vmalloc.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746
  1. /*
  2. * linux/mm/vmalloc.c
  3. *
  4. * Copyright (C) 1993 Linus Torvalds
  5. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  6. * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
  7. * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
  8. * Numa awareness, Christoph Lameter, SGI, June 2005
  9. */
  10. #include <linux/mm.h>
  11. #include <linux/module.h>
  12. #include <linux/highmem.h>
  13. #include <linux/slab.h>
  14. #include <linux/spinlock.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/vmalloc.h>
  17. #include <asm/uaccess.h>
  18. #include <asm/tlbflush.h>
  19. DEFINE_RWLOCK(vmlist_lock);
  20. struct vm_struct *vmlist;
  21. static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
  22. int node);
  23. static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
  24. {
  25. pte_t *pte;
  26. pte = pte_offset_kernel(pmd, addr);
  27. do {
  28. pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
  29. WARN_ON(!pte_none(ptent) && !pte_present(ptent));
  30. } while (pte++, addr += PAGE_SIZE, addr != end);
  31. }
  32. static inline void vunmap_pmd_range(pud_t *pud, unsigned long addr,
  33. unsigned long end)
  34. {
  35. pmd_t *pmd;
  36. unsigned long next;
  37. pmd = pmd_offset(pud, addr);
  38. do {
  39. next = pmd_addr_end(addr, end);
  40. if (pmd_none_or_clear_bad(pmd))
  41. continue;
  42. vunmap_pte_range(pmd, addr, next);
  43. } while (pmd++, addr = next, addr != end);
  44. }
  45. static inline void vunmap_pud_range(pgd_t *pgd, unsigned long addr,
  46. unsigned long end)
  47. {
  48. pud_t *pud;
  49. unsigned long next;
  50. pud = pud_offset(pgd, addr);
  51. do {
  52. next = pud_addr_end(addr, end);
  53. if (pud_none_or_clear_bad(pud))
  54. continue;
  55. vunmap_pmd_range(pud, addr, next);
  56. } while (pud++, addr = next, addr != end);
  57. }
  58. void unmap_vm_area(struct vm_struct *area)
  59. {
  60. pgd_t *pgd;
  61. unsigned long next;
  62. unsigned long addr = (unsigned long) area->addr;
  63. unsigned long end = addr + area->size;
  64. BUG_ON(addr >= end);
  65. pgd = pgd_offset_k(addr);
  66. flush_cache_vunmap(addr, end);
  67. do {
  68. next = pgd_addr_end(addr, end);
  69. if (pgd_none_or_clear_bad(pgd))
  70. continue;
  71. vunmap_pud_range(pgd, addr, next);
  72. } while (pgd++, addr = next, addr != end);
  73. flush_tlb_kernel_range((unsigned long) area->addr, end);
  74. }
  75. static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
  76. unsigned long end, pgprot_t prot, struct page ***pages)
  77. {
  78. pte_t *pte;
  79. pte = pte_alloc_kernel(pmd, addr);
  80. if (!pte)
  81. return -ENOMEM;
  82. do {
  83. struct page *page = **pages;
  84. WARN_ON(!pte_none(*pte));
  85. if (!page)
  86. return -ENOMEM;
  87. set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
  88. (*pages)++;
  89. } while (pte++, addr += PAGE_SIZE, addr != end);
  90. return 0;
  91. }
  92. static inline int vmap_pmd_range(pud_t *pud, unsigned long addr,
  93. unsigned long end, pgprot_t prot, struct page ***pages)
  94. {
  95. pmd_t *pmd;
  96. unsigned long next;
  97. pmd = pmd_alloc(&init_mm, pud, addr);
  98. if (!pmd)
  99. return -ENOMEM;
  100. do {
  101. next = pmd_addr_end(addr, end);
  102. if (vmap_pte_range(pmd, addr, next, prot, pages))
  103. return -ENOMEM;
  104. } while (pmd++, addr = next, addr != end);
  105. return 0;
  106. }
  107. static inline int vmap_pud_range(pgd_t *pgd, unsigned long addr,
  108. unsigned long end, pgprot_t prot, struct page ***pages)
  109. {
  110. pud_t *pud;
  111. unsigned long next;
  112. pud = pud_alloc(&init_mm, pgd, addr);
  113. if (!pud)
  114. return -ENOMEM;
  115. do {
  116. next = pud_addr_end(addr, end);
  117. if (vmap_pmd_range(pud, addr, next, prot, pages))
  118. return -ENOMEM;
  119. } while (pud++, addr = next, addr != end);
  120. return 0;
  121. }
  122. int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
  123. {
  124. pgd_t *pgd;
  125. unsigned long next;
  126. unsigned long addr = (unsigned long) area->addr;
  127. unsigned long end = addr + area->size - PAGE_SIZE;
  128. int err;
  129. BUG_ON(addr >= end);
  130. pgd = pgd_offset_k(addr);
  131. do {
  132. next = pgd_addr_end(addr, end);
  133. err = vmap_pud_range(pgd, addr, next, prot, pages);
  134. if (err)
  135. break;
  136. } while (pgd++, addr = next, addr != end);
  137. flush_cache_vmap((unsigned long) area->addr, end);
  138. return err;
  139. }
  140. struct vm_struct *__get_vm_area_node(unsigned long size, unsigned long flags,
  141. unsigned long start, unsigned long end, int node)
  142. {
  143. struct vm_struct **p, *tmp, *area;
  144. unsigned long align = 1;
  145. unsigned long addr;
  146. if (flags & VM_IOREMAP) {
  147. int bit = fls(size);
  148. if (bit > IOREMAP_MAX_ORDER)
  149. bit = IOREMAP_MAX_ORDER;
  150. else if (bit < PAGE_SHIFT)
  151. bit = PAGE_SHIFT;
  152. align = 1ul << bit;
  153. }
  154. addr = ALIGN(start, align);
  155. size = PAGE_ALIGN(size);
  156. area = kmalloc_node(sizeof(*area), GFP_KERNEL, node);
  157. if (unlikely(!area))
  158. return NULL;
  159. if (unlikely(!size)) {
  160. kfree (area);
  161. return NULL;
  162. }
  163. /*
  164. * We always allocate a guard page.
  165. */
  166. size += PAGE_SIZE;
  167. write_lock(&vmlist_lock);
  168. for (p = &vmlist; (tmp = *p) != NULL ;p = &tmp->next) {
  169. if ((unsigned long)tmp->addr < addr) {
  170. if((unsigned long)tmp->addr + tmp->size >= addr)
  171. addr = ALIGN(tmp->size +
  172. (unsigned long)tmp->addr, align);
  173. continue;
  174. }
  175. if ((size + addr) < addr)
  176. goto out;
  177. if (size + addr <= (unsigned long)tmp->addr)
  178. goto found;
  179. addr = ALIGN(tmp->size + (unsigned long)tmp->addr, align);
  180. if (addr > end - size)
  181. goto out;
  182. }
  183. found:
  184. area->next = *p;
  185. *p = area;
  186. area->flags = flags;
  187. area->addr = (void *)addr;
  188. area->size = size;
  189. area->pages = NULL;
  190. area->nr_pages = 0;
  191. area->phys_addr = 0;
  192. write_unlock(&vmlist_lock);
  193. return area;
  194. out:
  195. write_unlock(&vmlist_lock);
  196. kfree(area);
  197. if (printk_ratelimit())
  198. printk(KERN_WARNING "allocation failed: out of vmalloc space - use vmalloc=<size> to increase size.\n");
  199. return NULL;
  200. }
  201. struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
  202. unsigned long start, unsigned long end)
  203. {
  204. return __get_vm_area_node(size, flags, start, end, -1);
  205. }
  206. /**
  207. * get_vm_area - reserve a contingous kernel virtual area
  208. * @size: size of the area
  209. * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
  210. *
  211. * Search an area of @size in the kernel virtual mapping area,
  212. * and reserved it for out purposes. Returns the area descriptor
  213. * on success or %NULL on failure.
  214. */
  215. struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
  216. {
  217. return __get_vm_area(size, flags, VMALLOC_START, VMALLOC_END);
  218. }
  219. struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags, int node)
  220. {
  221. return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node);
  222. }
  223. /* Caller must hold vmlist_lock */
  224. static struct vm_struct *__find_vm_area(void *addr)
  225. {
  226. struct vm_struct *tmp;
  227. for (tmp = vmlist; tmp != NULL; tmp = tmp->next) {
  228. if (tmp->addr == addr)
  229. break;
  230. }
  231. return tmp;
  232. }
  233. /* Caller must hold vmlist_lock */
  234. static struct vm_struct *__remove_vm_area(void *addr)
  235. {
  236. struct vm_struct **p, *tmp;
  237. for (p = &vmlist ; (tmp = *p) != NULL ;p = &tmp->next) {
  238. if (tmp->addr == addr)
  239. goto found;
  240. }
  241. return NULL;
  242. found:
  243. unmap_vm_area(tmp);
  244. *p = tmp->next;
  245. /*
  246. * Remove the guard page.
  247. */
  248. tmp->size -= PAGE_SIZE;
  249. return tmp;
  250. }
  251. /**
  252. * remove_vm_area - find and remove a contingous kernel virtual area
  253. * @addr: base address
  254. *
  255. * Search for the kernel VM area starting at @addr, and remove it.
  256. * This function returns the found VM area, but using it is NOT safe
  257. * on SMP machines, except for its size or flags.
  258. */
  259. struct vm_struct *remove_vm_area(void *addr)
  260. {
  261. struct vm_struct *v;
  262. write_lock(&vmlist_lock);
  263. v = __remove_vm_area(addr);
  264. write_unlock(&vmlist_lock);
  265. return v;
  266. }
  267. void __vunmap(void *addr, int deallocate_pages)
  268. {
  269. struct vm_struct *area;
  270. if (!addr)
  271. return;
  272. if ((PAGE_SIZE-1) & (unsigned long)addr) {
  273. printk(KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
  274. WARN_ON(1);
  275. return;
  276. }
  277. area = remove_vm_area(addr);
  278. if (unlikely(!area)) {
  279. printk(KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
  280. addr);
  281. WARN_ON(1);
  282. return;
  283. }
  284. debug_check_no_locks_freed(addr, area->size);
  285. if (deallocate_pages) {
  286. int i;
  287. for (i = 0; i < area->nr_pages; i++) {
  288. BUG_ON(!area->pages[i]);
  289. __free_page(area->pages[i]);
  290. }
  291. if (area->flags & VM_VPAGES)
  292. vfree(area->pages);
  293. else
  294. kfree(area->pages);
  295. }
  296. kfree(area);
  297. return;
  298. }
  299. /**
  300. * vfree - release memory allocated by vmalloc()
  301. * @addr: memory base address
  302. *
  303. * Free the virtually contiguous memory area starting at @addr, as
  304. * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
  305. * NULL, no operation is performed.
  306. *
  307. * Must not be called in interrupt context.
  308. */
  309. void vfree(void *addr)
  310. {
  311. BUG_ON(in_interrupt());
  312. __vunmap(addr, 1);
  313. }
  314. EXPORT_SYMBOL(vfree);
  315. /**
  316. * vunmap - release virtual mapping obtained by vmap()
  317. * @addr: memory base address
  318. *
  319. * Free the virtually contiguous memory area starting at @addr,
  320. * which was created from the page array passed to vmap().
  321. *
  322. * Must not be called in interrupt context.
  323. */
  324. void vunmap(void *addr)
  325. {
  326. BUG_ON(in_interrupt());
  327. __vunmap(addr, 0);
  328. }
  329. EXPORT_SYMBOL(vunmap);
  330. /**
  331. * vmap - map an array of pages into virtually contiguous space
  332. * @pages: array of page pointers
  333. * @count: number of pages to map
  334. * @flags: vm_area->flags
  335. * @prot: page protection for the mapping
  336. *
  337. * Maps @count pages from @pages into contiguous kernel virtual
  338. * space.
  339. */
  340. void *vmap(struct page **pages, unsigned int count,
  341. unsigned long flags, pgprot_t prot)
  342. {
  343. struct vm_struct *area;
  344. if (count > num_physpages)
  345. return NULL;
  346. area = get_vm_area((count << PAGE_SHIFT), flags);
  347. if (!area)
  348. return NULL;
  349. if (map_vm_area(area, prot, &pages)) {
  350. vunmap(area->addr);
  351. return NULL;
  352. }
  353. return area->addr;
  354. }
  355. EXPORT_SYMBOL(vmap);
  356. void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
  357. pgprot_t prot, int node)
  358. {
  359. struct page **pages;
  360. unsigned int nr_pages, array_size, i;
  361. nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
  362. array_size = (nr_pages * sizeof(struct page *));
  363. area->nr_pages = nr_pages;
  364. /* Please note that the recursion is strictly bounded. */
  365. if (array_size > PAGE_SIZE) {
  366. pages = __vmalloc_node(array_size, gfp_mask, PAGE_KERNEL, node);
  367. area->flags |= VM_VPAGES;
  368. } else {
  369. pages = kmalloc_node(array_size,
  370. (gfp_mask & ~(__GFP_HIGHMEM | __GFP_ZERO)),
  371. node);
  372. }
  373. area->pages = pages;
  374. if (!area->pages) {
  375. remove_vm_area(area->addr);
  376. kfree(area);
  377. return NULL;
  378. }
  379. memset(area->pages, 0, array_size);
  380. for (i = 0; i < area->nr_pages; i++) {
  381. if (node < 0)
  382. area->pages[i] = alloc_page(gfp_mask);
  383. else
  384. area->pages[i] = alloc_pages_node(node, gfp_mask, 0);
  385. if (unlikely(!area->pages[i])) {
  386. /* Successfully allocated i pages, free them in __vunmap() */
  387. area->nr_pages = i;
  388. goto fail;
  389. }
  390. }
  391. if (map_vm_area(area, prot, &pages))
  392. goto fail;
  393. return area->addr;
  394. fail:
  395. vfree(area->addr);
  396. return NULL;
  397. }
  398. void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
  399. {
  400. return __vmalloc_area_node(area, gfp_mask, prot, -1);
  401. }
  402. /**
  403. * __vmalloc_node - allocate virtually contiguous memory
  404. * @size: allocation size
  405. * @gfp_mask: flags for the page level allocator
  406. * @prot: protection mask for the allocated pages
  407. * @node: node to use for allocation or -1
  408. *
  409. * Allocate enough pages to cover @size from the page level
  410. * allocator with @gfp_mask flags. Map them into contiguous
  411. * kernel virtual space, using a pagetable protection of @prot.
  412. */
  413. static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
  414. int node)
  415. {
  416. struct vm_struct *area;
  417. size = PAGE_ALIGN(size);
  418. if (!size || (size >> PAGE_SHIFT) > num_physpages)
  419. return NULL;
  420. area = get_vm_area_node(size, VM_ALLOC, node);
  421. if (!area)
  422. return NULL;
  423. return __vmalloc_area_node(area, gfp_mask, prot, node);
  424. }
  425. void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
  426. {
  427. return __vmalloc_node(size, gfp_mask, prot, -1);
  428. }
  429. EXPORT_SYMBOL(__vmalloc);
  430. /**
  431. * vmalloc - allocate virtually contiguous memory
  432. * @size: allocation size
  433. * Allocate enough pages to cover @size from the page level
  434. * allocator and map them into contiguous kernel virtual space.
  435. *
  436. * For tight control over page level allocator and protection flags
  437. * use __vmalloc() instead.
  438. */
  439. void *vmalloc(unsigned long size)
  440. {
  441. return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
  442. }
  443. EXPORT_SYMBOL(vmalloc);
  444. /**
  445. * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
  446. * @size: allocation size
  447. *
  448. * The resulting memory area is zeroed so it can be mapped to userspace
  449. * without leaking data.
  450. */
  451. void *vmalloc_user(unsigned long size)
  452. {
  453. struct vm_struct *area;
  454. void *ret;
  455. ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, PAGE_KERNEL);
  456. write_lock(&vmlist_lock);
  457. area = __find_vm_area(ret);
  458. area->flags |= VM_USERMAP;
  459. write_unlock(&vmlist_lock);
  460. return ret;
  461. }
  462. EXPORT_SYMBOL(vmalloc_user);
  463. /**
  464. * vmalloc_node - allocate memory on a specific node
  465. * @size: allocation size
  466. * @node: numa node
  467. *
  468. * Allocate enough pages to cover @size from the page level
  469. * allocator and map them into contiguous kernel virtual space.
  470. *
  471. * For tight control over page level allocator and protection flags
  472. * use __vmalloc() instead.
  473. */
  474. void *vmalloc_node(unsigned long size, int node)
  475. {
  476. return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, node);
  477. }
  478. EXPORT_SYMBOL(vmalloc_node);
  479. #ifndef PAGE_KERNEL_EXEC
  480. # define PAGE_KERNEL_EXEC PAGE_KERNEL
  481. #endif
  482. /**
  483. * vmalloc_exec - allocate virtually contiguous, executable memory
  484. * @size: allocation size
  485. *
  486. * Kernel-internal function to allocate enough pages to cover @size
  487. * the page level allocator and map them into contiguous and
  488. * executable kernel virtual space.
  489. *
  490. * For tight control over page level allocator and protection flags
  491. * use __vmalloc() instead.
  492. */
  493. void *vmalloc_exec(unsigned long size)
  494. {
  495. return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
  496. }
  497. /**
  498. * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
  499. * @size: allocation size
  500. *
  501. * Allocate enough 32bit PA addressable pages to cover @size from the
  502. * page level allocator and map them into contiguous kernel virtual space.
  503. */
  504. void *vmalloc_32(unsigned long size)
  505. {
  506. return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
  507. }
  508. EXPORT_SYMBOL(vmalloc_32);
  509. /**
  510. * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
  511. * @size: allocation size
  512. *
  513. * The resulting memory area is 32bit addressable and zeroed so it can be
  514. * mapped to userspace without leaking data.
  515. */
  516. void *vmalloc_32_user(unsigned long size)
  517. {
  518. struct vm_struct *area;
  519. void *ret;
  520. ret = __vmalloc(size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL);
  521. write_lock(&vmlist_lock);
  522. area = __find_vm_area(ret);
  523. area->flags |= VM_USERMAP;
  524. write_unlock(&vmlist_lock);
  525. return ret;
  526. }
  527. EXPORT_SYMBOL(vmalloc_32_user);
  528. long vread(char *buf, char *addr, unsigned long count)
  529. {
  530. struct vm_struct *tmp;
  531. char *vaddr, *buf_start = buf;
  532. unsigned long n;
  533. /* Don't allow overflow */
  534. if ((unsigned long) addr + count < count)
  535. count = -(unsigned long) addr;
  536. read_lock(&vmlist_lock);
  537. for (tmp = vmlist; tmp; tmp = tmp->next) {
  538. vaddr = (char *) tmp->addr;
  539. if (addr >= vaddr + tmp->size - PAGE_SIZE)
  540. continue;
  541. while (addr < vaddr) {
  542. if (count == 0)
  543. goto finished;
  544. *buf = '\0';
  545. buf++;
  546. addr++;
  547. count--;
  548. }
  549. n = vaddr + tmp->size - PAGE_SIZE - addr;
  550. do {
  551. if (count == 0)
  552. goto finished;
  553. *buf = *addr;
  554. buf++;
  555. addr++;
  556. count--;
  557. } while (--n > 0);
  558. }
  559. finished:
  560. read_unlock(&vmlist_lock);
  561. return buf - buf_start;
  562. }
  563. long vwrite(char *buf, char *addr, unsigned long count)
  564. {
  565. struct vm_struct *tmp;
  566. char *vaddr, *buf_start = buf;
  567. unsigned long n;
  568. /* Don't allow overflow */
  569. if ((unsigned long) addr + count < count)
  570. count = -(unsigned long) addr;
  571. read_lock(&vmlist_lock);
  572. for (tmp = vmlist; tmp; tmp = tmp->next) {
  573. vaddr = (char *) tmp->addr;
  574. if (addr >= vaddr + tmp->size - PAGE_SIZE)
  575. continue;
  576. while (addr < vaddr) {
  577. if (count == 0)
  578. goto finished;
  579. buf++;
  580. addr++;
  581. count--;
  582. }
  583. n = vaddr + tmp->size - PAGE_SIZE - addr;
  584. do {
  585. if (count == 0)
  586. goto finished;
  587. *addr = *buf;
  588. buf++;
  589. addr++;
  590. count--;
  591. } while (--n > 0);
  592. }
  593. finished:
  594. read_unlock(&vmlist_lock);
  595. return buf - buf_start;
  596. }
  597. /**
  598. * remap_vmalloc_range - map vmalloc pages to userspace
  599. * @vma: vma to cover (map full range of vma)
  600. * @addr: vmalloc memory
  601. * @pgoff: number of pages into addr before first page to map
  602. * @returns: 0 for success, -Exxx on failure
  603. *
  604. * This function checks that addr is a valid vmalloc'ed area, and
  605. * that it is big enough to cover the vma. Will return failure if
  606. * that criteria isn't met.
  607. *
  608. * Similar to remap_pfn_range (see mm/memory.c)
  609. */
  610. int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
  611. unsigned long pgoff)
  612. {
  613. struct vm_struct *area;
  614. unsigned long uaddr = vma->vm_start;
  615. unsigned long usize = vma->vm_end - vma->vm_start;
  616. int ret;
  617. if ((PAGE_SIZE-1) & (unsigned long)addr)
  618. return -EINVAL;
  619. read_lock(&vmlist_lock);
  620. area = __find_vm_area(addr);
  621. if (!area)
  622. goto out_einval_locked;
  623. if (!(area->flags & VM_USERMAP))
  624. goto out_einval_locked;
  625. if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
  626. goto out_einval_locked;
  627. read_unlock(&vmlist_lock);
  628. addr += pgoff << PAGE_SHIFT;
  629. do {
  630. struct page *page = vmalloc_to_page(addr);
  631. ret = vm_insert_page(vma, uaddr, page);
  632. if (ret)
  633. return ret;
  634. uaddr += PAGE_SIZE;
  635. addr += PAGE_SIZE;
  636. usize -= PAGE_SIZE;
  637. } while (usize > 0);
  638. /* Prevent "things" like memory migration? VM_flags need a cleanup... */
  639. vma->vm_flags |= VM_RESERVED;
  640. return ret;
  641. out_einval_locked:
  642. read_unlock(&vmlist_lock);
  643. return -EINVAL;
  644. }
  645. EXPORT_SYMBOL(remap_vmalloc_range);