clock-sh7372.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681
  1. /*
  2. * SH7372 clock framework support
  3. *
  4. * Copyright (C) 2010 Magnus Damm
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. */
  19. #include <linux/init.h>
  20. #include <linux/kernel.h>
  21. #include <linux/io.h>
  22. #include <linux/sh_clk.h>
  23. #include <linux/clkdev.h>
  24. #include <mach/common.h>
  25. /* SH7372 registers */
  26. #define FRQCRA 0xe6150000
  27. #define FRQCRB 0xe6150004
  28. #define FRQCRC 0xe61500e0
  29. #define FRQCRD 0xe61500e4
  30. #define VCLKCR1 0xe6150008
  31. #define VCLKCR2 0xe615000c
  32. #define VCLKCR3 0xe615001c
  33. #define FMSICKCR 0xe6150010
  34. #define FMSOCKCR 0xe6150014
  35. #define FSIACKCR 0xe6150018
  36. #define FSIBCKCR 0xe6150090
  37. #define SUBCKCR 0xe6150080
  38. #define SPUCKCR 0xe6150084
  39. #define VOUCKCR 0xe6150088
  40. #define HDMICKCR 0xe6150094
  41. #define DSITCKCR 0xe6150060
  42. #define DSI0PCKCR 0xe6150064
  43. #define DSI1PCKCR 0xe6150098
  44. #define PLLC01CR 0xe6150028
  45. #define PLLC2CR 0xe615002c
  46. #define SMSTPCR0 0xe6150130
  47. #define SMSTPCR1 0xe6150134
  48. #define SMSTPCR2 0xe6150138
  49. #define SMSTPCR3 0xe615013c
  50. #define SMSTPCR4 0xe6150140
  51. #define FSIDIVA 0xFE1F8000
  52. #define FSIDIVB 0xFE1F8008
  53. /* Platforms must set frequency on their DV_CLKI pin */
  54. struct clk sh7372_dv_clki_clk = {
  55. };
  56. /* Fixed 32 KHz root clock from EXTALR pin */
  57. static struct clk r_clk = {
  58. .rate = 32768,
  59. };
  60. /*
  61. * 26MHz default rate for the EXTAL1 root input clock.
  62. * If needed, reset this with clk_set_rate() from the platform code.
  63. */
  64. struct clk sh7372_extal1_clk = {
  65. .rate = 26000000,
  66. };
  67. /*
  68. * 48MHz default rate for the EXTAL2 root input clock.
  69. * If needed, reset this with clk_set_rate() from the platform code.
  70. */
  71. struct clk sh7372_extal2_clk = {
  72. .rate = 48000000,
  73. };
  74. /* A fixed divide-by-2 block */
  75. static unsigned long div2_recalc(struct clk *clk)
  76. {
  77. return clk->parent->rate / 2;
  78. }
  79. static struct clk_ops div2_clk_ops = {
  80. .recalc = div2_recalc,
  81. };
  82. /* Divide dv_clki by two */
  83. struct clk sh7372_dv_clki_div2_clk = {
  84. .ops = &div2_clk_ops,
  85. .parent = &sh7372_dv_clki_clk,
  86. };
  87. /* Divide extal1 by two */
  88. static struct clk extal1_div2_clk = {
  89. .ops = &div2_clk_ops,
  90. .parent = &sh7372_extal1_clk,
  91. };
  92. /* Divide extal2 by two */
  93. static struct clk extal2_div2_clk = {
  94. .ops = &div2_clk_ops,
  95. .parent = &sh7372_extal2_clk,
  96. };
  97. /* Divide extal2 by four */
  98. static struct clk extal2_div4_clk = {
  99. .ops = &div2_clk_ops,
  100. .parent = &extal2_div2_clk,
  101. };
  102. /* PLLC0 and PLLC1 */
  103. static unsigned long pllc01_recalc(struct clk *clk)
  104. {
  105. unsigned long mult = 1;
  106. if (__raw_readl(PLLC01CR) & (1 << 14))
  107. mult = (((__raw_readl(clk->enable_reg) >> 24) & 0x3f) + 1) * 2;
  108. return clk->parent->rate * mult;
  109. }
  110. static struct clk_ops pllc01_clk_ops = {
  111. .recalc = pllc01_recalc,
  112. };
  113. static struct clk pllc0_clk = {
  114. .ops = &pllc01_clk_ops,
  115. .flags = CLK_ENABLE_ON_INIT,
  116. .parent = &extal1_div2_clk,
  117. .enable_reg = (void __iomem *)FRQCRC,
  118. };
  119. static struct clk pllc1_clk = {
  120. .ops = &pllc01_clk_ops,
  121. .flags = CLK_ENABLE_ON_INIT,
  122. .parent = &extal1_div2_clk,
  123. .enable_reg = (void __iomem *)FRQCRA,
  124. };
  125. /* Divide PLLC1 by two */
  126. static struct clk pllc1_div2_clk = {
  127. .ops = &div2_clk_ops,
  128. .parent = &pllc1_clk,
  129. };
  130. /* PLLC2 */
  131. /* Indices are important - they are the actual src selecting values */
  132. static struct clk *pllc2_parent[] = {
  133. [0] = &extal1_div2_clk,
  134. [1] = &extal2_div2_clk,
  135. [2] = &sh7372_dv_clki_div2_clk,
  136. };
  137. /* Only multipliers 20 * 2 to 46 * 2 are valid, last entry for CPUFREQ_TABLE_END */
  138. static struct cpufreq_frequency_table pllc2_freq_table[29];
  139. static void pllc2_table_rebuild(struct clk *clk)
  140. {
  141. int i;
  142. /* Initialise PLLC2 frequency table */
  143. for (i = 0; i < ARRAY_SIZE(pllc2_freq_table) - 2; i++) {
  144. pllc2_freq_table[i].frequency = clk->parent->rate * (i + 20) * 2;
  145. pllc2_freq_table[i].index = i;
  146. }
  147. /* This is a special entry - switching PLL off makes it a repeater */
  148. pllc2_freq_table[i].frequency = clk->parent->rate;
  149. pllc2_freq_table[i].index = i;
  150. pllc2_freq_table[++i].frequency = CPUFREQ_TABLE_END;
  151. pllc2_freq_table[i].index = i;
  152. }
  153. static unsigned long pllc2_recalc(struct clk *clk)
  154. {
  155. unsigned long mult = 1;
  156. pllc2_table_rebuild(clk);
  157. /*
  158. * If the PLL is off, mult == 1, clk->rate will be updated in
  159. * pllc2_enable().
  160. */
  161. if (__raw_readl(PLLC2CR) & (1 << 31))
  162. mult = (((__raw_readl(PLLC2CR) >> 24) & 0x3f) + 1) * 2;
  163. return clk->parent->rate * mult;
  164. }
  165. static long pllc2_round_rate(struct clk *clk, unsigned long rate)
  166. {
  167. return clk_rate_table_round(clk, clk->freq_table, rate);
  168. }
  169. static int pllc2_enable(struct clk *clk)
  170. {
  171. int i;
  172. __raw_writel(__raw_readl(PLLC2CR) | 0x80000000, PLLC2CR);
  173. for (i = 0; i < 100; i++)
  174. if (__raw_readl(PLLC2CR) & 0x80000000) {
  175. clk->rate = pllc2_recalc(clk);
  176. return 0;
  177. }
  178. pr_err("%s(): timeout!\n", __func__);
  179. return -ETIMEDOUT;
  180. }
  181. static void pllc2_disable(struct clk *clk)
  182. {
  183. __raw_writel(__raw_readl(PLLC2CR) & ~0x80000000, PLLC2CR);
  184. }
  185. static int pllc2_set_rate(struct clk *clk, unsigned long rate)
  186. {
  187. unsigned long value;
  188. int idx;
  189. idx = clk_rate_table_find(clk, clk->freq_table, rate);
  190. if (idx < 0)
  191. return idx;
  192. if (rate == clk->parent->rate)
  193. return -EINVAL;
  194. value = __raw_readl(PLLC2CR) & ~(0x3f << 24);
  195. __raw_writel((value & ~0x80000000) | ((idx + 19) << 24), PLLC2CR);
  196. return 0;
  197. }
  198. static int pllc2_set_parent(struct clk *clk, struct clk *parent)
  199. {
  200. u32 value;
  201. int ret, i;
  202. if (!clk->parent_table || !clk->parent_num)
  203. return -EINVAL;
  204. /* Search the parent */
  205. for (i = 0; i < clk->parent_num; i++)
  206. if (clk->parent_table[i] == parent)
  207. break;
  208. if (i == clk->parent_num)
  209. return -ENODEV;
  210. ret = clk_reparent(clk, parent);
  211. if (ret < 0)
  212. return ret;
  213. value = __raw_readl(PLLC2CR) & ~(3 << 6);
  214. __raw_writel(value | (i << 6), PLLC2CR);
  215. /* Rebiuld the frequency table */
  216. pllc2_table_rebuild(clk);
  217. return 0;
  218. }
  219. static struct clk_ops pllc2_clk_ops = {
  220. .recalc = pllc2_recalc,
  221. .round_rate = pllc2_round_rate,
  222. .set_rate = pllc2_set_rate,
  223. .enable = pllc2_enable,
  224. .disable = pllc2_disable,
  225. .set_parent = pllc2_set_parent,
  226. };
  227. struct clk sh7372_pllc2_clk = {
  228. .ops = &pllc2_clk_ops,
  229. .parent = &extal1_div2_clk,
  230. .freq_table = pllc2_freq_table,
  231. .nr_freqs = ARRAY_SIZE(pllc2_freq_table) - 1,
  232. .parent_table = pllc2_parent,
  233. .parent_num = ARRAY_SIZE(pllc2_parent),
  234. };
  235. /* External input clock (pin name: FSIACK/FSIBCK ) */
  236. struct clk sh7372_fsiack_clk = {
  237. };
  238. struct clk sh7372_fsibck_clk = {
  239. };
  240. static struct clk *main_clks[] = {
  241. &sh7372_dv_clki_clk,
  242. &r_clk,
  243. &sh7372_extal1_clk,
  244. &sh7372_extal2_clk,
  245. &sh7372_dv_clki_div2_clk,
  246. &extal1_div2_clk,
  247. &extal2_div2_clk,
  248. &extal2_div4_clk,
  249. &pllc0_clk,
  250. &pllc1_clk,
  251. &pllc1_div2_clk,
  252. &sh7372_pllc2_clk,
  253. &sh7372_fsiack_clk,
  254. &sh7372_fsibck_clk,
  255. };
  256. static void div4_kick(struct clk *clk)
  257. {
  258. unsigned long value;
  259. /* set KICK bit in FRQCRB to update hardware setting */
  260. value = __raw_readl(FRQCRB);
  261. value |= (1 << 31);
  262. __raw_writel(value, FRQCRB);
  263. }
  264. static int divisors[] = { 2, 3, 4, 6, 8, 12, 16, 18,
  265. 24, 32, 36, 48, 0, 72, 96, 0 };
  266. static struct clk_div_mult_table div4_div_mult_table = {
  267. .divisors = divisors,
  268. .nr_divisors = ARRAY_SIZE(divisors),
  269. };
  270. static struct clk_div4_table div4_table = {
  271. .div_mult_table = &div4_div_mult_table,
  272. .kick = div4_kick,
  273. };
  274. enum { DIV4_I, DIV4_ZG, DIV4_B, DIV4_M1, DIV4_CSIR,
  275. DIV4_ZTR, DIV4_ZT, DIV4_ZX, DIV4_HP,
  276. DIV4_ISPB, DIV4_S, DIV4_ZB, DIV4_ZB3, DIV4_CP,
  277. DIV4_DDRP, DIV4_NR };
  278. #define DIV4(_reg, _bit, _mask, _flags) \
  279. SH_CLK_DIV4(&pllc1_clk, _reg, _bit, _mask, _flags)
  280. static struct clk div4_clks[DIV4_NR] = {
  281. [DIV4_I] = DIV4(FRQCRA, 20, 0x6fff, CLK_ENABLE_ON_INIT),
  282. [DIV4_ZG] = DIV4(FRQCRA, 16, 0x6fff, CLK_ENABLE_ON_INIT),
  283. [DIV4_B] = DIV4(FRQCRA, 8, 0x6fff, CLK_ENABLE_ON_INIT),
  284. [DIV4_M1] = DIV4(FRQCRA, 4, 0x6fff, CLK_ENABLE_ON_INIT),
  285. [DIV4_CSIR] = DIV4(FRQCRA, 0, 0x6fff, 0),
  286. [DIV4_ZTR] = DIV4(FRQCRB, 20, 0x6fff, 0),
  287. [DIV4_ZT] = DIV4(FRQCRB, 16, 0x6fff, 0),
  288. [DIV4_ZX] = DIV4(FRQCRB, 12, 0x6fff, 0),
  289. [DIV4_HP] = DIV4(FRQCRB, 4, 0x6fff, 0),
  290. [DIV4_ISPB] = DIV4(FRQCRC, 20, 0x6fff, 0),
  291. [DIV4_S] = DIV4(FRQCRC, 12, 0x6fff, 0),
  292. [DIV4_ZB] = DIV4(FRQCRC, 8, 0x6fff, 0),
  293. [DIV4_ZB3] = DIV4(FRQCRC, 4, 0x6fff, 0),
  294. [DIV4_CP] = DIV4(FRQCRC, 0, 0x6fff, 0),
  295. [DIV4_DDRP] = DIV4(FRQCRD, 0, 0x677c, 0),
  296. };
  297. enum { DIV6_VCK1, DIV6_VCK2, DIV6_VCK3, DIV6_FMSI, DIV6_FMSO,
  298. DIV6_SUB, DIV6_SPU,
  299. DIV6_VOU, DIV6_DSIT, DIV6_DSI0P, DIV6_DSI1P,
  300. DIV6_NR };
  301. static struct clk div6_clks[DIV6_NR] = {
  302. [DIV6_VCK1] = SH_CLK_DIV6(&pllc1_div2_clk, VCLKCR1, 0),
  303. [DIV6_VCK2] = SH_CLK_DIV6(&pllc1_div2_clk, VCLKCR2, 0),
  304. [DIV6_VCK3] = SH_CLK_DIV6(&pllc1_div2_clk, VCLKCR3, 0),
  305. [DIV6_FMSI] = SH_CLK_DIV6(&pllc1_div2_clk, FMSICKCR, 0),
  306. [DIV6_FMSO] = SH_CLK_DIV6(&pllc1_div2_clk, FMSOCKCR, 0),
  307. [DIV6_SUB] = SH_CLK_DIV6(&sh7372_extal2_clk, SUBCKCR, 0),
  308. [DIV6_SPU] = SH_CLK_DIV6(&pllc1_div2_clk, SPUCKCR, 0),
  309. [DIV6_VOU] = SH_CLK_DIV6(&pllc1_div2_clk, VOUCKCR, 0),
  310. [DIV6_DSIT] = SH_CLK_DIV6(&pllc1_div2_clk, DSITCKCR, 0),
  311. [DIV6_DSI0P] = SH_CLK_DIV6(&pllc1_div2_clk, DSI0PCKCR, 0),
  312. [DIV6_DSI1P] = SH_CLK_DIV6(&pllc1_div2_clk, DSI1PCKCR, 0),
  313. };
  314. enum { DIV6_HDMI, DIV6_FSIA, DIV6_FSIB, DIV6_REPARENT_NR };
  315. /* Indices are important - they are the actual src selecting values */
  316. static struct clk *hdmi_parent[] = {
  317. [0] = &pllc1_div2_clk,
  318. [1] = &sh7372_pllc2_clk,
  319. [2] = &sh7372_dv_clki_clk,
  320. [3] = NULL, /* pllc2_div4 not implemented yet */
  321. };
  322. static struct clk *fsiackcr_parent[] = {
  323. [0] = &pllc1_div2_clk,
  324. [1] = &sh7372_pllc2_clk,
  325. [2] = &sh7372_fsiack_clk, /* external input for FSI A */
  326. [3] = NULL, /* setting prohibited */
  327. };
  328. static struct clk *fsibckcr_parent[] = {
  329. [0] = &pllc1_div2_clk,
  330. [1] = &sh7372_pllc2_clk,
  331. [2] = &sh7372_fsibck_clk, /* external input for FSI B */
  332. [3] = NULL, /* setting prohibited */
  333. };
  334. static struct clk div6_reparent_clks[DIV6_REPARENT_NR] = {
  335. [DIV6_HDMI] = SH_CLK_DIV6_EXT(&pllc1_div2_clk, HDMICKCR, 0,
  336. hdmi_parent, ARRAY_SIZE(hdmi_parent), 6, 2),
  337. [DIV6_FSIA] = SH_CLK_DIV6_EXT(&pllc1_div2_clk, FSIACKCR, 0,
  338. fsiackcr_parent, ARRAY_SIZE(fsiackcr_parent), 6, 2),
  339. [DIV6_FSIB] = SH_CLK_DIV6_EXT(&pllc1_div2_clk, FSIBCKCR, 0,
  340. fsibckcr_parent, ARRAY_SIZE(fsibckcr_parent), 6, 2),
  341. };
  342. /* FSI DIV */
  343. static unsigned long fsidiv_recalc(struct clk *clk)
  344. {
  345. unsigned long value;
  346. value = __raw_readl(clk->mapping->base);
  347. if ((value & 0x3) != 0x3)
  348. return 0;
  349. value >>= 16;
  350. if (value < 2)
  351. return 0;
  352. return clk->parent->rate / value;
  353. }
  354. static long fsidiv_round_rate(struct clk *clk, unsigned long rate)
  355. {
  356. return clk_rate_div_range_round(clk, 2, 0xffff, rate);
  357. }
  358. static void fsidiv_disable(struct clk *clk)
  359. {
  360. __raw_writel(0, clk->mapping->base);
  361. }
  362. static int fsidiv_enable(struct clk *clk)
  363. {
  364. unsigned long value;
  365. value = __raw_readl(clk->mapping->base) >> 16;
  366. if (value < 2)
  367. return -EIO;
  368. __raw_writel((value << 16) | 0x3, clk->mapping->base);
  369. return 0;
  370. }
  371. static int fsidiv_set_rate(struct clk *clk, unsigned long rate)
  372. {
  373. int idx;
  374. idx = (clk->parent->rate / rate) & 0xffff;
  375. if (idx < 2)
  376. return -EINVAL;
  377. __raw_writel(idx << 16, clk->mapping->base);
  378. return 0;
  379. }
  380. static struct clk_ops fsidiv_clk_ops = {
  381. .recalc = fsidiv_recalc,
  382. .round_rate = fsidiv_round_rate,
  383. .set_rate = fsidiv_set_rate,
  384. .enable = fsidiv_enable,
  385. .disable = fsidiv_disable,
  386. };
  387. static struct clk_mapping sh7372_fsidiva_clk_mapping = {
  388. .phys = FSIDIVA,
  389. .len = 8,
  390. };
  391. struct clk sh7372_fsidiva_clk = {
  392. .ops = &fsidiv_clk_ops,
  393. .parent = &div6_reparent_clks[DIV6_FSIA], /* late install */
  394. .mapping = &sh7372_fsidiva_clk_mapping,
  395. };
  396. static struct clk_mapping sh7372_fsidivb_clk_mapping = {
  397. .phys = FSIDIVB,
  398. .len = 8,
  399. };
  400. struct clk sh7372_fsidivb_clk = {
  401. .ops = &fsidiv_clk_ops,
  402. .parent = &div6_reparent_clks[DIV6_FSIB], /* late install */
  403. .mapping = &sh7372_fsidivb_clk_mapping,
  404. };
  405. static struct clk *late_main_clks[] = {
  406. &sh7372_fsidiva_clk,
  407. &sh7372_fsidivb_clk,
  408. };
  409. enum { MSTP001,
  410. MSTP131, MSTP130,
  411. MSTP129, MSTP128, MSTP127, MSTP126, MSTP125,
  412. MSTP118, MSTP117, MSTP116,
  413. MSTP106, MSTP101, MSTP100,
  414. MSTP223,
  415. MSTP207, MSTP206, MSTP204, MSTP203, MSTP202, MSTP201, MSTP200,
  416. MSTP329, MSTP328, MSTP323, MSTP322, MSTP314, MSTP313, MSTP312,
  417. MSTP423, MSTP415, MSTP413, MSTP411, MSTP410, MSTP406, MSTP403,
  418. MSTP_NR };
  419. #define MSTP(_parent, _reg, _bit, _flags) \
  420. SH_CLK_MSTP32(_parent, _reg, _bit, _flags)
  421. static struct clk mstp_clks[MSTP_NR] = {
  422. [MSTP001] = MSTP(&div6_clks[DIV6_SUB], SMSTPCR0, 1, 0), /* IIC2 */
  423. [MSTP131] = MSTP(&div4_clks[DIV4_B], SMSTPCR1, 31, 0), /* VEU3 */
  424. [MSTP130] = MSTP(&div4_clks[DIV4_B], SMSTPCR1, 30, 0), /* VEU2 */
  425. [MSTP129] = MSTP(&div4_clks[DIV4_B], SMSTPCR1, 29, 0), /* VEU1 */
  426. [MSTP128] = MSTP(&div4_clks[DIV4_B], SMSTPCR1, 28, 0), /* VEU0 */
  427. [MSTP127] = MSTP(&div4_clks[DIV4_B], SMSTPCR1, 27, 0), /* CEU */
  428. [MSTP126] = MSTP(&div4_clks[DIV4_B], SMSTPCR1, 26, 0), /* CSI2 */
  429. [MSTP125] = MSTP(&div6_clks[DIV6_SUB], SMSTPCR1, 25, 0), /* TMU0 */
  430. [MSTP118] = MSTP(&div4_clks[DIV4_B], SMSTPCR1, 18, 0), /* DSITX */
  431. [MSTP117] = MSTP(&div4_clks[DIV4_B], SMSTPCR1, 17, 0), /* LCDC1 */
  432. [MSTP116] = MSTP(&div6_clks[DIV6_SUB], SMSTPCR1, 16, 0), /* IIC0 */
  433. [MSTP106] = MSTP(&div4_clks[DIV4_B], SMSTPCR1, 6, 0), /* JPU */
  434. [MSTP101] = MSTP(&div4_clks[DIV4_M1], SMSTPCR1, 1, 0), /* VPU */
  435. [MSTP100] = MSTP(&div4_clks[DIV4_B], SMSTPCR1, 0, 0), /* LCDC0 */
  436. [MSTP223] = MSTP(&div6_clks[DIV6_SPU], SMSTPCR2, 23, 0), /* SPU2 */
  437. [MSTP207] = MSTP(&div6_clks[DIV6_SUB], SMSTPCR2, 7, 0), /* SCIFA5 */
  438. [MSTP206] = MSTP(&div6_clks[DIV6_SUB], SMSTPCR2, 6, 0), /* SCIFB */
  439. [MSTP204] = MSTP(&div6_clks[DIV6_SUB], SMSTPCR2, 4, 0), /* SCIFA0 */
  440. [MSTP203] = MSTP(&div6_clks[DIV6_SUB], SMSTPCR2, 3, 0), /* SCIFA1 */
  441. [MSTP202] = MSTP(&div6_clks[DIV6_SUB], SMSTPCR2, 2, 0), /* SCIFA2 */
  442. [MSTP201] = MSTP(&div6_clks[DIV6_SUB], SMSTPCR2, 1, 0), /* SCIFA3 */
  443. [MSTP200] = MSTP(&div6_clks[DIV6_SUB], SMSTPCR2, 0, 0), /* SCIFA4 */
  444. [MSTP329] = MSTP(&r_clk, SMSTPCR3, 29, 0), /* CMT10 */
  445. [MSTP328] = MSTP(&div6_clks[DIV6_SPU], SMSTPCR3, 28, 0), /* FSI2 */
  446. [MSTP323] = MSTP(&div6_clks[DIV6_SUB], SMSTPCR3, 23, 0), /* IIC1 */
  447. [MSTP322] = MSTP(&div6_clks[DIV6_SUB], SMSTPCR3, 22, 0), /* USB0 */
  448. [MSTP314] = MSTP(&div4_clks[DIV4_HP], SMSTPCR3, 14, 0), /* SDHI0 */
  449. [MSTP313] = MSTP(&div4_clks[DIV4_HP], SMSTPCR3, 13, 0), /* SDHI1 */
  450. [MSTP312] = MSTP(&div4_clks[DIV4_HP], SMSTPCR3, 12, 0), /* MMC */
  451. [MSTP423] = MSTP(&div4_clks[DIV4_B], SMSTPCR4, 23, 0), /* DSITX1 */
  452. [MSTP415] = MSTP(&div4_clks[DIV4_HP], SMSTPCR4, 15, 0), /* SDHI2 */
  453. [MSTP413] = MSTP(&pllc1_div2_clk, SMSTPCR4, 13, 0), /* HDMI */
  454. [MSTP411] = MSTP(&div6_clks[DIV6_SUB], SMSTPCR4, 11, 0), /* IIC3 */
  455. [MSTP410] = MSTP(&div6_clks[DIV6_SUB], SMSTPCR4, 10, 0), /* IIC4 */
  456. [MSTP406] = MSTP(&div6_clks[DIV6_SUB], SMSTPCR4, 6, 0), /* USB1 */
  457. [MSTP403] = MSTP(&r_clk, SMSTPCR4, 3, 0), /* KEYSC */
  458. };
  459. #define CLKDEV_CON_ID(_id, _clk) { .con_id = _id, .clk = _clk }
  460. #define CLKDEV_DEV_ID(_id, _clk) { .dev_id = _id, .clk = _clk }
  461. #define CLKDEV_ICK_ID(_cid, _did, _clk) { .con_id = _cid, .dev_id = _did, .clk = _clk }
  462. static struct clk_lookup lookups[] = {
  463. /* main clocks */
  464. CLKDEV_CON_ID("dv_clki_div2_clk", &sh7372_dv_clki_div2_clk),
  465. CLKDEV_CON_ID("r_clk", &r_clk),
  466. CLKDEV_CON_ID("extal1", &sh7372_extal1_clk),
  467. CLKDEV_CON_ID("extal2", &sh7372_extal2_clk),
  468. CLKDEV_CON_ID("extal1_div2_clk", &extal1_div2_clk),
  469. CLKDEV_CON_ID("extal2_div2_clk", &extal2_div2_clk),
  470. CLKDEV_CON_ID("extal2_div4_clk", &extal2_div4_clk),
  471. CLKDEV_CON_ID("pllc0_clk", &pllc0_clk),
  472. CLKDEV_CON_ID("pllc1_clk", &pllc1_clk),
  473. CLKDEV_CON_ID("pllc1_div2_clk", &pllc1_div2_clk),
  474. CLKDEV_CON_ID("pllc2_clk", &sh7372_pllc2_clk),
  475. /* DIV4 clocks */
  476. CLKDEV_CON_ID("i_clk", &div4_clks[DIV4_I]),
  477. CLKDEV_CON_ID("zg_clk", &div4_clks[DIV4_ZG]),
  478. CLKDEV_CON_ID("b_clk", &div4_clks[DIV4_B]),
  479. CLKDEV_CON_ID("m1_clk", &div4_clks[DIV4_M1]),
  480. CLKDEV_CON_ID("csir_clk", &div4_clks[DIV4_CSIR]),
  481. CLKDEV_CON_ID("ztr_clk", &div4_clks[DIV4_ZTR]),
  482. CLKDEV_CON_ID("zt_clk", &div4_clks[DIV4_ZT]),
  483. CLKDEV_CON_ID("zx_clk", &div4_clks[DIV4_ZX]),
  484. CLKDEV_CON_ID("hp_clk", &div4_clks[DIV4_HP]),
  485. CLKDEV_CON_ID("ispb_clk", &div4_clks[DIV4_ISPB]),
  486. CLKDEV_CON_ID("s_clk", &div4_clks[DIV4_S]),
  487. CLKDEV_CON_ID("zb_clk", &div4_clks[DIV4_ZB]),
  488. CLKDEV_CON_ID("zb3_clk", &div4_clks[DIV4_ZB3]),
  489. CLKDEV_CON_ID("cp_clk", &div4_clks[DIV4_CP]),
  490. CLKDEV_CON_ID("ddrp_clk", &div4_clks[DIV4_DDRP]),
  491. /* DIV6 clocks */
  492. CLKDEV_CON_ID("vck1_clk", &div6_clks[DIV6_VCK1]),
  493. CLKDEV_CON_ID("vck2_clk", &div6_clks[DIV6_VCK2]),
  494. CLKDEV_CON_ID("vck3_clk", &div6_clks[DIV6_VCK3]),
  495. CLKDEV_CON_ID("fmsi_clk", &div6_clks[DIV6_FMSI]),
  496. CLKDEV_CON_ID("fmso_clk", &div6_clks[DIV6_FMSO]),
  497. CLKDEV_CON_ID("sub_clk", &div6_clks[DIV6_SUB]),
  498. CLKDEV_CON_ID("spu_clk", &div6_clks[DIV6_SPU]),
  499. CLKDEV_CON_ID("vou_clk", &div6_clks[DIV6_VOU]),
  500. CLKDEV_CON_ID("hdmi_clk", &div6_reparent_clks[DIV6_HDMI]),
  501. CLKDEV_ICK_ID("dsit_clk", "sh-mipi-dsi.0", &div6_clks[DIV6_DSIT]),
  502. CLKDEV_ICK_ID("dsit_clk", "sh-mipi-dsi.1", &div6_clks[DIV6_DSIT]),
  503. CLKDEV_ICK_ID("dsi0p_clk", "sh-mipi-dsi.0", &div6_clks[DIV6_DSI0P]),
  504. CLKDEV_ICK_ID("dsi1p_clk", "sh-mipi-dsi.1", &div6_clks[DIV6_DSI1P]),
  505. /* MSTP32 clocks */
  506. CLKDEV_DEV_ID("i2c-sh_mobile.2", &mstp_clks[MSTP001]), /* IIC2 */
  507. CLKDEV_DEV_ID("uio_pdrv_genirq.4", &mstp_clks[MSTP131]), /* VEU3 */
  508. CLKDEV_DEV_ID("uio_pdrv_genirq.3", &mstp_clks[MSTP130]), /* VEU2 */
  509. CLKDEV_DEV_ID("uio_pdrv_genirq.2", &mstp_clks[MSTP129]), /* VEU1 */
  510. CLKDEV_DEV_ID("uio_pdrv_genirq.1", &mstp_clks[MSTP128]), /* VEU0 */
  511. CLKDEV_DEV_ID("sh_mobile_ceu.0", &mstp_clks[MSTP127]), /* CEU */
  512. CLKDEV_DEV_ID("sh-mobile-csi2.0", &mstp_clks[MSTP126]), /* CSI2 */
  513. CLKDEV_DEV_ID("sh_tmu.0", &mstp_clks[MSTP125]), /* TMU00 */
  514. CLKDEV_DEV_ID("sh_tmu.1", &mstp_clks[MSTP125]), /* TMU01 */
  515. CLKDEV_DEV_ID("sh-mipi-dsi.0", &mstp_clks[MSTP118]), /* DSITX0 */
  516. CLKDEV_DEV_ID("sh_mobile_lcdc_fb.1", &mstp_clks[MSTP117]), /* LCDC1 */
  517. CLKDEV_DEV_ID("i2c-sh_mobile.0", &mstp_clks[MSTP116]), /* IIC0 */
  518. CLKDEV_DEV_ID("uio_pdrv_genirq.5", &mstp_clks[MSTP106]), /* JPU */
  519. CLKDEV_DEV_ID("uio_pdrv_genirq.0", &mstp_clks[MSTP101]), /* VPU */
  520. CLKDEV_DEV_ID("sh_mobile_lcdc_fb.0", &mstp_clks[MSTP100]), /* LCDC0 */
  521. CLKDEV_DEV_ID("uio_pdrv_genirq.6", &mstp_clks[MSTP223]), /* SPU2DSP0 */
  522. CLKDEV_DEV_ID("uio_pdrv_genirq.7", &mstp_clks[MSTP223]), /* SPU2DSP1 */
  523. CLKDEV_DEV_ID("sh-sci.5", &mstp_clks[MSTP207]), /* SCIFA5 */
  524. CLKDEV_DEV_ID("sh-sci.6", &mstp_clks[MSTP206]), /* SCIFB */
  525. CLKDEV_DEV_ID("sh-sci.0", &mstp_clks[MSTP204]), /* SCIFA0 */
  526. CLKDEV_DEV_ID("sh-sci.1", &mstp_clks[MSTP203]), /* SCIFA1 */
  527. CLKDEV_DEV_ID("sh-sci.2", &mstp_clks[MSTP202]), /* SCIFA2 */
  528. CLKDEV_DEV_ID("sh-sci.3", &mstp_clks[MSTP201]), /* SCIFA3 */
  529. CLKDEV_DEV_ID("sh-sci.4", &mstp_clks[MSTP200]), /* SCIFA4 */
  530. CLKDEV_DEV_ID("sh_cmt.10", &mstp_clks[MSTP329]), /* CMT10 */
  531. CLKDEV_DEV_ID("sh_fsi2", &mstp_clks[MSTP328]), /* FSI2 */
  532. CLKDEV_DEV_ID("i2c-sh_mobile.1", &mstp_clks[MSTP323]), /* IIC1 */
  533. CLKDEV_DEV_ID("r8a66597_hcd.0", &mstp_clks[MSTP322]), /* USB0 */
  534. CLKDEV_DEV_ID("r8a66597_udc.0", &mstp_clks[MSTP322]), /* USB0 */
  535. CLKDEV_DEV_ID("sh_mobile_sdhi.0", &mstp_clks[MSTP314]), /* SDHI0 */
  536. CLKDEV_DEV_ID("sh_mobile_sdhi.1", &mstp_clks[MSTP313]), /* SDHI1 */
  537. CLKDEV_DEV_ID("sh_mmcif.0", &mstp_clks[MSTP312]), /* MMC */
  538. CLKDEV_DEV_ID("sh-mipi-dsi.1", &mstp_clks[MSTP423]), /* DSITX1 */
  539. CLKDEV_DEV_ID("sh_mobile_sdhi.2", &mstp_clks[MSTP415]), /* SDHI2 */
  540. CLKDEV_DEV_ID("sh-mobile-hdmi", &mstp_clks[MSTP413]), /* HDMI */
  541. CLKDEV_DEV_ID("i2c-sh_mobile.3", &mstp_clks[MSTP411]), /* IIC3 */
  542. CLKDEV_DEV_ID("i2c-sh_mobile.4", &mstp_clks[MSTP410]), /* IIC4 */
  543. CLKDEV_DEV_ID("r8a66597_hcd.1", &mstp_clks[MSTP406]), /* USB1 */
  544. CLKDEV_DEV_ID("r8a66597_udc.1", &mstp_clks[MSTP406]), /* USB1 */
  545. CLKDEV_DEV_ID("sh_keysc.0", &mstp_clks[MSTP403]), /* KEYSC */
  546. CLKDEV_ICK_ID("ick", "sh-mobile-hdmi", &div6_reparent_clks[DIV6_HDMI]),
  547. CLKDEV_ICK_ID("icka", "sh_fsi2", &div6_reparent_clks[DIV6_FSIA]),
  548. CLKDEV_ICK_ID("ickb", "sh_fsi2", &div6_reparent_clks[DIV6_FSIB]),
  549. };
  550. void __init sh7372_clock_init(void)
  551. {
  552. int k, ret = 0;
  553. for (k = 0; !ret && (k < ARRAY_SIZE(main_clks)); k++)
  554. ret = clk_register(main_clks[k]);
  555. if (!ret)
  556. ret = sh_clk_div4_register(div4_clks, DIV4_NR, &div4_table);
  557. if (!ret)
  558. ret = sh_clk_div6_register(div6_clks, DIV6_NR);
  559. if (!ret)
  560. ret = sh_clk_div6_reparent_register(div6_reparent_clks, DIV6_REPARENT_NR);
  561. if (!ret)
  562. ret = sh_clk_mstp32_register(mstp_clks, MSTP_NR);
  563. for (k = 0; !ret && (k < ARRAY_SIZE(late_main_clks)); k++)
  564. ret = clk_register(late_main_clks[k]);
  565. clkdev_add_table(lookups, ARRAY_SIZE(lookups));
  566. if (!ret)
  567. clk_init();
  568. else
  569. panic("failed to setup sh7372 clocks\n");
  570. }