setup.c 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233
  1. /*
  2. * linux/arch/x86-64/kernel/setup.c
  3. *
  4. * Copyright (C) 1995 Linus Torvalds
  5. *
  6. * Nov 2001 Dave Jones <davej@suse.de>
  7. * Forked from i386 setup code.
  8. */
  9. /*
  10. * This file handles the architecture-dependent parts of initialization
  11. */
  12. #include <linux/errno.h>
  13. #include <linux/sched.h>
  14. #include <linux/kernel.h>
  15. #include <linux/mm.h>
  16. #include <linux/stddef.h>
  17. #include <linux/unistd.h>
  18. #include <linux/ptrace.h>
  19. #include <linux/slab.h>
  20. #include <linux/user.h>
  21. #include <linux/a.out.h>
  22. #include <linux/screen_info.h>
  23. #include <linux/ioport.h>
  24. #include <linux/delay.h>
  25. #include <linux/init.h>
  26. #include <linux/initrd.h>
  27. #include <linux/highmem.h>
  28. #include <linux/bootmem.h>
  29. #include <linux/module.h>
  30. #include <asm/processor.h>
  31. #include <linux/console.h>
  32. #include <linux/seq_file.h>
  33. #include <linux/crash_dump.h>
  34. #include <linux/root_dev.h>
  35. #include <linux/pci.h>
  36. #include <linux/acpi.h>
  37. #include <linux/kallsyms.h>
  38. #include <linux/edd.h>
  39. #include <linux/mmzone.h>
  40. #include <linux/kexec.h>
  41. #include <linux/cpufreq.h>
  42. #include <linux/dmi.h>
  43. #include <linux/dma-mapping.h>
  44. #include <linux/ctype.h>
  45. #include <asm/mtrr.h>
  46. #include <asm/uaccess.h>
  47. #include <asm/system.h>
  48. #include <asm/io.h>
  49. #include <asm/smp.h>
  50. #include <asm/msr.h>
  51. #include <asm/desc.h>
  52. #include <video/edid.h>
  53. #include <asm/e820.h>
  54. #include <asm/dma.h>
  55. #include <asm/mpspec.h>
  56. #include <asm/mmu_context.h>
  57. #include <asm/bootsetup.h>
  58. #include <asm/proto.h>
  59. #include <asm/setup.h>
  60. #include <asm/mach_apic.h>
  61. #include <asm/numa.h>
  62. #include <asm/sections.h>
  63. #include <asm/dmi.h>
  64. /*
  65. * Machine setup..
  66. */
  67. struct cpuinfo_x86 boot_cpu_data __read_mostly;
  68. EXPORT_SYMBOL(boot_cpu_data);
  69. unsigned long mmu_cr4_features;
  70. /* Boot loader ID as an integer, for the benefit of proc_dointvec */
  71. int bootloader_type;
  72. unsigned long saved_video_mode;
  73. /*
  74. * Early DMI memory
  75. */
  76. int dmi_alloc_index;
  77. char dmi_alloc_data[DMI_MAX_DATA];
  78. /*
  79. * Setup options
  80. */
  81. struct screen_info screen_info;
  82. EXPORT_SYMBOL(screen_info);
  83. struct sys_desc_table_struct {
  84. unsigned short length;
  85. unsigned char table[0];
  86. };
  87. struct edid_info edid_info;
  88. EXPORT_SYMBOL_GPL(edid_info);
  89. extern int root_mountflags;
  90. char command_line[COMMAND_LINE_SIZE];
  91. struct resource standard_io_resources[] = {
  92. { .name = "dma1", .start = 0x00, .end = 0x1f,
  93. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  94. { .name = "pic1", .start = 0x20, .end = 0x21,
  95. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  96. { .name = "timer0", .start = 0x40, .end = 0x43,
  97. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  98. { .name = "timer1", .start = 0x50, .end = 0x53,
  99. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  100. { .name = "keyboard", .start = 0x60, .end = 0x6f,
  101. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  102. { .name = "dma page reg", .start = 0x80, .end = 0x8f,
  103. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  104. { .name = "pic2", .start = 0xa0, .end = 0xa1,
  105. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  106. { .name = "dma2", .start = 0xc0, .end = 0xdf,
  107. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  108. { .name = "fpu", .start = 0xf0, .end = 0xff,
  109. .flags = IORESOURCE_BUSY | IORESOURCE_IO }
  110. };
  111. #define IORESOURCE_RAM (IORESOURCE_BUSY | IORESOURCE_MEM)
  112. struct resource data_resource = {
  113. .name = "Kernel data",
  114. .start = 0,
  115. .end = 0,
  116. .flags = IORESOURCE_RAM,
  117. };
  118. struct resource code_resource = {
  119. .name = "Kernel code",
  120. .start = 0,
  121. .end = 0,
  122. .flags = IORESOURCE_RAM,
  123. };
  124. #define IORESOURCE_ROM (IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM)
  125. static struct resource system_rom_resource = {
  126. .name = "System ROM",
  127. .start = 0xf0000,
  128. .end = 0xfffff,
  129. .flags = IORESOURCE_ROM,
  130. };
  131. static struct resource extension_rom_resource = {
  132. .name = "Extension ROM",
  133. .start = 0xe0000,
  134. .end = 0xeffff,
  135. .flags = IORESOURCE_ROM,
  136. };
  137. static struct resource adapter_rom_resources[] = {
  138. { .name = "Adapter ROM", .start = 0xc8000, .end = 0,
  139. .flags = IORESOURCE_ROM },
  140. { .name = "Adapter ROM", .start = 0, .end = 0,
  141. .flags = IORESOURCE_ROM },
  142. { .name = "Adapter ROM", .start = 0, .end = 0,
  143. .flags = IORESOURCE_ROM },
  144. { .name = "Adapter ROM", .start = 0, .end = 0,
  145. .flags = IORESOURCE_ROM },
  146. { .name = "Adapter ROM", .start = 0, .end = 0,
  147. .flags = IORESOURCE_ROM },
  148. { .name = "Adapter ROM", .start = 0, .end = 0,
  149. .flags = IORESOURCE_ROM }
  150. };
  151. static struct resource video_rom_resource = {
  152. .name = "Video ROM",
  153. .start = 0xc0000,
  154. .end = 0xc7fff,
  155. .flags = IORESOURCE_ROM,
  156. };
  157. static struct resource video_ram_resource = {
  158. .name = "Video RAM area",
  159. .start = 0xa0000,
  160. .end = 0xbffff,
  161. .flags = IORESOURCE_RAM,
  162. };
  163. #define romsignature(x) (*(unsigned short *)(x) == 0xaa55)
  164. static int __init romchecksum(unsigned char *rom, unsigned long length)
  165. {
  166. unsigned char *p, sum = 0;
  167. for (p = rom; p < rom + length; p++)
  168. sum += *p;
  169. return sum == 0;
  170. }
  171. static void __init probe_roms(void)
  172. {
  173. unsigned long start, length, upper;
  174. unsigned char *rom;
  175. int i;
  176. /* video rom */
  177. upper = adapter_rom_resources[0].start;
  178. for (start = video_rom_resource.start; start < upper; start += 2048) {
  179. rom = isa_bus_to_virt(start);
  180. if (!romsignature(rom))
  181. continue;
  182. video_rom_resource.start = start;
  183. /* 0 < length <= 0x7f * 512, historically */
  184. length = rom[2] * 512;
  185. /* if checksum okay, trust length byte */
  186. if (length && romchecksum(rom, length))
  187. video_rom_resource.end = start + length - 1;
  188. request_resource(&iomem_resource, &video_rom_resource);
  189. break;
  190. }
  191. start = (video_rom_resource.end + 1 + 2047) & ~2047UL;
  192. if (start < upper)
  193. start = upper;
  194. /* system rom */
  195. request_resource(&iomem_resource, &system_rom_resource);
  196. upper = system_rom_resource.start;
  197. /* check for extension rom (ignore length byte!) */
  198. rom = isa_bus_to_virt(extension_rom_resource.start);
  199. if (romsignature(rom)) {
  200. length = extension_rom_resource.end - extension_rom_resource.start + 1;
  201. if (romchecksum(rom, length)) {
  202. request_resource(&iomem_resource, &extension_rom_resource);
  203. upper = extension_rom_resource.start;
  204. }
  205. }
  206. /* check for adapter roms on 2k boundaries */
  207. for (i = 0; i < ARRAY_SIZE(adapter_rom_resources) && start < upper;
  208. start += 2048) {
  209. rom = isa_bus_to_virt(start);
  210. if (!romsignature(rom))
  211. continue;
  212. /* 0 < length <= 0x7f * 512, historically */
  213. length = rom[2] * 512;
  214. /* but accept any length that fits if checksum okay */
  215. if (!length || start + length > upper || !romchecksum(rom, length))
  216. continue;
  217. adapter_rom_resources[i].start = start;
  218. adapter_rom_resources[i].end = start + length - 1;
  219. request_resource(&iomem_resource, &adapter_rom_resources[i]);
  220. start = adapter_rom_resources[i++].end & ~2047UL;
  221. }
  222. }
  223. #ifdef CONFIG_PROC_VMCORE
  224. /* elfcorehdr= specifies the location of elf core header
  225. * stored by the crashed kernel. This option will be passed
  226. * by kexec loader to the capture kernel.
  227. */
  228. static int __init setup_elfcorehdr(char *arg)
  229. {
  230. char *end;
  231. if (!arg)
  232. return -EINVAL;
  233. elfcorehdr_addr = memparse(arg, &end);
  234. return end > arg ? 0 : -EINVAL;
  235. }
  236. early_param("elfcorehdr", setup_elfcorehdr);
  237. #endif
  238. #ifndef CONFIG_NUMA
  239. static void __init
  240. contig_initmem_init(unsigned long start_pfn, unsigned long end_pfn)
  241. {
  242. unsigned long bootmap_size, bootmap;
  243. bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
  244. bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size);
  245. if (bootmap == -1L)
  246. panic("Cannot find bootmem map of size %ld\n",bootmap_size);
  247. bootmap_size = init_bootmem(bootmap >> PAGE_SHIFT, end_pfn);
  248. e820_register_active_regions(0, start_pfn, end_pfn);
  249. free_bootmem_with_active_regions(0, end_pfn);
  250. reserve_bootmem(bootmap, bootmap_size);
  251. }
  252. #endif
  253. #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
  254. struct edd edd;
  255. #ifdef CONFIG_EDD_MODULE
  256. EXPORT_SYMBOL(edd);
  257. #endif
  258. /**
  259. * copy_edd() - Copy the BIOS EDD information
  260. * from boot_params into a safe place.
  261. *
  262. */
  263. static inline void copy_edd(void)
  264. {
  265. memcpy(edd.mbr_signature, EDD_MBR_SIGNATURE, sizeof(edd.mbr_signature));
  266. memcpy(edd.edd_info, EDD_BUF, sizeof(edd.edd_info));
  267. edd.mbr_signature_nr = EDD_MBR_SIG_NR;
  268. edd.edd_info_nr = EDD_NR;
  269. }
  270. #else
  271. static inline void copy_edd(void)
  272. {
  273. }
  274. #endif
  275. #define EBDA_ADDR_POINTER 0x40E
  276. unsigned __initdata ebda_addr;
  277. unsigned __initdata ebda_size;
  278. static void discover_ebda(void)
  279. {
  280. /*
  281. * there is a real-mode segmented pointer pointing to the
  282. * 4K EBDA area at 0x40E
  283. */
  284. ebda_addr = *(unsigned short *)EBDA_ADDR_POINTER;
  285. ebda_addr <<= 4;
  286. ebda_size = *(unsigned short *)(unsigned long)ebda_addr;
  287. /* Round EBDA up to pages */
  288. if (ebda_size == 0)
  289. ebda_size = 1;
  290. ebda_size <<= 10;
  291. ebda_size = round_up(ebda_size + (ebda_addr & ~PAGE_MASK), PAGE_SIZE);
  292. if (ebda_size > 64*1024)
  293. ebda_size = 64*1024;
  294. }
  295. void __init setup_arch(char **cmdline_p)
  296. {
  297. printk(KERN_INFO "Command line: %s\n", saved_command_line);
  298. ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
  299. screen_info = SCREEN_INFO;
  300. edid_info = EDID_INFO;
  301. saved_video_mode = SAVED_VIDEO_MODE;
  302. bootloader_type = LOADER_TYPE;
  303. #ifdef CONFIG_BLK_DEV_RAM
  304. rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
  305. rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
  306. rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
  307. #endif
  308. setup_memory_region();
  309. copy_edd();
  310. if (!MOUNT_ROOT_RDONLY)
  311. root_mountflags &= ~MS_RDONLY;
  312. init_mm.start_code = (unsigned long) &_text;
  313. init_mm.end_code = (unsigned long) &_etext;
  314. init_mm.end_data = (unsigned long) &_edata;
  315. init_mm.brk = (unsigned long) &_end;
  316. code_resource.start = virt_to_phys(&_text);
  317. code_resource.end = virt_to_phys(&_etext)-1;
  318. data_resource.start = virt_to_phys(&_etext);
  319. data_resource.end = virt_to_phys(&_edata)-1;
  320. early_identify_cpu(&boot_cpu_data);
  321. strlcpy(command_line, saved_command_line, COMMAND_LINE_SIZE);
  322. *cmdline_p = command_line;
  323. parse_early_param();
  324. finish_e820_parsing();
  325. e820_register_active_regions(0, 0, -1UL);
  326. /*
  327. * partially used pages are not usable - thus
  328. * we are rounding upwards:
  329. */
  330. end_pfn = e820_end_of_ram();
  331. num_physpages = end_pfn;
  332. check_efer();
  333. discover_ebda();
  334. init_memory_mapping(0, (end_pfn_map << PAGE_SHIFT));
  335. dmi_scan_machine();
  336. zap_low_mappings(0);
  337. #ifdef CONFIG_ACPI
  338. /*
  339. * Initialize the ACPI boot-time table parser (gets the RSDP and SDT).
  340. * Call this early for SRAT node setup.
  341. */
  342. acpi_boot_table_init();
  343. #endif
  344. /* How many end-of-memory variables you have, grandma! */
  345. max_low_pfn = end_pfn;
  346. max_pfn = end_pfn;
  347. high_memory = (void *)__va(end_pfn * PAGE_SIZE - 1) + 1;
  348. /* Remove active ranges so rediscovery with NUMA-awareness happens */
  349. remove_all_active_ranges();
  350. #ifdef CONFIG_ACPI_NUMA
  351. /*
  352. * Parse SRAT to discover nodes.
  353. */
  354. acpi_numa_init();
  355. #endif
  356. #ifdef CONFIG_NUMA
  357. numa_initmem_init(0, end_pfn);
  358. #else
  359. contig_initmem_init(0, end_pfn);
  360. #endif
  361. /* Reserve direct mapping */
  362. reserve_bootmem_generic(table_start << PAGE_SHIFT,
  363. (table_end - table_start) << PAGE_SHIFT);
  364. /* reserve kernel */
  365. reserve_bootmem_generic(__pa_symbol(&_text),
  366. __pa_symbol(&_end) - __pa_symbol(&_text));
  367. /*
  368. * reserve physical page 0 - it's a special BIOS page on many boxes,
  369. * enabling clean reboots, SMP operation, laptop functions.
  370. */
  371. reserve_bootmem_generic(0, PAGE_SIZE);
  372. /* reserve ebda region */
  373. if (ebda_addr)
  374. reserve_bootmem_generic(ebda_addr, ebda_size);
  375. #ifdef CONFIG_SMP
  376. /*
  377. * But first pinch a few for the stack/trampoline stuff
  378. * FIXME: Don't need the extra page at 4K, but need to fix
  379. * trampoline before removing it. (see the GDT stuff)
  380. */
  381. reserve_bootmem_generic(PAGE_SIZE, PAGE_SIZE);
  382. /* Reserve SMP trampoline */
  383. reserve_bootmem_generic(SMP_TRAMPOLINE_BASE, PAGE_SIZE);
  384. #endif
  385. #ifdef CONFIG_ACPI_SLEEP
  386. /*
  387. * Reserve low memory region for sleep support.
  388. */
  389. acpi_reserve_bootmem();
  390. #endif
  391. /*
  392. * Find and reserve possible boot-time SMP configuration:
  393. */
  394. find_smp_config();
  395. #ifdef CONFIG_BLK_DEV_INITRD
  396. if (LOADER_TYPE && INITRD_START) {
  397. if (INITRD_START + INITRD_SIZE <= (end_pfn << PAGE_SHIFT)) {
  398. reserve_bootmem_generic(INITRD_START, INITRD_SIZE);
  399. initrd_start =
  400. INITRD_START ? INITRD_START + PAGE_OFFSET : 0;
  401. initrd_end = initrd_start+INITRD_SIZE;
  402. }
  403. else {
  404. printk(KERN_ERR "initrd extends beyond end of memory "
  405. "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
  406. (unsigned long)(INITRD_START + INITRD_SIZE),
  407. (unsigned long)(end_pfn << PAGE_SHIFT));
  408. initrd_start = 0;
  409. }
  410. }
  411. #endif
  412. #ifdef CONFIG_KEXEC
  413. if (crashk_res.start != crashk_res.end) {
  414. reserve_bootmem_generic(crashk_res.start,
  415. crashk_res.end - crashk_res.start + 1);
  416. }
  417. #endif
  418. paging_init();
  419. #ifdef CONFIG_PCI
  420. early_quirks();
  421. #endif
  422. /*
  423. * set this early, so we dont allocate cpu0
  424. * if MADT list doesnt list BSP first
  425. * mpparse.c/MP_processor_info() allocates logical cpu numbers.
  426. */
  427. cpu_set(0, cpu_present_map);
  428. #ifdef CONFIG_ACPI
  429. /*
  430. * Read APIC and some other early information from ACPI tables.
  431. */
  432. acpi_boot_init();
  433. #endif
  434. init_cpu_to_node();
  435. /*
  436. * get boot-time SMP configuration:
  437. */
  438. if (smp_found_config)
  439. get_smp_config();
  440. init_apic_mappings();
  441. /*
  442. * Request address space for all standard RAM and ROM resources
  443. * and also for regions reported as reserved by the e820.
  444. */
  445. probe_roms();
  446. e820_reserve_resources();
  447. e820_mark_nosave_regions();
  448. request_resource(&iomem_resource, &video_ram_resource);
  449. {
  450. unsigned i;
  451. /* request I/O space for devices used on all i[345]86 PCs */
  452. for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
  453. request_resource(&ioport_resource, &standard_io_resources[i]);
  454. }
  455. e820_setup_gap();
  456. #ifdef CONFIG_VT
  457. #if defined(CONFIG_VGA_CONSOLE)
  458. conswitchp = &vga_con;
  459. #elif defined(CONFIG_DUMMY_CONSOLE)
  460. conswitchp = &dummy_con;
  461. #endif
  462. #endif
  463. }
  464. static int __cpuinit get_model_name(struct cpuinfo_x86 *c)
  465. {
  466. unsigned int *v;
  467. if (c->extended_cpuid_level < 0x80000004)
  468. return 0;
  469. v = (unsigned int *) c->x86_model_id;
  470. cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
  471. cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
  472. cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
  473. c->x86_model_id[48] = 0;
  474. return 1;
  475. }
  476. static void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
  477. {
  478. unsigned int n, dummy, eax, ebx, ecx, edx;
  479. n = c->extended_cpuid_level;
  480. if (n >= 0x80000005) {
  481. cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
  482. printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
  483. edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
  484. c->x86_cache_size=(ecx>>24)+(edx>>24);
  485. /* On K8 L1 TLB is inclusive, so don't count it */
  486. c->x86_tlbsize = 0;
  487. }
  488. if (n >= 0x80000006) {
  489. cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
  490. ecx = cpuid_ecx(0x80000006);
  491. c->x86_cache_size = ecx >> 16;
  492. c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
  493. printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
  494. c->x86_cache_size, ecx & 0xFF);
  495. }
  496. if (n >= 0x80000007)
  497. cpuid(0x80000007, &dummy, &dummy, &dummy, &c->x86_power);
  498. if (n >= 0x80000008) {
  499. cpuid(0x80000008, &eax, &dummy, &dummy, &dummy);
  500. c->x86_virt_bits = (eax >> 8) & 0xff;
  501. c->x86_phys_bits = eax & 0xff;
  502. }
  503. }
  504. #ifdef CONFIG_NUMA
  505. static int nearby_node(int apicid)
  506. {
  507. int i;
  508. for (i = apicid - 1; i >= 0; i--) {
  509. int node = apicid_to_node[i];
  510. if (node != NUMA_NO_NODE && node_online(node))
  511. return node;
  512. }
  513. for (i = apicid + 1; i < MAX_LOCAL_APIC; i++) {
  514. int node = apicid_to_node[i];
  515. if (node != NUMA_NO_NODE && node_online(node))
  516. return node;
  517. }
  518. return first_node(node_online_map); /* Shouldn't happen */
  519. }
  520. #endif
  521. /*
  522. * On a AMD dual core setup the lower bits of the APIC id distingush the cores.
  523. * Assumes number of cores is a power of two.
  524. */
  525. static void __init amd_detect_cmp(struct cpuinfo_x86 *c)
  526. {
  527. #ifdef CONFIG_SMP
  528. unsigned bits;
  529. #ifdef CONFIG_NUMA
  530. int cpu = smp_processor_id();
  531. int node = 0;
  532. unsigned apicid = hard_smp_processor_id();
  533. #endif
  534. unsigned ecx = cpuid_ecx(0x80000008);
  535. c->x86_max_cores = (ecx & 0xff) + 1;
  536. /* CPU telling us the core id bits shift? */
  537. bits = (ecx >> 12) & 0xF;
  538. /* Otherwise recompute */
  539. if (bits == 0) {
  540. while ((1 << bits) < c->x86_max_cores)
  541. bits++;
  542. }
  543. /* Low order bits define the core id (index of core in socket) */
  544. c->cpu_core_id = c->phys_proc_id & ((1 << bits)-1);
  545. /* Convert the APIC ID into the socket ID */
  546. c->phys_proc_id = phys_pkg_id(bits);
  547. #ifdef CONFIG_NUMA
  548. node = c->phys_proc_id;
  549. if (apicid_to_node[apicid] != NUMA_NO_NODE)
  550. node = apicid_to_node[apicid];
  551. if (!node_online(node)) {
  552. /* Two possibilities here:
  553. - The CPU is missing memory and no node was created.
  554. In that case try picking one from a nearby CPU
  555. - The APIC IDs differ from the HyperTransport node IDs
  556. which the K8 northbridge parsing fills in.
  557. Assume they are all increased by a constant offset,
  558. but in the same order as the HT nodeids.
  559. If that doesn't result in a usable node fall back to the
  560. path for the previous case. */
  561. int ht_nodeid = apicid - (cpu_data[0].phys_proc_id << bits);
  562. if (ht_nodeid >= 0 &&
  563. apicid_to_node[ht_nodeid] != NUMA_NO_NODE)
  564. node = apicid_to_node[ht_nodeid];
  565. /* Pick a nearby node */
  566. if (!node_online(node))
  567. node = nearby_node(apicid);
  568. }
  569. numa_set_node(cpu, node);
  570. printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node);
  571. #endif
  572. #endif
  573. }
  574. static void __cpuinit init_amd(struct cpuinfo_x86 *c)
  575. {
  576. unsigned level;
  577. #ifdef CONFIG_SMP
  578. unsigned long value;
  579. /*
  580. * Disable TLB flush filter by setting HWCR.FFDIS on K8
  581. * bit 6 of msr C001_0015
  582. *
  583. * Errata 63 for SH-B3 steppings
  584. * Errata 122 for all steppings (F+ have it disabled by default)
  585. */
  586. if (c->x86 == 15) {
  587. rdmsrl(MSR_K8_HWCR, value);
  588. value |= 1 << 6;
  589. wrmsrl(MSR_K8_HWCR, value);
  590. }
  591. #endif
  592. /* Bit 31 in normal CPUID used for nonstandard 3DNow ID;
  593. 3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway */
  594. clear_bit(0*32+31, &c->x86_capability);
  595. /* On C+ stepping K8 rep microcode works well for copy/memset */
  596. level = cpuid_eax(1);
  597. if (c->x86 == 15 && ((level >= 0x0f48 && level < 0x0f50) || level >= 0x0f58))
  598. set_bit(X86_FEATURE_REP_GOOD, &c->x86_capability);
  599. /* Enable workaround for FXSAVE leak */
  600. if (c->x86 >= 6)
  601. set_bit(X86_FEATURE_FXSAVE_LEAK, &c->x86_capability);
  602. level = get_model_name(c);
  603. if (!level) {
  604. switch (c->x86) {
  605. case 15:
  606. /* Should distinguish Models here, but this is only
  607. a fallback anyways. */
  608. strcpy(c->x86_model_id, "Hammer");
  609. break;
  610. }
  611. }
  612. display_cacheinfo(c);
  613. /* c->x86_power is 8000_0007 edx. Bit 8 is constant TSC */
  614. if (c->x86_power & (1<<8))
  615. set_bit(X86_FEATURE_CONSTANT_TSC, &c->x86_capability);
  616. /* Multi core CPU? */
  617. if (c->extended_cpuid_level >= 0x80000008)
  618. amd_detect_cmp(c);
  619. /* Fix cpuid4 emulation for more */
  620. num_cache_leaves = 3;
  621. /* When there is only one core no need to synchronize RDTSC */
  622. if (num_possible_cpus() == 1)
  623. set_bit(X86_FEATURE_SYNC_RDTSC, &c->x86_capability);
  624. else
  625. clear_bit(X86_FEATURE_SYNC_RDTSC, &c->x86_capability);
  626. }
  627. static void __cpuinit detect_ht(struct cpuinfo_x86 *c)
  628. {
  629. #ifdef CONFIG_SMP
  630. u32 eax, ebx, ecx, edx;
  631. int index_msb, core_bits;
  632. cpuid(1, &eax, &ebx, &ecx, &edx);
  633. if (!cpu_has(c, X86_FEATURE_HT))
  634. return;
  635. if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
  636. goto out;
  637. smp_num_siblings = (ebx & 0xff0000) >> 16;
  638. if (smp_num_siblings == 1) {
  639. printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
  640. } else if (smp_num_siblings > 1 ) {
  641. if (smp_num_siblings > NR_CPUS) {
  642. printk(KERN_WARNING "CPU: Unsupported number of the siblings %d", smp_num_siblings);
  643. smp_num_siblings = 1;
  644. return;
  645. }
  646. index_msb = get_count_order(smp_num_siblings);
  647. c->phys_proc_id = phys_pkg_id(index_msb);
  648. smp_num_siblings = smp_num_siblings / c->x86_max_cores;
  649. index_msb = get_count_order(smp_num_siblings) ;
  650. core_bits = get_count_order(c->x86_max_cores);
  651. c->cpu_core_id = phys_pkg_id(index_msb) &
  652. ((1 << core_bits) - 1);
  653. }
  654. out:
  655. if ((c->x86_max_cores * smp_num_siblings) > 1) {
  656. printk(KERN_INFO "CPU: Physical Processor ID: %d\n", c->phys_proc_id);
  657. printk(KERN_INFO "CPU: Processor Core ID: %d\n", c->cpu_core_id);
  658. }
  659. #endif
  660. }
  661. /*
  662. * find out the number of processor cores on the die
  663. */
  664. static int __cpuinit intel_num_cpu_cores(struct cpuinfo_x86 *c)
  665. {
  666. unsigned int eax, t;
  667. if (c->cpuid_level < 4)
  668. return 1;
  669. cpuid_count(4, 0, &eax, &t, &t, &t);
  670. if (eax & 0x1f)
  671. return ((eax >> 26) + 1);
  672. else
  673. return 1;
  674. }
  675. static void srat_detect_node(void)
  676. {
  677. #ifdef CONFIG_NUMA
  678. unsigned node;
  679. int cpu = smp_processor_id();
  680. int apicid = hard_smp_processor_id();
  681. /* Don't do the funky fallback heuristics the AMD version employs
  682. for now. */
  683. node = apicid_to_node[apicid];
  684. if (node == NUMA_NO_NODE)
  685. node = first_node(node_online_map);
  686. numa_set_node(cpu, node);
  687. printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node);
  688. #endif
  689. }
  690. static void __cpuinit init_intel(struct cpuinfo_x86 *c)
  691. {
  692. /* Cache sizes */
  693. unsigned n;
  694. init_intel_cacheinfo(c);
  695. if (c->cpuid_level > 9 ) {
  696. unsigned eax = cpuid_eax(10);
  697. /* Check for version and the number of counters */
  698. if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
  699. set_bit(X86_FEATURE_ARCH_PERFMON, &c->x86_capability);
  700. }
  701. n = c->extended_cpuid_level;
  702. if (n >= 0x80000008) {
  703. unsigned eax = cpuid_eax(0x80000008);
  704. c->x86_virt_bits = (eax >> 8) & 0xff;
  705. c->x86_phys_bits = eax & 0xff;
  706. /* CPUID workaround for Intel 0F34 CPU */
  707. if (c->x86_vendor == X86_VENDOR_INTEL &&
  708. c->x86 == 0xF && c->x86_model == 0x3 &&
  709. c->x86_mask == 0x4)
  710. c->x86_phys_bits = 36;
  711. }
  712. if (c->x86 == 15)
  713. c->x86_cache_alignment = c->x86_clflush_size * 2;
  714. if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
  715. (c->x86 == 0x6 && c->x86_model >= 0x0e))
  716. set_bit(X86_FEATURE_CONSTANT_TSC, &c->x86_capability);
  717. if (c->x86 == 6)
  718. set_bit(X86_FEATURE_REP_GOOD, &c->x86_capability);
  719. set_bit(X86_FEATURE_SYNC_RDTSC, &c->x86_capability);
  720. c->x86_max_cores = intel_num_cpu_cores(c);
  721. srat_detect_node();
  722. }
  723. static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
  724. {
  725. char *v = c->x86_vendor_id;
  726. if (!strcmp(v, "AuthenticAMD"))
  727. c->x86_vendor = X86_VENDOR_AMD;
  728. else if (!strcmp(v, "GenuineIntel"))
  729. c->x86_vendor = X86_VENDOR_INTEL;
  730. else
  731. c->x86_vendor = X86_VENDOR_UNKNOWN;
  732. }
  733. struct cpu_model_info {
  734. int vendor;
  735. int family;
  736. char *model_names[16];
  737. };
  738. /* Do some early cpuid on the boot CPU to get some parameter that are
  739. needed before check_bugs. Everything advanced is in identify_cpu
  740. below. */
  741. void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c)
  742. {
  743. u32 tfms;
  744. c->loops_per_jiffy = loops_per_jiffy;
  745. c->x86_cache_size = -1;
  746. c->x86_vendor = X86_VENDOR_UNKNOWN;
  747. c->x86_model = c->x86_mask = 0; /* So far unknown... */
  748. c->x86_vendor_id[0] = '\0'; /* Unset */
  749. c->x86_model_id[0] = '\0'; /* Unset */
  750. c->x86_clflush_size = 64;
  751. c->x86_cache_alignment = c->x86_clflush_size;
  752. c->x86_max_cores = 1;
  753. c->extended_cpuid_level = 0;
  754. memset(&c->x86_capability, 0, sizeof c->x86_capability);
  755. /* Get vendor name */
  756. cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
  757. (unsigned int *)&c->x86_vendor_id[0],
  758. (unsigned int *)&c->x86_vendor_id[8],
  759. (unsigned int *)&c->x86_vendor_id[4]);
  760. get_cpu_vendor(c);
  761. /* Initialize the standard set of capabilities */
  762. /* Note that the vendor-specific code below might override */
  763. /* Intel-defined flags: level 0x00000001 */
  764. if (c->cpuid_level >= 0x00000001) {
  765. __u32 misc;
  766. cpuid(0x00000001, &tfms, &misc, &c->x86_capability[4],
  767. &c->x86_capability[0]);
  768. c->x86 = (tfms >> 8) & 0xf;
  769. c->x86_model = (tfms >> 4) & 0xf;
  770. c->x86_mask = tfms & 0xf;
  771. if (c->x86 == 0xf)
  772. c->x86 += (tfms >> 20) & 0xff;
  773. if (c->x86 >= 0x6)
  774. c->x86_model += ((tfms >> 16) & 0xF) << 4;
  775. if (c->x86_capability[0] & (1<<19))
  776. c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
  777. } else {
  778. /* Have CPUID level 0 only - unheard of */
  779. c->x86 = 4;
  780. }
  781. #ifdef CONFIG_SMP
  782. c->phys_proc_id = (cpuid_ebx(1) >> 24) & 0xff;
  783. #endif
  784. }
  785. /*
  786. * This does the hard work of actually picking apart the CPU stuff...
  787. */
  788. void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
  789. {
  790. int i;
  791. u32 xlvl;
  792. early_identify_cpu(c);
  793. /* AMD-defined flags: level 0x80000001 */
  794. xlvl = cpuid_eax(0x80000000);
  795. c->extended_cpuid_level = xlvl;
  796. if ((xlvl & 0xffff0000) == 0x80000000) {
  797. if (xlvl >= 0x80000001) {
  798. c->x86_capability[1] = cpuid_edx(0x80000001);
  799. c->x86_capability[6] = cpuid_ecx(0x80000001);
  800. }
  801. if (xlvl >= 0x80000004)
  802. get_model_name(c); /* Default name */
  803. }
  804. /* Transmeta-defined flags: level 0x80860001 */
  805. xlvl = cpuid_eax(0x80860000);
  806. if ((xlvl & 0xffff0000) == 0x80860000) {
  807. /* Don't set x86_cpuid_level here for now to not confuse. */
  808. if (xlvl >= 0x80860001)
  809. c->x86_capability[2] = cpuid_edx(0x80860001);
  810. }
  811. c->apicid = phys_pkg_id(0);
  812. /*
  813. * Vendor-specific initialization. In this section we
  814. * canonicalize the feature flags, meaning if there are
  815. * features a certain CPU supports which CPUID doesn't
  816. * tell us, CPUID claiming incorrect flags, or other bugs,
  817. * we handle them here.
  818. *
  819. * At the end of this section, c->x86_capability better
  820. * indicate the features this CPU genuinely supports!
  821. */
  822. switch (c->x86_vendor) {
  823. case X86_VENDOR_AMD:
  824. init_amd(c);
  825. break;
  826. case X86_VENDOR_INTEL:
  827. init_intel(c);
  828. break;
  829. case X86_VENDOR_UNKNOWN:
  830. default:
  831. display_cacheinfo(c);
  832. break;
  833. }
  834. select_idle_routine(c);
  835. detect_ht(c);
  836. /*
  837. * On SMP, boot_cpu_data holds the common feature set between
  838. * all CPUs; so make sure that we indicate which features are
  839. * common between the CPUs. The first time this routine gets
  840. * executed, c == &boot_cpu_data.
  841. */
  842. if (c != &boot_cpu_data) {
  843. /* AND the already accumulated flags with these */
  844. for (i = 0 ; i < NCAPINTS ; i++)
  845. boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
  846. }
  847. #ifdef CONFIG_X86_MCE
  848. mcheck_init(c);
  849. #endif
  850. if (c == &boot_cpu_data)
  851. mtrr_bp_init();
  852. else
  853. mtrr_ap_init();
  854. #ifdef CONFIG_NUMA
  855. numa_add_cpu(smp_processor_id());
  856. #endif
  857. }
  858. void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
  859. {
  860. if (c->x86_model_id[0])
  861. printk("%s", c->x86_model_id);
  862. if (c->x86_mask || c->cpuid_level >= 0)
  863. printk(" stepping %02x\n", c->x86_mask);
  864. else
  865. printk("\n");
  866. }
  867. /*
  868. * Get CPU information for use by the procfs.
  869. */
  870. static int show_cpuinfo(struct seq_file *m, void *v)
  871. {
  872. struct cpuinfo_x86 *c = v;
  873. /*
  874. * These flag bits must match the definitions in <asm/cpufeature.h>.
  875. * NULL means this bit is undefined or reserved; either way it doesn't
  876. * have meaning as far as Linux is concerned. Note that it's important
  877. * to realize there is a difference between this table and CPUID -- if
  878. * applications want to get the raw CPUID data, they should access
  879. * /dev/cpu/<cpu_nr>/cpuid instead.
  880. */
  881. static char *x86_cap_flags[] = {
  882. /* Intel-defined */
  883. "fpu", "vme", "de", "pse", "tsc", "msr", "pae", "mce",
  884. "cx8", "apic", NULL, "sep", "mtrr", "pge", "mca", "cmov",
  885. "pat", "pse36", "pn", "clflush", NULL, "dts", "acpi", "mmx",
  886. "fxsr", "sse", "sse2", "ss", "ht", "tm", "ia64", NULL,
  887. /* AMD-defined */
  888. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  889. NULL, NULL, NULL, "syscall", NULL, NULL, NULL, NULL,
  890. NULL, NULL, NULL, NULL, "nx", NULL, "mmxext", NULL,
  891. NULL, "fxsr_opt", NULL, "rdtscp", NULL, "lm", "3dnowext", "3dnow",
  892. /* Transmeta-defined */
  893. "recovery", "longrun", NULL, "lrti", NULL, NULL, NULL, NULL,
  894. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  895. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  896. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  897. /* Other (Linux-defined) */
  898. "cxmmx", NULL, "cyrix_arr", "centaur_mcr", NULL,
  899. "constant_tsc", NULL, NULL,
  900. "up", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  901. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  902. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  903. /* Intel-defined (#2) */
  904. "pni", NULL, NULL, "monitor", "ds_cpl", "vmx", "smx", "est",
  905. "tm2", "ssse3", "cid", NULL, NULL, "cx16", "xtpr", NULL,
  906. NULL, NULL, "dca", NULL, NULL, NULL, NULL, NULL,
  907. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  908. /* VIA/Cyrix/Centaur-defined */
  909. NULL, NULL, "rng", "rng_en", NULL, NULL, "ace", "ace_en",
  910. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  911. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  912. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  913. /* AMD-defined (#2) */
  914. "lahf_lm", "cmp_legacy", "svm", NULL, "cr8_legacy", NULL, NULL, NULL,
  915. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  916. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  917. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  918. };
  919. static char *x86_power_flags[] = {
  920. "ts", /* temperature sensor */
  921. "fid", /* frequency id control */
  922. "vid", /* voltage id control */
  923. "ttp", /* thermal trip */
  924. "tm",
  925. "stc",
  926. NULL,
  927. /* nothing */ /* constant_tsc - moved to flags */
  928. };
  929. #ifdef CONFIG_SMP
  930. if (!cpu_online(c-cpu_data))
  931. return 0;
  932. #endif
  933. seq_printf(m,"processor\t: %u\n"
  934. "vendor_id\t: %s\n"
  935. "cpu family\t: %d\n"
  936. "model\t\t: %d\n"
  937. "model name\t: %s\n",
  938. (unsigned)(c-cpu_data),
  939. c->x86_vendor_id[0] ? c->x86_vendor_id : "unknown",
  940. c->x86,
  941. (int)c->x86_model,
  942. c->x86_model_id[0] ? c->x86_model_id : "unknown");
  943. if (c->x86_mask || c->cpuid_level >= 0)
  944. seq_printf(m, "stepping\t: %d\n", c->x86_mask);
  945. else
  946. seq_printf(m, "stepping\t: unknown\n");
  947. if (cpu_has(c,X86_FEATURE_TSC)) {
  948. unsigned int freq = cpufreq_quick_get((unsigned)(c-cpu_data));
  949. if (!freq)
  950. freq = cpu_khz;
  951. seq_printf(m, "cpu MHz\t\t: %u.%03u\n",
  952. freq / 1000, (freq % 1000));
  953. }
  954. /* Cache size */
  955. if (c->x86_cache_size >= 0)
  956. seq_printf(m, "cache size\t: %d KB\n", c->x86_cache_size);
  957. #ifdef CONFIG_SMP
  958. if (smp_num_siblings * c->x86_max_cores > 1) {
  959. int cpu = c - cpu_data;
  960. seq_printf(m, "physical id\t: %d\n", c->phys_proc_id);
  961. seq_printf(m, "siblings\t: %d\n", cpus_weight(cpu_core_map[cpu]));
  962. seq_printf(m, "core id\t\t: %d\n", c->cpu_core_id);
  963. seq_printf(m, "cpu cores\t: %d\n", c->booted_cores);
  964. }
  965. #endif
  966. seq_printf(m,
  967. "fpu\t\t: yes\n"
  968. "fpu_exception\t: yes\n"
  969. "cpuid level\t: %d\n"
  970. "wp\t\t: yes\n"
  971. "flags\t\t:",
  972. c->cpuid_level);
  973. {
  974. int i;
  975. for ( i = 0 ; i < 32*NCAPINTS ; i++ )
  976. if (cpu_has(c, i) && x86_cap_flags[i] != NULL)
  977. seq_printf(m, " %s", x86_cap_flags[i]);
  978. }
  979. seq_printf(m, "\nbogomips\t: %lu.%02lu\n",
  980. c->loops_per_jiffy/(500000/HZ),
  981. (c->loops_per_jiffy/(5000/HZ)) % 100);
  982. if (c->x86_tlbsize > 0)
  983. seq_printf(m, "TLB size\t: %d 4K pages\n", c->x86_tlbsize);
  984. seq_printf(m, "clflush size\t: %d\n", c->x86_clflush_size);
  985. seq_printf(m, "cache_alignment\t: %d\n", c->x86_cache_alignment);
  986. seq_printf(m, "address sizes\t: %u bits physical, %u bits virtual\n",
  987. c->x86_phys_bits, c->x86_virt_bits);
  988. seq_printf(m, "power management:");
  989. {
  990. unsigned i;
  991. for (i = 0; i < 32; i++)
  992. if (c->x86_power & (1 << i)) {
  993. if (i < ARRAY_SIZE(x86_power_flags) &&
  994. x86_power_flags[i])
  995. seq_printf(m, "%s%s",
  996. x86_power_flags[i][0]?" ":"",
  997. x86_power_flags[i]);
  998. else
  999. seq_printf(m, " [%d]", i);
  1000. }
  1001. }
  1002. seq_printf(m, "\n\n");
  1003. return 0;
  1004. }
  1005. static void *c_start(struct seq_file *m, loff_t *pos)
  1006. {
  1007. return *pos < NR_CPUS ? cpu_data + *pos : NULL;
  1008. }
  1009. static void *c_next(struct seq_file *m, void *v, loff_t *pos)
  1010. {
  1011. ++*pos;
  1012. return c_start(m, pos);
  1013. }
  1014. static void c_stop(struct seq_file *m, void *v)
  1015. {
  1016. }
  1017. struct seq_operations cpuinfo_op = {
  1018. .start =c_start,
  1019. .next = c_next,
  1020. .stop = c_stop,
  1021. .show = show_cpuinfo,
  1022. };
  1023. #if defined(CONFIG_INPUT_PCSPKR) || defined(CONFIG_INPUT_PCSPKR_MODULE)
  1024. #include <linux/platform_device.h>
  1025. static __init int add_pcspkr(void)
  1026. {
  1027. struct platform_device *pd;
  1028. int ret;
  1029. pd = platform_device_alloc("pcspkr", -1);
  1030. if (!pd)
  1031. return -ENOMEM;
  1032. ret = platform_device_add(pd);
  1033. if (ret)
  1034. platform_device_put(pd);
  1035. return ret;
  1036. }
  1037. device_initcall(add_pcspkr);
  1038. #endif