kvm-ia64.c 44 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973
  1. /*
  2. * kvm_ia64.c: Basic KVM suppport On Itanium series processors
  3. *
  4. *
  5. * Copyright (C) 2007, Intel Corporation.
  6. * Xiantao Zhang (xiantao.zhang@intel.com)
  7. *
  8. * This program is free software; you can redistribute it and/or modify it
  9. * under the terms and conditions of the GNU General Public License,
  10. * version 2, as published by the Free Software Foundation.
  11. *
  12. * This program is distributed in the hope it will be useful, but WITHOUT
  13. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  14. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  15. * more details.
  16. *
  17. * You should have received a copy of the GNU General Public License along with
  18. * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
  19. * Place - Suite 330, Boston, MA 02111-1307 USA.
  20. *
  21. */
  22. #include <linux/module.h>
  23. #include <linux/errno.h>
  24. #include <linux/percpu.h>
  25. #include <linux/fs.h>
  26. #include <linux/slab.h>
  27. #include <linux/smp.h>
  28. #include <linux/kvm_host.h>
  29. #include <linux/kvm.h>
  30. #include <linux/bitops.h>
  31. #include <linux/hrtimer.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/iommu.h>
  34. #include <linux/intel-iommu.h>
  35. #include <asm/pgtable.h>
  36. #include <asm/gcc_intrin.h>
  37. #include <asm/pal.h>
  38. #include <asm/cacheflush.h>
  39. #include <asm/div64.h>
  40. #include <asm/tlb.h>
  41. #include <asm/elf.h>
  42. #include <asm/sn/addrs.h>
  43. #include <asm/sn/clksupport.h>
  44. #include <asm/sn/shub_mmr.h>
  45. #include "misc.h"
  46. #include "vti.h"
  47. #include "iodev.h"
  48. #include "ioapic.h"
  49. #include "lapic.h"
  50. #include "irq.h"
  51. static unsigned long kvm_vmm_base;
  52. static unsigned long kvm_vsa_base;
  53. static unsigned long kvm_vm_buffer;
  54. static unsigned long kvm_vm_buffer_size;
  55. unsigned long kvm_vmm_gp;
  56. static long vp_env_info;
  57. static struct kvm_vmm_info *kvm_vmm_info;
  58. static DEFINE_PER_CPU(struct kvm_vcpu *, last_vcpu);
  59. struct kvm_stats_debugfs_item debugfs_entries[] = {
  60. { NULL }
  61. };
  62. static unsigned long kvm_get_itc(struct kvm_vcpu *vcpu)
  63. {
  64. #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
  65. if (vcpu->kvm->arch.is_sn2)
  66. return rtc_time();
  67. else
  68. #endif
  69. return ia64_getreg(_IA64_REG_AR_ITC);
  70. }
  71. static void kvm_flush_icache(unsigned long start, unsigned long len)
  72. {
  73. int l;
  74. for (l = 0; l < (len + 32); l += 32)
  75. ia64_fc((void *)(start + l));
  76. ia64_sync_i();
  77. ia64_srlz_i();
  78. }
  79. static void kvm_flush_tlb_all(void)
  80. {
  81. unsigned long i, j, count0, count1, stride0, stride1, addr;
  82. long flags;
  83. addr = local_cpu_data->ptce_base;
  84. count0 = local_cpu_data->ptce_count[0];
  85. count1 = local_cpu_data->ptce_count[1];
  86. stride0 = local_cpu_data->ptce_stride[0];
  87. stride1 = local_cpu_data->ptce_stride[1];
  88. local_irq_save(flags);
  89. for (i = 0; i < count0; ++i) {
  90. for (j = 0; j < count1; ++j) {
  91. ia64_ptce(addr);
  92. addr += stride1;
  93. }
  94. addr += stride0;
  95. }
  96. local_irq_restore(flags);
  97. ia64_srlz_i(); /* srlz.i implies srlz.d */
  98. }
  99. long ia64_pal_vp_create(u64 *vpd, u64 *host_iva, u64 *opt_handler)
  100. {
  101. struct ia64_pal_retval iprv;
  102. PAL_CALL_STK(iprv, PAL_VP_CREATE, (u64)vpd, (u64)host_iva,
  103. (u64)opt_handler);
  104. return iprv.status;
  105. }
  106. static DEFINE_SPINLOCK(vp_lock);
  107. int kvm_arch_hardware_enable(void *garbage)
  108. {
  109. long status;
  110. long tmp_base;
  111. unsigned long pte;
  112. unsigned long saved_psr;
  113. int slot;
  114. pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
  115. local_irq_save(saved_psr);
  116. slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
  117. local_irq_restore(saved_psr);
  118. if (slot < 0)
  119. return -EINVAL;
  120. spin_lock(&vp_lock);
  121. status = ia64_pal_vp_init_env(kvm_vsa_base ?
  122. VP_INIT_ENV : VP_INIT_ENV_INITALIZE,
  123. __pa(kvm_vm_buffer), KVM_VM_BUFFER_BASE, &tmp_base);
  124. if (status != 0) {
  125. spin_unlock(&vp_lock);
  126. printk(KERN_WARNING"kvm: Failed to Enable VT Support!!!!\n");
  127. return -EINVAL;
  128. }
  129. if (!kvm_vsa_base) {
  130. kvm_vsa_base = tmp_base;
  131. printk(KERN_INFO"kvm: kvm_vsa_base:0x%lx\n", kvm_vsa_base);
  132. }
  133. spin_unlock(&vp_lock);
  134. ia64_ptr_entry(0x3, slot);
  135. return 0;
  136. }
  137. void kvm_arch_hardware_disable(void *garbage)
  138. {
  139. long status;
  140. int slot;
  141. unsigned long pte;
  142. unsigned long saved_psr;
  143. unsigned long host_iva = ia64_getreg(_IA64_REG_CR_IVA);
  144. pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base),
  145. PAGE_KERNEL));
  146. local_irq_save(saved_psr);
  147. slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
  148. local_irq_restore(saved_psr);
  149. if (slot < 0)
  150. return;
  151. status = ia64_pal_vp_exit_env(host_iva);
  152. if (status)
  153. printk(KERN_DEBUG"kvm: Failed to disable VT support! :%ld\n",
  154. status);
  155. ia64_ptr_entry(0x3, slot);
  156. }
  157. void kvm_arch_check_processor_compat(void *rtn)
  158. {
  159. *(int *)rtn = 0;
  160. }
  161. int kvm_dev_ioctl_check_extension(long ext)
  162. {
  163. int r;
  164. switch (ext) {
  165. case KVM_CAP_IRQCHIP:
  166. case KVM_CAP_MP_STATE:
  167. case KVM_CAP_IRQ_INJECT_STATUS:
  168. r = 1;
  169. break;
  170. case KVM_CAP_COALESCED_MMIO:
  171. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  172. break;
  173. case KVM_CAP_IOMMU:
  174. r = iommu_found();
  175. break;
  176. default:
  177. r = 0;
  178. }
  179. return r;
  180. }
  181. static int handle_vm_error(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  182. {
  183. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  184. kvm_run->hw.hardware_exit_reason = 1;
  185. return 0;
  186. }
  187. static int handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  188. {
  189. struct kvm_mmio_req *p;
  190. struct kvm_io_device *mmio_dev;
  191. int r;
  192. p = kvm_get_vcpu_ioreq(vcpu);
  193. if ((p->addr & PAGE_MASK) == IOAPIC_DEFAULT_BASE_ADDRESS)
  194. goto mmio;
  195. vcpu->mmio_needed = 1;
  196. vcpu->mmio_phys_addr = kvm_run->mmio.phys_addr = p->addr;
  197. vcpu->mmio_size = kvm_run->mmio.len = p->size;
  198. vcpu->mmio_is_write = kvm_run->mmio.is_write = !p->dir;
  199. if (vcpu->mmio_is_write)
  200. memcpy(vcpu->mmio_data, &p->data, p->size);
  201. memcpy(kvm_run->mmio.data, &p->data, p->size);
  202. kvm_run->exit_reason = KVM_EXIT_MMIO;
  203. return 0;
  204. mmio:
  205. if (p->dir)
  206. r = kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, p->addr,
  207. p->size, &p->data);
  208. else
  209. r = kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, p->addr,
  210. p->size, &p->data);
  211. if (r)
  212. printk(KERN_ERR"kvm: No iodevice found! addr:%lx\n", p->addr);
  213. p->state = STATE_IORESP_READY;
  214. return 1;
  215. }
  216. static int handle_pal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  217. {
  218. struct exit_ctl_data *p;
  219. p = kvm_get_exit_data(vcpu);
  220. if (p->exit_reason == EXIT_REASON_PAL_CALL)
  221. return kvm_pal_emul(vcpu, kvm_run);
  222. else {
  223. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  224. kvm_run->hw.hardware_exit_reason = 2;
  225. return 0;
  226. }
  227. }
  228. static int handle_sal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  229. {
  230. struct exit_ctl_data *p;
  231. p = kvm_get_exit_data(vcpu);
  232. if (p->exit_reason == EXIT_REASON_SAL_CALL) {
  233. kvm_sal_emul(vcpu);
  234. return 1;
  235. } else {
  236. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  237. kvm_run->hw.hardware_exit_reason = 3;
  238. return 0;
  239. }
  240. }
  241. static int __apic_accept_irq(struct kvm_vcpu *vcpu, uint64_t vector)
  242. {
  243. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  244. if (!test_and_set_bit(vector, &vpd->irr[0])) {
  245. vcpu->arch.irq_new_pending = 1;
  246. kvm_vcpu_kick(vcpu);
  247. return 1;
  248. }
  249. return 0;
  250. }
  251. /*
  252. * offset: address offset to IPI space.
  253. * value: deliver value.
  254. */
  255. static void vcpu_deliver_ipi(struct kvm_vcpu *vcpu, uint64_t dm,
  256. uint64_t vector)
  257. {
  258. switch (dm) {
  259. case SAPIC_FIXED:
  260. break;
  261. case SAPIC_NMI:
  262. vector = 2;
  263. break;
  264. case SAPIC_EXTINT:
  265. vector = 0;
  266. break;
  267. case SAPIC_INIT:
  268. case SAPIC_PMI:
  269. default:
  270. printk(KERN_ERR"kvm: Unimplemented Deliver reserved IPI!\n");
  271. return;
  272. }
  273. __apic_accept_irq(vcpu, vector);
  274. }
  275. static struct kvm_vcpu *lid_to_vcpu(struct kvm *kvm, unsigned long id,
  276. unsigned long eid)
  277. {
  278. union ia64_lid lid;
  279. int i;
  280. struct kvm_vcpu *vcpu;
  281. kvm_for_each_vcpu(i, vcpu, kvm) {
  282. lid.val = VCPU_LID(vcpu);
  283. if (lid.id == id && lid.eid == eid)
  284. return vcpu;
  285. }
  286. return NULL;
  287. }
  288. static int handle_ipi(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  289. {
  290. struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
  291. struct kvm_vcpu *target_vcpu;
  292. struct kvm_pt_regs *regs;
  293. union ia64_ipi_a addr = p->u.ipi_data.addr;
  294. union ia64_ipi_d data = p->u.ipi_data.data;
  295. target_vcpu = lid_to_vcpu(vcpu->kvm, addr.id, addr.eid);
  296. if (!target_vcpu)
  297. return handle_vm_error(vcpu, kvm_run);
  298. if (!target_vcpu->arch.launched) {
  299. regs = vcpu_regs(target_vcpu);
  300. regs->cr_iip = vcpu->kvm->arch.rdv_sal_data.boot_ip;
  301. regs->r1 = vcpu->kvm->arch.rdv_sal_data.boot_gp;
  302. target_vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  303. if (waitqueue_active(&target_vcpu->wq))
  304. wake_up_interruptible(&target_vcpu->wq);
  305. } else {
  306. vcpu_deliver_ipi(target_vcpu, data.dm, data.vector);
  307. if (target_vcpu != vcpu)
  308. kvm_vcpu_kick(target_vcpu);
  309. }
  310. return 1;
  311. }
  312. struct call_data {
  313. struct kvm_ptc_g ptc_g_data;
  314. struct kvm_vcpu *vcpu;
  315. };
  316. static void vcpu_global_purge(void *info)
  317. {
  318. struct call_data *p = (struct call_data *)info;
  319. struct kvm_vcpu *vcpu = p->vcpu;
  320. if (test_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  321. return;
  322. set_bit(KVM_REQ_PTC_G, &vcpu->requests);
  323. if (vcpu->arch.ptc_g_count < MAX_PTC_G_NUM) {
  324. vcpu->arch.ptc_g_data[vcpu->arch.ptc_g_count++] =
  325. p->ptc_g_data;
  326. } else {
  327. clear_bit(KVM_REQ_PTC_G, &vcpu->requests);
  328. vcpu->arch.ptc_g_count = 0;
  329. set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
  330. }
  331. }
  332. static int handle_global_purge(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  333. {
  334. struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
  335. struct kvm *kvm = vcpu->kvm;
  336. struct call_data call_data;
  337. int i;
  338. struct kvm_vcpu *vcpui;
  339. call_data.ptc_g_data = p->u.ptc_g_data;
  340. kvm_for_each_vcpu(i, vcpui, kvm) {
  341. if (vcpui->arch.mp_state == KVM_MP_STATE_UNINITIALIZED ||
  342. vcpu == vcpui)
  343. continue;
  344. if (waitqueue_active(&vcpui->wq))
  345. wake_up_interruptible(&vcpui->wq);
  346. if (vcpui->cpu != -1) {
  347. call_data.vcpu = vcpui;
  348. smp_call_function_single(vcpui->cpu,
  349. vcpu_global_purge, &call_data, 1);
  350. } else
  351. printk(KERN_WARNING"kvm: Uninit vcpu received ipi!\n");
  352. }
  353. return 1;
  354. }
  355. static int handle_switch_rr6(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  356. {
  357. return 1;
  358. }
  359. static int kvm_sn2_setup_mappings(struct kvm_vcpu *vcpu)
  360. {
  361. unsigned long pte, rtc_phys_addr, map_addr;
  362. int slot;
  363. map_addr = KVM_VMM_BASE + (1UL << KVM_VMM_SHIFT);
  364. rtc_phys_addr = LOCAL_MMR_OFFSET | SH_RTC;
  365. pte = pte_val(mk_pte_phys(rtc_phys_addr, PAGE_KERNEL_UC));
  366. slot = ia64_itr_entry(0x3, map_addr, pte, PAGE_SHIFT);
  367. vcpu->arch.sn_rtc_tr_slot = slot;
  368. if (slot < 0) {
  369. printk(KERN_ERR "Mayday mayday! RTC mapping failed!\n");
  370. slot = 0;
  371. }
  372. return slot;
  373. }
  374. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  375. {
  376. ktime_t kt;
  377. long itc_diff;
  378. unsigned long vcpu_now_itc;
  379. unsigned long expires;
  380. struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
  381. unsigned long cyc_per_usec = local_cpu_data->cyc_per_usec;
  382. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  383. if (irqchip_in_kernel(vcpu->kvm)) {
  384. vcpu_now_itc = kvm_get_itc(vcpu) + vcpu->arch.itc_offset;
  385. if (time_after(vcpu_now_itc, vpd->itm)) {
  386. vcpu->arch.timer_check = 1;
  387. return 1;
  388. }
  389. itc_diff = vpd->itm - vcpu_now_itc;
  390. if (itc_diff < 0)
  391. itc_diff = -itc_diff;
  392. expires = div64_u64(itc_diff, cyc_per_usec);
  393. kt = ktime_set(0, 1000 * expires);
  394. vcpu->arch.ht_active = 1;
  395. hrtimer_start(p_ht, kt, HRTIMER_MODE_ABS);
  396. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  397. kvm_vcpu_block(vcpu);
  398. hrtimer_cancel(p_ht);
  399. vcpu->arch.ht_active = 0;
  400. if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests) ||
  401. kvm_cpu_has_pending_timer(vcpu))
  402. if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
  403. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  404. if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
  405. return -EINTR;
  406. return 1;
  407. } else {
  408. printk(KERN_ERR"kvm: Unsupported userspace halt!");
  409. return 0;
  410. }
  411. }
  412. static int handle_vm_shutdown(struct kvm_vcpu *vcpu,
  413. struct kvm_run *kvm_run)
  414. {
  415. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  416. return 0;
  417. }
  418. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  419. struct kvm_run *kvm_run)
  420. {
  421. return 1;
  422. }
  423. static int handle_vcpu_debug(struct kvm_vcpu *vcpu,
  424. struct kvm_run *kvm_run)
  425. {
  426. printk("VMM: %s", vcpu->arch.log_buf);
  427. return 1;
  428. }
  429. static int (*kvm_vti_exit_handlers[])(struct kvm_vcpu *vcpu,
  430. struct kvm_run *kvm_run) = {
  431. [EXIT_REASON_VM_PANIC] = handle_vm_error,
  432. [EXIT_REASON_MMIO_INSTRUCTION] = handle_mmio,
  433. [EXIT_REASON_PAL_CALL] = handle_pal_call,
  434. [EXIT_REASON_SAL_CALL] = handle_sal_call,
  435. [EXIT_REASON_SWITCH_RR6] = handle_switch_rr6,
  436. [EXIT_REASON_VM_DESTROY] = handle_vm_shutdown,
  437. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  438. [EXIT_REASON_IPI] = handle_ipi,
  439. [EXIT_REASON_PTC_G] = handle_global_purge,
  440. [EXIT_REASON_DEBUG] = handle_vcpu_debug,
  441. };
  442. static const int kvm_vti_max_exit_handlers =
  443. sizeof(kvm_vti_exit_handlers)/sizeof(*kvm_vti_exit_handlers);
  444. static uint32_t kvm_get_exit_reason(struct kvm_vcpu *vcpu)
  445. {
  446. struct exit_ctl_data *p_exit_data;
  447. p_exit_data = kvm_get_exit_data(vcpu);
  448. return p_exit_data->exit_reason;
  449. }
  450. /*
  451. * The guest has exited. See if we can fix it or if we need userspace
  452. * assistance.
  453. */
  454. static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  455. {
  456. u32 exit_reason = kvm_get_exit_reason(vcpu);
  457. vcpu->arch.last_exit = exit_reason;
  458. if (exit_reason < kvm_vti_max_exit_handlers
  459. && kvm_vti_exit_handlers[exit_reason])
  460. return kvm_vti_exit_handlers[exit_reason](vcpu, kvm_run);
  461. else {
  462. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  463. kvm_run->hw.hardware_exit_reason = exit_reason;
  464. }
  465. return 0;
  466. }
  467. static inline void vti_set_rr6(unsigned long rr6)
  468. {
  469. ia64_set_rr(RR6, rr6);
  470. ia64_srlz_i();
  471. }
  472. static int kvm_insert_vmm_mapping(struct kvm_vcpu *vcpu)
  473. {
  474. unsigned long pte;
  475. struct kvm *kvm = vcpu->kvm;
  476. int r;
  477. /*Insert a pair of tr to map vmm*/
  478. pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
  479. r = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
  480. if (r < 0)
  481. goto out;
  482. vcpu->arch.vmm_tr_slot = r;
  483. /*Insert a pairt of tr to map data of vm*/
  484. pte = pte_val(mk_pte_phys(__pa(kvm->arch.vm_base), PAGE_KERNEL));
  485. r = ia64_itr_entry(0x3, KVM_VM_DATA_BASE,
  486. pte, KVM_VM_DATA_SHIFT);
  487. if (r < 0)
  488. goto out;
  489. vcpu->arch.vm_tr_slot = r;
  490. #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
  491. if (kvm->arch.is_sn2) {
  492. r = kvm_sn2_setup_mappings(vcpu);
  493. if (r < 0)
  494. goto out;
  495. }
  496. #endif
  497. r = 0;
  498. out:
  499. return r;
  500. }
  501. static void kvm_purge_vmm_mapping(struct kvm_vcpu *vcpu)
  502. {
  503. struct kvm *kvm = vcpu->kvm;
  504. ia64_ptr_entry(0x3, vcpu->arch.vmm_tr_slot);
  505. ia64_ptr_entry(0x3, vcpu->arch.vm_tr_slot);
  506. #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
  507. if (kvm->arch.is_sn2)
  508. ia64_ptr_entry(0x3, vcpu->arch.sn_rtc_tr_slot);
  509. #endif
  510. }
  511. static int kvm_vcpu_pre_transition(struct kvm_vcpu *vcpu)
  512. {
  513. unsigned long psr;
  514. int r;
  515. int cpu = smp_processor_id();
  516. if (vcpu->arch.last_run_cpu != cpu ||
  517. per_cpu(last_vcpu, cpu) != vcpu) {
  518. per_cpu(last_vcpu, cpu) = vcpu;
  519. vcpu->arch.last_run_cpu = cpu;
  520. kvm_flush_tlb_all();
  521. }
  522. vcpu->arch.host_rr6 = ia64_get_rr(RR6);
  523. vti_set_rr6(vcpu->arch.vmm_rr);
  524. local_irq_save(psr);
  525. r = kvm_insert_vmm_mapping(vcpu);
  526. local_irq_restore(psr);
  527. return r;
  528. }
  529. static void kvm_vcpu_post_transition(struct kvm_vcpu *vcpu)
  530. {
  531. kvm_purge_vmm_mapping(vcpu);
  532. vti_set_rr6(vcpu->arch.host_rr6);
  533. }
  534. static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  535. {
  536. union context *host_ctx, *guest_ctx;
  537. int r, idx;
  538. idx = srcu_read_lock(&vcpu->kvm->srcu);
  539. again:
  540. if (signal_pending(current)) {
  541. r = -EINTR;
  542. kvm_run->exit_reason = KVM_EXIT_INTR;
  543. goto out;
  544. }
  545. preempt_disable();
  546. local_irq_disable();
  547. /*Get host and guest context with guest address space.*/
  548. host_ctx = kvm_get_host_context(vcpu);
  549. guest_ctx = kvm_get_guest_context(vcpu);
  550. clear_bit(KVM_REQ_KICK, &vcpu->requests);
  551. r = kvm_vcpu_pre_transition(vcpu);
  552. if (r < 0)
  553. goto vcpu_run_fail;
  554. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  555. kvm_guest_enter();
  556. /*
  557. * Transition to the guest
  558. */
  559. kvm_vmm_info->tramp_entry(host_ctx, guest_ctx);
  560. kvm_vcpu_post_transition(vcpu);
  561. vcpu->arch.launched = 1;
  562. set_bit(KVM_REQ_KICK, &vcpu->requests);
  563. local_irq_enable();
  564. /*
  565. * We must have an instruction between local_irq_enable() and
  566. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  567. * the interrupt shadow. The stat.exits increment will do nicely.
  568. * But we need to prevent reordering, hence this barrier():
  569. */
  570. barrier();
  571. kvm_guest_exit();
  572. preempt_enable();
  573. idx = srcu_read_lock(&vcpu->kvm->srcu);
  574. r = kvm_handle_exit(kvm_run, vcpu);
  575. if (r > 0) {
  576. if (!need_resched())
  577. goto again;
  578. }
  579. out:
  580. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  581. if (r > 0) {
  582. kvm_resched(vcpu);
  583. idx = srcu_read_lock(&vcpu->kvm->srcu);
  584. goto again;
  585. }
  586. return r;
  587. vcpu_run_fail:
  588. local_irq_enable();
  589. preempt_enable();
  590. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  591. goto out;
  592. }
  593. static void kvm_set_mmio_data(struct kvm_vcpu *vcpu)
  594. {
  595. struct kvm_mmio_req *p = kvm_get_vcpu_ioreq(vcpu);
  596. if (!vcpu->mmio_is_write)
  597. memcpy(&p->data, vcpu->mmio_data, 8);
  598. p->state = STATE_IORESP_READY;
  599. }
  600. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  601. {
  602. int r;
  603. sigset_t sigsaved;
  604. if (vcpu->sigset_active)
  605. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  606. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  607. kvm_vcpu_block(vcpu);
  608. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  609. r = -EAGAIN;
  610. goto out;
  611. }
  612. if (vcpu->mmio_needed) {
  613. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  614. kvm_set_mmio_data(vcpu);
  615. vcpu->mmio_read_completed = 1;
  616. vcpu->mmio_needed = 0;
  617. }
  618. r = __vcpu_run(vcpu, kvm_run);
  619. out:
  620. if (vcpu->sigset_active)
  621. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  622. return r;
  623. }
  624. struct kvm *kvm_arch_alloc_vm(void)
  625. {
  626. struct kvm *kvm;
  627. uint64_t vm_base;
  628. BUG_ON(sizeof(struct kvm) > KVM_VM_STRUCT_SIZE);
  629. vm_base = __get_free_pages(GFP_KERNEL, get_order(KVM_VM_DATA_SIZE));
  630. if (!vm_base)
  631. return NULL;
  632. memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
  633. kvm = (struct kvm *)(vm_base +
  634. offsetof(struct kvm_vm_data, kvm_vm_struct));
  635. kvm->arch.vm_base = vm_base;
  636. printk(KERN_DEBUG"kvm: vm's data area:0x%lx\n", vm_base);
  637. return kvm;
  638. }
  639. struct kvm_io_range {
  640. unsigned long start;
  641. unsigned long size;
  642. unsigned long type;
  643. };
  644. static const struct kvm_io_range io_ranges[] = {
  645. {VGA_IO_START, VGA_IO_SIZE, GPFN_FRAME_BUFFER},
  646. {MMIO_START, MMIO_SIZE, GPFN_LOW_MMIO},
  647. {LEGACY_IO_START, LEGACY_IO_SIZE, GPFN_LEGACY_IO},
  648. {IO_SAPIC_START, IO_SAPIC_SIZE, GPFN_IOSAPIC},
  649. {PIB_START, PIB_SIZE, GPFN_PIB},
  650. };
  651. static void kvm_build_io_pmt(struct kvm *kvm)
  652. {
  653. unsigned long i, j;
  654. /* Mark I/O ranges */
  655. for (i = 0; i < (sizeof(io_ranges) / sizeof(struct kvm_io_range));
  656. i++) {
  657. for (j = io_ranges[i].start;
  658. j < io_ranges[i].start + io_ranges[i].size;
  659. j += PAGE_SIZE)
  660. kvm_set_pmt_entry(kvm, j >> PAGE_SHIFT,
  661. io_ranges[i].type, 0);
  662. }
  663. }
  664. /*Use unused rids to virtualize guest rid.*/
  665. #define GUEST_PHYSICAL_RR0 0x1739
  666. #define GUEST_PHYSICAL_RR4 0x2739
  667. #define VMM_INIT_RR 0x1660
  668. int kvm_arch_init_vm(struct kvm *kvm)
  669. {
  670. BUG_ON(!kvm);
  671. kvm->arch.is_sn2 = ia64_platform_is("sn2");
  672. kvm->arch.metaphysical_rr0 = GUEST_PHYSICAL_RR0;
  673. kvm->arch.metaphysical_rr4 = GUEST_PHYSICAL_RR4;
  674. kvm->arch.vmm_init_rr = VMM_INIT_RR;
  675. /*
  676. *Fill P2M entries for MMIO/IO ranges
  677. */
  678. kvm_build_io_pmt(kvm);
  679. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  680. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  681. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  682. return 0;
  683. }
  684. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm,
  685. struct kvm_irqchip *chip)
  686. {
  687. int r;
  688. r = 0;
  689. switch (chip->chip_id) {
  690. case KVM_IRQCHIP_IOAPIC:
  691. r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
  692. break;
  693. default:
  694. r = -EINVAL;
  695. break;
  696. }
  697. return r;
  698. }
  699. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  700. {
  701. int r;
  702. r = 0;
  703. switch (chip->chip_id) {
  704. case KVM_IRQCHIP_IOAPIC:
  705. r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
  706. break;
  707. default:
  708. r = -EINVAL;
  709. break;
  710. }
  711. return r;
  712. }
  713. #define RESTORE_REGS(_x) vcpu->arch._x = regs->_x
  714. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  715. {
  716. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  717. int i;
  718. for (i = 0; i < 16; i++) {
  719. vpd->vgr[i] = regs->vpd.vgr[i];
  720. vpd->vbgr[i] = regs->vpd.vbgr[i];
  721. }
  722. for (i = 0; i < 128; i++)
  723. vpd->vcr[i] = regs->vpd.vcr[i];
  724. vpd->vhpi = regs->vpd.vhpi;
  725. vpd->vnat = regs->vpd.vnat;
  726. vpd->vbnat = regs->vpd.vbnat;
  727. vpd->vpsr = regs->vpd.vpsr;
  728. vpd->vpr = regs->vpd.vpr;
  729. memcpy(&vcpu->arch.guest, &regs->saved_guest, sizeof(union context));
  730. RESTORE_REGS(mp_state);
  731. RESTORE_REGS(vmm_rr);
  732. memcpy(vcpu->arch.itrs, regs->itrs, sizeof(struct thash_data) * NITRS);
  733. memcpy(vcpu->arch.dtrs, regs->dtrs, sizeof(struct thash_data) * NDTRS);
  734. RESTORE_REGS(itr_regions);
  735. RESTORE_REGS(dtr_regions);
  736. RESTORE_REGS(tc_regions);
  737. RESTORE_REGS(irq_check);
  738. RESTORE_REGS(itc_check);
  739. RESTORE_REGS(timer_check);
  740. RESTORE_REGS(timer_pending);
  741. RESTORE_REGS(last_itc);
  742. for (i = 0; i < 8; i++) {
  743. vcpu->arch.vrr[i] = regs->vrr[i];
  744. vcpu->arch.ibr[i] = regs->ibr[i];
  745. vcpu->arch.dbr[i] = regs->dbr[i];
  746. }
  747. for (i = 0; i < 4; i++)
  748. vcpu->arch.insvc[i] = regs->insvc[i];
  749. RESTORE_REGS(xtp);
  750. RESTORE_REGS(metaphysical_rr0);
  751. RESTORE_REGS(metaphysical_rr4);
  752. RESTORE_REGS(metaphysical_saved_rr0);
  753. RESTORE_REGS(metaphysical_saved_rr4);
  754. RESTORE_REGS(fp_psr);
  755. RESTORE_REGS(saved_gp);
  756. vcpu->arch.irq_new_pending = 1;
  757. vcpu->arch.itc_offset = regs->saved_itc - kvm_get_itc(vcpu);
  758. set_bit(KVM_REQ_RESUME, &vcpu->requests);
  759. return 0;
  760. }
  761. long kvm_arch_vm_ioctl(struct file *filp,
  762. unsigned int ioctl, unsigned long arg)
  763. {
  764. struct kvm *kvm = filp->private_data;
  765. void __user *argp = (void __user *)arg;
  766. int r = -ENOTTY;
  767. switch (ioctl) {
  768. case KVM_SET_MEMORY_REGION: {
  769. struct kvm_memory_region kvm_mem;
  770. struct kvm_userspace_memory_region kvm_userspace_mem;
  771. r = -EFAULT;
  772. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  773. goto out;
  774. kvm_userspace_mem.slot = kvm_mem.slot;
  775. kvm_userspace_mem.flags = kvm_mem.flags;
  776. kvm_userspace_mem.guest_phys_addr =
  777. kvm_mem.guest_phys_addr;
  778. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  779. r = kvm_vm_ioctl_set_memory_region(kvm,
  780. &kvm_userspace_mem, 0);
  781. if (r)
  782. goto out;
  783. break;
  784. }
  785. case KVM_CREATE_IRQCHIP:
  786. r = -EFAULT;
  787. r = kvm_ioapic_init(kvm);
  788. if (r)
  789. goto out;
  790. r = kvm_setup_default_irq_routing(kvm);
  791. if (r) {
  792. mutex_lock(&kvm->slots_lock);
  793. kvm_ioapic_destroy(kvm);
  794. mutex_unlock(&kvm->slots_lock);
  795. goto out;
  796. }
  797. break;
  798. case KVM_IRQ_LINE_STATUS:
  799. case KVM_IRQ_LINE: {
  800. struct kvm_irq_level irq_event;
  801. r = -EFAULT;
  802. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  803. goto out;
  804. r = -ENXIO;
  805. if (irqchip_in_kernel(kvm)) {
  806. __s32 status;
  807. status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  808. irq_event.irq, irq_event.level);
  809. if (ioctl == KVM_IRQ_LINE_STATUS) {
  810. r = -EFAULT;
  811. irq_event.status = status;
  812. if (copy_to_user(argp, &irq_event,
  813. sizeof irq_event))
  814. goto out;
  815. }
  816. r = 0;
  817. }
  818. break;
  819. }
  820. case KVM_GET_IRQCHIP: {
  821. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  822. struct kvm_irqchip chip;
  823. r = -EFAULT;
  824. if (copy_from_user(&chip, argp, sizeof chip))
  825. goto out;
  826. r = -ENXIO;
  827. if (!irqchip_in_kernel(kvm))
  828. goto out;
  829. r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
  830. if (r)
  831. goto out;
  832. r = -EFAULT;
  833. if (copy_to_user(argp, &chip, sizeof chip))
  834. goto out;
  835. r = 0;
  836. break;
  837. }
  838. case KVM_SET_IRQCHIP: {
  839. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  840. struct kvm_irqchip chip;
  841. r = -EFAULT;
  842. if (copy_from_user(&chip, argp, sizeof chip))
  843. goto out;
  844. r = -ENXIO;
  845. if (!irqchip_in_kernel(kvm))
  846. goto out;
  847. r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
  848. if (r)
  849. goto out;
  850. r = 0;
  851. break;
  852. }
  853. default:
  854. ;
  855. }
  856. out:
  857. return r;
  858. }
  859. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  860. struct kvm_sregs *sregs)
  861. {
  862. return -EINVAL;
  863. }
  864. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  865. struct kvm_sregs *sregs)
  866. {
  867. return -EINVAL;
  868. }
  869. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  870. struct kvm_translation *tr)
  871. {
  872. return -EINVAL;
  873. }
  874. static int kvm_alloc_vmm_area(void)
  875. {
  876. if (!kvm_vmm_base && (kvm_vm_buffer_size < KVM_VM_BUFFER_SIZE)) {
  877. kvm_vmm_base = __get_free_pages(GFP_KERNEL,
  878. get_order(KVM_VMM_SIZE));
  879. if (!kvm_vmm_base)
  880. return -ENOMEM;
  881. memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
  882. kvm_vm_buffer = kvm_vmm_base + VMM_SIZE;
  883. printk(KERN_DEBUG"kvm:VMM's Base Addr:0x%lx, vm_buffer:0x%lx\n",
  884. kvm_vmm_base, kvm_vm_buffer);
  885. }
  886. return 0;
  887. }
  888. static void kvm_free_vmm_area(void)
  889. {
  890. if (kvm_vmm_base) {
  891. /*Zero this area before free to avoid bits leak!!*/
  892. memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
  893. free_pages(kvm_vmm_base, get_order(KVM_VMM_SIZE));
  894. kvm_vmm_base = 0;
  895. kvm_vm_buffer = 0;
  896. kvm_vsa_base = 0;
  897. }
  898. }
  899. static int vti_init_vpd(struct kvm_vcpu *vcpu)
  900. {
  901. int i;
  902. union cpuid3_t cpuid3;
  903. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  904. if (IS_ERR(vpd))
  905. return PTR_ERR(vpd);
  906. /* CPUID init */
  907. for (i = 0; i < 5; i++)
  908. vpd->vcpuid[i] = ia64_get_cpuid(i);
  909. /* Limit the CPUID number to 5 */
  910. cpuid3.value = vpd->vcpuid[3];
  911. cpuid3.number = 4; /* 5 - 1 */
  912. vpd->vcpuid[3] = cpuid3.value;
  913. /*Set vac and vdc fields*/
  914. vpd->vac.a_from_int_cr = 1;
  915. vpd->vac.a_to_int_cr = 1;
  916. vpd->vac.a_from_psr = 1;
  917. vpd->vac.a_from_cpuid = 1;
  918. vpd->vac.a_cover = 1;
  919. vpd->vac.a_bsw = 1;
  920. vpd->vac.a_int = 1;
  921. vpd->vdc.d_vmsw = 1;
  922. /*Set virtual buffer*/
  923. vpd->virt_env_vaddr = KVM_VM_BUFFER_BASE;
  924. return 0;
  925. }
  926. static int vti_create_vp(struct kvm_vcpu *vcpu)
  927. {
  928. long ret;
  929. struct vpd *vpd = vcpu->arch.vpd;
  930. unsigned long vmm_ivt;
  931. vmm_ivt = kvm_vmm_info->vmm_ivt;
  932. printk(KERN_DEBUG "kvm: vcpu:%p,ivt: 0x%lx\n", vcpu, vmm_ivt);
  933. ret = ia64_pal_vp_create((u64 *)vpd, (u64 *)vmm_ivt, 0);
  934. if (ret) {
  935. printk(KERN_ERR"kvm: ia64_pal_vp_create failed!\n");
  936. return -EINVAL;
  937. }
  938. return 0;
  939. }
  940. static void init_ptce_info(struct kvm_vcpu *vcpu)
  941. {
  942. ia64_ptce_info_t ptce = {0};
  943. ia64_get_ptce(&ptce);
  944. vcpu->arch.ptce_base = ptce.base;
  945. vcpu->arch.ptce_count[0] = ptce.count[0];
  946. vcpu->arch.ptce_count[1] = ptce.count[1];
  947. vcpu->arch.ptce_stride[0] = ptce.stride[0];
  948. vcpu->arch.ptce_stride[1] = ptce.stride[1];
  949. }
  950. static void kvm_migrate_hlt_timer(struct kvm_vcpu *vcpu)
  951. {
  952. struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
  953. if (hrtimer_cancel(p_ht))
  954. hrtimer_start_expires(p_ht, HRTIMER_MODE_ABS);
  955. }
  956. static enum hrtimer_restart hlt_timer_fn(struct hrtimer *data)
  957. {
  958. struct kvm_vcpu *vcpu;
  959. wait_queue_head_t *q;
  960. vcpu = container_of(data, struct kvm_vcpu, arch.hlt_timer);
  961. q = &vcpu->wq;
  962. if (vcpu->arch.mp_state != KVM_MP_STATE_HALTED)
  963. goto out;
  964. if (waitqueue_active(q))
  965. wake_up_interruptible(q);
  966. out:
  967. vcpu->arch.timer_fired = 1;
  968. vcpu->arch.timer_check = 1;
  969. return HRTIMER_NORESTART;
  970. }
  971. #define PALE_RESET_ENTRY 0x80000000ffffffb0UL
  972. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  973. {
  974. struct kvm_vcpu *v;
  975. int r;
  976. int i;
  977. long itc_offset;
  978. struct kvm *kvm = vcpu->kvm;
  979. struct kvm_pt_regs *regs = vcpu_regs(vcpu);
  980. union context *p_ctx = &vcpu->arch.guest;
  981. struct kvm_vcpu *vmm_vcpu = to_guest(vcpu->kvm, vcpu);
  982. /*Init vcpu context for first run.*/
  983. if (IS_ERR(vmm_vcpu))
  984. return PTR_ERR(vmm_vcpu);
  985. if (kvm_vcpu_is_bsp(vcpu)) {
  986. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  987. /*Set entry address for first run.*/
  988. regs->cr_iip = PALE_RESET_ENTRY;
  989. /*Initialize itc offset for vcpus*/
  990. itc_offset = 0UL - kvm_get_itc(vcpu);
  991. for (i = 0; i < KVM_MAX_VCPUS; i++) {
  992. v = (struct kvm_vcpu *)((char *)vcpu +
  993. sizeof(struct kvm_vcpu_data) * i);
  994. v->arch.itc_offset = itc_offset;
  995. v->arch.last_itc = 0;
  996. }
  997. } else
  998. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  999. r = -ENOMEM;
  1000. vcpu->arch.apic = kzalloc(sizeof(struct kvm_lapic), GFP_KERNEL);
  1001. if (!vcpu->arch.apic)
  1002. goto out;
  1003. vcpu->arch.apic->vcpu = vcpu;
  1004. p_ctx->gr[1] = 0;
  1005. p_ctx->gr[12] = (unsigned long)((char *)vmm_vcpu + KVM_STK_OFFSET);
  1006. p_ctx->gr[13] = (unsigned long)vmm_vcpu;
  1007. p_ctx->psr = 0x1008522000UL;
  1008. p_ctx->ar[40] = FPSR_DEFAULT; /*fpsr*/
  1009. p_ctx->caller_unat = 0;
  1010. p_ctx->pr = 0x0;
  1011. p_ctx->ar[36] = 0x0; /*unat*/
  1012. p_ctx->ar[19] = 0x0; /*rnat*/
  1013. p_ctx->ar[18] = (unsigned long)vmm_vcpu +
  1014. ((sizeof(struct kvm_vcpu)+15) & ~15);
  1015. p_ctx->ar[64] = 0x0; /*pfs*/
  1016. p_ctx->cr[0] = 0x7e04UL;
  1017. p_ctx->cr[2] = (unsigned long)kvm_vmm_info->vmm_ivt;
  1018. p_ctx->cr[8] = 0x3c;
  1019. /*Initialize region register*/
  1020. p_ctx->rr[0] = 0x30;
  1021. p_ctx->rr[1] = 0x30;
  1022. p_ctx->rr[2] = 0x30;
  1023. p_ctx->rr[3] = 0x30;
  1024. p_ctx->rr[4] = 0x30;
  1025. p_ctx->rr[5] = 0x30;
  1026. p_ctx->rr[7] = 0x30;
  1027. /*Initialize branch register 0*/
  1028. p_ctx->br[0] = *(unsigned long *)kvm_vmm_info->vmm_entry;
  1029. vcpu->arch.vmm_rr = kvm->arch.vmm_init_rr;
  1030. vcpu->arch.metaphysical_rr0 = kvm->arch.metaphysical_rr0;
  1031. vcpu->arch.metaphysical_rr4 = kvm->arch.metaphysical_rr4;
  1032. hrtimer_init(&vcpu->arch.hlt_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
  1033. vcpu->arch.hlt_timer.function = hlt_timer_fn;
  1034. vcpu->arch.last_run_cpu = -1;
  1035. vcpu->arch.vpd = (struct vpd *)VPD_BASE(vcpu->vcpu_id);
  1036. vcpu->arch.vsa_base = kvm_vsa_base;
  1037. vcpu->arch.__gp = kvm_vmm_gp;
  1038. vcpu->arch.dirty_log_lock_pa = __pa(&kvm->arch.dirty_log_lock);
  1039. vcpu->arch.vhpt.hash = (struct thash_data *)VHPT_BASE(vcpu->vcpu_id);
  1040. vcpu->arch.vtlb.hash = (struct thash_data *)VTLB_BASE(vcpu->vcpu_id);
  1041. init_ptce_info(vcpu);
  1042. r = 0;
  1043. out:
  1044. return r;
  1045. }
  1046. static int vti_vcpu_setup(struct kvm_vcpu *vcpu, int id)
  1047. {
  1048. unsigned long psr;
  1049. int r;
  1050. local_irq_save(psr);
  1051. r = kvm_insert_vmm_mapping(vcpu);
  1052. local_irq_restore(psr);
  1053. if (r)
  1054. goto fail;
  1055. r = kvm_vcpu_init(vcpu, vcpu->kvm, id);
  1056. if (r)
  1057. goto fail;
  1058. r = vti_init_vpd(vcpu);
  1059. if (r) {
  1060. printk(KERN_DEBUG"kvm: vpd init error!!\n");
  1061. goto uninit;
  1062. }
  1063. r = vti_create_vp(vcpu);
  1064. if (r)
  1065. goto uninit;
  1066. kvm_purge_vmm_mapping(vcpu);
  1067. return 0;
  1068. uninit:
  1069. kvm_vcpu_uninit(vcpu);
  1070. fail:
  1071. return r;
  1072. }
  1073. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  1074. unsigned int id)
  1075. {
  1076. struct kvm_vcpu *vcpu;
  1077. unsigned long vm_base = kvm->arch.vm_base;
  1078. int r;
  1079. int cpu;
  1080. BUG_ON(sizeof(struct kvm_vcpu) > VCPU_STRUCT_SIZE/2);
  1081. r = -EINVAL;
  1082. if (id >= KVM_MAX_VCPUS) {
  1083. printk(KERN_ERR"kvm: Can't configure vcpus > %ld",
  1084. KVM_MAX_VCPUS);
  1085. goto fail;
  1086. }
  1087. r = -ENOMEM;
  1088. if (!vm_base) {
  1089. printk(KERN_ERR"kvm: Create vcpu[%d] error!\n", id);
  1090. goto fail;
  1091. }
  1092. vcpu = (struct kvm_vcpu *)(vm_base + offsetof(struct kvm_vm_data,
  1093. vcpu_data[id].vcpu_struct));
  1094. vcpu->kvm = kvm;
  1095. cpu = get_cpu();
  1096. r = vti_vcpu_setup(vcpu, id);
  1097. put_cpu();
  1098. if (r) {
  1099. printk(KERN_DEBUG"kvm: vcpu_setup error!!\n");
  1100. goto fail;
  1101. }
  1102. return vcpu;
  1103. fail:
  1104. return ERR_PTR(r);
  1105. }
  1106. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  1107. {
  1108. return 0;
  1109. }
  1110. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  1111. {
  1112. return -EINVAL;
  1113. }
  1114. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  1115. {
  1116. return -EINVAL;
  1117. }
  1118. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  1119. struct kvm_guest_debug *dbg)
  1120. {
  1121. return -EINVAL;
  1122. }
  1123. void kvm_arch_free_vm(struct kvm *kvm)
  1124. {
  1125. unsigned long vm_base = kvm->arch.vm_base;
  1126. if (vm_base) {
  1127. memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
  1128. free_pages(vm_base, get_order(KVM_VM_DATA_SIZE));
  1129. }
  1130. }
  1131. static void kvm_release_vm_pages(struct kvm *kvm)
  1132. {
  1133. struct kvm_memslots *slots;
  1134. struct kvm_memory_slot *memslot;
  1135. int i, j;
  1136. unsigned long base_gfn;
  1137. slots = kvm_memslots(kvm);
  1138. for (i = 0; i < slots->nmemslots; i++) {
  1139. memslot = &slots->memslots[i];
  1140. base_gfn = memslot->base_gfn;
  1141. for (j = 0; j < memslot->npages; j++) {
  1142. if (memslot->rmap[j])
  1143. put_page((struct page *)memslot->rmap[j]);
  1144. }
  1145. }
  1146. }
  1147. void kvm_arch_sync_events(struct kvm *kvm)
  1148. {
  1149. }
  1150. void kvm_arch_destroy_vm(struct kvm *kvm)
  1151. {
  1152. kvm_iommu_unmap_guest(kvm);
  1153. #ifdef KVM_CAP_DEVICE_ASSIGNMENT
  1154. kvm_free_all_assigned_devices(kvm);
  1155. #endif
  1156. kfree(kvm->arch.vioapic);
  1157. kvm_release_vm_pages(kvm);
  1158. }
  1159. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  1160. {
  1161. }
  1162. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1163. {
  1164. if (cpu != vcpu->cpu) {
  1165. vcpu->cpu = cpu;
  1166. if (vcpu->arch.ht_active)
  1167. kvm_migrate_hlt_timer(vcpu);
  1168. }
  1169. }
  1170. #define SAVE_REGS(_x) regs->_x = vcpu->arch._x
  1171. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  1172. {
  1173. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  1174. int i;
  1175. vcpu_load(vcpu);
  1176. for (i = 0; i < 16; i++) {
  1177. regs->vpd.vgr[i] = vpd->vgr[i];
  1178. regs->vpd.vbgr[i] = vpd->vbgr[i];
  1179. }
  1180. for (i = 0; i < 128; i++)
  1181. regs->vpd.vcr[i] = vpd->vcr[i];
  1182. regs->vpd.vhpi = vpd->vhpi;
  1183. regs->vpd.vnat = vpd->vnat;
  1184. regs->vpd.vbnat = vpd->vbnat;
  1185. regs->vpd.vpsr = vpd->vpsr;
  1186. regs->vpd.vpr = vpd->vpr;
  1187. memcpy(&regs->saved_guest, &vcpu->arch.guest, sizeof(union context));
  1188. SAVE_REGS(mp_state);
  1189. SAVE_REGS(vmm_rr);
  1190. memcpy(regs->itrs, vcpu->arch.itrs, sizeof(struct thash_data) * NITRS);
  1191. memcpy(regs->dtrs, vcpu->arch.dtrs, sizeof(struct thash_data) * NDTRS);
  1192. SAVE_REGS(itr_regions);
  1193. SAVE_REGS(dtr_regions);
  1194. SAVE_REGS(tc_regions);
  1195. SAVE_REGS(irq_check);
  1196. SAVE_REGS(itc_check);
  1197. SAVE_REGS(timer_check);
  1198. SAVE_REGS(timer_pending);
  1199. SAVE_REGS(last_itc);
  1200. for (i = 0; i < 8; i++) {
  1201. regs->vrr[i] = vcpu->arch.vrr[i];
  1202. regs->ibr[i] = vcpu->arch.ibr[i];
  1203. regs->dbr[i] = vcpu->arch.dbr[i];
  1204. }
  1205. for (i = 0; i < 4; i++)
  1206. regs->insvc[i] = vcpu->arch.insvc[i];
  1207. regs->saved_itc = vcpu->arch.itc_offset + kvm_get_itc(vcpu);
  1208. SAVE_REGS(xtp);
  1209. SAVE_REGS(metaphysical_rr0);
  1210. SAVE_REGS(metaphysical_rr4);
  1211. SAVE_REGS(metaphysical_saved_rr0);
  1212. SAVE_REGS(metaphysical_saved_rr4);
  1213. SAVE_REGS(fp_psr);
  1214. SAVE_REGS(saved_gp);
  1215. vcpu_put(vcpu);
  1216. return 0;
  1217. }
  1218. int kvm_arch_vcpu_ioctl_get_stack(struct kvm_vcpu *vcpu,
  1219. struct kvm_ia64_vcpu_stack *stack)
  1220. {
  1221. memcpy(stack, vcpu, sizeof(struct kvm_ia64_vcpu_stack));
  1222. return 0;
  1223. }
  1224. int kvm_arch_vcpu_ioctl_set_stack(struct kvm_vcpu *vcpu,
  1225. struct kvm_ia64_vcpu_stack *stack)
  1226. {
  1227. memcpy(vcpu + 1, &stack->stack[0] + sizeof(struct kvm_vcpu),
  1228. sizeof(struct kvm_ia64_vcpu_stack) - sizeof(struct kvm_vcpu));
  1229. vcpu->arch.exit_data = ((struct kvm_vcpu *)stack)->arch.exit_data;
  1230. return 0;
  1231. }
  1232. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  1233. {
  1234. hrtimer_cancel(&vcpu->arch.hlt_timer);
  1235. kfree(vcpu->arch.apic);
  1236. }
  1237. long kvm_arch_vcpu_ioctl(struct file *filp,
  1238. unsigned int ioctl, unsigned long arg)
  1239. {
  1240. struct kvm_vcpu *vcpu = filp->private_data;
  1241. void __user *argp = (void __user *)arg;
  1242. struct kvm_ia64_vcpu_stack *stack = NULL;
  1243. long r;
  1244. switch (ioctl) {
  1245. case KVM_IA64_VCPU_GET_STACK: {
  1246. struct kvm_ia64_vcpu_stack __user *user_stack;
  1247. void __user *first_p = argp;
  1248. r = -EFAULT;
  1249. if (copy_from_user(&user_stack, first_p, sizeof(void *)))
  1250. goto out;
  1251. if (!access_ok(VERIFY_WRITE, user_stack,
  1252. sizeof(struct kvm_ia64_vcpu_stack))) {
  1253. printk(KERN_INFO "KVM_IA64_VCPU_GET_STACK: "
  1254. "Illegal user destination address for stack\n");
  1255. goto out;
  1256. }
  1257. stack = kzalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
  1258. if (!stack) {
  1259. r = -ENOMEM;
  1260. goto out;
  1261. }
  1262. r = kvm_arch_vcpu_ioctl_get_stack(vcpu, stack);
  1263. if (r)
  1264. goto out;
  1265. if (copy_to_user(user_stack, stack,
  1266. sizeof(struct kvm_ia64_vcpu_stack))) {
  1267. r = -EFAULT;
  1268. goto out;
  1269. }
  1270. break;
  1271. }
  1272. case KVM_IA64_VCPU_SET_STACK: {
  1273. struct kvm_ia64_vcpu_stack __user *user_stack;
  1274. void __user *first_p = argp;
  1275. r = -EFAULT;
  1276. if (copy_from_user(&user_stack, first_p, sizeof(void *)))
  1277. goto out;
  1278. if (!access_ok(VERIFY_READ, user_stack,
  1279. sizeof(struct kvm_ia64_vcpu_stack))) {
  1280. printk(KERN_INFO "KVM_IA64_VCPU_SET_STACK: "
  1281. "Illegal user address for stack\n");
  1282. goto out;
  1283. }
  1284. stack = kmalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
  1285. if (!stack) {
  1286. r = -ENOMEM;
  1287. goto out;
  1288. }
  1289. if (copy_from_user(stack, user_stack,
  1290. sizeof(struct kvm_ia64_vcpu_stack)))
  1291. goto out;
  1292. r = kvm_arch_vcpu_ioctl_set_stack(vcpu, stack);
  1293. break;
  1294. }
  1295. default:
  1296. r = -EINVAL;
  1297. }
  1298. out:
  1299. kfree(stack);
  1300. return r;
  1301. }
  1302. int kvm_arch_prepare_memory_region(struct kvm *kvm,
  1303. struct kvm_memory_slot *memslot,
  1304. struct kvm_memory_slot old,
  1305. struct kvm_userspace_memory_region *mem,
  1306. int user_alloc)
  1307. {
  1308. unsigned long i;
  1309. unsigned long pfn;
  1310. int npages = memslot->npages;
  1311. unsigned long base_gfn = memslot->base_gfn;
  1312. if (base_gfn + npages > (KVM_MAX_MEM_SIZE >> PAGE_SHIFT))
  1313. return -ENOMEM;
  1314. for (i = 0; i < npages; i++) {
  1315. pfn = gfn_to_pfn(kvm, base_gfn + i);
  1316. if (!kvm_is_mmio_pfn(pfn)) {
  1317. kvm_set_pmt_entry(kvm, base_gfn + i,
  1318. pfn << PAGE_SHIFT,
  1319. _PAGE_AR_RWX | _PAGE_MA_WB);
  1320. memslot->rmap[i] = (unsigned long)pfn_to_page(pfn);
  1321. } else {
  1322. kvm_set_pmt_entry(kvm, base_gfn + i,
  1323. GPFN_PHYS_MMIO | (pfn << PAGE_SHIFT),
  1324. _PAGE_MA_UC);
  1325. memslot->rmap[i] = 0;
  1326. }
  1327. }
  1328. return 0;
  1329. }
  1330. void kvm_arch_commit_memory_region(struct kvm *kvm,
  1331. struct kvm_userspace_memory_region *mem,
  1332. struct kvm_memory_slot old,
  1333. int user_alloc)
  1334. {
  1335. return;
  1336. }
  1337. void kvm_arch_flush_shadow(struct kvm *kvm)
  1338. {
  1339. kvm_flush_remote_tlbs(kvm);
  1340. }
  1341. long kvm_arch_dev_ioctl(struct file *filp,
  1342. unsigned int ioctl, unsigned long arg)
  1343. {
  1344. return -EINVAL;
  1345. }
  1346. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  1347. {
  1348. kvm_vcpu_uninit(vcpu);
  1349. }
  1350. static int vti_cpu_has_kvm_support(void)
  1351. {
  1352. long avail = 1, status = 1, control = 1;
  1353. long ret;
  1354. ret = ia64_pal_proc_get_features(&avail, &status, &control, 0);
  1355. if (ret)
  1356. goto out;
  1357. if (!(avail & PAL_PROC_VM_BIT))
  1358. goto out;
  1359. printk(KERN_DEBUG"kvm: Hardware Supports VT\n");
  1360. ret = ia64_pal_vp_env_info(&kvm_vm_buffer_size, &vp_env_info);
  1361. if (ret)
  1362. goto out;
  1363. printk(KERN_DEBUG"kvm: VM Buffer Size:0x%lx\n", kvm_vm_buffer_size);
  1364. if (!(vp_env_info & VP_OPCODE)) {
  1365. printk(KERN_WARNING"kvm: No opcode ability on hardware, "
  1366. "vm_env_info:0x%lx\n", vp_env_info);
  1367. }
  1368. return 1;
  1369. out:
  1370. return 0;
  1371. }
  1372. /*
  1373. * On SN2, the ITC isn't stable, so copy in fast path code to use the
  1374. * SN2 RTC, replacing the ITC based default verion.
  1375. */
  1376. static void kvm_patch_vmm(struct kvm_vmm_info *vmm_info,
  1377. struct module *module)
  1378. {
  1379. unsigned long new_ar, new_ar_sn2;
  1380. unsigned long module_base;
  1381. if (!ia64_platform_is("sn2"))
  1382. return;
  1383. module_base = (unsigned long)module->module_core;
  1384. new_ar = kvm_vmm_base + vmm_info->patch_mov_ar - module_base;
  1385. new_ar_sn2 = kvm_vmm_base + vmm_info->patch_mov_ar_sn2 - module_base;
  1386. printk(KERN_INFO "kvm: Patching ITC emulation to use SGI SN2 RTC "
  1387. "as source\n");
  1388. /*
  1389. * Copy the SN2 version of mov_ar into place. They are both
  1390. * the same size, so 6 bundles is sufficient (6 * 0x10).
  1391. */
  1392. memcpy((void *)new_ar, (void *)new_ar_sn2, 0x60);
  1393. }
  1394. static int kvm_relocate_vmm(struct kvm_vmm_info *vmm_info,
  1395. struct module *module)
  1396. {
  1397. unsigned long module_base;
  1398. unsigned long vmm_size;
  1399. unsigned long vmm_offset, func_offset, fdesc_offset;
  1400. struct fdesc *p_fdesc;
  1401. BUG_ON(!module);
  1402. if (!kvm_vmm_base) {
  1403. printk("kvm: kvm area hasn't been initialized yet!!\n");
  1404. return -EFAULT;
  1405. }
  1406. /*Calculate new position of relocated vmm module.*/
  1407. module_base = (unsigned long)module->module_core;
  1408. vmm_size = module->core_size;
  1409. if (unlikely(vmm_size > KVM_VMM_SIZE))
  1410. return -EFAULT;
  1411. memcpy((void *)kvm_vmm_base, (void *)module_base, vmm_size);
  1412. kvm_patch_vmm(vmm_info, module);
  1413. kvm_flush_icache(kvm_vmm_base, vmm_size);
  1414. /*Recalculate kvm_vmm_info based on new VMM*/
  1415. vmm_offset = vmm_info->vmm_ivt - module_base;
  1416. kvm_vmm_info->vmm_ivt = KVM_VMM_BASE + vmm_offset;
  1417. printk(KERN_DEBUG"kvm: Relocated VMM's IVT Base Addr:%lx\n",
  1418. kvm_vmm_info->vmm_ivt);
  1419. fdesc_offset = (unsigned long)vmm_info->vmm_entry - module_base;
  1420. kvm_vmm_info->vmm_entry = (kvm_vmm_entry *)(KVM_VMM_BASE +
  1421. fdesc_offset);
  1422. func_offset = *(unsigned long *)vmm_info->vmm_entry - module_base;
  1423. p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
  1424. p_fdesc->ip = KVM_VMM_BASE + func_offset;
  1425. p_fdesc->gp = KVM_VMM_BASE+(p_fdesc->gp - module_base);
  1426. printk(KERN_DEBUG"kvm: Relocated VMM's Init Entry Addr:%lx\n",
  1427. KVM_VMM_BASE+func_offset);
  1428. fdesc_offset = (unsigned long)vmm_info->tramp_entry - module_base;
  1429. kvm_vmm_info->tramp_entry = (kvm_tramp_entry *)(KVM_VMM_BASE +
  1430. fdesc_offset);
  1431. func_offset = *(unsigned long *)vmm_info->tramp_entry - module_base;
  1432. p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
  1433. p_fdesc->ip = KVM_VMM_BASE + func_offset;
  1434. p_fdesc->gp = KVM_VMM_BASE + (p_fdesc->gp - module_base);
  1435. kvm_vmm_gp = p_fdesc->gp;
  1436. printk(KERN_DEBUG"kvm: Relocated VMM's Entry IP:%p\n",
  1437. kvm_vmm_info->vmm_entry);
  1438. printk(KERN_DEBUG"kvm: Relocated VMM's Trampoline Entry IP:0x%lx\n",
  1439. KVM_VMM_BASE + func_offset);
  1440. return 0;
  1441. }
  1442. int kvm_arch_init(void *opaque)
  1443. {
  1444. int r;
  1445. struct kvm_vmm_info *vmm_info = (struct kvm_vmm_info *)opaque;
  1446. if (!vti_cpu_has_kvm_support()) {
  1447. printk(KERN_ERR "kvm: No Hardware Virtualization Support!\n");
  1448. r = -EOPNOTSUPP;
  1449. goto out;
  1450. }
  1451. if (kvm_vmm_info) {
  1452. printk(KERN_ERR "kvm: Already loaded VMM module!\n");
  1453. r = -EEXIST;
  1454. goto out;
  1455. }
  1456. r = -ENOMEM;
  1457. kvm_vmm_info = kzalloc(sizeof(struct kvm_vmm_info), GFP_KERNEL);
  1458. if (!kvm_vmm_info)
  1459. goto out;
  1460. if (kvm_alloc_vmm_area())
  1461. goto out_free0;
  1462. r = kvm_relocate_vmm(vmm_info, vmm_info->module);
  1463. if (r)
  1464. goto out_free1;
  1465. return 0;
  1466. out_free1:
  1467. kvm_free_vmm_area();
  1468. out_free0:
  1469. kfree(kvm_vmm_info);
  1470. out:
  1471. return r;
  1472. }
  1473. void kvm_arch_exit(void)
  1474. {
  1475. kvm_free_vmm_area();
  1476. kfree(kvm_vmm_info);
  1477. kvm_vmm_info = NULL;
  1478. }
  1479. static void kvm_ia64_sync_dirty_log(struct kvm *kvm,
  1480. struct kvm_memory_slot *memslot)
  1481. {
  1482. int i;
  1483. long base;
  1484. unsigned long n;
  1485. unsigned long *dirty_bitmap = (unsigned long *)(kvm->arch.vm_base +
  1486. offsetof(struct kvm_vm_data, kvm_mem_dirty_log));
  1487. n = kvm_dirty_bitmap_bytes(memslot);
  1488. base = memslot->base_gfn / BITS_PER_LONG;
  1489. spin_lock(&kvm->arch.dirty_log_lock);
  1490. for (i = 0; i < n/sizeof(long); ++i) {
  1491. memslot->dirty_bitmap[i] = dirty_bitmap[base + i];
  1492. dirty_bitmap[base + i] = 0;
  1493. }
  1494. spin_unlock(&kvm->arch.dirty_log_lock);
  1495. }
  1496. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  1497. struct kvm_dirty_log *log)
  1498. {
  1499. int r;
  1500. unsigned long n;
  1501. struct kvm_memory_slot *memslot;
  1502. int is_dirty = 0;
  1503. mutex_lock(&kvm->slots_lock);
  1504. r = -EINVAL;
  1505. if (log->slot >= KVM_MEMORY_SLOTS)
  1506. goto out;
  1507. memslot = &kvm->memslots->memslots[log->slot];
  1508. r = -ENOENT;
  1509. if (!memslot->dirty_bitmap)
  1510. goto out;
  1511. kvm_ia64_sync_dirty_log(kvm, memslot);
  1512. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  1513. if (r)
  1514. goto out;
  1515. /* If nothing is dirty, don't bother messing with page tables. */
  1516. if (is_dirty) {
  1517. kvm_flush_remote_tlbs(kvm);
  1518. n = kvm_dirty_bitmap_bytes(memslot);
  1519. memset(memslot->dirty_bitmap, 0, n);
  1520. }
  1521. r = 0;
  1522. out:
  1523. mutex_unlock(&kvm->slots_lock);
  1524. return r;
  1525. }
  1526. int kvm_arch_hardware_setup(void)
  1527. {
  1528. return 0;
  1529. }
  1530. void kvm_arch_hardware_unsetup(void)
  1531. {
  1532. }
  1533. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  1534. {
  1535. int me;
  1536. int cpu = vcpu->cpu;
  1537. if (waitqueue_active(&vcpu->wq))
  1538. wake_up_interruptible(&vcpu->wq);
  1539. me = get_cpu();
  1540. if (cpu != me && (unsigned) cpu < nr_cpu_ids && cpu_online(cpu))
  1541. if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
  1542. smp_send_reschedule(cpu);
  1543. put_cpu();
  1544. }
  1545. int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq)
  1546. {
  1547. return __apic_accept_irq(vcpu, irq->vector);
  1548. }
  1549. int kvm_apic_match_physical_addr(struct kvm_lapic *apic, u16 dest)
  1550. {
  1551. return apic->vcpu->vcpu_id == dest;
  1552. }
  1553. int kvm_apic_match_logical_addr(struct kvm_lapic *apic, u8 mda)
  1554. {
  1555. return 0;
  1556. }
  1557. int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2)
  1558. {
  1559. return vcpu1->arch.xtp - vcpu2->arch.xtp;
  1560. }
  1561. int kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
  1562. int short_hand, int dest, int dest_mode)
  1563. {
  1564. struct kvm_lapic *target = vcpu->arch.apic;
  1565. return (dest_mode == 0) ?
  1566. kvm_apic_match_physical_addr(target, dest) :
  1567. kvm_apic_match_logical_addr(target, dest);
  1568. }
  1569. static int find_highest_bits(int *dat)
  1570. {
  1571. u32 bits, bitnum;
  1572. int i;
  1573. /* loop for all 256 bits */
  1574. for (i = 7; i >= 0 ; i--) {
  1575. bits = dat[i];
  1576. if (bits) {
  1577. bitnum = fls(bits);
  1578. return i * 32 + bitnum - 1;
  1579. }
  1580. }
  1581. return -1;
  1582. }
  1583. int kvm_highest_pending_irq(struct kvm_vcpu *vcpu)
  1584. {
  1585. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  1586. if (vpd->irr[0] & (1UL << NMI_VECTOR))
  1587. return NMI_VECTOR;
  1588. if (vpd->irr[0] & (1UL << ExtINT_VECTOR))
  1589. return ExtINT_VECTOR;
  1590. return find_highest_bits((int *)&vpd->irr[0]);
  1591. }
  1592. int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
  1593. {
  1594. return vcpu->arch.timer_fired;
  1595. }
  1596. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  1597. {
  1598. return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE) ||
  1599. (kvm_highest_pending_irq(vcpu) != -1);
  1600. }
  1601. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  1602. struct kvm_mp_state *mp_state)
  1603. {
  1604. mp_state->mp_state = vcpu->arch.mp_state;
  1605. return 0;
  1606. }
  1607. static int vcpu_reset(struct kvm_vcpu *vcpu)
  1608. {
  1609. int r;
  1610. long psr;
  1611. local_irq_save(psr);
  1612. r = kvm_insert_vmm_mapping(vcpu);
  1613. local_irq_restore(psr);
  1614. if (r)
  1615. goto fail;
  1616. vcpu->arch.launched = 0;
  1617. kvm_arch_vcpu_uninit(vcpu);
  1618. r = kvm_arch_vcpu_init(vcpu);
  1619. if (r)
  1620. goto fail;
  1621. kvm_purge_vmm_mapping(vcpu);
  1622. r = 0;
  1623. fail:
  1624. return r;
  1625. }
  1626. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  1627. struct kvm_mp_state *mp_state)
  1628. {
  1629. int r = 0;
  1630. vcpu->arch.mp_state = mp_state->mp_state;
  1631. if (vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)
  1632. r = vcpu_reset(vcpu);
  1633. return r;
  1634. }