ENABLE_INTERRUPTS2:
  610. {
  611. unsigned char msg[4];
  612. /* We got the flags from the SMI, now handle them. */
  613. smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
  614. if (msg[2] != 0)
  615. dev_warn(smi_info->dev, "Could not enable interrupts"
  616. ", failed set, using polled mode.\n");
  617. else
  618. smi_info->interrupt_disabled = 0;
  619. smi_info->si_state = SI_NORMAL;
  620. break;
  621. }
  622. case SI_DISABLE_INTERRUPTS1:
  623. {
  624. unsigned char msg[4];
  625. /* We got the flags from the SMI, now handle them. */
  626. smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
  627. if (msg[2] != 0) {
  628. dev_warn(smi_info->dev, "Could not disable interrupts"
  629. ", failed get.\n");
  630. smi_info->si_state = SI_NORMAL;
  631. } else {
  632. msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
  633. msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
  634. msg[2] = (msg[3] &
  635. ~(IPMI_BMC_RCV_MSG_INTR |
  636. IPMI_BMC_EVT_MSG_INTR));
  637. smi_info->handlers->start_transaction(
  638. smi_info->si_sm, msg, 3);
  639. smi_info->si_state = SI_DISABLE_INTERRUPTS2;
  640. }
  641. break;
  642. }
  643. case SI_DISABLE_INTERRUPTS2:
  644. {
  645. unsigned char msg[4];
  646. /* We got the flags from the SMI, now handle them. */
  647. smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
  648. if (msg[2] != 0) {
  649. dev_warn(smi_info->dev, "Could not disable interrupts"
  650. ", failed set.\n");
  651. }
  652. smi_info->si_state = SI_NORMAL;
  653. break;
  654. }
  655. }
  656. }
  657. /*
  658. * Called on timeouts and events. Timeouts should pass the elapsed
  659. * time, interrupts should pass in zero. Must be called with
  660. * si_lock held and interrupts disabled.
  661. */
  662. static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
  663. int time)
  664. {
  665. enum si_sm_result si_sm_result;
  666. restart:
  667. /*
  668. * There used to be a loop here that waited a little while
  669. * (around 25us) before giving up. That turned out to be
  670. * pointless, the minimum delays I was seeing were in the 300us
  671. * range, which is far too long to wait in an interrupt. So
  672. * we just run until the state machine tells us something
  673. * happened or it needs a delay.
  674. */
  675. si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
  676. time = 0;
  677. while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
  678. si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
  679. if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
  680. smi_inc_stat(smi_info, complete_transactions);
  681. handle_transaction_done(smi_info);
  682. si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
  683. } else if (si_sm_result == SI_SM_HOSED) {
  684. smi_inc_stat(smi_info, hosed_count);
  685. /*
  686. * Do the before return_hosed_msg, because that
  687. * releases the lock.
  688. */
  689. smi_info->si_state = SI_NORMAL;
  690. if (smi_info->curr_msg != NULL) {
  691. /*
  692. * If we were handling a user message, format
  693. * a response to send to the upper layer to
  694. * tell it about the error.
  695. */
  696. return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
  697. }
  698. si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
  699. }
  700. /*
  701. * We prefer handling attn over new messages. But don't do
  702. * this if there is not yet an upper layer to handle anything.
  703. */
  704. if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
  705. unsigned char msg[2];
  706. smi_inc_stat(smi_info, attentions);
  707. /*
  708. * Got a attn, send down a get message flags to see
  709. * what's causing it. It would be better to handle
  710. * this in the upper layer, but due to the way
  711. * interrupts work with the SMI, that's not really
  712. * possible.
  713. */
  714. msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
  715. msg[1] = IPMI_GET_MSG_FLAGS_CMD;
  716. smi_info->handlers->start_transaction(
  717. smi_info->si_sm, msg, 2);
  718. smi_info->si_state = SI_GETTING_FLAGS;
  719. goto restart;
  720. }
  721. /* If we are currently idle, try to start the next message. */
  722. if (si_sm_result == SI_SM_IDLE) {
  723. smi_inc_stat(smi_info, idles);
  724. si_sm_result = start_next_msg(smi_info);
  725. if (si_sm_result != SI_SM_IDLE)
  726. goto restart;
  727. }
  728. if ((si_sm_result == SI_SM_IDLE)
  729. && (atomic_read(&smi_info->req_events))) {
  730. /*
  731. * We are idle and the upper layer requested that I fetch
  732. * events, so do so.
  733. */
  734. atomic_set(&smi_info->req_events, 0);
  735. smi_info->curr_msg = ipmi_alloc_smi_msg();
  736. if (!smi_info->curr_msg)
  737. goto out;
  738. smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
  739. smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
  740. smi_info->curr_msg->data_size = 2;
  741. smi_info->handlers->start_transaction(
  742. smi_info->si_sm,
  743. smi_info->curr_msg->data,
  744. smi_info->curr_msg->data_size);
  745. smi_info->si_state = SI_GETTING_EVENTS;
  746. goto restart;
  747. }
  748. out:
  749. return si_sm_result;
  750. }
  751. static void sender(void *send_info,
  752. struct ipmi_smi_msg *msg,
  753. int priority)
  754. {
  755. struct smi_info *smi_info = send_info;
  756. enum si_sm_result result;
  757. unsigned long flags;
  758. #ifdef DEBUG_TIMING
  759. struct timeval t;
  760. #endif
  761. if (atomic_read(&smi_info->stop_operation)) {
  762. msg->rsp[0] = msg->data[0] | 4;
  763. msg->rsp[1] = msg->data[1];
  764. msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
  765. msg->rsp_size = 3;
  766. deliver_recv_msg(smi_info, msg);
  767. return;
  768. }
  769. #ifdef DEBUG_TIMING
  770. do_gettimeofday(&t);
  771. printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
  772. #endif
  773. mod_timer(&smi_info->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
  774. if (smi_info->thread)
  775. wake_up_process(smi_info->thread);
  776. if (smi_info->run_to_completion) {
  777. /*
  778. * If we are running to completion, then throw it in
  779. * the list and run transactions until everything is
  780. * clear. Priority doesn't matter here.
  781. */
  782. /*
  783. * Run to completion means we are single-threaded, no
  784. * need for locks.
  785. */
  786. list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
  787. result = smi_event_handler(smi_info, 0);
  788. while (result != SI_SM_IDLE) {
  789. udelay(SI_SHORT_TIMEOUT_USEC);
  790. result = smi_event_handler(smi_info,
  791. SI_SHORT_TIMEOUT_USEC);
  792. }
  793. return;
  794. }
  795. spin_lock_irqsave(&smi_info->msg_lock, flags);
  796. if (priority > 0)
  797. list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
  798. else
  799. list_add_tail(&msg->link, &smi_info->xmit_msgs);
  800. spin_unlock_irqrestore(&smi_info->msg_lock, flags);
  801. spin_lock_irqsave(&smi_info->si_lock, flags);
  802. if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL)
  803. start_next_msg(smi_info);
  804. spin_unlock_irqrestore(&smi_info->si_lock, flags);
  805. }
  806. static void set_run_to_completion(void *send_info, int i_run_to_completion)
  807. {
  808. struct smi_info *smi_info = send_info;
  809. enum si_sm_result result;
  810. smi_info->run_to_completion = i_run_to_completion;
  811. if (i_run_to_completion) {
  812. result = smi_event_handler(smi_info, 0);
  813. while (result != SI_SM_IDLE) {
  814. udelay(SI_SHORT_TIMEOUT_USEC);
  815. result = smi_event_handler(smi_info,
  816. SI_SHORT_TIMEOUT_USEC);
  817. }
  818. }
  819. }
  820. /*
  821. * Use -1 in the nsec value of the busy waiting timespec to tell that
  822. * we are spinning in kipmid looking for something and not delaying
  823. * between checks
  824. */
  825. static inline void ipmi_si_set_not_busy(struct timespec *ts)
  826. {
  827. ts->tv_nsec = -1;
  828. }
  829. static inline int ipmi_si_is_busy(struct timespec *ts)
  830. {
  831. return ts->tv_nsec != -1;
  832. }
  833. static int ipmi_thread_busy_wait(enum si_sm_result smi_result,
  834. const struct smi_info *smi_info,
  835. struct timespec *busy_until)
  836. {
  837. unsigned int max_busy_us = 0;
  838. if (smi_info->intf_num < num_max_busy_us)
  839. max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
  840. if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
  841. ipmi_si_set_not_busy(busy_until);
  842. else if (!ipmi_si_is_busy(busy_until)) {
  843. getnstimeofday(busy_until);
  844. timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
  845. } else {
  846. struct timespec now;
  847. getnstimeofday(&now);
  848. if (unlikely(timespec_compare(&now, busy_until) > 0)) {
  849. ipmi_si_set_not_busy(busy_until);
  850. return 0;
  851. }
  852. }
  853. return 1;
  854. }
  855. /*
  856. * A busy-waiting loop for speeding up IPMI operation.
  857. *
  858. * Lousy hardware makes this hard. This is only enabled for systems
  859. * that are not BT and do not have interrupts. It starts spinning
  860. * when an operation is complete or until max_busy tells it to stop
  861. * (if that is enabled). See the paragraph on kimid_max_busy_us in
  862. * Documentation/IPMI.txt for details.
  863. */
  864. static int ipmi_thread(void *data)
  865. {
  866. struct smi_info *smi_info = data;
  867. unsigned long flags;
  868. enum si_sm_result smi_result;
  869. struct timespec busy_until;
  870. ipmi_si_set_not_busy(&busy_until);
  871. set_user_nice(current, 19);
  872. while (!kthread_should_stop()) {
  873. int busy_wait;
  874. spin_lock_irqsave(&(smi_info->si_lock), flags);
  875. smi_result = smi_event_handler(smi_info, 0);
  876. spin_unlock_irqrestore(&(smi_info->si_lock), flags);
  877. busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
  878. &busy_until);
  879. if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
  880. ; /* do nothing */
  881. else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
  882. schedule();
  883. else if (smi_result == SI_SM_IDLE)
  884. schedule_timeout_interruptible(100);
  885. else
  886. schedule_timeout_interruptible(1);
  887. }
  888. return 0;
  889. }
  890. static void poll(void *send_info)
  891. {
  892. struct smi_info *smi_info = send_info;
  893. unsigned long flags;
  894. /*
  895. * Make sure there is some delay in the poll loop so we can
  896. * drive time forward and timeout things.
  897. */
  898. udelay(10);
  899. spin_lock_irqsave(&smi_info->si_lock, flags);
  900. smi_event_handler(smi_info, 10);
  901. spin_unlock_irqrestore(&smi_info->si_lock, flags);
  902. }
  903. static void request_events(void *send_info)
  904. {
  905. struct smi_info *smi_info = send_info;
  906. if (atomic_read(&smi_info->stop_operation) ||
  907. !smi_info->has_event_buffer)
  908. return;
  909. atomic_set(&smi_info->req_events, 1);
  910. }
  911. static int initialized;
  912. static void smi_timeout(unsigned long data)
  913. {
  914. struct smi_info *smi_info = (struct smi_info *) data;
  915. enum si_sm_result smi_result;
  916. unsigned long flags;
  917. unsigned long jiffies_now;
  918. long time_diff;
  919. long timeout;
  920. #ifdef DEBUG_TIMING
  921. struct timeval t;
  922. #endif
  923. spin_lock_irqsave(&(smi_info->si_lock), flags);
  924. #ifdef DEBUG_TIMING
  925. do_gettimeofday(&t);
  926. printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
  927. #endif
  928. jiffies_now = jiffies;
  929. time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
  930. * SI_USEC_PER_JIFFY);
  931. smi_result = smi_event_handler(smi_info, time_diff);
  932. spin_unlock_irqrestore(&(smi_info->si_lock), flags);
  933. smi_info->last_timeout_jiffies = jiffies_now;
  934. if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
  935. /* Running with interrupts, only do long timeouts. */
  936. timeout = jiffies + SI_TIMEOUT_JIFFIES;
  937. smi_inc_stat(smi_info, long_timeouts);
  938. goto do_mod_timer;
  939. }
  940. /*
  941. * If the state machine asks for a short delay, then shorten
  942. * the timer timeout.
  943. */
  944. if (smi_result == SI_SM_CALL_WITH_DELAY) {
  945. smi_inc_stat(smi_info, short_timeouts);
  946. timeout = jiffies + 1;
  947. } else {
  948. smi_inc_stat(smi_info, long_timeouts);
  949. timeout = jiffies + SI_TIMEOUT_JIFFIES;
  950. }
  951. do_mod_timer:
  952. if (smi_result != SI_SM_IDLE)
  953. mod_timer(&(smi_info->si_timer), timeout);
  954. }
  955. static irqreturn_t si_irq_handler(int irq, void *data)
  956. {
  957. struct smi_info *smi_info = data;
  958. unsigned long flags;
  959. #ifdef DEBUG_TIMING
  960. struct timeval t;
  961. #endif
  962. spin_lock_irqsave(&(smi_info->si_lock), flags);
  963. smi_inc_stat(smi_info, interrupts);
  964. #ifdef DEBUG_TIMING
  965. do_gettimeofday(&t);
  966. printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
  967. #endif
  968. smi_event_handler(smi_info, 0);
  969. spin_unlock_irqrestore(&(smi_info->si_lock), flags);
  970. return IRQ_HANDLED;
  971. }
  972. static irqreturn_t si_bt_irq_handler(int irq, void *data)
  973. {
  974. struct smi_info *smi_info = data;
  975. /* We need to clear the IRQ flag for the BT interface. */
  976. smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
  977. IPMI_BT_INTMASK_CLEAR_IRQ_BIT
  978. | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
  979. return si_irq_handler(irq, data);
  980. }
  981. static int smi_start_processing(void *send_info,
  982. ipmi_smi_t intf)
  983. {
  984. struct smi_info *new_smi = send_info;
  985. int enable = 0;
  986. new_smi->intf = intf;
  987. /* Try to claim any interrupts. */
  988. if (new_smi->irq_setup)
  989. new_smi->irq_setup(new_smi);
  990. /* Set up the timer that drives the interface. */
  991. setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
  992. new_smi->last_timeout_jiffies = jiffies;
  993. mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
  994. /*
  995. * Check if the user forcefully enabled the daemon.
  996. */
  997. if (new_smi->intf_num < num_force_kipmid)
  998. enable = force_kipmid[new_smi->intf_num];
  999. /*
  1000. * The BT interface is efficient enough to not need a thread,
  1001. * and there is no need for a thread if we have interrupts.
  1002. */
  1003. else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
  1004. enable = 1;
  1005. if (enable) {
  1006. new_smi->thread = kthread_run(ipmi_thread, new_smi,
  1007. "kipmi%d", new_smi->intf_num);
  1008. if (IS_ERR(new_smi->thread)) {
  1009. dev_notice(new_smi->dev, "Could not start"
  1010. " kernel thread due to error %ld, only using"
  1011. " timers to drive the interface\n",
  1012. PTR_ERR(new_smi->thread));
  1013. new_smi->thread = NULL;
  1014. }
  1015. }
  1016. return 0;
  1017. }
  1018. static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
  1019. {
  1020. struct smi_info *smi = send_info;
  1021. data->addr_src = smi->addr_source;
  1022. data->dev = smi->dev;
  1023. data->addr_info = smi->addr_info;
  1024. get_device(smi->dev);
  1025. return 0;
  1026. }
  1027. static void set_maintenance_mode(void *send_info, int enable)
  1028. {
  1029. struct smi_info *smi_info = send_info;
  1030. if (!enable)
  1031. atomic_set(&smi_info->req_events, 0);
  1032. }
  1033. static struct ipmi_smi_handlers handlers = {
  1034. .owner = THIS_MODULE,
  1035. .start_processing = smi_start_processing,
  1036. .get_smi_info = get_smi_info,
  1037. .sender = sender,
  1038. .request_events = request_events,
  1039. .set_maintenance_mode = set_maintenance_mode,
  1040. .set_run_to_completion = set_run_to_completion,
  1041. .poll = poll,
  1042. };
  1043. /*
  1044. * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
  1045. * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS.
  1046. */
  1047. static LIST_HEAD(smi_infos);
  1048. static DEFINE_MUTEX(smi_infos_lock);
  1049. static int smi_num; /* Used to sequence the SMIs */
  1050. #define DEFAULT_REGSPACING 1
  1051. #define DEFAULT_REGSIZE 1
  1052. static int si_trydefaults = 1;
  1053. static char *si_type[SI_MAX_PARMS];
  1054. #define MAX_SI_TYPE_STR 30
  1055. static char si_type_str[MAX_SI_TYPE_STR];
  1056. static unsigned long addrs[SI_MAX_PARMS];
  1057. static unsigned int num_addrs;
  1058. static unsigned int ports[SI_MAX_PARMS];
  1059. static unsigned int num_ports;
  1060. static int irqs[SI_MAX_PARMS];
  1061. static unsigned int num_irqs;
  1062. static int regspacings[SI_MAX_PARMS];
  1063. static unsigned int num_regspacings;
  1064. static int regsizes[SI_MAX_PARMS];
  1065. static unsigned int num_regsizes;
  1066. static int regshifts[SI_MAX_PARMS];
  1067. static unsigned int num_regshifts;
  1068. static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
  1069. static unsigned int num_slave_addrs;
  1070. #define IPMI_IO_ADDR_SPACE 0
  1071. #define IPMI_MEM_ADDR_SPACE 1
  1072. static char *addr_space_to_str[] = { "i/o", "mem" };
  1073. static int hotmod_handler(const char *val, struct kernel_param *kp);
  1074. module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
  1075. MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See"
  1076. " Documentation/IPMI.txt in the kernel sources for the"
  1077. " gory details.");
  1078. module_param_named(trydefaults, si_trydefaults, bool, 0);
  1079. MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
  1080. " default scan of the KCS and SMIC interface at the standard"
  1081. " address");
  1082. module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
  1083. MODULE_PARM_DESC(type, "Defines the type of each interface, each"
  1084. " interface separated by commas. The types are 'kcs',"
  1085. " 'smic', and 'bt'. For example si_type=kcs,bt will set"
  1086. " the first interface to kcs and the second to bt");
  1087. module_param_array(addrs, ulong, &num_addrs, 0);
  1088. MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
  1089. " addresses separated by commas. Only use if an interface"
  1090. " is in memory. Otherwise, set it to zero or leave"
  1091. " it blank.");
  1092. module_param_array(ports, uint, &num_ports, 0);
  1093. MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
  1094. " addresses separated by commas. Only use if an interface"
  1095. " is a port. Otherwise, set it to zero or leave"
  1096. " it blank.");
  1097. module_param_array(irqs, int, &num_irqs, 0);
  1098. MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
  1099. " addresses separated by commas. Only use if an interface"
  1100. " has an interrupt. Otherwise, set it to zero or leave"
  1101. " it blank.");
  1102. module_param_array(regspacings, int, &num_regspacings, 0);
  1103. MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
  1104. " and each successive register used by the interface. For"
  1105. " instance, if the start address is 0xca2 and the spacing"
  1106. " is 2, then the second address is at 0xca4. Defaults"
  1107. " to 1.");
  1108. module_param_array(regsizes, int, &num_regsizes, 0);
  1109. MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
  1110. " This should generally be 1, 2, 4, or 8 for an 8-bit,"
  1111. " 16-bit, 32-bit, or 64-bit register. Use this if you"
  1112. " the 8-bit IPMI register has to be read from a larger"
  1113. " register.");
  1114. module_param_array(regshifts, int, &num_regshifts, 0);
  1115. MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
  1116. " IPMI register, in bits. For instance, if the data"
  1117. " is read from a 32-bit word and the IPMI data is in"
  1118. " bit 8-15, then the shift would be 8");
  1119. module_param_array(slave_addrs, int, &num_slave_addrs, 0);
  1120. MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
  1121. " the controller. Normally this is 0x20, but can be"
  1122. " overridden by this parm. This is an array indexed"
  1123. " by interface number.");
  1124. module_param_array(force_kipmid, int, &num_force_kipmid, 0);
  1125. MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
  1126. " disabled(0). Normally the IPMI driver auto-detects"
  1127. " this, but the value may be overridden by this parm.");
  1128. module_param(unload_when_empty, int, 0);
  1129. MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
  1130. " specified or found, default is 1. Setting to 0"
  1131. " is useful for hot add of devices using hotmod.");
  1132. module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
  1133. MODULE_PARM_DESC(kipmid_max_busy_us,
  1134. "Max time (in microseconds) to busy-wait for IPMI data before"
  1135. " sleeping. 0 (default) means to wait forever. Set to 100-500"
  1136. " if kipmid is using up a lot of CPU time.");
  1137. static void std_irq_cleanup(struct smi_info *info)
  1138. {
  1139. if (info->si_type == SI_BT)
  1140. /* Disable the interrupt in the BT interface. */
  1141. info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
  1142. free_irq(info->irq, info);
  1143. }
  1144. static int std_irq_setup(struct smi_info *info)
  1145. {
  1146. int rv;
  1147. if (!info->irq)
  1148. return 0;
  1149. if (info->si_type == SI_BT) {
  1150. rv = request_irq(info->irq,
  1151. si_bt_irq_handler,
  1152. IRQF_SHARED | IRQF_DISABLED,
  1153. DEVICE_NAME,
  1154. info);
  1155. if (!rv)
  1156. /* Enable the interrupt in the BT interface. */
  1157. info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
  1158. IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
  1159. } else
  1160. rv = request_irq(info->irq,
  1161. si_irq_handler,
  1162. IRQF_SHARED | IRQF_DISABLED,
  1163. DEVICE_NAME,
  1164. info);
  1165. if (rv) {
  1166. dev_warn(info->dev, "%s unable to claim interrupt %d,"
  1167. " running polled\n",
  1168. DEVICE_NAME, info->irq);
  1169. info->irq = 0;
  1170. } else {
  1171. info->irq_cleanup = std_irq_cleanup;
  1172. dev_info(info->dev, "Using irq %d\n", info->irq);
  1173. }
  1174. return rv;
  1175. }
  1176. static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
  1177. {
  1178. unsigned int addr = io->addr_data;
  1179. return inb(addr + (offset * io->regspacing));
  1180. }
  1181. static void port_outb(struct si_sm_io *io, unsigned int offset,
  1182. unsigned char b)
  1183. {
  1184. unsigned int addr = io->addr_data;
  1185. outb(b, addr + (offset * io->regspacing));
  1186. }
  1187. static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
  1188. {
  1189. unsigned int addr = io->addr_data;
  1190. return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
  1191. }
  1192. static void port_outw(struct si_sm_io *io, unsigned int offset,
  1193. unsigned char b)
  1194. {
  1195. unsigned int addr = io->addr_data;
  1196. outw(b << io->regshift, addr + (offset * io->regspacing));
  1197. }
  1198. static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
  1199. {
  1200. unsigned int addr = io->addr_data;
  1201. return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
  1202. }
  1203. static void port_outl(struct si_sm_io *io, unsigned int offset,
  1204. unsigned char b)
  1205. {
  1206. unsigned int addr = io->addr_data;
  1207. outl(b << io->regshift, addr+(offset * io->regspacing));
  1208. }
  1209. static void port_cleanup(struct smi_info *info)
  1210. {
  1211. unsigned int addr = info->io.addr_data;
  1212. int idx;
  1213. if (addr) {
  1214. for (idx = 0; idx < info->io_size; idx++)
  1215. release_region(addr + idx * info->io.regspacing,
  1216. info->io.regsize);
  1217. }
  1218. }
  1219. static int port_setup(struct smi_info *info)
  1220. {
  1221. unsigned int addr = info->io.addr_data;
  1222. int idx;
  1223. if (!addr)
  1224. return -ENODEV;
  1225. info->io_cleanup = port_cleanup;
  1226. /*
  1227. * Figure out the actual inb/inw/inl/etc routine to use based
  1228. * upon the register size.
  1229. */
  1230. switch (info->io.regsize) {
  1231. case 1:
  1232. info->io.inputb = port_inb;
  1233. info->io.outputb = port_outb;
  1234. break;
  1235. case 2:
  1236. info->io.inputb = port_inw;
  1237. info->io.outputb = port_outw;
  1238. break;
  1239. case 4:
  1240. info->io.inputb = port_inl;
  1241. info->io.outputb = port_outl;
  1242. break;
  1243. default:
  1244. dev_warn(info->dev, "Invalid register size: %d\n",
  1245. info->io.regsize);
  1246. return -EINVAL;
  1247. }
  1248. /*
  1249. * Some BIOSes reserve disjoint I/O regions in their ACPI
  1250. * tables. This causes problems when trying to register the
  1251. * entire I/O region. Therefore we must register each I/O
  1252. * port separately.
  1253. */
  1254. for (idx = 0; idx < info->io_size; idx++) {
  1255. if (request_region(addr + idx * info->io.regspacing,
  1256. info->io.regsize, DEVICE_NAME) == NULL) {
  1257. /* Undo allocations */
  1258. while (idx--) {
  1259. release_region(addr + idx * info->io.regspacing,
  1260. info->io.regsize);
  1261. }
  1262. return -EIO;
  1263. }
  1264. }
  1265. return 0;
  1266. }
  1267. static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
  1268. {
  1269. return readb((io->addr)+(offset * io->regspacing));
  1270. }
  1271. static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
  1272. unsigned char b)
  1273. {
  1274. writeb(b, (io->addr)+(offset * io->regspacing));
  1275. }
  1276. static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
  1277. {
  1278. return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
  1279. & 0xff;
  1280. }
  1281. static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
  1282. unsigned char b)
  1283. {
  1284. writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
  1285. }
  1286. static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
  1287. {
  1288. return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
  1289. & 0xff;
  1290. }
  1291. static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
  1292. unsigned char b)
  1293. {
  1294. writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
  1295. }
  1296. #ifdef readq
  1297. static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
  1298. {
  1299. return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
  1300. & 0xff;
  1301. }
  1302. static void mem_outq(struct si_sm_io *io, unsigned int offset,
  1303. unsigned char b)
  1304. {
  1305. writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
  1306. }
  1307. #endif
  1308. static void mem_cleanup(struct smi_info *info)
  1309. {
  1310. unsigned long addr = info->io.addr_data;
  1311. int mapsize;
  1312. if (info->io.addr) {
  1313. iounmap(info->io.addr);
  1314. mapsize = ((info->io_size * info->io.regspacing)
  1315. - (info->io.regspacing - info->io.regsize));
  1316. release_mem_region(addr, mapsize);
  1317. }
  1318. }
  1319. static int mem_setup(struct smi_info *info)
  1320. {
  1321. unsigned long addr = info->io.addr_data;
  1322. int mapsize;
  1323. if (!addr)
  1324. return -ENODEV;
  1325. info->io_cleanup = mem_cleanup;
  1326. /*
  1327. * Figure out the actual readb/readw/readl/etc routine to use based
  1328. * upon the register size.
  1329. */
  1330. switch (info->io.regsize) {
  1331. case 1:
  1332. info->io.inputb = intf_mem_inb;
  1333. info->io.outputb = intf_mem_outb;
  1334. break;
  1335. case 2:
  1336. info->io.inputb = intf_mem_inw;
  1337. info->io.outputb = intf_mem_outw;
  1338. break;
  1339. case 4:
  1340. info->io.inputb = intf_mem_inl;
  1341. info->io.outputb = intf_mem_outl;
  1342. break;
  1343. #ifdef readq
  1344. case 8:
  1345. info->io.inputb = mem_inq;
  1346. info->io.outputb = mem_outq;
  1347. break;
  1348. #endif
  1349. default:
  1350. dev_warn(info->dev, "Invalid register size: %d\n",
  1351. info->io.regsize);
  1352. return -EINVAL;
  1353. }
  1354. /*
  1355. * Calculate the total amount of memory to claim. This is an
  1356. * unusual looking calculation, but it avoids claiming any
  1357. * more memory than it has to. It will claim everything
  1358. * between the first address to the end of the last full
  1359. * register.
  1360. */
  1361. mapsize = ((info->io_size * info->io.regspacing)
  1362. - (info->io.regspacing - info->io.regsize));
  1363. if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
  1364. return -EIO;
  1365. info->io.addr = ioremap(addr, mapsize);
  1366. if (info->io.addr == NULL) {
  1367. release_mem_region(addr, mapsize);
  1368. return -EIO;
  1369. }
  1370. return 0;
  1371. }
  1372. /*
  1373. * Parms come in as <op1>[:op2[:op3...]]. ops are:
  1374. * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
  1375. * Options are:
  1376. * rsp=<regspacing>
  1377. * rsi=<regsize>
  1378. * rsh=<regshift>
  1379. * irq=<irq>
  1380. * ipmb=<ipmb addr>
  1381. */
  1382. enum hotmod_op { HM_ADD, HM_REMOVE };
  1383. struct hotmod_vals {
  1384. char *name;
  1385. int val;
  1386. };
  1387. static struct hotmod_vals hotmod_ops[] = {
  1388. { "add", HM_ADD },
  1389. { "remove", HM_REMOVE },
  1390. { NULL }
  1391. };
  1392. static struct hotmod_vals hotmod_si[] = {
  1393. { "kcs", SI_KCS },
  1394. { "smic", SI_SMIC },
  1395. { "bt", SI_BT },
  1396. { NULL }
  1397. };
  1398. static struct hotmod_vals hotmod_as[] = {
  1399. { "mem", IPMI_MEM_ADDR_SPACE },
  1400. { "i/o", IPMI_IO_ADDR_SPACE },
  1401. { NULL }
  1402. };
  1403. static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
  1404. {
  1405. char *s;
  1406. int i;
  1407. s = strchr(*curr, ',');
  1408. if (!s) {
  1409. printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
  1410. return -EINVAL;
  1411. }
  1412. *s = '\0';
  1413. s++;
  1414. for (i = 0; hotmod_ops[i].name; i++) {
  1415. if (strcmp(*curr, v[i].name) == 0) {
  1416. *val = v[i].val;
  1417. *curr = s;
  1418. return 0;
  1419. }
  1420. }
  1421. printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
  1422. return -EINVAL;
  1423. }
  1424. static int check_hotmod_int_op(const char *curr, const char *option,
  1425. const char *name, int *val)
  1426. {
  1427. char *n;
  1428. if (strcmp(curr, name) == 0) {
  1429. if (!option) {
  1430. printk(KERN_WARNING PFX
  1431. "No option given for '%s'\n",
  1432. curr);
  1433. return -EINVAL;
  1434. }
  1435. *val = simple_strtoul(option, &n, 0);
  1436. if ((*n != '\0') || (*option == '\0')) {
  1437. printk(KERN_WARNING PFX
  1438. "Bad option given for '%s'\n",
  1439. curr);
  1440. return -EINVAL;
  1441. }
  1442. return 1;
  1443. }
  1444. return 0;
  1445. }
  1446. static struct smi_info *smi_info_alloc(void)
  1447. {
  1448. struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
  1449. if (info) {
  1450. spin_lock_init(&info->si_lock);
  1451. spin_lock_init(&info->msg_lock);
  1452. }
  1453. return info;
  1454. }
  1455. static int hotmod_handler(const char *val, struct kernel_param *kp)
  1456. {
  1457. char *str = kstrdup(val, GFP_KERNEL);
  1458. int rv;
  1459. char *next, *curr, *s, *n, *o;
  1460. enum hotmod_op op;
  1461. enum si_type si_type;
  1462. int addr_space;
  1463. unsigned long addr;
  1464. int regspacing;
  1465. int regsize;
  1466. int regshift;
  1467. int irq;
  1468. int ipmb;
  1469. int ival;
  1470. int len;
  1471. struct smi_info *info;
  1472. if (!str)
  1473. return -ENOMEM;
  1474. /* Kill any trailing spaces, as we can get a "\n" from echo. */
  1475. len = strlen(str);
  1476. ival = len - 1;
  1477. while ((ival >= 0) && isspace(str[ival])) {
  1478. str[ival] = '\0';
  1479. ival--;
  1480. }
  1481. for (curr = str; curr; curr = next) {
  1482. regspacing = 1;
  1483. regsize = 1;
  1484. regshift = 0;
  1485. irq = 0;
  1486. ipmb = 0; /* Choose the default if not specified */
  1487. next = strchr(curr, ':');
  1488. if (next) {
  1489. *next = '\0';
  1490. next++;
  1491. }
  1492. rv = parse_str(hotmod_ops, &ival, "operation", &curr);
  1493. if (rv)
  1494. break;
  1495. op = ival;
  1496. rv = parse_str(hotmod_si, &ival, "interface type", &curr);
  1497. if (rv)
  1498. break;
  1499. si_type = ival;
  1500. rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
  1501. if (rv)
  1502. break;
  1503. s = strchr(curr, ',');
  1504. if (s) {
  1505. *s = '\0';
  1506. s++;
  1507. }
  1508. addr = simple_strtoul(curr, &n, 0);
  1509. if ((*n != '\0') || (*curr == '\0')) {
  1510. printk(KERN_WARNING PFX "Invalid hotmod address"
  1511. " '%s'\n", curr);
  1512. break;
  1513. }
  1514. while (s) {
  1515. curr = s;
  1516. s = strchr(curr, ',');
  1517. if (s) {
  1518. *s = '\0';
  1519. s++;
  1520. }
  1521. o = strchr(curr, '=');
  1522. if (o) {
  1523. *o = '\0';
  1524. o++;
  1525. }
  1526. rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
  1527. if (rv < 0)
  1528. goto out;
  1529. else if (rv)
  1530. continue;
  1531. rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
  1532. if (rv < 0)
  1533. goto out;
  1534. else if (rv)
  1535. continue;
  1536. rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
  1537. if (rv < 0)
  1538. goto out;
  1539. else if (rv)
  1540. continue;
  1541. rv = check_hotmod_int_op(curr, o, "irq", &irq);
  1542. if (rv < 0)
  1543. goto out;
  1544. else if (rv)
  1545. continue;
  1546. rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
  1547. if (rv < 0)
  1548. goto out;
  1549. else if (rv)
  1550. continue;
  1551. rv = -EINVAL;
  1552. printk(KERN_WARNING PFX
  1553. "Invalid hotmod option '%s'\n",
  1554. curr);
  1555. goto out;
  1556. }
  1557. if (op == HM_ADD) {
  1558. info = smi_info_alloc();
  1559. if (!info) {
  1560. rv = -ENOMEM;
  1561. goto out;
  1562. }
  1563. info->addr_source = SI_HOTMOD;
  1564. info->si_type = si_type;
  1565. info->io.addr_data = addr;
  1566. info->io.addr_type = addr_space;
  1567. if (addr_space == IPMI_MEM_ADDR_SPACE)
  1568. info->io_setup = mem_setup;
  1569. else
  1570. info->io_setup = port_setup;
  1571. info->io.addr = NULL;
  1572. info->io.regspacing = regspacing;
  1573. if (!info->io.regspacing)
  1574. info->io.regspacing = DEFAULT_REGSPACING;
  1575. info->io.regsize = regsize;
  1576. if (!info->io.regsize)
  1577. info->io.regsize = DEFAULT_REGSPACING;
  1578. info->io.regshift = regshift;
  1579. info->irq = irq;
  1580. if (info->irq)
  1581. info->irq_setup = std_irq_setup;
  1582. info->slave_addr = ipmb;
  1583. if (!add_smi(info)) {
  1584. if (try_smi_init(info))
  1585. cleanup_one_si(info);
  1586. } else {
  1587. kfree(info);
  1588. }
  1589. } else {
  1590. /* remove */
  1591. struct smi_info *e, *tmp_e;
  1592. mutex_lock(&smi_infos_lock);
  1593. list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
  1594. if (e->io.addr_type != addr_space)
  1595. continue;
  1596. if (e->si_type != si_type)
  1597. continue;
  1598. if (e->io.addr_data == addr)
  1599. cleanup_one_si(e);
  1600. }
  1601. mutex_unlock(&smi_infos_lock);
  1602. }
  1603. }
  1604. rv = len;
  1605. out:
  1606. kfree(str);
  1607. return rv;
  1608. }
  1609. static void __devinit hardcode_find_bmc(void)
  1610. {
  1611. int i;
  1612. struct smi_info *info;
  1613. for (i = 0; i < SI_MAX_PARMS; i++) {
  1614. if (!ports[i] && !addrs[i])
  1615. continue;
  1616. info = smi_info_alloc();
  1617. if (!info)
  1618. return;
  1619. info->addr_source = SI_HARDCODED;
  1620. printk(KERN_INFO PFX "probing via hardcoded address\n");
  1621. if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
  1622. info->si_type = SI_KCS;
  1623. } else if (strcmp(si_type[i], "smic") == 0) {
  1624. info->si_type = SI_SMIC;
  1625. } else if (strcmp(si_type[i], "bt") == 0) {
  1626. info->si_type = SI_BT;
  1627. } else {
  1628. printk(KERN_WARNING PFX "Interface type specified "
  1629. "for interface %d, was invalid: %s\n",
  1630. i, si_type[i]);
  1631. kfree(info);
  1632. continue;
  1633. }
  1634. if (ports[i]) {
  1635. /* An I/O port */
  1636. info->io_setup = port_setup;
  1637. info->io.addr_data = ports[i];
  1638. info->io.addr_type = IPMI_IO_ADDR_SPACE;
  1639. } else if (addrs[i]) {
  1640. /* A memory port */
  1641. info->io_setup = mem_setup;
  1642. info->io.addr_data = addrs[i];
  1643. info->io.addr_type = IPMI_MEM_ADDR_SPACE;
  1644. } else {
  1645. printk(KERN_WARNING PFX "Interface type specified "
  1646. "for interface %d, but port and address were "
  1647. "not set or set to zero.\n", i);
  1648. kfree(info);
  1649. continue;
  1650. }
  1651. info->io.addr = NULL;
  1652. info->io.regspacing = regspacings[i];
  1653. if (!info->io.regspacing)
  1654. info->io.regspacing = DEFAULT_REGSPACING;
  1655. info->io.regsize = regsizes[i];
  1656. if (!info->io.regsize)
  1657. info->io.regsize = DEFAULT_REGSPACING;
  1658. info->io.regshift = regshifts[i];
  1659. info->irq = irqs[i];
  1660. if (info->irq)
  1661. info->irq_setup = std_irq_setup;
  1662. info->slave_addr = slave_addrs[i];
  1663. if (!add_smi(info)) {
  1664. if (try_smi_init(info))
  1665. cleanup_one_si(info);
  1666. } else {
  1667. kfree(info);
  1668. }
  1669. }
  1670. }
  1671. #ifdef CONFIG_ACPI
  1672. #include <linux/acpi.h>
  1673. /*
  1674. * Once we get an ACPI failure, we don't try any more, because we go
  1675. * through the tables sequentially. Once we don't find a table, there
  1676. * are no more.
  1677. */
  1678. static int acpi_failure;
  1679. /* For GPE-type interrupts. */
  1680. static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
  1681. u32 gpe_number, void *context)
  1682. {
  1683. struct smi_info *smi_info = context;
  1684. unsigned long flags;
  1685. #ifdef DEBUG_TIMING
  1686. struct timeval t;
  1687. #endif
  1688. spin_lock_irqsave(&(smi_info->si_lock), flags);
  1689. smi_inc_stat(smi_info, interrupts);
  1690. #ifdef DEBUG_TIMING
  1691. do_gettimeofday(&t);
  1692. printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
  1693. #endif
  1694. smi_event_handler(smi_info, 0);
  1695. spin_unlock_irqrestore(&(smi_info->si_lock), flags);
  1696. return ACPI_INTERRUPT_HANDLED;
  1697. }
  1698. static void acpi_gpe_irq_cleanup(struct smi_info *info)
  1699. {
  1700. if (!info->irq)
  1701. return;
  1702. acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
  1703. }
  1704. static int acpi_gpe_irq_setup(struct smi_info *info)
  1705. {
  1706. acpi_status status;
  1707. if (!info->irq)
  1708. return 0;
  1709. /* FIXME - is level triggered right? */
  1710. status = acpi_install_gpe_handler(NULL,
  1711. info->irq,
  1712. ACPI_GPE_LEVEL_TRIGGERED,
  1713. &ipmi_acpi_gpe,
  1714. info);
  1715. if (status != AE_OK) {
  1716. dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
  1717. " running polled\n", DEVICE_NAME, info->irq);
  1718. info->irq = 0;
  1719. return -EINVAL;
  1720. } else {
  1721. info->irq_cleanup = acpi_gpe_irq_cleanup;
  1722. dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
  1723. return 0;
  1724. }
  1725. }
  1726. /*
  1727. * Defined at
  1728. * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
  1729. */
  1730. struct SPMITable {
  1731. s8 Signature[4];
  1732. u32 Length;
  1733. u8 Revision;
  1734. u8 Checksum;
  1735. s8 OEMID[6];
  1736. s8 OEMTableID[8];
  1737. s8 OEMRevision[4];
  1738. s8 CreatorID[4];
  1739. s8 CreatorRevision[4];
  1740. u8 InterfaceType;
  1741. u8 IPMIlegacy;
  1742. s16 SpecificationRevision;
  1743. /*
  1744. * Bit 0 - SCI interrupt supported
  1745. * Bit 1 - I/O APIC/SAPIC
  1746. */
  1747. u8 InterruptType;
  1748. /*
  1749. * If bit 0 of InterruptType is set, then this is the SCI
  1750. * interrupt in the GPEx_STS register.
  1751. */
  1752. u8 GPE;
  1753. s16 Reserved;
  1754. /*
  1755. * If bit 1 of InterruptType is set, then this is the I/O
  1756. * APIC/SAPIC interrupt.
  1757. */
  1758. u32 GlobalSystemInterrupt;
  1759. /* The actual register address. */
  1760. struct acpi_generic_address addr;
  1761. u8 UID[4];
  1762. s8 spmi_id[1]; /* A '\0' terminated array starts here. */
  1763. };
  1764. static int __devinit try_init_spmi(struct SPMITable *spmi)
  1765. {
  1766. struct smi_info *info;
  1767. if (spmi->IPMIlegacy != 1) {
  1768. printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
  1769. return -ENODEV;
  1770. }
  1771. info = smi_info_alloc();
  1772. if (!info) {
  1773. printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
  1774. return -ENOMEM;
  1775. }
  1776. info->addr_source = SI_SPMI;
  1777. printk(KERN_INFO PFX "probing via SPMI\n");
  1778. /* Figure out the interface type. */
  1779. switch (spmi->InterfaceType) {
  1780. case 1: /* KCS */
  1781. info->si_type = SI_KCS;
  1782. break;
  1783. case 2: /* SMIC */
  1784. info->si_type = SI_SMIC;
  1785. break;
  1786. case 3: /* BT */
  1787. info->si_type = SI_BT;
  1788. break;
  1789. default:
  1790. printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
  1791. spmi->InterfaceType);
  1792. kfree(info);
  1793. return -EIO;
  1794. }
  1795. if (spmi->InterruptType & 1) {
  1796. /* We've got a GPE interrupt. */
  1797. info->irq = spmi->GPE;
  1798. info->irq_setup = acpi_gpe_irq_setup;
  1799. } else if (spmi->InterruptType & 2) {
  1800. /* We've got an APIC/SAPIC interrupt. */
  1801. info->irq = spmi->GlobalSystemInterrupt;
  1802. info->irq_setup = std_irq_setup;
  1803. } else {
  1804. /* Use the default interrupt setting. */
  1805. info->irq = 0;
  1806. info->irq_setup = NULL;
  1807. }
  1808. if (spmi->addr.bit_width) {
  1809. /* A (hopefully) properly formed register bit width. */
  1810. info->io.regspacing = spmi->addr.bit_width / 8;
  1811. } else {
  1812. info->io.regspacing = DEFAULT_REGSPACING;
  1813. }
  1814. info->io.regsize = info->io.regspacing;
  1815. info->io.regshift = spmi->addr.bit_offset;
  1816. if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
  1817. info->io_setup = mem_setup;
  1818. info->io.addr_type = IPMI_MEM_ADDR_SPACE;
  1819. } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
  1820. info->io_setup = port_setup;
  1821. info->io.addr_type = IPMI_IO_ADDR_SPACE;
  1822. } else {
  1823. kfree(info);
  1824. printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
  1825. return -EIO;
  1826. }
  1827. info->io.addr_data = spmi->addr.address;
  1828. pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
  1829. (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
  1830. info->io.addr_data, info->io.regsize, info->io.regspacing,
  1831. info->irq);
  1832. if (add_smi(info))
  1833. kfree(info);
  1834. return 0;
  1835. }
  1836. static void __devinit spmi_find_bmc(void)
  1837. {
  1838. acpi_status status;
  1839. struct SPMITable *spmi;
  1840. int i;
  1841. if (acpi_disabled)
  1842. return;
  1843. if (acpi_failure)
  1844. return;
  1845. for (i = 0; ; i++) {
  1846. status = acpi_get_table(ACPI_SIG_SPMI, i+1,
  1847. (struct acpi_table_header **)&spmi);
  1848. if (status != AE_OK)
  1849. return;
  1850. try_init_spmi(spmi);
  1851. }
  1852. }
  1853. static int __devinit ipmi_pnp_probe(struct pnp_dev *dev,
  1854. const struct pnp_device_id *dev_id)
  1855. {
  1856. struct acpi_device *acpi_dev;
  1857. struct smi_info *info;
  1858. struct resource *res, *res_second;
  1859. acpi_handle handle;
  1860. acpi_status status;
  1861. unsigned long long tmp;
  1862. acpi_dev = pnp_acpi_device(dev);
  1863. if (!acpi_dev)
  1864. return -ENODEV;
  1865. info = smi_info_alloc();
  1866. if (!info)
  1867. return -ENOMEM;
  1868. info->addr_source = SI_ACPI;
  1869. printk(KERN_INFO PFX "probing via ACPI\n");
  1870. handle = acpi_dev->handle;
  1871. info->addr_info.acpi_info.acpi_handle = handle;
  1872. /* _IFT tells us the interface type: KCS, BT, etc */
  1873. status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
  1874. if (ACPI_FAILURE(status))
  1875. goto err_free;
  1876. switch (tmp) {
  1877. case 1:
  1878. info->si_type = SI_KCS;
  1879. break;
  1880. case 2:
  1881. info->si_type = SI_SMIC;
  1882. break;
  1883. case 3:
  1884. info->si_type = SI_BT;
  1885. break;
  1886. default:
  1887. dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
  1888. goto err_free;
  1889. }
  1890. res = pnp_get_resource(dev, IORESOURCE_IO, 0);
  1891. if (res) {
  1892. info->io_setup = port_setup;
  1893. info->io.addr_type = IPMI_IO_ADDR_SPACE;
  1894. } else {
  1895. res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
  1896. if (res) {
  1897. info->io_setup = mem_setup;
  1898. info->io.addr_type = IPMI_MEM_ADDR_SPACE;
  1899. }
  1900. }
  1901. if (!res) {
  1902. dev_err(&dev->dev, "no I/O or memory address\n");
  1903. goto err_free;
  1904. }
  1905. info->io.addr_data = res->start;
  1906. info->io.regspacing = DEFAULT_REGSPACING;
  1907. res_second = pnp_get_resource(dev,
  1908. (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
  1909. IORESOURCE_IO : IORESOURCE_MEM,
  1910. 1);
  1911. if (res_second) {
  1912. if (res_second->start > info->io.addr_data)
  1913. info->io.regspacing = res_second->start - info->io.addr_data;
  1914. }
  1915. info->io.regsize = DEFAULT_REGSPACING;
  1916. info->io.regshift = 0;
  1917. /* If _GPE exists, use it; otherwise use standard interrupts */
  1918. status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
  1919. if (ACPI_SUCCESS(status)) {
  1920. info->irq = tmp;
  1921. info->irq_setup = acpi_gpe_irq_setup;
  1922. } else if (pnp_irq_valid(dev, 0)) {
  1923. info->irq = pnp_irq(dev, 0);
  1924. info->irq_setup = std_irq_setup;
  1925. }
  1926. info->dev = &dev->dev;
  1927. pnp_set_drvdata(dev, info);
  1928. dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
  1929. res, info->io.regsize, info->io.regspacing,
  1930. info->irq);
  1931. if (add_smi(info))
  1932. goto err_free;
  1933. return 0;
  1934. err_free:
  1935. kfree(info);
  1936. return -EINVAL;
  1937. }
  1938. static void __devexit ipmi_pnp_remove(struct pnp_dev *dev)
  1939. {
  1940. struct smi_info *info = pnp_get_drvdata(dev);
  1941. cleanup_one_si(info);
  1942. }
  1943. static const struct pnp_device_id pnp_dev_table[] = {
  1944. {"IPI0001", 0},
  1945. {"", 0},
  1946. };
  1947. static struct pnp_driver ipmi_pnp_driver = {
  1948. .name = DEVICE_NAME,
  1949. .probe = ipmi_pnp_probe,
  1950. .remove = __devexit_p(ipmi_pnp_remove),
  1951. .id_table = pnp_dev_table,
  1952. };
  1953. #endif
  1954. #ifdef CONFIG_DMI
  1955. struct dmi_ipmi_data {
  1956. u8 type;
  1957. u8 addr_space;
  1958. unsigned long base_addr;
  1959. u8 irq;
  1960. u8 offset;
  1961. u8 slave_addr;
  1962. };
  1963. static int __devinit decode_dmi(const struct dmi_header *dm,
  1964. struct dmi_ipmi_data *dmi)
  1965. {
  1966. const u8 *data = (const u8 *)dm;
  1967. unsigned long base_addr;
  1968. u8 reg_spacing;
  1969. u8 len = dm->length;
  1970. dmi->type = data[4];
  1971. memcpy(&base_addr, data+8, sizeof(unsigned long));
  1972. if (len >= 0x11) {
  1973. if (base_addr & 1) {
  1974. /* I/O */
  1975. base_addr &= 0xFFFE;
  1976. dmi->addr_space = IPMI_IO_ADDR_SPACE;
  1977. } else
  1978. /* Memory */
  1979. dmi->addr_space = IPMI_MEM_ADDR_SPACE;
  1980. /* If bit 4 of byte 0x10 is set, then the lsb for the address
  1981. is odd. */
  1982. dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
  1983. dmi->irq = data[0x11];
  1984. /* The top two bits of byte 0x10 hold the register spacing. */
  1985. reg_spacing = (data[0x10] & 0xC0) >> 6;
  1986. switch (reg_spacing) {
  1987. case 0x00: /* Byte boundaries */
  1988. dmi->offset = 1;
  1989. break;
  1990. case 0x01: /* 32-bit boundaries */
  1991. dmi->offset = 4;
  1992. break;
  1993. case 0x02: /* 16-byte boundaries */
  1994. dmi->offset = 16;
  1995. break;
  1996. default:
  1997. /* Some other interface, just ignore it. */
  1998. return -EIO;
  1999. }
  2000. } else {
  2001. /* Old DMI spec. */
  2002. /*
  2003. * Note that technically, the lower bit of the base
  2004. * address should be 1 if the address is I/O and 0 if
  2005. * the address is in memory. So many systems get that
  2006. * wrong (and all that I have seen are I/O) so we just
  2007. * ignore that bit and assume I/O. Systems that use
  2008. * memory should use the newer spec, anyway.
  2009. */
  2010. dmi->base_addr = base_addr & 0xfffe;
  2011. dmi->addr_space = IPMI_IO_ADDR_SPACE;
  2012. dmi->offset = 1;
  2013. }
  2014. dmi->slave_addr = data[6];
  2015. return 0;
  2016. }
  2017. static void __devinit try_init_dmi(struct dmi_ipmi_data *ipmi_data)
  2018. {
  2019. struct smi_info *info;
  2020. info = smi_info_alloc();
  2021. if (!info) {
  2022. printk(KERN_ERR PFX "Could not allocate SI data\n");
  2023. return;
  2024. }
  2025. info->addr_source = SI_SMBIOS;
  2026. printk(KERN_INFO PFX "probing via SMBIOS\n");
  2027. switch (ipmi_data->type) {
  2028. case 0x01: /* KCS */
  2029. info->si_type = SI_KCS;
  2030. break;
  2031. case 0x02: /* SMIC */
  2032. info->si_type = SI_SMIC;
  2033. break;
  2034. case 0x03: /* BT */
  2035. info->si_type = SI_BT;
  2036. break;
  2037. default:
  2038. kfree(info);
  2039. return;
  2040. }
  2041. switch (ipmi_data->addr_space) {
  2042. case IPMI_MEM_ADDR_SPACE:
  2043. info->io_setup = mem_setup;
  2044. info->io.addr_type = IPMI_MEM_ADDR_SPACE;
  2045. break;
  2046. case IPMI_IO_ADDR_SPACE:
  2047. info->io_setup = port_setup;
  2048. info->io.addr_type = IPMI_IO_ADDR_SPACE;
  2049. break;
  2050. default:
  2051. kfree(info);
  2052. printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
  2053. ipmi_data->addr_space);
  2054. return;
  2055. }
  2056. info->io.addr_data = ipmi_data->base_addr;
  2057. info->io.regspacing = ipmi_data->offset;
  2058. if (!info->io.regspacing)
  2059. info->io.regspacing = DEFAULT_REGSPACING;
  2060. info->io.regsize = DEFAULT_REGSPACING;
  2061. info->io.regshift = 0;
  2062. info->slave_addr = ipmi_data->slave_addr;
  2063. info->irq = ipmi_data->irq;
  2064. if (info->irq)
  2065. info->irq_setup = std_irq_setup;
  2066. pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
  2067. (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
  2068. info->io.addr_data, info->io.regsize, info->io.regspacing,
  2069. info->irq);
  2070. if (add_smi(info))
  2071. kfree(info);
  2072. }
  2073. static void __devinit dmi_find_bmc(void)
  2074. {
  2075. const struct dmi_device *dev = NULL;
  2076. struct dmi_ipmi_data data;
  2077. int rv;
  2078. while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
  2079. memset(&data, 0, sizeof(data));
  2080. rv = decode_dmi((const struct dmi_header *) dev->device_data,
  2081. &data);
  2082. if (!rv)
  2083. try_init_dmi(&data);
  2084. }
  2085. }
  2086. #endif /* CONFIG_DMI */
  2087. #ifdef CONFIG_PCI
  2088. #define PCI_ERMC_CLASSCODE 0x0C0700
  2089. #define PCI_ERMC_CLASSCODE_MASK 0xffffff00
  2090. #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
  2091. #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
  2092. #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
  2093. #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
  2094. #define PCI_HP_VENDOR_ID 0x103C
  2095. #define PCI_MMC_DEVICE_ID 0x121A
  2096. #define PCI_MMC_ADDR_CW 0x10
  2097. static void ipmi_pci_cleanup(struct smi_info *info)
  2098. {
  2099. struct pci_dev *pdev = info->addr_source_data;
  2100. pci_disable_device(pdev);
  2101. }
  2102. static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
  2103. const struct pci_device_id *ent)
  2104. {
  2105. int rv;
  2106. int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
  2107. struct smi_info *info;
  2108. info = smi_info_alloc();
  2109. if (!info)
  2110. return -ENOMEM;
  2111. info->addr_source = SI_PCI;
  2112. dev_info(&pdev->dev, "probing via PCI");
  2113. switch (class_type) {
  2114. case PCI_ERMC_CLASSCODE_TYPE_SMIC:
  2115. info->si_type = SI_SMIC;
  2116. break;
  2117. case PCI_ERMC_CLASSCODE_TYPE_KCS:
  2118. info->si_type = SI_KCS;
  2119. break;
  2120. case PCI_ERMC_CLASSCODE_TYPE_BT:
  2121. info->si_type = SI_BT;
  2122. break;
  2123. default:
  2124. kfree(info);
  2125. dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
  2126. return -ENOMEM;
  2127. }
  2128. rv = pci_enable_device(pdev);
  2129. if (rv) {
  2130. dev_err(&pdev->dev, "couldn't enable PCI device\n");
  2131. kfree(info);
  2132. return rv;
  2133. }
  2134. info->addr_source_cleanup = ipmi_pci_cleanup;
  2135. info->addr_source_data = pdev;
  2136. if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
  2137. info->io_setup = port_setup;
  2138. info->io.addr_type = IPMI_IO_ADDR_SPACE;
  2139. } else {
  2140. info->io_setup = mem_setup;
  2141. info->io.addr_type = IPMI_MEM_ADDR_SPACE;
  2142. }
  2143. info->io.addr_data = pci_resource_start(pdev, 0);
  2144. info->io.regspacing = DEFAULT_REGSPACING;
  2145. info->io.regsize = DEFAULT_REGSPACING;
  2146. info->io.regshift = 0;
  2147. info->irq = pdev->irq;
  2148. if (info->irq)
  2149. info->irq_setup = std_irq_setup;
  2150. info->dev = &pdev->dev;
  2151. pci_set_drvdata(pdev, info);
  2152. dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
  2153. &pdev->resource[0], info->io.regsize, info->io.regspacing,
  2154. info->irq);
  2155. if (add_smi(info))
  2156. kfree(info);
  2157. return 0;
  2158. }
  2159. static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
  2160. {
  2161. struct smi_info *info = pci_get_drvdata(pdev);
  2162. cleanup_one_si(info);
  2163. }
  2164. #ifdef CONFIG_PM
  2165. static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
  2166. {
  2167. return 0;
  2168. }
  2169. static int ipmi_pci_resume(struct pci_dev *pdev)
  2170. {
  2171. return 0;
  2172. }
  2173. #endif
  2174. static struct pci_device_id ipmi_pci_devices[] = {
  2175. { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
  2176. { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
  2177. { 0, }
  2178. };
  2179. MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
  2180. static struct pci_driver ipmi_pci_driver = {
  2181. .name = DEVICE_NAME,
  2182. .id_table = ipmi_pci_devices,
  2183. .probe = ipmi_pci_probe,
  2184. .remove = __devexit_p(ipmi_pci_remove),
  2185. #ifdef CONFIG_PM
  2186. .suspend = ipmi_pci_suspend,
  2187. .resume = ipmi_pci_resume,
  2188. #endif
  2189. };
  2190. #endif /* CONFIG_PCI */
  2191. #ifdef CONFIG_PPC_OF
  2192. static int __devinit ipmi_of_probe(struct platform_device *dev,
  2193. const struct of_device_id *match)
  2194. {
  2195. struct smi_info *info;
  2196. struct resource resource;
  2197. const __be32 *regsize, *regspacing, *regshift;
  2198. struct device_node *np = dev->dev.of_node;
  2199. int ret;
  2200. int proplen;
  2201. dev_info(&dev->dev, "probing via device tree\n");
  2202. ret = of_address_to_resource(np, 0, &resource);
  2203. if (ret) {
  2204. dev_warn(&dev->dev, PFX "invalid address from OF\n");
  2205. return ret;
  2206. }
  2207. regsize = of_get_property(np, "reg-size", &proplen);
  2208. if (regsize && proplen != 4) {
  2209. dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
  2210. return -EINVAL;
  2211. }
  2212. regspacing = of_get_property(np, "reg-spacing", &proplen);
  2213. if (regspacing && proplen != 4) {
  2214. dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
  2215. return -EINVAL;
  2216. }
  2217. regshift = of_get_property(np, "reg-shift", &proplen);
  2218. if (regshift && proplen != 4) {
  2219. dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
  2220. return -EINVAL;
  2221. }
  2222. info = smi_info_alloc();
  2223. if (!info) {
  2224. dev_err(&dev->dev,
  2225. "could not allocate memory for OF probe\n");
  2226. return -ENOMEM;
  2227. }
  2228. info->si_type = (enum si_type) match->data;
  2229. info->addr_source = SI_DEVICETREE;
  2230. info->irq_setup = std_irq_setup;
  2231. if (resource.flags & IORESOURCE_IO) {
  2232. info->io_setup = port_setup;
  2233. info->io.addr_type = IPMI_IO_ADDR_SPACE;
  2234. } else {
  2235. info->io_setup = mem_setup;
  2236. info->io.addr_type = IPMI_MEM_ADDR_SPACE;
  2237. }
  2238. info->io.addr_data = resource.start;
  2239. info->io.regsize = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
  2240. info->io.regspacing = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
  2241. info->io.regshift = regshift ? be32_to_cpup(regshift) : 0;
  2242. info->irq = irq_of_parse_and_map(dev->dev.of_node, 0);
  2243. info->dev = &dev->dev;
  2244. dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
  2245. info->io.addr_data, info->io.regsize, info->io.regspacing,
  2246. info->irq);
  2247. dev_set_drvdata(&dev->dev, info);
  2248. if (add_smi(info)) {
  2249. kfree(info);
  2250. return -EBUSY;
  2251. }
  2252. return 0;
  2253. }
  2254. static int __devexit ipmi_of_remove(struct platform_device *dev)
  2255. {
  2256. cleanup_one_si(dev_get_drvdata(&dev->dev));
  2257. return 0;
  2258. }
  2259. static struct of_device_id ipmi_match[] =
  2260. {
  2261. { .type = "ipmi", .compatible = "ipmi-kcs",
  2262. .data = (void *)(unsigned long) SI_KCS },
  2263. { .type = "ipmi", .compatible = "ipmi-smic",
  2264. .data = (void *)(unsigned long) SI_SMIC },
  2265. { .type = "ipmi", .compatible = "ipmi-bt",
  2266. .data = (void *)(unsigned long) SI_BT },
  2267. {},
  2268. };
  2269. static struct of_platform_driver ipmi_of_platform_driver = {
  2270. .driver = {
  2271. .name = "ipmi",
  2272. .owner = THIS_MODULE,
  2273. .of_match_table = ipmi_match,
  2274. },
  2275. .probe = ipmi_of_probe,
  2276. .remove = __devexit_p(ipmi_of_remove),
  2277. };
  2278. #endif /* CONFIG_PPC_OF */
  2279. static int wait_for_msg_done(struct smi_info *smi_info)
  2280. {
  2281. enum si_sm_result smi_result;
  2282. smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
  2283. for (;;) {
  2284. if (smi_result == SI_SM_CALL_WITH_DELAY ||
  2285. smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
  2286. schedule_timeout_uninterruptible(1);
  2287. smi_result = smi_info->handlers->event(
  2288. smi_info->si_sm, 100);
  2289. } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
  2290. smi_result = smi_info->handlers->event(
  2291. smi_info->si_sm, 0);
  2292. } else
  2293. break;
  2294. }
  2295. if (smi_result == SI_SM_HOSED)
  2296. /*
  2297. * We couldn't get the state machine to run, so whatever's at
  2298. * the port is probably not an IPMI SMI interface.
  2299. */
  2300. return -ENODEV;
  2301. return 0;
  2302. }
  2303. static int try_get_dev_id(struct smi_info *smi_info)
  2304. {
  2305. unsigned char msg[2];
  2306. unsigned char *resp;
  2307. unsigned long resp_len;
  2308. int rv = 0;
  2309. resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
  2310. if (!resp)
  2311. return -ENOMEM;
  2312. /*
  2313. * Do a Get Device ID command, since it comes back with some
  2314. * useful info.
  2315. */
  2316. msg[0] = IPMI_NETFN_APP_REQUEST << 2;
  2317. msg[1] = IPMI_GET_DEVICE_ID_CMD;
  2318. smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
  2319. rv = wait_for_msg_done(smi_info);
  2320. if (rv)
  2321. goto out;
  2322. resp_len = smi_info->handlers->get_result(smi_info->si_sm,
  2323. resp, IPMI_MAX_MSG_LENGTH);
  2324. /* Check and record info from the get device id, in case we need it. */
  2325. rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
  2326. out:
  2327. kfree(resp);
  2328. return rv;
  2329. }
  2330. static int try_enable_event_buffer(struct smi_info *smi_info)
  2331. {
  2332. unsigned char msg[3];
  2333. unsigned char *resp;
  2334. unsigned long resp_len;
  2335. int rv = 0;
  2336. resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
  2337. if (!resp)
  2338. return -ENOMEM;
  2339. msg[0] = IPMI_NETFN_APP_REQUEST << 2;
  2340. msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
  2341. smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
  2342. rv = wait_for_msg_done(smi_info);
  2343. if (rv) {
  2344. printk(KERN_WARNING PFX "Error getting response from get"
  2345. " global enables command, the event buffer is not"
  2346. " enabled.\n");
  2347. goto out;
  2348. }
  2349. resp_len = smi_info->handlers->get_result(smi_info->si_sm,
  2350. resp, IPMI_MAX_MSG_LENGTH);
  2351. if (resp_len < 4 ||
  2352. resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
  2353. resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
  2354. resp[2] != 0) {
  2355. printk(KERN_WARNING PFX "Invalid return from get global"
  2356. " enables command, cannot enable the event buffer.\n");
  2357. rv = -EINVAL;
  2358. goto out;
  2359. }
  2360. if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
  2361. /* buffer is already enabled, nothing to do. */
  2362. goto out;
  2363. msg[0] = IPMI_NETFN_APP_REQUEST << 2;
  2364. msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
  2365. msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
  2366. smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
  2367. rv = wait_for_msg_done(smi_info);
  2368. if (rv) {
  2369. printk(KERN_WARNING PFX "Error getting response from set"
  2370. " global, enables command, the event buffer is not"
  2371. " enabled.\n");
  2372. goto out;
  2373. }
  2374. resp_len = smi_info->handlers->get_result(smi_info->si_sm,
  2375. resp, IPMI_MAX_MSG_LENGTH);
  2376. if (resp_len < 3 ||
  2377. resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
  2378. resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
  2379. printk(KERN_WARNING PFX "Invalid return from get global,"
  2380. "enables command, not enable the event buffer.\n");
  2381. rv = -EINVAL;
  2382. goto out;
  2383. }
  2384. if (resp[2] != 0)
  2385. /*
  2386. * An error when setting the event buffer bit means
  2387. * that the event buffer is not supported.
  2388. */
  2389. rv = -ENOENT;
  2390. out:
  2391. kfree(resp);
  2392. return rv;
  2393. }
  2394. static int type_file_read_proc(char *page, char **start, off_t off,
  2395. int count, int *eof, void *data)
  2396. {
  2397. struct smi_info *smi = data;
  2398. return sprintf(page, "%s\n", si_to_str[smi->si_type]);
  2399. }
  2400. static int stat_file_read_proc(char *page, char **start, off_t off,
  2401. int count, int *eof, void *data)
  2402. {
  2403. char *out = (char *) page;
  2404. struct smi_info *smi = data;
  2405. out += sprintf(out, "interrupts_enabled: %d\n",
  2406. smi->irq && !smi->interrupt_disabled);
  2407. out += sprintf(out, "short_timeouts: %u\n",
  2408. smi_get_stat(smi, short_timeouts));
  2409. out += sprintf(out, "long_timeouts: %u\n",
  2410. smi_get_stat(smi, long_timeouts));
  2411. out += sprintf(out, "idles: %u\n",
  2412. smi_get_stat(smi, idles));
  2413. out += sprintf(out, "interrupts: %u\n",
  2414. smi_get_stat(smi, interrupts));
  2415. out += sprintf(out, "attentions: %u\n",
  2416. smi_get_stat(smi, attentions));
  2417. out += sprintf(out, "flag_fetches: %u\n",
  2418. smi_get_stat(smi, flag_fetches));
  2419. out += sprintf(out, "hosed_count: %u\n",
  2420. smi_get_stat(smi, hosed_count));
  2421. out += sprintf(out, "complete_transactions: %u\n",
  2422. smi_get_stat(smi, complete_transactions));
  2423. out += sprintf(out, "events: %u\n",
  2424. smi_get_stat(smi, events));
  2425. out += sprintf(out, "watchdog_pretimeouts: %u\n",
  2426. smi_get_stat(smi, watchdog_pretimeouts));
  2427. out += sprintf(out, "incoming_messages: %u\n",
  2428. smi_get_stat(smi, incoming_messages));
  2429. return out - page;
  2430. }
  2431. static int param_read_proc(char *page, char **start, off_t off,
  2432. int count, int *eof, void *data)
  2433. {
  2434. struct smi_info *smi = data;
  2435. return sprintf(page,
  2436. "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
  2437. si_to_str[smi->si_type],
  2438. addr_space_to_str[smi->io.addr_type],
  2439. smi->io.addr_data,
  2440. smi->io.regspacing,
  2441. smi->io.regsize,
  2442. smi->io.regshift,
  2443. smi->irq,
  2444. smi->slave_addr);
  2445. }
  2446. /*
  2447. * oem_data_avail_to_receive_msg_avail
  2448. * @info - smi_info structure with msg_flags set
  2449. *
  2450. * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
  2451. * Returns 1 indicating need to re-run handle_flags().
  2452. */
  2453. static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
  2454. {
  2455. smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
  2456. RECEIVE_MSG_AVAIL);
  2457. return 1;
  2458. }
  2459. /*
  2460. * setup_dell_poweredge_oem_data_handler
  2461. * @info - smi_info.device_id must be populated
  2462. *
  2463. * Systems that match, but have firmware version < 1.40 may assert
  2464. * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
  2465. * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
  2466. * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
  2467. * as RECEIVE_MSG_AVAIL instead.
  2468. *
  2469. * As Dell has no plans to release IPMI 1.5 firmware that *ever*
  2470. * assert the OEM[012] bits, and if it did, the driver would have to
  2471. * change to handle that properly, we don't actually check for the
  2472. * firmware version.
  2473. * Device ID = 0x20 BMC on PowerEdge 8G servers
  2474. * Device Revision = 0x80
  2475. * Firmware Revision1 = 0x01 BMC version 1.40
  2476. * Firmware Revision2 = 0x40 BCD encoded
  2477. * IPMI Version = 0x51 IPMI 1.5
  2478. * Manufacturer ID = A2 02 00 Dell IANA
  2479. *
  2480. * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
  2481. * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
  2482. *
  2483. */
  2484. #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
  2485. #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
  2486. #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
  2487. #define DELL_IANA_MFR_ID 0x0002a2
  2488. static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
  2489. {
  2490. struct ipmi_device_id *id = &smi_info->device_id;
  2491. if (id->manufacturer_id == DELL_IANA_MFR_ID) {
  2492. if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
  2493. id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
  2494. id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
  2495. smi_info->oem_data_avail_handler =
  2496. oem_data_avail_to_receive_msg_avail;
  2497. } else if (ipmi_version_major(id) < 1 ||
  2498. (ipmi_version_major(id) == 1 &&
  2499. ipmi_version_minor(id) < 5)) {
  2500. smi_info->oem_data_avail_handler =
  2501. oem_data_avail_to_receive_msg_avail;
  2502. }
  2503. }
  2504. }
  2505. #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
  2506. static void return_hosed_msg_badsize(struct smi_info *smi_info)
  2507. {
  2508. struct ipmi_smi_msg *msg = smi_info->curr_msg;
  2509. /* Make it a reponse */
  2510. msg->rsp[0] = msg->data[0] | 4;
  2511. msg->rsp[1] = msg->data[1];
  2512. msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
  2513. msg->rsp_size = 3;
  2514. smi_info->curr_msg = NULL;
  2515. deliver_recv_msg(smi_info, msg);
  2516. }
  2517. /*
  2518. * dell_poweredge_bt_xaction_handler
  2519. * @info - smi_info.device_id must be populated
  2520. *
  2521. * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
  2522. * not respond to a Get SDR command if the length of the data
  2523. * requested is exactly 0x3A, which leads to command timeouts and no
  2524. * data returned. This intercepts such commands, and causes userspace
  2525. * callers to try again with a different-sized buffer, which succeeds.
  2526. */
  2527. #define STORAGE_NETFN 0x0A
  2528. #define STORAGE_CMD_GET_SDR 0x23
  2529. static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
  2530. unsigned long unused,
  2531. void *in)
  2532. {
  2533. struct smi_info *smi_info = in;
  2534. unsigned char *data = smi_info->curr_msg->data;
  2535. unsigned int size = smi_info->curr_msg->data_size;
  2536. if (size >= 8 &&
  2537. (data[0]>>2) == STORAGE_NETFN &&
  2538. data[1] == STORAGE_CMD_GET_SDR &&
  2539. data[7] == 0x3A) {
  2540. return_hosed_msg_badsize(smi_info);
  2541. return NOTIFY_STOP;
  2542. }
  2543. return NOTIFY_DONE;
  2544. }
  2545. static struct notifier_block dell_poweredge_bt_xaction_notifier = {
  2546. .notifier_call = dell_poweredge_bt_xaction_handler,
  2547. };
  2548. /*
  2549. * setup_dell_poweredge_bt_xaction_handler
  2550. * @info - smi_info.device_id must be filled in already
  2551. *
  2552. * Fills in smi_info.device_id.start_transaction_pre_hook
  2553. * when we know what function to use there.
  2554. */
  2555. static void
  2556. setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
  2557. {
  2558. struct ipmi_device_id *id = &smi_info->device_id;
  2559. if (id->manufacturer_id == DELL_IANA_MFR_ID &&
  2560. smi_info->si_type == SI_BT)
  2561. register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
  2562. }
  2563. /*
  2564. * setup_oem_data_handler
  2565. * @info - smi_info.device_id must be filled in already
  2566. *
  2567. * Fills in smi_info.device_id.oem_data_available_handler
  2568. * when we know what function to use there.
  2569. */
  2570. static void setup_oem_data_handler(struct smi_info *smi_info)
  2571. {
  2572. setup_dell_poweredge_oem_data_handler(smi_info);
  2573. }
  2574. static void setup_xaction_handlers(struct smi_info *smi_info)
  2575. {
  2576. setup_dell_poweredge_bt_xaction_handler(smi_info);
  2577. }
  2578. static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
  2579. {
  2580. if (smi_info->intf) {
  2581. /*
  2582. * The timer and thread are only running if the
  2583. * interface has been started up and registered.
  2584. */
  2585. if (smi_info->thread != NULL)
  2586. kthread_stop(smi_info->thread);
  2587. del_timer_sync(&smi_info->si_timer);
  2588. }
  2589. }
  2590. static __devinitdata struct ipmi_default_vals
  2591. {
  2592. int type;
  2593. int port;
  2594. } ipmi_defaults[] =
  2595. {
  2596. { .type = SI_KCS, .port = 0xca2 },
  2597. { .type = SI_SMIC, .port = 0xca9 },
  2598. { .type = SI_BT, .port = 0xe4 },
  2599. { .port = 0 }
  2600. };
  2601. static void __devinit default_find_bmc(void)
  2602. {
  2603. struct smi_info *info;
  2604. int i;
  2605. for (i = 0; ; i++) {
  2606. if (!ipmi_defaults[i].port)
  2607. break;
  2608. #ifdef CONFIG_PPC
  2609. if (check_legacy_ioport(ipmi_defaults[i].port))
  2610. continue;
  2611. #endif
  2612. info = smi_info_alloc();
  2613. if (!info)
  2614. return;
  2615. info->addr_source = SI_DEFAULT;
  2616. info->si_type = ipmi_defaults[i].type;
  2617. info->io_setup = port_setup;
  2618. info->io.addr_data = ipmi_defaults[i].port;
  2619. info->io.addr_type = IPMI_IO_ADDR_SPACE;
  2620. info->io.addr = NULL;
  2621. info->io.regspacing = DEFAULT_REGSPACING;
  2622. info->io.regsize = DEFAULT_REGSPACING;
  2623. info->io.regshift = 0;
  2624. if (add_smi(info) == 0) {
  2625. if ((try_smi_init(info)) == 0) {
  2626. /* Found one... */
  2627. printk(KERN_INFO PFX "Found default %s"
  2628. " state machine at %s address 0x%lx\n",
  2629. si_to_str[info->si_type],
  2630. addr_space_to_str[info->io.addr_type],
  2631. info->io.addr_data);
  2632. } else
  2633. cleanup_one_si(info);
  2634. } else {
  2635. kfree(info);
  2636. }
  2637. }
  2638. }
  2639. static int is_new_interface(struct smi_info *info)
  2640. {
  2641. struct smi_info *e;
  2642. list_for_each_entry(e, &smi_infos, link) {
  2643. if (e->io.addr_type != info->io.addr_type)
  2644. continue;
  2645. if (e->io.addr_data == info->io.addr_data)
  2646. return 0;
  2647. }
  2648. return 1;
  2649. }
  2650. static int add_smi(struct smi_info *new_smi)
  2651. {
  2652. int rv = 0;
  2653. printk(KERN_INFO PFX "Adding %s-specified %s state machine",
  2654. ipmi_addr_src_to_str[new_smi->addr_source],
  2655. si_to_str[new_smi->si_type]);
  2656. mutex_lock(&smi_infos_lock);
  2657. if (!is_new_interface(new_smi)) {
  2658. printk(KERN_CONT " duplicate interface\n");
  2659. rv = -EBUSY;
  2660. goto out_err;
  2661. }
  2662. printk(KERN_CONT "\n");
  2663. /* So we know not to free it unless we have allocated one. */
  2664. new_smi->intf = NULL;
  2665. new_smi->si_sm = NULL;
  2666. new_smi->handlers = NULL;
  2667. list_add_tail(&new_smi->link, &smi_infos);
  2668. out_err:
  2669. mutex_unlock(&smi_infos_lock);
  2670. return rv;
  2671. }
  2672. static int try_smi_init(struct smi_info *new_smi)
  2673. {
  2674. int rv = 0;
  2675. int i;
  2676. printk(KERN_INFO PFX "Trying %s-specified %s state"
  2677. " machine at %s address 0x%lx, slave address 0x%x,"
  2678. " irq %d\n",
  2679. ipmi_addr_src_to_str[new_smi->addr_source],
  2680. si_to_str[new_smi->si_type],
  2681. addr_space_to_str[new_smi->io.addr_type],
  2682. new_smi->io.addr_data,
  2683. new_smi->slave_addr, new_smi->irq);
  2684. switch (new_smi->si_type) {
  2685. case SI_KCS:
  2686. new_smi->handlers = &kcs_smi_handlers;
  2687. break;
  2688. case SI_SMIC:
  2689. new_smi->handlers = &smic_smi_handlers;
  2690. break;
  2691. case SI_BT:
  2692. new_smi->handlers = &bt_smi_handlers;
  2693. break;
  2694. default:
  2695. /* No support for anything else yet. */
  2696. rv = -EIO;
  2697. goto out_err;
  2698. }
  2699. /* Allocate the state machine's data and initialize it. */
  2700. new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
  2701. if (!new_smi->si_sm) {
  2702. printk(KERN_ERR PFX
  2703. "Could not allocate state machine memory\n");
  2704. rv = -ENOMEM;
  2705. goto out_err;
  2706. }
  2707. new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
  2708. &new_smi->io);
  2709. /* Now that we know the I/O size, we can set up the I/O. */
  2710. rv = new_smi->io_setup(new_smi);
  2711. if (rv) {
  2712. printk(KERN_ERR PFX "Could not set up I/O space\n");
  2713. goto out_err;
  2714. }
  2715. /* Do low-level detection first. */
  2716. if (new_smi->handlers->detect(new_smi->si_sm)) {
  2717. if (new_smi->addr_source)
  2718. printk(KERN_INFO PFX "Interface detection failed\n");
  2719. rv = -ENODEV;
  2720. goto out_err;
  2721. }
  2722. /*
  2723. * Attempt a get device id command. If it fails, we probably
  2724. * don't have a BMC here.
  2725. */
  2726. rv = try_get_dev_id(new_smi);
  2727. if (rv) {
  2728. if (new_smi->addr_source)
  2729. printk(KERN_INFO PFX "There appears to be no BMC"
  2730. " at this location\n");
  2731. goto out_err;
  2732. }
  2733. setup_oem_data_handler(new_smi);
  2734. setup_xaction_handlers(new_smi);
  2735. INIT_LIST_HEAD(&(new_smi->xmit_msgs));
  2736. INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
  2737. new_smi->curr_msg = NULL;
  2738. atomic_set(&new_smi->req_events, 0);
  2739. new_smi->run_to_completion = 0;
  2740. for (i = 0; i < SI_NUM_STATS; i++)
  2741. atomic_set(&new_smi->stats[i], 0);
  2742. new_smi->interrupt_disabled = 1;
  2743. atomic_set(&new_smi->stop_operation, 0);
  2744. new_smi->intf_num = smi_num;
  2745. smi_num++;
  2746. rv = try_enable_event_buffer(new_smi);
  2747. if (rv == 0)
  2748. new_smi->has_event_buffer = 1;
  2749. /*
  2750. * Start clearing the flags before we enable interrupts or the
  2751. * timer to avoid racing with the timer.
  2752. */
  2753. start_clear_flags(new_smi);
  2754. /* IRQ is defined to be set when non-zero. */
  2755. if (new_smi->irq)
  2756. new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
  2757. if (!new_smi->dev) {
  2758. /*
  2759. * If we don't already have a device from something
  2760. * else (like PCI), then register a new one.
  2761. */
  2762. new_smi->pdev = platform_device_alloc("ipmi_si",
  2763. new_smi->intf_num);
  2764. if (!new_smi->pdev) {
  2765. printk(KERN_ERR PFX
  2766. "Unable to allocate platform device\n");
  2767. goto out_err;
  2768. }
  2769. new_smi->dev = &new_smi->pdev->dev;
  2770. new_smi->dev->driver = &ipmi_driver.driver;
  2771. rv = platform_device_add(new_smi->pdev);
  2772. if (rv) {
  2773. printk(KERN_ERR PFX
  2774. "Unable to register system interface device:"
  2775. " %d\n",
  2776. rv);
  2777. goto out_err;
  2778. }
  2779. new_smi->dev_registered = 1;
  2780. }
  2781. rv = ipmi_register_smi(&handlers,
  2782. new_smi,
  2783. &new_smi->device_id,
  2784. new_smi->dev,
  2785. "bmc",
  2786. new_smi->slave_addr);
  2787. if (rv) {
  2788. dev_err(new_smi->dev, "Unable to register device: error %d\n",
  2789. rv);
  2790. goto out_err_stop_timer;
  2791. }
  2792. rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
  2793. type_file_read_proc,
  2794. new_smi);
  2795. if (rv) {
  2796. dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
  2797. goto out_err_stop_timer;
  2798. }
  2799. rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
  2800. stat_file_read_proc,
  2801. new_smi);
  2802. if (rv) {
  2803. dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
  2804. goto out_err_stop_timer;
  2805. }
  2806. rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
  2807. param_read_proc,
  2808. new_smi);
  2809. if (rv) {
  2810. dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
  2811. goto out_err_stop_timer;
  2812. }
  2813. dev_info(new_smi->dev, "IPMI %s interface initialized\n",
  2814. si_to_str[new_smi->si_type]);
  2815. return 0;
  2816. out_err_stop_timer:
  2817. atomic_inc(&new_smi->stop_operation);
  2818. wait_for_timer_and_thread(new_smi);
  2819. out_err:
  2820. new_smi->interrupt_disabled = 1;
  2821. if (new_smi->intf) {
  2822. ipmi_unregister_smi(new_smi->intf);
  2823. new_smi->intf = NULL;
  2824. }
  2825. if (new_smi->irq_cleanup) {
  2826. new_smi->irq_cleanup(new_smi);
  2827. new_smi->irq_cleanup = NULL;
  2828. }
  2829. /*
  2830. * Wait until we know that we are out of any interrupt
  2831. * handlers might have been running before we freed the
  2832. * interrupt.
  2833. */
  2834. synchronize_sched();
  2835. if (new_smi->si_sm) {
  2836. if (new_smi->handlers)
  2837. new_smi->handlers->cleanup(new_smi->si_sm);
  2838. kfree(new_smi->si_sm);
  2839. new_smi->si_sm = NULL;
  2840. }
  2841. if (new_smi->addr_source_cleanup) {
  2842. new_smi->addr_source_cleanup(new_smi);
  2843. new_smi->addr_source_cleanup = NULL;
  2844. }
  2845. if (new_smi->io_cleanup) {
  2846. new_smi->io_cleanup(new_smi);
  2847. new_smi->io_cleanup = NULL;
  2848. }
  2849. if (new_smi->dev_registered) {
  2850. platform_device_unregister(new_smi->pdev);
  2851. new_smi->dev_registered = 0;
  2852. }
  2853. return rv;
  2854. }
  2855. static int __devinit init_ipmi_si(void)
  2856. {
  2857. int i;
  2858. char *str;
  2859. int rv;
  2860. struct smi_info *e;
  2861. enum ipmi_addr_src type = SI_INVALID;
  2862. if (initialized)
  2863. return 0;
  2864. initialized = 1;
  2865. /* Register the device drivers. */
  2866. rv = driver_register(&ipmi_driver.driver);
  2867. if (rv) {
  2868. printk(KERN_ERR PFX "Unable to register driver: %d\n", rv);
  2869. return rv;
  2870. }
  2871. /* Parse out the si_type string into its components. */
  2872. str = si_type_str;
  2873. if (*str != '\0') {
  2874. for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
  2875. si_type[i] = str;
  2876. str = strchr(str, ',');
  2877. if (str) {
  2878. *str = '\0';
  2879. str++;
  2880. } else {
  2881. break;
  2882. }
  2883. }
  2884. }
  2885. printk(KERN_INFO "IPMI System Interface driver.\n");
  2886. hardcode_find_bmc();
  2887. /* If the user gave us a device, they presumably want us to use it */
  2888. mutex_lock(&smi_infos_lock);
  2889. if (!list_empty(&smi_infos)) {
  2890. mutex_unlock(&smi_infos_lock);
  2891. return 0;
  2892. }
  2893. mutex_unlock(&smi_infos_lock);
  2894. #ifdef CONFIG_PCI
  2895. rv = pci_register_driver(&ipmi_pci_driver);
  2896. if (rv)
  2897. printk(KERN_ERR PFX "Unable to register PCI driver: %d\n", rv);
  2898. else
  2899. pci_registered = 1;
  2900. #endif
  2901. #ifdef CONFIG_ACPI
  2902. pnp_register_driver(&ipmi_pnp_driver);
  2903. pnp_registered = 1;
  2904. #endif
  2905. #ifdef CONFIG_DMI
  2906. dmi_find_bmc();
  2907. #endif
  2908. #ifdef CONFIG_ACPI
  2909. spmi_find_bmc();
  2910. #endif
  2911. #ifdef CONFIG_PPC_OF
  2912. of_register_platform_driver(&ipmi_of_platform_driver);
  2913. of_registered = 1;
  2914. #endif
  2915. /* We prefer devices with interrupts, but in the case of a machine
  2916. with multiple BMCs we assume that there will be several instances
  2917. of a given type so if we succeed in registering a type then also
  2918. try to register everything else of the same type */
  2919. mutex_lock(&smi_infos_lock);
  2920. list_for_each_entry(e, &smi_infos, link) {
  2921. /* Try to register a device if it has an IRQ and we either
  2922. haven't successfully registered a device yet or this
  2923. device has the same type as one we successfully registered */
  2924. if (e->irq && (!type || e->addr_source == type)) {
  2925. if (!try_smi_init(e)) {
  2926. type = e->addr_source;
  2927. }
  2928. }
  2929. }
  2930. /* type will only have been set if we successfully registered an si */
  2931. if (type) {
  2932. mutex_unlock(&smi_infos_lock);
  2933. return 0;
  2934. }
  2935. /* Fall back to the preferred device */
  2936. list_for_each_entry(e, &smi_infos, link) {
  2937. if (!e->irq && (!type || e->addr_source == type)) {
  2938. if (!try_smi_init(e)) {
  2939. type = e->addr_source;
  2940. }
  2941. }
  2942. }
  2943. mutex_unlock(&smi_infos_lock);
  2944. if (type)
  2945. return 0;
  2946. if (si_trydefaults) {
  2947. mutex_lock(&smi_infos_lock);
  2948. if (list_empty(&smi_infos)) {
  2949. /* No BMC was found, try defaults. */
  2950. mutex_unlock(&smi_infos_lock);
  2951. default_find_bmc();
  2952. } else
  2953. mutex_unlock(&smi_infos_lock);
  2954. }
  2955. mutex_lock(&smi_infos_lock);
  2956. if (unload_when_empty && list_empty(&smi_infos)) {
  2957. mutex_unlock(&smi_infos_lock);
  2958. #ifdef CONFIG_PCI
  2959. if (pci_registered)
  2960. pci_unregister_driver(&ipmi_pci_driver);
  2961. #endif
  2962. #ifdef CONFIG_PPC_OF
  2963. if (of_registered)
  2964. of_unregister_platform_driver(&ipmi_of_platform_driver);
  2965. #endif
  2966. driver_unregister(&ipmi_driver.driver);
  2967. printk(KERN_WARNING PFX
  2968. "Unable to find any System Interface(s)\n");
  2969. return -ENODEV;
  2970. } else {
  2971. mutex_unlock(&smi_infos_lock);
  2972. return 0;
  2973. }
  2974. }
  2975. module_init(init_ipmi_si);
  2976. static void cleanup_one_si(struct smi_info *to_clean)
  2977. {
  2978. int rv = 0;
  2979. unsigned long flags;
  2980. if (!to_clean)
  2981. return;
  2982. list_del(&to_clean->link);
  2983. /* Tell the driver that we are shutting down. */
  2984. atomic_inc(&to_clean->stop_operation);
  2985. /*
  2986. * Make sure the timer and thread are stopped and will not run
  2987. * again.
  2988. */
  2989. wait_for_timer_and_thread(to_clean);
  2990. /*
  2991. * Timeouts are stopped, now make sure the interrupts are off
  2992. * for the device. A little tricky with locks to make sure
  2993. * there are no races.
  2994. */
  2995. spin_lock_irqsave(&to_clean->si_lock, flags);
  2996. while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
  2997. spin_unlock_irqrestore(&to_clean->si_lock, flags);
  2998. poll(to_clean);
  2999. schedule_timeout_uninterruptible(1);
  3000. spin_lock_irqsave(&to_clean->si_lock, flags);
  3001. }
  3002. disable_si_irq(to_clean);
  3003. spin_unlock_irqrestore(&to_clean->si_lock, flags);
  3004. while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
  3005. poll(to_clean);
  3006. schedule_timeout_uninterruptible(1);
  3007. }
  3008. /* Clean up interrupts and make sure that everything is done. */
  3009. if (to_clean->irq_cleanup)
  3010. to_clean->irq_cleanup(to_clean);
  3011. while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
  3012. poll(to_clean);
  3013. schedule_timeout_uninterruptible(1);
  3014. }
  3015. if (to_clean->intf)
  3016. rv = ipmi_unregister_smi(to_clean->intf);
  3017. if (rv) {
  3018. printk(KERN_ERR PFX "Unable to unregister device: errno=%d\n",
  3019. rv);
  3020. }
  3021. if (to_clean->handlers)
  3022. to_clean->handlers->cleanup(to_clean->si_sm);
  3023. kfree(to_clean->si_sm);
  3024. if (to_clean->addr_source_cleanup)
  3025. to_clean->addr_source_cleanup(to_clean);
  3026. if (to_clean->io_cleanup)
  3027. to_clean->io_cleanup(to_clean);
  3028. if (to_clean->dev_registered)
  3029. platform_device_unregister(to_clean->pdev);
  3030. kfree(to_clean);
  3031. }
  3032. static void __exit cleanup_ipmi_si(void)
  3033. {
  3034. struct smi_info *e, *tmp_e;
  3035. if (!initialized)
  3036. return;
  3037. #ifdef CONFIG_PCI
  3038. if (pci_registered)
  3039. pci_unregister_driver(&ipmi_pci_driver);
  3040. #endif
  3041. #ifdef CONFIG_ACPI
  3042. if (pnp_registered)
  3043. pnp_unregister_driver(&ipmi_pnp_driver);
  3044. #endif
  3045. #ifdef CONFIG_PPC_OF
  3046. if (of_registered)
  3047. of_unregister_platform_driver(&ipmi_of_platform_driver);
  3048. #endif
  3049. mutex_lock(&smi_infos_lock);
  3050. list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
  3051. cleanup_one_si(e);
  3052. mutex_unlock(&smi_infos_lock);
  3053. driver_unregister(&ipmi_driver.driver);
  3054. }
  3055. module_exit(cleanup_ipmi_si);
  3056. MODULE_LICENSE("GPL");
  3057. MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
  3058. MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
  3059. " system interfaces.");