mmu.c 28 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045
  1. /*
  2. * linux/arch/arm/mm/mmu.c
  3. *
  4. * Copyright (C) 1995-2005 Russell King
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/kernel.h>
  12. #include <linux/errno.h>
  13. #include <linux/init.h>
  14. #include <linux/mman.h>
  15. #include <linux/nodemask.h>
  16. #include <linux/memblock.h>
  17. #include <linux/fs.h>
  18. #include <asm/cputype.h>
  19. #include <asm/sections.h>
  20. #include <asm/cachetype.h>
  21. #include <asm/setup.h>
  22. #include <asm/sizes.h>
  23. #include <asm/smp_plat.h>
  24. #include <asm/tlb.h>
  25. #include <asm/highmem.h>
  26. #include <asm/traps.h>
  27. #include <asm/mach/arch.h>
  28. #include <asm/mach/map.h>
  29. #include "mm.h"
  30. DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
  31. /*
  32. * empty_zero_page is a special page that is used for
  33. * zero-initialized data and COW.
  34. */
  35. struct page *empty_zero_page;
  36. EXPORT_SYMBOL(empty_zero_page);
  37. /*
  38. * The pmd table for the upper-most set of pages.
  39. */
  40. pmd_t *top_pmd;
  41. #define CPOLICY_UNCACHED 0
  42. #define CPOLICY_BUFFERED 1
  43. #define CPOLICY_WRITETHROUGH 2
  44. #define CPOLICY_WRITEBACK 3
  45. #define CPOLICY_WRITEALLOC 4
  46. static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
  47. static unsigned int ecc_mask __initdata = 0;
  48. pgprot_t pgprot_user;
  49. pgprot_t pgprot_kernel;
  50. EXPORT_SYMBOL(pgprot_user);
  51. EXPORT_SYMBOL(pgprot_kernel);
  52. struct cachepolicy {
  53. const char policy[16];
  54. unsigned int cr_mask;
  55. unsigned int pmd;
  56. pteval_t pte;
  57. };
  58. static struct cachepolicy cache_policies[] __initdata = {
  59. {
  60. .policy = "uncached",
  61. .cr_mask = CR_W|CR_C,
  62. .pmd = PMD_SECT_UNCACHED,
  63. .pte = L_PTE_MT_UNCACHED,
  64. }, {
  65. .policy = "buffered",
  66. .cr_mask = CR_C,
  67. .pmd = PMD_SECT_BUFFERED,
  68. .pte = L_PTE_MT_BUFFERABLE,
  69. }, {
  70. .policy = "writethrough",
  71. .cr_mask = 0,
  72. .pmd = PMD_SECT_WT,
  73. .pte = L_PTE_MT_WRITETHROUGH,
  74. }, {
  75. .policy = "writeback",
  76. .cr_mask = 0,
  77. .pmd = PMD_SECT_WB,
  78. .pte = L_PTE_MT_WRITEBACK,
  79. }, {
  80. .policy = "writealloc",
  81. .cr_mask = 0,
  82. .pmd = PMD_SECT_WBWA,
  83. .pte = L_PTE_MT_WRITEALLOC,
  84. }
  85. };
  86. /*
  87. * These are useful for identifying cache coherency
  88. * problems by allowing the cache or the cache and
  89. * writebuffer to be turned off. (Note: the write
  90. * buffer should not be on and the cache off).
  91. */
  92. static int __init early_cachepolicy(char *p)
  93. {
  94. int i;
  95. for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
  96. int len = strlen(cache_policies[i].policy);
  97. if (memcmp(p, cache_policies[i].policy, len) == 0) {
  98. cachepolicy = i;
  99. cr_alignment &= ~cache_policies[i].cr_mask;
  100. cr_no_alignment &= ~cache_policies[i].cr_mask;
  101. break;
  102. }
  103. }
  104. if (i == ARRAY_SIZE(cache_policies))
  105. printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
  106. /*
  107. * This restriction is partly to do with the way we boot; it is
  108. * unpredictable to have memory mapped using two different sets of
  109. * memory attributes (shared, type, and cache attribs). We can not
  110. * change these attributes once the initial assembly has setup the
  111. * page tables.
  112. */
  113. if (cpu_architecture() >= CPU_ARCH_ARMv6) {
  114. printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
  115. cachepolicy = CPOLICY_WRITEBACK;
  116. }
  117. flush_cache_all();
  118. set_cr(cr_alignment);
  119. return 0;
  120. }
  121. early_param("cachepolicy", early_cachepolicy);
  122. static int __init early_nocache(char *__unused)
  123. {
  124. char *p = "buffered";
  125. printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
  126. early_cachepolicy(p);
  127. return 0;
  128. }
  129. early_param("nocache", early_nocache);
  130. static int __init early_nowrite(char *__unused)
  131. {
  132. char *p = "uncached";
  133. printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
  134. early_cachepolicy(p);
  135. return 0;
  136. }
  137. early_param("nowb", early_nowrite);
  138. static int __init early_ecc(char *p)
  139. {
  140. if (memcmp(p, "on", 2) == 0)
  141. ecc_mask = PMD_PROTECTION;
  142. else if (memcmp(p, "off", 3) == 0)
  143. ecc_mask = 0;
  144. return 0;
  145. }
  146. early_param("ecc", early_ecc);
  147. static int __init noalign_setup(char *__unused)
  148. {
  149. cr_alignment &= ~CR_A;
  150. cr_no_alignment &= ~CR_A;
  151. set_cr(cr_alignment);
  152. return 1;
  153. }
  154. __setup("noalign", noalign_setup);
  155. #ifndef CONFIG_SMP
  156. void adjust_cr(unsigned long mask, unsigned long set)
  157. {
  158. unsigned long flags;
  159. mask &= ~CR_A;
  160. set &= mask;
  161. local_irq_save(flags);
  162. cr_no_alignment = (cr_no_alignment & ~mask) | set;
  163. cr_alignment = (cr_alignment & ~mask) | set;
  164. set_cr((get_cr() & ~mask) | set);
  165. local_irq_restore(flags);
  166. }
  167. #endif
  168. #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
  169. #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
  170. static struct mem_type mem_types[] = {
  171. [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
  172. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
  173. L_PTE_SHARED,
  174. .prot_l1 = PMD_TYPE_TABLE,
  175. .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
  176. .domain = DOMAIN_IO,
  177. },
  178. [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
  179. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
  180. .prot_l1 = PMD_TYPE_TABLE,
  181. .prot_sect = PROT_SECT_DEVICE,
  182. .domain = DOMAIN_IO,
  183. },
  184. [MT_DEVICE_CACHED] = { /* ioremap_cached */
  185. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
  186. .prot_l1 = PMD_TYPE_TABLE,
  187. .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
  188. .domain = DOMAIN_IO,
  189. },
  190. [MT_DEVICE_WC] = { /* ioremap_wc */
  191. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
  192. .prot_l1 = PMD_TYPE_TABLE,
  193. .prot_sect = PROT_SECT_DEVICE,
  194. .domain = DOMAIN_IO,
  195. },
  196. [MT_UNCACHED] = {
  197. .prot_pte = PROT_PTE_DEVICE,
  198. .prot_l1 = PMD_TYPE_TABLE,
  199. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
  200. .domain = DOMAIN_IO,
  201. },
  202. [MT_CACHECLEAN] = {
  203. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
  204. .domain = DOMAIN_KERNEL,
  205. },
  206. [MT_MINICLEAN] = {
  207. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
  208. .domain = DOMAIN_KERNEL,
  209. },
  210. [MT_LOW_VECTORS] = {
  211. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  212. L_PTE_RDONLY,
  213. .prot_l1 = PMD_TYPE_TABLE,
  214. .domain = DOMAIN_USER,
  215. },
  216. [MT_HIGH_VECTORS] = {
  217. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  218. L_PTE_USER | L_PTE_RDONLY,
  219. .prot_l1 = PMD_TYPE_TABLE,
  220. .domain = DOMAIN_USER,
  221. },
  222. [MT_MEMORY] = {
  223. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
  224. .prot_l1 = PMD_TYPE_TABLE,
  225. .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
  226. .domain = DOMAIN_KERNEL,
  227. },
  228. [MT_ROM] = {
  229. .prot_sect = PMD_TYPE_SECT,
  230. .domain = DOMAIN_KERNEL,
  231. },
  232. [MT_MEMORY_NONCACHED] = {
  233. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  234. L_PTE_MT_BUFFERABLE,
  235. .prot_l1 = PMD_TYPE_TABLE,
  236. .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
  237. .domain = DOMAIN_KERNEL,
  238. },
  239. [MT_MEMORY_DTCM] = {
  240. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  241. L_PTE_XN,
  242. .prot_l1 = PMD_TYPE_TABLE,
  243. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
  244. .domain = DOMAIN_KERNEL,
  245. },
  246. [MT_MEMORY_ITCM] = {
  247. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
  248. .prot_l1 = PMD_TYPE_TABLE,
  249. .domain = DOMAIN_KERNEL,
  250. },
  251. };
  252. const struct mem_type *get_mem_type(unsigned int type)
  253. {
  254. return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
  255. }
  256. EXPORT_SYMBOL(get_mem_type);
  257. /*
  258. * Adjust the PMD section entries according to the CPU in use.
  259. */
  260. static void __init build_mem_type_table(void)
  261. {
  262. struct cachepolicy *cp;
  263. unsigned int cr = get_cr();
  264. unsigned int user_pgprot, kern_pgprot, vecs_pgprot;
  265. int cpu_arch = cpu_architecture();
  266. int i;
  267. if (cpu_arch < CPU_ARCH_ARMv6) {
  268. #if defined(CONFIG_CPU_DCACHE_DISABLE)
  269. if (cachepolicy > CPOLICY_BUFFERED)
  270. cachepolicy = CPOLICY_BUFFERED;
  271. #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
  272. if (cachepolicy > CPOLICY_WRITETHROUGH)
  273. cachepolicy = CPOLICY_WRITETHROUGH;
  274. #endif
  275. }
  276. if (cpu_arch < CPU_ARCH_ARMv5) {
  277. if (cachepolicy >= CPOLICY_WRITEALLOC)
  278. cachepolicy = CPOLICY_WRITEBACK;
  279. ecc_mask = 0;
  280. }
  281. if (is_smp())
  282. cachepolicy = CPOLICY_WRITEALLOC;
  283. /*
  284. * Strip out features not present on earlier architectures.
  285. * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
  286. * without extended page tables don't have the 'Shared' bit.
  287. */
  288. if (cpu_arch < CPU_ARCH_ARMv5)
  289. for (i = 0; i < ARRAY_SIZE(mem_types); i++)
  290. mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
  291. if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
  292. for (i = 0; i < ARRAY_SIZE(mem_types); i++)
  293. mem_types[i].prot_sect &= ~PMD_SECT_S;
  294. /*
  295. * ARMv5 and lower, bit 4 must be set for page tables (was: cache
  296. * "update-able on write" bit on ARM610). However, Xscale and
  297. * Xscale3 require this bit to be cleared.
  298. */
  299. if (cpu_is_xscale() || cpu_is_xsc3()) {
  300. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  301. mem_types[i].prot_sect &= ~PMD_BIT4;
  302. mem_types[i].prot_l1 &= ~PMD_BIT4;
  303. }
  304. } else if (cpu_arch < CPU_ARCH_ARMv6) {
  305. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  306. if (mem_types[i].prot_l1)
  307. mem_types[i].prot_l1 |= PMD_BIT4;
  308. if (mem_types[i].prot_sect)
  309. mem_types[i].prot_sect |= PMD_BIT4;
  310. }
  311. }
  312. /*
  313. * Mark the device areas according to the CPU/architecture.
  314. */
  315. if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
  316. if (!cpu_is_xsc3()) {
  317. /*
  318. * Mark device regions on ARMv6+ as execute-never
  319. * to prevent speculative instruction fetches.
  320. */
  321. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
  322. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
  323. mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
  324. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
  325. }
  326. if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
  327. /*
  328. * For ARMv7 with TEX remapping,
  329. * - shared device is SXCB=1100
  330. * - nonshared device is SXCB=0100
  331. * - write combine device mem is SXCB=0001
  332. * (Uncached Normal memory)
  333. */
  334. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
  335. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
  336. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
  337. } else if (cpu_is_xsc3()) {
  338. /*
  339. * For Xscale3,
  340. * - shared device is TEXCB=00101
  341. * - nonshared device is TEXCB=01000
  342. * - write combine device mem is TEXCB=00100
  343. * (Inner/Outer Uncacheable in xsc3 parlance)
  344. */
  345. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
  346. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
  347. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
  348. } else {
  349. /*
  350. * For ARMv6 and ARMv7 without TEX remapping,
  351. * - shared device is TEXCB=00001
  352. * - nonshared device is TEXCB=01000
  353. * - write combine device mem is TEXCB=00100
  354. * (Uncached Normal in ARMv6 parlance).
  355. */
  356. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
  357. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
  358. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
  359. }
  360. } else {
  361. /*
  362. * On others, write combining is "Uncached/Buffered"
  363. */
  364. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
  365. }
  366. /*
  367. * Now deal with the memory-type mappings
  368. */
  369. cp = &cache_policies[cachepolicy];
  370. vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
  371. /*
  372. * Only use write-through for non-SMP systems
  373. */
  374. if (!is_smp() && cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
  375. vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
  376. /*
  377. * Enable CPU-specific coherency if supported.
  378. * (Only available on XSC3 at the moment.)
  379. */
  380. if (arch_is_coherent() && cpu_is_xsc3()) {
  381. mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
  382. mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
  383. mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
  384. mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
  385. }
  386. /*
  387. * ARMv6 and above have extended page tables.
  388. */
  389. if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
  390. /*
  391. * Mark cache clean areas and XIP ROM read only
  392. * from SVC mode and no access from userspace.
  393. */
  394. mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
  395. mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
  396. mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
  397. if (is_smp()) {
  398. /*
  399. * Mark memory with the "shared" attribute
  400. * for SMP systems
  401. */
  402. user_pgprot |= L_PTE_SHARED;
  403. kern_pgprot |= L_PTE_SHARED;
  404. vecs_pgprot |= L_PTE_SHARED;
  405. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
  406. mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
  407. mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
  408. mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
  409. mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
  410. mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
  411. mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
  412. mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
  413. }
  414. }
  415. /*
  416. * Non-cacheable Normal - intended for memory areas that must
  417. * not cause dirty cache line writebacks when used
  418. */
  419. if (cpu_arch >= CPU_ARCH_ARMv6) {
  420. if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
  421. /* Non-cacheable Normal is XCB = 001 */
  422. mem_types[MT_MEMORY_NONCACHED].prot_sect |=
  423. PMD_SECT_BUFFERED;
  424. } else {
  425. /* For both ARMv6 and non-TEX-remapping ARMv7 */
  426. mem_types[MT_MEMORY_NONCACHED].prot_sect |=
  427. PMD_SECT_TEX(1);
  428. }
  429. } else {
  430. mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
  431. }
  432. for (i = 0; i < 16; i++) {
  433. unsigned long v = pgprot_val(protection_map[i]);
  434. protection_map[i] = __pgprot(v | user_pgprot);
  435. }
  436. mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
  437. mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
  438. pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
  439. pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
  440. L_PTE_DIRTY | kern_pgprot);
  441. mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
  442. mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
  443. mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
  444. mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
  445. mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
  446. mem_types[MT_ROM].prot_sect |= cp->pmd;
  447. switch (cp->pmd) {
  448. case PMD_SECT_WT:
  449. mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
  450. break;
  451. case PMD_SECT_WB:
  452. case PMD_SECT_WBWA:
  453. mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
  454. break;
  455. }
  456. printk("Memory policy: ECC %sabled, Data cache %s\n",
  457. ecc_mask ? "en" : "dis", cp->policy);
  458. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  459. struct mem_type *t = &mem_types[i];
  460. if (t->prot_l1)
  461. t->prot_l1 |= PMD_DOMAIN(t->domain);
  462. if (t->prot_sect)
  463. t->prot_sect |= PMD_DOMAIN(t->domain);
  464. }
  465. }
  466. #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
  467. pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
  468. unsigned long size, pgprot_t vma_prot)
  469. {
  470. if (!pfn_valid(pfn))
  471. return pgprot_noncached(vma_prot);
  472. else if (file->f_flags & O_SYNC)
  473. return pgprot_writecombine(vma_prot);
  474. return vma_prot;
  475. }
  476. EXPORT_SYMBOL(phys_mem_access_prot);
  477. #endif
  478. #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
  479. static void __init *early_alloc(unsigned long sz)
  480. {
  481. void *ptr = __va(memblock_alloc(sz, sz));
  482. memset(ptr, 0, sz);
  483. return ptr;
  484. }
  485. static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
  486. {
  487. if (pmd_none(*pmd)) {
  488. pte_t *pte = early_alloc(2 * PTRS_PER_PTE * sizeof(pte_t));
  489. __pmd_populate(pmd, __pa(pte), prot);
  490. }
  491. BUG_ON(pmd_bad(*pmd));
  492. return pte_offset_kernel(pmd, addr);
  493. }
  494. static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
  495. unsigned long end, unsigned long pfn,
  496. const struct mem_type *type)
  497. {
  498. pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
  499. do {
  500. set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
  501. pfn++;
  502. } while (pte++, addr += PAGE_SIZE, addr != end);
  503. }
  504. static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
  505. unsigned long end, phys_addr_t phys,
  506. const struct mem_type *type)
  507. {
  508. pmd_t *pmd = pmd_offset(pgd, addr);
  509. /*
  510. * Try a section mapping - end, addr and phys must all be aligned
  511. * to a section boundary. Note that PMDs refer to the individual
  512. * L1 entries, whereas PGDs refer to a group of L1 entries making
  513. * up one logical pointer to an L2 table.
  514. */
  515. if (((addr | end | phys) & ~SECTION_MASK) == 0) {
  516. pmd_t *p = pmd;
  517. if (addr & SECTION_SIZE)
  518. pmd++;
  519. do {
  520. *pmd = __pmd(phys | type->prot_sect);
  521. phys += SECTION_SIZE;
  522. } while (pmd++, addr += SECTION_SIZE, addr != end);
  523. flush_pmd_entry(p);
  524. } else {
  525. /*
  526. * No need to loop; pte's aren't interested in the
  527. * individual L1 entries.
  528. */
  529. alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
  530. }
  531. }
  532. static void __init create_36bit_mapping(struct map_desc *md,
  533. const struct mem_type *type)
  534. {
  535. unsigned long addr, length, end;
  536. phys_addr_t phys;
  537. pgd_t *pgd;
  538. addr = md->virtual;
  539. phys = (unsigned long)__pfn_to_phys(md->pfn);
  540. length = PAGE_ALIGN(md->length);
  541. if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
  542. printk(KERN_ERR "MM: CPU does not support supersection "
  543. "mapping for 0x%08llx at 0x%08lx\n",
  544. __pfn_to_phys((u64)md->pfn), addr);
  545. return;
  546. }
  547. /* N.B. ARMv6 supersections are only defined to work with domain 0.
  548. * Since domain assignments can in fact be arbitrary, the
  549. * 'domain == 0' check below is required to insure that ARMv6
  550. * supersections are only allocated for domain 0 regardless
  551. * of the actual domain assignments in use.
  552. */
  553. if (type->domain) {
  554. printk(KERN_ERR "MM: invalid domain in supersection "
  555. "mapping for 0x%08llx at 0x%08lx\n",
  556. __pfn_to_phys((u64)md->pfn), addr);
  557. return;
  558. }
  559. if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
  560. printk(KERN_ERR "MM: cannot create mapping for "
  561. "0x%08llx at 0x%08lx invalid alignment\n",
  562. __pfn_to_phys((u64)md->pfn), addr);
  563. return;
  564. }
  565. /*
  566. * Shift bits [35:32] of address into bits [23:20] of PMD
  567. * (See ARMv6 spec).
  568. */
  569. phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
  570. pgd = pgd_offset_k(addr);
  571. end = addr + length;
  572. do {
  573. pmd_t *pmd = pmd_offset(pgd, addr);
  574. int i;
  575. for (i = 0; i < 16; i++)
  576. *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
  577. addr += SUPERSECTION_SIZE;
  578. phys += SUPERSECTION_SIZE;
  579. pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
  580. } while (addr != end);
  581. }
  582. /*
  583. * Create the page directory entries and any necessary
  584. * page tables for the mapping specified by `md'. We
  585. * are able to cope here with varying sizes and address
  586. * offsets, and we take full advantage of sections and
  587. * supersections.
  588. */
  589. static void __init create_mapping(struct map_desc *md)
  590. {
  591. unsigned long phys, addr, length, end;
  592. const struct mem_type *type;
  593. pgd_t *pgd;
  594. if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
  595. printk(KERN_WARNING "BUG: not creating mapping for "
  596. "0x%08llx at 0x%08lx in user region\n",
  597. __pfn_to_phys((u64)md->pfn), md->virtual);
  598. return;
  599. }
  600. if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
  601. md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
  602. printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
  603. "overlaps vmalloc space\n",
  604. __pfn_to_phys((u64)md->pfn), md->virtual);
  605. }
  606. type = &mem_types[md->type];
  607. /*
  608. * Catch 36-bit addresses
  609. */
  610. if (md->pfn >= 0x100000) {
  611. create_36bit_mapping(md, type);
  612. return;
  613. }
  614. addr = md->virtual & PAGE_MASK;
  615. phys = (unsigned long)__pfn_to_phys(md->pfn);
  616. length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
  617. if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
  618. printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
  619. "be mapped using pages, ignoring.\n",
  620. __pfn_to_phys(md->pfn), addr);
  621. return;
  622. }
  623. pgd = pgd_offset_k(addr);
  624. end = addr + length;
  625. do {
  626. unsigned long next = pgd_addr_end(addr, end);
  627. alloc_init_section(pgd, addr, next, phys, type);
  628. phys += next - addr;
  629. addr = next;
  630. } while (pgd++, addr != end);
  631. }
  632. /*
  633. * Create the architecture specific mappings
  634. */
  635. void __init iotable_init(struct map_desc *io_desc, int nr)
  636. {
  637. int i;
  638. for (i = 0; i < nr; i++)
  639. create_mapping(io_desc + i);
  640. }
  641. static void * __initdata vmalloc_min = (void *)(VMALLOC_END - SZ_128M);
  642. /*
  643. * vmalloc=size forces the vmalloc area to be exactly 'size'
  644. * bytes. This can be used to increase (or decrease) the vmalloc
  645. * area - the default is 128m.
  646. */
  647. static int __init early_vmalloc(char *arg)
  648. {
  649. unsigned long vmalloc_reserve = memparse(arg, NULL);
  650. if (vmalloc_reserve < SZ_16M) {
  651. vmalloc_reserve = SZ_16M;
  652. printk(KERN_WARNING
  653. "vmalloc area too small, limiting to %luMB\n",
  654. vmalloc_reserve >> 20);
  655. }
  656. if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
  657. vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
  658. printk(KERN_WARNING
  659. "vmalloc area is too big, limiting to %luMB\n",
  660. vmalloc_reserve >> 20);
  661. }
  662. vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
  663. return 0;
  664. }
  665. early_param("vmalloc", early_vmalloc);
  666. static phys_addr_t lowmem_limit __initdata = 0;
  667. static void __init sanity_check_meminfo(void)
  668. {
  669. int i, j, highmem = 0;
  670. lowmem_limit = __pa(vmalloc_min - 1) + 1;
  671. memblock_set_current_limit(lowmem_limit);
  672. for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
  673. struct membank *bank = &meminfo.bank[j];
  674. *bank = meminfo.bank[i];
  675. #ifdef CONFIG_HIGHMEM
  676. if (__va(bank->start) > vmalloc_min ||
  677. __va(bank->start) < (void *)PAGE_OFFSET)
  678. highmem = 1;
  679. bank->highmem = highmem;
  680. /*
  681. * Split those memory banks which are partially overlapping
  682. * the vmalloc area greatly simplifying things later.
  683. */
  684. if (__va(bank->start) < vmalloc_min &&
  685. bank->size > vmalloc_min - __va(bank->start)) {
  686. if (meminfo.nr_banks >= NR_BANKS) {
  687. printk(KERN_CRIT "NR_BANKS too low, "
  688. "ignoring high memory\n");
  689. } else {
  690. memmove(bank + 1, bank,
  691. (meminfo.nr_banks - i) * sizeof(*bank));
  692. meminfo.nr_banks++;
  693. i++;
  694. bank[1].size -= vmalloc_min - __va(bank->start);
  695. bank[1].start = __pa(vmalloc_min - 1) + 1;
  696. bank[1].highmem = highmem = 1;
  697. j++;
  698. }
  699. bank->size = vmalloc_min - __va(bank->start);
  700. }
  701. #else
  702. bank->highmem = highmem;
  703. /*
  704. * Check whether this memory bank would entirely overlap
  705. * the vmalloc area.
  706. */
  707. if (__va(bank->start) >= vmalloc_min ||
  708. __va(bank->start) < (void *)PAGE_OFFSET) {
  709. printk(KERN_NOTICE "Ignoring RAM at %.8lx-%.8lx "
  710. "(vmalloc region overlap).\n",
  711. bank->start, bank->start + bank->size - 1);
  712. continue;
  713. }
  714. /*
  715. * Check whether this memory bank would partially overlap
  716. * the vmalloc area.
  717. */
  718. if (__va(bank->start + bank->size) > vmalloc_min ||
  719. __va(bank->start + bank->size) < __va(bank->start)) {
  720. unsigned long newsize = vmalloc_min - __va(bank->start);
  721. printk(KERN_NOTICE "Truncating RAM at %.8lx-%.8lx "
  722. "to -%.8lx (vmalloc region overlap).\n",
  723. bank->start, bank->start + bank->size - 1,
  724. bank->start + newsize - 1);
  725. bank->size = newsize;
  726. }
  727. #endif
  728. j++;
  729. }
  730. #ifdef CONFIG_HIGHMEM
  731. if (highmem) {
  732. const char *reason = NULL;
  733. if (cache_is_vipt_aliasing()) {
  734. /*
  735. * Interactions between kmap and other mappings
  736. * make highmem support with aliasing VIPT caches
  737. * rather difficult.
  738. */
  739. reason = "with VIPT aliasing cache";
  740. } else if (is_smp() && tlb_ops_need_broadcast()) {
  741. /*
  742. * kmap_high needs to occasionally flush TLB entries,
  743. * however, if the TLB entries need to be broadcast
  744. * we may deadlock:
  745. * kmap_high(irqs off)->flush_all_zero_pkmaps->
  746. * flush_tlb_kernel_range->smp_call_function_many
  747. * (must not be called with irqs off)
  748. */
  749. reason = "without hardware TLB ops broadcasting";
  750. }
  751. if (reason) {
  752. printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
  753. reason);
  754. while (j > 0 && meminfo.bank[j - 1].highmem)
  755. j--;
  756. }
  757. }
  758. #endif
  759. meminfo.nr_banks = j;
  760. }
  761. static inline void prepare_page_table(void)
  762. {
  763. unsigned long addr;
  764. phys_addr_t end;
  765. /*
  766. * Clear out all the mappings below the kernel image.
  767. */
  768. for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
  769. pmd_clear(pmd_off_k(addr));
  770. #ifdef CONFIG_XIP_KERNEL
  771. /* The XIP kernel is mapped in the module area -- skip over it */
  772. addr = ((unsigned long)_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
  773. #endif
  774. for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
  775. pmd_clear(pmd_off_k(addr));
  776. /*
  777. * Find the end of the first block of lowmem.
  778. */
  779. end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
  780. if (end >= lowmem_limit)
  781. end = lowmem_limit;
  782. /*
  783. * Clear out all the kernel space mappings, except for the first
  784. * memory bank, up to the end of the vmalloc region.
  785. */
  786. for (addr = __phys_to_virt(end);
  787. addr < VMALLOC_END; addr += PGDIR_SIZE)
  788. pmd_clear(pmd_off_k(addr));
  789. }
  790. /*
  791. * Reserve the special regions of memory
  792. */
  793. void __init arm_mm_memblock_reserve(void)
  794. {
  795. /*
  796. * Reserve the page tables. These are already in use,
  797. * and can only be in node 0.
  798. */
  799. memblock_reserve(__pa(swapper_pg_dir), PTRS_PER_PGD * sizeof(pgd_t));
  800. #ifdef CONFIG_SA1111
  801. /*
  802. * Because of the SA1111 DMA bug, we want to preserve our
  803. * precious DMA-able memory...
  804. */
  805. memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
  806. #endif
  807. }
  808. /*
  809. * Set up device the mappings. Since we clear out the page tables for all
  810. * mappings above VMALLOC_END, we will remove any debug device mappings.
  811. * This means you have to be careful how you debug this function, or any
  812. * called function. This means you can't use any function or debugging
  813. * method which may touch any device, otherwise the kernel _will_ crash.
  814. */
  815. static void __init devicemaps_init(struct machine_desc *mdesc)
  816. {
  817. struct map_desc map;
  818. unsigned long addr;
  819. /*
  820. * Allocate the vector page early.
  821. */
  822. vectors_page = early_alloc(PAGE_SIZE);
  823. for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
  824. pmd_clear(pmd_off_k(addr));
  825. /*
  826. * Map the kernel if it is XIP.
  827. * It is always first in the modulearea.
  828. */
  829. #ifdef CONFIG_XIP_KERNEL
  830. map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
  831. map.virtual = MODULES_VADDR;
  832. map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
  833. map.type = MT_ROM;
  834. create_mapping(&map);
  835. #endif
  836. /*
  837. * Map the cache flushing regions.
  838. */
  839. #ifdef FLUSH_BASE
  840. map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
  841. map.virtual = FLUSH_BASE;
  842. map.length = SZ_1M;
  843. map.type = MT_CACHECLEAN;
  844. create_mapping(&map);
  845. #endif
  846. #ifdef FLUSH_BASE_MINICACHE
  847. map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
  848. map.virtual = FLUSH_BASE_MINICACHE;
  849. map.length = SZ_1M;
  850. map.type = MT_MINICLEAN;
  851. create_mapping(&map);
  852. #endif
  853. /*
  854. * Create a mapping for the machine vectors at the high-vectors
  855. * location (0xffff0000). If we aren't using high-vectors, also
  856. * create a mapping at the low-vectors virtual address.
  857. */
  858. map.pfn = __phys_to_pfn(virt_to_phys(vectors_page));
  859. map.virtual = 0xffff0000;
  860. map.length = PAGE_SIZE;
  861. map.type = MT_HIGH_VECTORS;
  862. create_mapping(&map);
  863. if (!vectors_high()) {
  864. map.virtual = 0;
  865. map.type = MT_LOW_VECTORS;
  866. create_mapping(&map);
  867. }
  868. /*
  869. * Ask the machine support to map in the statically mapped devices.
  870. */
  871. if (mdesc->map_io)
  872. mdesc->map_io();
  873. /*
  874. * Finally flush the caches and tlb to ensure that we're in a
  875. * consistent state wrt the writebuffer. This also ensures that
  876. * any write-allocated cache lines in the vector page are written
  877. * back. After this point, we can start to touch devices again.
  878. */
  879. local_flush_tlb_all();
  880. flush_cache_all();
  881. }
  882. static void __init kmap_init(void)
  883. {
  884. #ifdef CONFIG_HIGHMEM
  885. pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
  886. PKMAP_BASE, _PAGE_KERNEL_TABLE);
  887. #endif
  888. }
  889. static void __init map_lowmem(void)
  890. {
  891. struct memblock_region *reg;
  892. /* Map all the lowmem memory banks. */
  893. for_each_memblock(memory, reg) {
  894. phys_addr_t start = reg->base;
  895. phys_addr_t end = start + reg->size;
  896. struct map_desc map;
  897. if (end > lowmem_limit)
  898. end = lowmem_limit;
  899. if (start >= end)
  900. break;
  901. map.pfn = __phys_to_pfn(start);
  902. map.virtual = __phys_to_virt(start);
  903. map.length = end - start;
  904. map.type = MT_MEMORY;
  905. create_mapping(&map);
  906. }
  907. }
  908. /*
  909. * paging_init() sets up the page tables, initialises the zone memory
  910. * maps, and sets up the zero page, bad page and bad page tables.
  911. */
  912. void __init paging_init(struct machine_desc *mdesc)
  913. {
  914. void *zero_page;
  915. build_mem_type_table();
  916. sanity_check_meminfo();
  917. prepare_page_table();
  918. map_lowmem();
  919. devicemaps_init(mdesc);
  920. kmap_init();
  921. top_pmd = pmd_off_k(0xffff0000);
  922. /* allocate the zero page. */
  923. zero_page = early_alloc(PAGE_SIZE);
  924. bootmem_init();
  925. empty_zero_page = virt_to_page(zero_page);
  926. __flush_dcache_page(NULL, empty_zero_page);
  927. }