clock-sh73a0.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356
  1. /*
  2. * sh73a0 clock framework support
  3. *
  4. * Copyright (C) 2010 Magnus Damm
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. */
  19. #include <linux/init.h>
  20. #include <linux/kernel.h>
  21. #include <linux/io.h>
  22. #include <linux/sh_clk.h>
  23. #include <linux/clkdev.h>
  24. #include <mach/common.h>
  25. #define FRQCRA 0xe6150000
  26. #define FRQCRB 0xe6150004
  27. #define FRQCRD 0xe61500e4
  28. #define VCLKCR1 0xe6150008
  29. #define VCLKCR2 0xe615000C
  30. #define VCLKCR3 0xe615001C
  31. #define ZBCKCR 0xe6150010
  32. #define FLCKCR 0xe6150014
  33. #define SD0CKCR 0xe6150074
  34. #define SD1CKCR 0xe6150078
  35. #define SD2CKCR 0xe615007C
  36. #define FSIACKCR 0xe6150018
  37. #define FSIBCKCR 0xe6150090
  38. #define SUBCKCR 0xe6150080
  39. #define SPUACKCR 0xe6150084
  40. #define SPUVCKCR 0xe6150094
  41. #define MSUCKCR 0xe6150088
  42. #define HSICKCR 0xe615008C
  43. #define MFCK1CR 0xe6150098
  44. #define MFCK2CR 0xe615009C
  45. #define DSITCKCR 0xe6150060
  46. #define DSI0PCKCR 0xe6150064
  47. #define DSI1PCKCR 0xe6150068
  48. #define DSI0PHYCR 0xe615006C
  49. #define DSI1PHYCR 0xe6150070
  50. #define PLLECR 0xe61500d0
  51. #define PLL0CR 0xe61500d8
  52. #define PLL1CR 0xe6150028
  53. #define PLL2CR 0xe615002c
  54. #define PLL3CR 0xe61500dc
  55. #define SMSTPCR0 0xe6150130
  56. #define SMSTPCR1 0xe6150134
  57. #define SMSTPCR2 0xe6150138
  58. #define SMSTPCR3 0xe615013c
  59. #define SMSTPCR4 0xe6150140
  60. #define SMSTPCR5 0xe6150144
  61. #define CKSCR 0xe61500c0
  62. /* Fixed 32 KHz root clock from EXTALR pin */
  63. static struct clk r_clk = {
  64. .rate = 32768,
  65. };
  66. /*
  67. * 26MHz default rate for the EXTAL1 root input clock.
  68. * If needed, reset this with clk_set_rate() from the platform code.
  69. */
  70. struct clk sh73a0_extal1_clk = {
  71. .rate = 26000000,
  72. };
  73. /*
  74. * 48MHz default rate for the EXTAL2 root input clock.
  75. * If needed, reset this with clk_set_rate() from the platform code.
  76. */
  77. struct clk sh73a0_extal2_clk = {
  78. .rate = 48000000,
  79. };
  80. /* A fixed divide-by-2 block */
  81. static unsigned long div2_recalc(struct clk *clk)
  82. {
  83. return clk->parent->rate / 2;
  84. }
  85. static struct clk_ops div2_clk_ops = {
  86. .recalc = div2_recalc,
  87. };
  88. /* Divide extal1 by two */
  89. static struct clk extal1_div2_clk = {
  90. .ops = &div2_clk_ops,
  91. .parent = &sh73a0_extal1_clk,
  92. };
  93. /* Divide extal2 by two */
  94. static struct clk extal2_div2_clk = {
  95. .ops = &div2_clk_ops,
  96. .parent = &sh73a0_extal2_clk,
  97. };
  98. static struct clk_ops main_clk_ops = {
  99. .recalc = followparent_recalc,
  100. };
  101. /* Main clock */
  102. static struct clk main_clk = {
  103. .ops = &main_clk_ops,
  104. };
  105. /* PLL0, PLL1, PLL2, PLL3 */
  106. static unsigned long pll_recalc(struct clk *clk)
  107. {
  108. unsigned long mult = 1;
  109. if (__raw_readl(PLLECR) & (1 << clk->enable_bit))
  110. mult = (((__raw_readl(clk->enable_reg) >> 24) & 0x3f) + 1);
  111. return clk->parent->rate * mult;
  112. }
  113. static struct clk_ops pll_clk_ops = {
  114. .recalc = pll_recalc,
  115. };
  116. static struct clk pll0_clk = {
  117. .ops = &pll_clk_ops,
  118. .flags = CLK_ENABLE_ON_INIT,
  119. .parent = &main_clk,
  120. .enable_reg = (void __iomem *)PLL0CR,
  121. .enable_bit = 0,
  122. };
  123. static struct clk pll1_clk = {
  124. .ops = &pll_clk_ops,
  125. .flags = CLK_ENABLE_ON_INIT,
  126. .parent = &main_clk,
  127. .enable_reg = (void __iomem *)PLL1CR,
  128. .enable_bit = 1,
  129. };
  130. static struct clk pll2_clk = {
  131. .ops = &pll_clk_ops,
  132. .flags = CLK_ENABLE_ON_INIT,
  133. .parent = &main_clk,
  134. .enable_reg = (void __iomem *)PLL2CR,
  135. .enable_bit = 2,
  136. };
  137. static struct clk pll3_clk = {
  138. .ops = &pll_clk_ops,
  139. .flags = CLK_ENABLE_ON_INIT,
  140. .parent = &main_clk,
  141. .enable_reg = (void __iomem *)PLL3CR,
  142. .enable_bit = 3,
  143. };
  144. /* Divide PLL1 by two */
  145. static struct clk pll1_div2_clk = {
  146. .ops = &div2_clk_ops,
  147. .parent = &pll1_clk,
  148. };
  149. static struct clk *main_clks[] = {
  150. &r_clk,
  151. &sh73a0_extal1_clk,
  152. &sh73a0_extal2_clk,
  153. &extal1_div2_clk,
  154. &extal2_div2_clk,
  155. &main_clk,
  156. &pll0_clk,
  157. &pll1_clk,
  158. &pll2_clk,
  159. &pll3_clk,
  160. &pll1_div2_clk,
  161. };
  162. static void div4_kick(struct clk *clk)
  163. {
  164. unsigned long value;
  165. /* set KICK bit in FRQCRB to update hardware setting */
  166. value = __raw_readl(FRQCRB);
  167. value |= (1 << 31);
  168. __raw_writel(value, FRQCRB);
  169. }
  170. static int divisors[] = { 2, 3, 4, 6, 8, 12, 16, 18,
  171. 24, 0, 36, 48, 7 };
  172. static struct clk_div_mult_table div4_div_mult_table = {
  173. .divisors = divisors,
  174. .nr_divisors = ARRAY_SIZE(divisors),
  175. };
  176. static struct clk_div4_table div4_table = {
  177. .div_mult_table = &div4_div_mult_table,
  178. .kick = div4_kick,
  179. };
  180. enum { DIV4_I, DIV4_ZG, DIV4_M3, DIV4_B, DIV4_M1, DIV4_M2,
  181. DIV4_Z, DIV4_ZTR, DIV4_ZT, DIV4_ZX, DIV4_HP, DIV4_NR };
  182. #define DIV4(_reg, _bit, _mask, _flags) \
  183. SH_CLK_DIV4(&pll1_clk, _reg, _bit, _mask, _flags)
  184. static struct clk div4_clks[DIV4_NR] = {
  185. [DIV4_I] = DIV4(FRQCRA, 20, 0xfff, CLK_ENABLE_ON_INIT),
  186. [DIV4_ZG] = DIV4(FRQCRA, 16, 0xbff, CLK_ENABLE_ON_INIT),
  187. [DIV4_M3] = DIV4(FRQCRA, 8, 0xfff, CLK_ENABLE_ON_INIT),
  188. [DIV4_B] = DIV4(FRQCRA, 8, 0xfff, CLK_ENABLE_ON_INIT),
  189. [DIV4_M1] = DIV4(FRQCRA, 4, 0xfff, 0),
  190. [DIV4_M2] = DIV4(FRQCRA, 0, 0xfff, 0),
  191. [DIV4_Z] = DIV4(FRQCRB, 24, 0xbff, 0),
  192. [DIV4_ZTR] = DIV4(FRQCRB, 20, 0xfff, 0),
  193. [DIV4_ZT] = DIV4(FRQCRB, 16, 0xfff, 0),
  194. [DIV4_ZX] = DIV4(FRQCRB, 12, 0xfff, 0),
  195. [DIV4_HP] = DIV4(FRQCRB, 4, 0xfff, 0),
  196. };
  197. enum { DIV6_VCK1, DIV6_VCK2, DIV6_VCK3, DIV6_ZB1,
  198. DIV6_FLCTL, DIV6_SDHI0, DIV6_SDHI1, DIV6_SDHI2,
  199. DIV6_FSIA, DIV6_FSIB, DIV6_SUB,
  200. DIV6_SPUA, DIV6_SPUV, DIV6_MSU,
  201. DIV6_HSI, DIV6_MFG1, DIV6_MFG2,
  202. DIV6_DSIT, DIV6_DSI0P, DIV6_DSI1P,
  203. DIV6_NR };
  204. static struct clk div6_clks[DIV6_NR] = {
  205. [DIV6_VCK1] = SH_CLK_DIV6(&pll1_div2_clk, VCLKCR1, 0),
  206. [DIV6_VCK2] = SH_CLK_DIV6(&pll1_div2_clk, VCLKCR2, 0),
  207. [DIV6_VCK3] = SH_CLK_DIV6(&pll1_div2_clk, VCLKCR3, 0),
  208. [DIV6_ZB1] = SH_CLK_DIV6(&pll1_div2_clk, ZBCKCR, 0),
  209. [DIV6_FLCTL] = SH_CLK_DIV6(&pll1_div2_clk, FLCKCR, 0),
  210. [DIV6_SDHI0] = SH_CLK_DIV6(&pll1_div2_clk, SD0CKCR, 0),
  211. [DIV6_SDHI1] = SH_CLK_DIV6(&pll1_div2_clk, SD1CKCR, 0),
  212. [DIV6_SDHI2] = SH_CLK_DIV6(&pll1_div2_clk, SD2CKCR, 0),
  213. [DIV6_FSIA] = SH_CLK_DIV6(&pll1_div2_clk, FSIACKCR, 0),
  214. [DIV6_FSIB] = SH_CLK_DIV6(&pll1_div2_clk, FSIBCKCR, 0),
  215. [DIV6_SUB] = SH_CLK_DIV6(&sh73a0_extal2_clk, SUBCKCR, 0),
  216. [DIV6_SPUA] = SH_CLK_DIV6(&pll1_div2_clk, SPUACKCR, 0),
  217. [DIV6_SPUV] = SH_CLK_DIV6(&pll1_div2_clk, SPUVCKCR, 0),
  218. [DIV6_MSU] = SH_CLK_DIV6(&pll1_div2_clk, MSUCKCR, 0),
  219. [DIV6_HSI] = SH_CLK_DIV6(&pll1_div2_clk, HSICKCR, 0),
  220. [DIV6_MFG1] = SH_CLK_DIV6(&pll1_div2_clk, MFCK1CR, 0),
  221. [DIV6_MFG2] = SH_CLK_DIV6(&pll1_div2_clk, MFCK2CR, 0),
  222. [DIV6_DSIT] = SH_CLK_DIV6(&pll1_div2_clk, DSITCKCR, 0),
  223. [DIV6_DSI0P] = SH_CLK_DIV6(&pll1_div2_clk, DSI0PCKCR, 0),
  224. [DIV6_DSI1P] = SH_CLK_DIV6(&pll1_div2_clk, DSI1PCKCR, 0),
  225. };
  226. enum { MSTP001,
  227. MSTP125, MSTP116,
  228. MSTP219,
  229. MSTP207, MSTP206, MSTP204, MSTP203, MSTP202, MSTP201, MSTP200,
  230. MSTP331, MSTP329, MSTP323, MSTP312,
  231. MSTP411, MSTP410, MSTP403,
  232. MSTP_NR };
  233. #define MSTP(_parent, _reg, _bit, _flags) \
  234. SH_CLK_MSTP32(_parent, _reg, _bit, _flags)
  235. static struct clk mstp_clks[MSTP_NR] = {
  236. [MSTP001] = MSTP(&div4_clks[DIV4_HP], SMSTPCR0, 1, 0), /* IIC2 */
  237. [MSTP125] = MSTP(&div6_clks[DIV6_SUB], SMSTPCR1, 25, 0), /* TMU0 */
  238. [MSTP116] = MSTP(&div4_clks[DIV4_HP], SMSTPCR1, 16, 0), /* IIC0 */
  239. [MSTP219] = MSTP(&div6_clks[DIV6_SUB], SMSTPCR2, 19, 0), /* SCIFA7 */
  240. [MSTP207] = MSTP(&div6_clks[DIV6_SUB], SMSTPCR2, 7, 0), /* SCIFA5 */
  241. [MSTP206] = MSTP(&div6_clks[DIV6_SUB], SMSTPCR2, 6, 0), /* SCIFB */
  242. [MSTP204] = MSTP(&div6_clks[DIV6_SUB], SMSTPCR2, 4, 0), /* SCIFA0 */
  243. [MSTP203] = MSTP(&div6_clks[DIV6_SUB], SMSTPCR2, 3, 0), /* SCIFA1 */
  244. [MSTP202] = MSTP(&div6_clks[DIV6_SUB], SMSTPCR2, 2, 0), /* SCIFA2 */
  245. [MSTP201] = MSTP(&div6_clks[DIV6_SUB], SMSTPCR2, 1, 0), /* SCIFA3 */
  246. [MSTP200] = MSTP(&div6_clks[DIV6_SUB], SMSTPCR2, 0, 0), /* SCIFA4 */
  247. [MSTP331] = MSTP(&div6_clks[DIV6_SUB], SMSTPCR3, 31, 0), /* SCIFA6 */
  248. [MSTP329] = MSTP(&r_clk, SMSTPCR3, 29, 0), /* CMT10 */
  249. [MSTP323] = MSTP(&div4_clks[DIV4_HP], SMSTPCR3, 23, 0), /* IIC1 */
  250. [MSTP312] = MSTP(&div4_clks[DIV4_HP], SMSTPCR3, 12, 0), /* MMCIF0 */
  251. [MSTP411] = MSTP(&div4_clks[DIV4_HP], SMSTPCR4, 11, 0), /* IIC3 */
  252. [MSTP410] = MSTP(&div4_clks[DIV4_HP], SMSTPCR4, 10, 0), /* IIC4 */
  253. [MSTP403] = MSTP(&r_clk, SMSTPCR4, 3, 0), /* KEYSC */
  254. };
  255. #define CLKDEV_CON_ID(_id, _clk) { .con_id = _id, .clk = _clk }
  256. #define CLKDEV_DEV_ID(_id, _clk) { .dev_id = _id, .clk = _clk }
  257. static struct clk_lookup lookups[] = {
  258. /* main clocks */
  259. CLKDEV_CON_ID("r_clk", &r_clk),
  260. /* MSTP32 clocks */
  261. CLKDEV_DEV_ID("i2c-sh_mobile.2", &mstp_clks[MSTP001]), /* I2C2 */
  262. CLKDEV_DEV_ID("sh_tmu.0", &mstp_clks[MSTP125]), /* TMU00 */
  263. CLKDEV_DEV_ID("sh_tmu.1", &mstp_clks[MSTP125]), /* TMU01 */
  264. CLKDEV_DEV_ID("i2c-sh_mobile.0", &mstp_clks[MSTP116]), /* I2C0 */
  265. CLKDEV_DEV_ID("sh-sci.7", &mstp_clks[MSTP219]), /* SCIFA7 */
  266. CLKDEV_DEV_ID("sh-sci.5", &mstp_clks[MSTP207]), /* SCIFA5 */
  267. CLKDEV_DEV_ID("sh-sci.8", &mstp_clks[MSTP206]), /* SCIFB */
  268. CLKDEV_DEV_ID("sh-sci.0", &mstp_clks[MSTP204]), /* SCIFA0 */
  269. CLKDEV_DEV_ID("sh-sci.1", &mstp_clks[MSTP203]), /* SCIFA1 */
  270. CLKDEV_DEV_ID("sh-sci.2", &mstp_clks[MSTP202]), /* SCIFA2 */
  271. CLKDEV_DEV_ID("sh-sci.3", &mstp_clks[MSTP201]), /* SCIFA3 */
  272. CLKDEV_DEV_ID("sh-sci.4", &mstp_clks[MSTP200]), /* SCIFA4 */
  273. CLKDEV_DEV_ID("sh-sci.6", &mstp_clks[MSTP331]), /* SCIFA6 */
  274. CLKDEV_DEV_ID("sh_cmt.10", &mstp_clks[MSTP329]), /* CMT10 */
  275. CLKDEV_DEV_ID("i2c-sh_mobile.1", &mstp_clks[MSTP323]), /* I2C1 */
  276. CLKDEV_DEV_ID("sh_mmcif.0", &mstp_clks[MSTP312]), /* MMCIF0 */
  277. CLKDEV_DEV_ID("i2c-sh_mobile.3", &mstp_clks[MSTP411]), /* I2C3 */
  278. CLKDEV_DEV_ID("i2c-sh_mobile.4", &mstp_clks[MSTP410]), /* I2C4 */
  279. CLKDEV_DEV_ID("sh_keysc.0", &mstp_clks[MSTP403]), /* KEYSC */
  280. };
  281. void __init sh73a0_clock_init(void)
  282. {
  283. int k, ret = 0;
  284. /* detect main clock parent */
  285. switch ((__raw_readl(CKSCR) >> 24) & 0x03) {
  286. case 0:
  287. main_clk.parent = &sh73a0_extal1_clk;
  288. break;
  289. case 1:
  290. main_clk.parent = &extal1_div2_clk;
  291. break;
  292. case 2:
  293. main_clk.parent = &sh73a0_extal2_clk;
  294. break;
  295. case 3:
  296. main_clk.parent = &extal2_div2_clk;
  297. break;
  298. }
  299. for (k = 0; !ret && (k < ARRAY_SIZE(main_clks)); k++)
  300. ret = clk_register(main_clks[k]);
  301. if (!ret)
  302. ret = sh_clk_div4_register(div4_clks, DIV4_NR, &div4_table);
  303. if (!ret)
  304. ret = sh_clk_div6_register(div6_clks, DIV6_NR);
  305. if (!ret)
  306. ret = sh_clk_mstp32_register(mstp_clks, MSTP_NR);
  307. clkdev_add_table(lookups, ARRAY_SIZE(lookups));
  308. if (!ret)
  309. clk_init();
  310. else
  311. panic("failed to setup sh73a0 clocks\n");
  312. }