dma-mapping.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658
  1. /*
  2. * linux/arch/arm/mm/dma-mapping.c
  3. *
  4. * Copyright (C) 2000-2004 Russell King
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. *
  10. * DMA uncached mapping support.
  11. */
  12. #include <linux/module.h>
  13. #include <linux/mm.h>
  14. #include <linux/gfp.h>
  15. #include <linux/errno.h>
  16. #include <linux/list.h>
  17. #include <linux/init.h>
  18. #include <linux/device.h>
  19. #include <linux/dma-mapping.h>
  20. #include <linux/highmem.h>
  21. #include <asm/memory.h>
  22. #include <asm/highmem.h>
  23. #include <asm/cacheflush.h>
  24. #include <asm/tlbflush.h>
  25. #include <asm/sizes.h>
  26. static u64 get_coherent_dma_mask(struct device *dev)
  27. {
  28. u64 mask = ISA_DMA_THRESHOLD;
  29. if (dev) {
  30. mask = dev->coherent_dma_mask;
  31. /*
  32. * Sanity check the DMA mask - it must be non-zero, and
  33. * must be able to be satisfied by a DMA allocation.
  34. */
  35. if (mask == 0) {
  36. dev_warn(dev, "coherent DMA mask is unset\n");
  37. return 0;
  38. }
  39. if ((~mask) & ISA_DMA_THRESHOLD) {
  40. dev_warn(dev, "coherent DMA mask %#llx is smaller "
  41. "than system GFP_DMA mask %#llx\n",
  42. mask, (unsigned long long)ISA_DMA_THRESHOLD);
  43. return 0;
  44. }
  45. }
  46. return mask;
  47. }
  48. /*
  49. * Allocate a DMA buffer for 'dev' of size 'size' using the
  50. * specified gfp mask. Note that 'size' must be page aligned.
  51. */
  52. static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
  53. {
  54. unsigned long order = get_order(size);
  55. struct page *page, *p, *e;
  56. void *ptr;
  57. u64 mask = get_coherent_dma_mask(dev);
  58. #ifdef CONFIG_DMA_API_DEBUG
  59. u64 limit = (mask + 1) & ~mask;
  60. if (limit && size >= limit) {
  61. dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
  62. size, mask);
  63. return NULL;
  64. }
  65. #endif
  66. if (!mask)
  67. return NULL;
  68. if (mask < 0xffffffffULL)
  69. gfp |= GFP_DMA;
  70. page = alloc_pages(gfp, order);
  71. if (!page)
  72. return NULL;
  73. /*
  74. * Now split the huge page and free the excess pages
  75. */
  76. split_page(page, order);
  77. for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
  78. __free_page(p);
  79. /*
  80. * Ensure that the allocated pages are zeroed, and that any data
  81. * lurking in the kernel direct-mapped region is invalidated.
  82. */
  83. ptr = page_address(page);
  84. memset(ptr, 0, size);
  85. dmac_flush_range(ptr, ptr + size);
  86. outer_flush_range(__pa(ptr), __pa(ptr) + size);
  87. return page;
  88. }
  89. /*
  90. * Free a DMA buffer. 'size' must be page aligned.
  91. */
  92. static void __dma_free_buffer(struct page *page, size_t size)
  93. {
  94. struct page *e = page + (size >> PAGE_SHIFT);
  95. while (page < e) {
  96. __free_page(page);
  97. page++;
  98. }
  99. }
  100. #ifdef CONFIG_MMU
  101. /* Sanity check size */
  102. #if (CONSISTENT_DMA_SIZE % SZ_2M)
  103. #error "CONSISTENT_DMA_SIZE must be multiple of 2MiB"
  104. #endif
  105. #define CONSISTENT_OFFSET(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PAGE_SHIFT)
  106. #define CONSISTENT_PTE_INDEX(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PGDIR_SHIFT)
  107. #define NUM_CONSISTENT_PTES (CONSISTENT_DMA_SIZE >> PGDIR_SHIFT)
  108. /*
  109. * These are the page tables (2MB each) covering uncached, DMA consistent allocations
  110. */
  111. static pte_t *consistent_pte[NUM_CONSISTENT_PTES];
  112. #include "vmregion.h"
  113. static struct arm_vmregion_head consistent_head = {
  114. .vm_lock = __SPIN_LOCK_UNLOCKED(&consistent_head.vm_lock),
  115. .vm_list = LIST_HEAD_INIT(consistent_head.vm_list),
  116. .vm_start = CONSISTENT_BASE,
  117. .vm_end = CONSISTENT_END,
  118. };
  119. #ifdef CONFIG_HUGETLB_PAGE
  120. #error ARM Coherent DMA allocator does not (yet) support huge TLB
  121. #endif
  122. /*
  123. * Initialise the consistent memory allocation.
  124. */
  125. static int __init consistent_init(void)
  126. {
  127. int ret = 0;
  128. pgd_t *pgd;
  129. pmd_t *pmd;
  130. pte_t *pte;
  131. int i = 0;
  132. u32 base = CONSISTENT_BASE;
  133. do {
  134. pgd = pgd_offset(&init_mm, base);
  135. pmd = pmd_alloc(&init_mm, pgd, base);
  136. if (!pmd) {
  137. printk(KERN_ERR "%s: no pmd tables\n", __func__);
  138. ret = -ENOMEM;
  139. break;
  140. }
  141. WARN_ON(!pmd_none(*pmd));
  142. pte = pte_alloc_kernel(pmd, base);
  143. if (!pte) {
  144. printk(KERN_ERR "%s: no pte tables\n", __func__);
  145. ret = -ENOMEM;
  146. break;
  147. }
  148. consistent_pte[i++] = pte;
  149. base += (1 << PGDIR_SHIFT);
  150. } while (base < CONSISTENT_END);
  151. return ret;
  152. }
  153. core_initcall(consistent_init);
  154. static void *
  155. __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot)
  156. {
  157. struct arm_vmregion *c;
  158. size_t align;
  159. int bit;
  160. if (!consistent_pte[0]) {
  161. printk(KERN_ERR "%s: not initialised\n", __func__);
  162. dump_stack();
  163. return NULL;
  164. }
  165. /*
  166. * Align the virtual region allocation - maximum alignment is
  167. * a section size, minimum is a page size. This helps reduce
  168. * fragmentation of the DMA space, and also prevents allocations
  169. * smaller than a section from crossing a section boundary.
  170. */
  171. bit = fls(size - 1);
  172. if (bit > SECTION_SHIFT)
  173. bit = SECTION_SHIFT;
  174. align = 1 << bit;
  175. /*
  176. * Allocate a virtual address in the consistent mapping region.
  177. */
  178. c = arm_vmregion_alloc(&consistent_head, align, size,
  179. gfp & ~(__GFP_DMA | __GFP_HIGHMEM));
  180. if (c) {
  181. pte_t *pte;
  182. int idx = CONSISTENT_PTE_INDEX(c->vm_start);
  183. u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
  184. pte = consistent_pte[idx] + off;
  185. c->vm_pages = page;
  186. do {
  187. BUG_ON(!pte_none(*pte));
  188. set_pte_ext(pte, mk_pte(page, prot), 0);
  189. page++;
  190. pte++;
  191. off++;
  192. if (off >= PTRS_PER_PTE) {
  193. off = 0;
  194. pte = consistent_pte[++idx];
  195. }
  196. } while (size -= PAGE_SIZE);
  197. dsb();
  198. return (void *)c->vm_start;
  199. }
  200. return NULL;
  201. }
  202. static void __dma_free_remap(void *cpu_addr, size_t size)
  203. {
  204. struct arm_vmregion *c;
  205. unsigned long addr;
  206. pte_t *ptep;
  207. int idx;
  208. u32 off;
  209. c = arm_vmregion_find_remove(&consistent_head, (unsigned long)cpu_addr);
  210. if (!c) {
  211. printk(KERN_ERR "%s: trying to free invalid coherent area: %p\n",
  212. __func__, cpu_addr);
  213. dump_stack();
  214. return;
  215. }
  216. if ((c->vm_end - c->vm_start) != size) {
  217. printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n",
  218. __func__, c->vm_end - c->vm_start, size);
  219. dump_stack();
  220. size = c->vm_end - c->vm_start;
  221. }
  222. idx = CONSISTENT_PTE_INDEX(c->vm_start);
  223. off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
  224. ptep = consistent_pte[idx] + off;
  225. addr = c->vm_start;
  226. do {
  227. pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);
  228. ptep++;
  229. addr += PAGE_SIZE;
  230. off++;
  231. if (off >= PTRS_PER_PTE) {
  232. off = 0;
  233. ptep = consistent_pte[++idx];
  234. }
  235. if (pte_none(pte) || !pte_present(pte))
  236. printk(KERN_CRIT "%s: bad page in kernel page table\n",
  237. __func__);
  238. } while (size -= PAGE_SIZE);
  239. flush_tlb_kernel_range(c->vm_start, c->vm_end);
  240. arm_vmregion_free(&consistent_head, c);
  241. }
  242. #else /* !CONFIG_MMU */
  243. #define __dma_alloc_remap(page, size, gfp, prot) page_address(page)
  244. #define __dma_free_remap(addr, size) do { } while (0)
  245. #endif /* CONFIG_MMU */
  246. static void *
  247. __dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp,
  248. pgprot_t prot)
  249. {
  250. struct page *page;
  251. void *addr;
  252. *handle = ~0;
  253. size = PAGE_ALIGN(size);
  254. page = __dma_alloc_buffer(dev, size, gfp);
  255. if (!page)
  256. return NULL;
  257. if (!arch_is_coherent())
  258. addr = __dma_alloc_remap(page, size, gfp, prot);
  259. else
  260. addr = page_address(page);
  261. if (addr)
  262. *handle = pfn_to_dma(dev, page_to_pfn(page));
  263. return addr;
  264. }
  265. /*
  266. * Allocate DMA-coherent memory space and return both the kernel remapped
  267. * virtual and bus address for that space.
  268. */
  269. void *
  270. dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
  271. {
  272. void *memory;
  273. if (dma_alloc_from_coherent(dev, size, handle, &memory))
  274. return memory;
  275. return __dma_alloc(dev, size, handle, gfp,
  276. pgprot_dmacoherent(pgprot_kernel));
  277. }
  278. EXPORT_SYMBOL(dma_alloc_coherent);
  279. /*
  280. * Allocate a writecombining region, in much the same way as
  281. * dma_alloc_coherent above.
  282. */
  283. void *
  284. dma_alloc_writecombine(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
  285. {
  286. return __dma_alloc(dev, size, handle, gfp,
  287. pgprot_writecombine(pgprot_kernel));
  288. }
  289. EXPORT_SYMBOL(dma_alloc_writecombine);
  290. static int dma_mmap(struct device *dev, struct vm_area_struct *vma,
  291. void *cpu_addr, dma_addr_t dma_addr, size_t size)
  292. {
  293. int ret = -ENXIO;
  294. #ifdef CONFIG_MMU
  295. unsigned long user_size, kern_size;
  296. struct arm_vmregion *c;
  297. user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
  298. c = arm_vmregion_find(&consistent_head, (unsigned long)cpu_addr);
  299. if (c) {
  300. unsigned long off = vma->vm_pgoff;
  301. kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT;
  302. if (off < kern_size &&
  303. user_size <= (kern_size - off)) {
  304. ret = remap_pfn_range(vma, vma->vm_start,
  305. page_to_pfn(c->vm_pages) + off,
  306. user_size << PAGE_SHIFT,
  307. vma->vm_page_prot);
  308. }
  309. }
  310. #endif /* CONFIG_MMU */
  311. return ret;
  312. }
  313. int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma,
  314. void *cpu_addr, dma_addr_t dma_addr, size_t size)
  315. {
  316. vma->vm_page_prot = pgprot_dmacoherent(vma->vm_page_prot);
  317. return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
  318. }
  319. EXPORT_SYMBOL(dma_mmap_coherent);
  320. int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma,
  321. void *cpu_addr, dma_addr_t dma_addr, size_t size)
  322. {
  323. vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
  324. return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
  325. }
  326. EXPORT_SYMBOL(dma_mmap_writecombine);
  327. /*
  328. * free a page as defined by the above mapping.
  329. * Must not be called with IRQs disabled.
  330. */
  331. void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle)
  332. {
  333. WARN_ON(irqs_disabled());
  334. if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
  335. return;
  336. size = PAGE_ALIGN(size);
  337. if (!arch_is_coherent())
  338. __dma_free_remap(cpu_addr, size);
  339. __dma_free_buffer(pfn_to_page(dma_to_pfn(dev, handle)), size);
  340. }
  341. EXPORT_SYMBOL(dma_free_coherent);
  342. /*
  343. * Make an area consistent for devices.
  344. * Note: Drivers should NOT use this function directly, as it will break
  345. * platforms with CONFIG_DMABOUNCE.
  346. * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
  347. */
  348. void ___dma_single_cpu_to_dev(const void *kaddr, size_t size,
  349. enum dma_data_direction dir)
  350. {
  351. unsigned long paddr;
  352. BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1));
  353. dmac_map_area(kaddr, size, dir);
  354. paddr = __pa(kaddr);
  355. if (dir == DMA_FROM_DEVICE) {
  356. outer_inv_range(paddr, paddr + size);
  357. } else {
  358. outer_clean_range(paddr, paddr + size);
  359. }
  360. /* FIXME: non-speculating: flush on bidirectional mappings? */
  361. }
  362. EXPORT_SYMBOL(___dma_single_cpu_to_dev);
  363. void ___dma_single_dev_to_cpu(const void *kaddr, size_t size,
  364. enum dma_data_direction dir)
  365. {
  366. BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1));
  367. /* FIXME: non-speculating: not required */
  368. /* don't bother invalidating if DMA to device */
  369. if (dir != DMA_TO_DEVICE) {
  370. unsigned long paddr = __pa(kaddr);
  371. outer_inv_range(paddr, paddr + size);
  372. }
  373. dmac_unmap_area(kaddr, size, dir);
  374. }
  375. EXPORT_SYMBOL(___dma_single_dev_to_cpu);
  376. static void dma_cache_maint_page(struct page *page, unsigned long offset,
  377. size_t size, enum dma_data_direction dir,
  378. void (*op)(const void *, size_t, int))
  379. {
  380. /*
  381. * A single sg entry may refer to multiple physically contiguous
  382. * pages. But we still need to process highmem pages individually.
  383. * If highmem is not configured then the bulk of this loop gets
  384. * optimized out.
  385. */
  386. size_t left = size;
  387. do {
  388. size_t len = left;
  389. void *vaddr;
  390. if (PageHighMem(page)) {
  391. if (len + offset > PAGE_SIZE) {
  392. if (offset >= PAGE_SIZE) {
  393. page += offset / PAGE_SIZE;
  394. offset %= PAGE_SIZE;
  395. }
  396. len = PAGE_SIZE - offset;
  397. }
  398. vaddr = kmap_high_get(page);
  399. if (vaddr) {
  400. vaddr += offset;
  401. op(vaddr, len, dir);
  402. kunmap_high(page);
  403. } else if (cache_is_vipt()) {
  404. /* unmapped pages might still be cached */
  405. vaddr = kmap_atomic(page);
  406. op(vaddr + offset, len, dir);
  407. kunmap_atomic(vaddr);
  408. }
  409. } else {
  410. vaddr = page_address(page) + offset;
  411. op(vaddr, len, dir);
  412. }
  413. offset = 0;
  414. page++;
  415. left -= len;
  416. } while (left);
  417. }
  418. void ___dma_page_cpu_to_dev(struct page *page, unsigned long off,
  419. size_t size, enum dma_data_direction dir)
  420. {
  421. unsigned long paddr;
  422. dma_cache_maint_page(page, off, size, dir, dmac_map_area);
  423. paddr = page_to_phys(page) + off;
  424. if (dir == DMA_FROM_DEVICE) {
  425. outer_inv_range(paddr, paddr + size);
  426. } else {
  427. outer_clean_range(paddr, paddr + size);
  428. }
  429. /* FIXME: non-speculating: flush on bidirectional mappings? */
  430. }
  431. EXPORT_SYMBOL(___dma_page_cpu_to_dev);
  432. void ___dma_page_dev_to_cpu(struct page *page, unsigned long off,
  433. size_t size, enum dma_data_direction dir)
  434. {
  435. unsigned long paddr = page_to_phys(page) + off;
  436. /* FIXME: non-speculating: not required */
  437. /* don't bother invalidating if DMA to device */
  438. if (dir != DMA_TO_DEVICE)
  439. outer_inv_range(paddr, paddr + size);
  440. dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
  441. /*
  442. * Mark the D-cache clean for this page to avoid extra flushing.
  443. */
  444. if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE)
  445. set_bit(PG_dcache_clean, &page->flags);
  446. }
  447. EXPORT_SYMBOL(___dma_page_dev_to_cpu);
  448. /**
  449. * dma_map_sg - map a set of SG buffers for streaming mode DMA
  450. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  451. * @sg: list of buffers
  452. * @nents: number of buffers to map
  453. * @dir: DMA transfer direction
  454. *
  455. * Map a set of buffers described by scatterlist in streaming mode for DMA.
  456. * This is the scatter-gather version of the dma_map_single interface.
  457. * Here the scatter gather list elements are each tagged with the
  458. * appropriate dma address and length. They are obtained via
  459. * sg_dma_{address,length}.
  460. *
  461. * Device ownership issues as mentioned for dma_map_single are the same
  462. * here.
  463. */
  464. int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
  465. enum dma_data_direction dir)
  466. {
  467. struct scatterlist *s;
  468. int i, j;
  469. BUG_ON(!valid_dma_direction(dir));
  470. for_each_sg(sg, s, nents, i) {
  471. s->dma_address = __dma_map_page(dev, sg_page(s), s->offset,
  472. s->length, dir);
  473. if (dma_mapping_error(dev, s->dma_address))
  474. goto bad_mapping;
  475. }
  476. debug_dma_map_sg(dev, sg, nents, nents, dir);
  477. return nents;
  478. bad_mapping:
  479. for_each_sg(sg, s, i, j)
  480. __dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
  481. return 0;
  482. }
  483. EXPORT_SYMBOL(dma_map_sg);
  484. /**
  485. * dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
  486. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  487. * @sg: list of buffers
  488. * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
  489. * @dir: DMA transfer direction (same as was passed to dma_map_sg)
  490. *
  491. * Unmap a set of streaming mode DMA translations. Again, CPU access
  492. * rules concerning calls here are the same as for dma_unmap_single().
  493. */
  494. void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
  495. enum dma_data_direction dir)
  496. {
  497. struct scatterlist *s;
  498. int i;
  499. debug_dma_unmap_sg(dev, sg, nents, dir);
  500. for_each_sg(sg, s, nents, i)
  501. __dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
  502. }
  503. EXPORT_SYMBOL(dma_unmap_sg);
  504. /**
  505. * dma_sync_sg_for_cpu
  506. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  507. * @sg: list of buffers
  508. * @nents: number of buffers to map (returned from dma_map_sg)
  509. * @dir: DMA transfer direction (same as was passed to dma_map_sg)
  510. */
  511. void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
  512. int nents, enum dma_data_direction dir)
  513. {
  514. struct scatterlist *s;
  515. int i;
  516. for_each_sg(sg, s, nents, i) {
  517. if (!dmabounce_sync_for_cpu(dev, sg_dma_address(s), 0,
  518. sg_dma_len(s), dir))
  519. continue;
  520. __dma_page_dev_to_cpu(sg_page(s), s->offset,
  521. s->length, dir);
  522. }
  523. debug_dma_sync_sg_for_cpu(dev, sg, nents, dir);
  524. }
  525. EXPORT_SYMBOL(dma_sync_sg_for_cpu);
  526. /**
  527. * dma_sync_sg_for_device
  528. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  529. * @sg: list of buffers
  530. * @nents: number of buffers to map (returned from dma_map_sg)
  531. * @dir: DMA transfer direction (same as was passed to dma_map_sg)
  532. */
  533. void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
  534. int nents, enum dma_data_direction dir)
  535. {
  536. struct scatterlist *s;
  537. int i;
  538. for_each_sg(sg, s, nents, i) {
  539. if (!dmabounce_sync_for_device(dev, sg_dma_address(s), 0,
  540. sg_dma_len(s), dir))
  541. continue;
  542. __dma_page_cpu_to_dev(sg_page(s), s->offset,
  543. s->length, dir);
  544. }
  545. debug_dma_sync_sg_for_device(dev, sg, nents, dir);
  546. }
  547. EXPORT_SYMBOL(dma_sync_sg_for_device);
  548. #define PREALLOC_DMA_DEBUG_ENTRIES 4096
  549. static int __init dma_debug_do_init(void)
  550. {
  551. dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
  552. return 0;
  553. }
  554. fs_initcall(dma_debug_do_init);