pgtable.c 7.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298
  1. /*
  2. * linux/arch/i386/mm/pgtable.c
  3. */
  4. #include <linux/sched.h>
  5. #include <linux/kernel.h>
  6. #include <linux/errno.h>
  7. #include <linux/mm.h>
  8. #include <linux/swap.h>
  9. #include <linux/smp.h>
  10. #include <linux/highmem.h>
  11. #include <linux/slab.h>
  12. #include <linux/pagemap.h>
  13. #include <linux/spinlock.h>
  14. #include <linux/module.h>
  15. #include <asm/system.h>
  16. #include <asm/pgtable.h>
  17. #include <asm/pgalloc.h>
  18. #include <asm/fixmap.h>
  19. #include <asm/e820.h>
  20. #include <asm/tlb.h>
  21. #include <asm/tlbflush.h>
  22. void show_mem(void)
  23. {
  24. int total = 0, reserved = 0;
  25. int shared = 0, cached = 0;
  26. int highmem = 0;
  27. struct page *page;
  28. pg_data_t *pgdat;
  29. unsigned long i;
  30. unsigned long flags;
  31. printk(KERN_INFO "Mem-info:\n");
  32. show_free_areas();
  33. printk(KERN_INFO "Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
  34. for_each_online_pgdat(pgdat) {
  35. pgdat_resize_lock(pgdat, &flags);
  36. for (i = 0; i < pgdat->node_spanned_pages; ++i) {
  37. page = pgdat_page_nr(pgdat, i);
  38. total++;
  39. if (PageHighMem(page))
  40. highmem++;
  41. if (PageReserved(page))
  42. reserved++;
  43. else if (PageSwapCache(page))
  44. cached++;
  45. else if (page_count(page))
  46. shared += page_count(page) - 1;
  47. }
  48. pgdat_resize_unlock(pgdat, &flags);
  49. }
  50. printk(KERN_INFO "%d pages of RAM\n", total);
  51. printk(KERN_INFO "%d pages of HIGHMEM\n", highmem);
  52. printk(KERN_INFO "%d reserved pages\n", reserved);
  53. printk(KERN_INFO "%d pages shared\n", shared);
  54. printk(KERN_INFO "%d pages swap cached\n", cached);
  55. printk(KERN_INFO "%lu pages dirty\n", global_page_state(NR_FILE_DIRTY));
  56. printk(KERN_INFO "%lu pages writeback\n",
  57. global_page_state(NR_WRITEBACK));
  58. printk(KERN_INFO "%lu pages mapped\n", global_page_state(NR_FILE_MAPPED));
  59. printk(KERN_INFO "%lu pages slab\n",
  60. global_page_state(NR_SLAB_RECLAIMABLE) +
  61. global_page_state(NR_SLAB_UNRECLAIMABLE));
  62. printk(KERN_INFO "%lu pages pagetables\n",
  63. global_page_state(NR_PAGETABLE));
  64. }
  65. /*
  66. * Associate a virtual page frame with a given physical page frame
  67. * and protection flags for that frame.
  68. */
  69. static void set_pte_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags)
  70. {
  71. pgd_t *pgd;
  72. pud_t *pud;
  73. pmd_t *pmd;
  74. pte_t *pte;
  75. pgd = swapper_pg_dir + pgd_index(vaddr);
  76. if (pgd_none(*pgd)) {
  77. BUG();
  78. return;
  79. }
  80. pud = pud_offset(pgd, vaddr);
  81. if (pud_none(*pud)) {
  82. BUG();
  83. return;
  84. }
  85. pmd = pmd_offset(pud, vaddr);
  86. if (pmd_none(*pmd)) {
  87. BUG();
  88. return;
  89. }
  90. pte = pte_offset_kernel(pmd, vaddr);
  91. /* <pfn,flags> stored as-is, to permit clearing entries */
  92. set_pte(pte, pfn_pte(pfn, flags));
  93. /*
  94. * It's enough to flush this one mapping.
  95. * (PGE mappings get flushed as well)
  96. */
  97. __flush_tlb_one(vaddr);
  98. }
  99. /*
  100. * Associate a large virtual page frame with a given physical page frame
  101. * and protection flags for that frame. pfn is for the base of the page,
  102. * vaddr is what the page gets mapped to - both must be properly aligned.
  103. * The pmd must already be instantiated. Assumes PAE mode.
  104. */
  105. void set_pmd_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags)
  106. {
  107. pgd_t *pgd;
  108. pud_t *pud;
  109. pmd_t *pmd;
  110. if (vaddr & (PMD_SIZE-1)) { /* vaddr is misaligned */
  111. printk(KERN_WARNING "set_pmd_pfn: vaddr misaligned\n");
  112. return; /* BUG(); */
  113. }
  114. if (pfn & (PTRS_PER_PTE-1)) { /* pfn is misaligned */
  115. printk(KERN_WARNING "set_pmd_pfn: pfn misaligned\n");
  116. return; /* BUG(); */
  117. }
  118. pgd = swapper_pg_dir + pgd_index(vaddr);
  119. if (pgd_none(*pgd)) {
  120. printk(KERN_WARNING "set_pmd_pfn: pgd_none\n");
  121. return; /* BUG(); */
  122. }
  123. pud = pud_offset(pgd, vaddr);
  124. pmd = pmd_offset(pud, vaddr);
  125. set_pmd(pmd, pfn_pmd(pfn, flags));
  126. /*
  127. * It's enough to flush this one mapping.
  128. * (PGE mappings get flushed as well)
  129. */
  130. __flush_tlb_one(vaddr);
  131. }
  132. static int fixmaps;
  133. #ifndef CONFIG_COMPAT_VDSO
  134. unsigned long __FIXADDR_TOP = 0xfffff000;
  135. EXPORT_SYMBOL(__FIXADDR_TOP);
  136. #endif
  137. void __set_fixmap (enum fixed_addresses idx, unsigned long phys, pgprot_t flags)
  138. {
  139. unsigned long address = __fix_to_virt(idx);
  140. if (idx >= __end_of_fixed_addresses) {
  141. BUG();
  142. return;
  143. }
  144. set_pte_pfn(address, phys >> PAGE_SHIFT, flags);
  145. fixmaps++;
  146. }
  147. /**
  148. * reserve_top_address - reserves a hole in the top of kernel address space
  149. * @reserve - size of hole to reserve
  150. *
  151. * Can be used to relocate the fixmap area and poke a hole in the top
  152. * of kernel address space to make room for a hypervisor.
  153. */
  154. void reserve_top_address(unsigned long reserve)
  155. {
  156. BUG_ON(fixmaps > 0);
  157. #ifdef CONFIG_COMPAT_VDSO
  158. BUG_ON(reserve != 0);
  159. #else
  160. __FIXADDR_TOP = -reserve - PAGE_SIZE;
  161. __VMALLOC_RESERVE += reserve;
  162. #endif
  163. }
  164. pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
  165. {
  166. return (pte_t *)__get_free_page(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO);
  167. }
  168. struct page *pte_alloc_one(struct mm_struct *mm, unsigned long address)
  169. {
  170. struct page *pte;
  171. #ifdef CONFIG_HIGHPTE
  172. pte = alloc_pages(GFP_KERNEL|__GFP_HIGHMEM|__GFP_REPEAT|__GFP_ZERO, 0);
  173. #else
  174. pte = alloc_pages(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO, 0);
  175. #endif
  176. return pte;
  177. }
  178. void pmd_ctor(void *pmd, kmem_cache_t *cache, unsigned long flags)
  179. {
  180. memset(pmd, 0, PTRS_PER_PMD*sizeof(pmd_t));
  181. }
  182. /*
  183. * List of all pgd's needed for non-PAE so it can invalidate entries
  184. * in both cached and uncached pgd's; not needed for PAE since the
  185. * kernel pmd is shared. If PAE were not to share the pmd a similar
  186. * tactic would be needed. This is essentially codepath-based locking
  187. * against pageattr.c; it is the unique case in which a valid change
  188. * of kernel pagetables can't be lazily synchronized by vmalloc faults.
  189. * vmalloc faults work because attached pagetables are never freed.
  190. * The locking scheme was chosen on the basis of manfred's
  191. * recommendations and having no core impact whatsoever.
  192. * -- wli
  193. */
  194. DEFINE_SPINLOCK(pgd_lock);
  195. struct page *pgd_list;
  196. static inline void pgd_list_add(pgd_t *pgd)
  197. {
  198. struct page *page = virt_to_page(pgd);
  199. page->index = (unsigned long)pgd_list;
  200. if (pgd_list)
  201. set_page_private(pgd_list, (unsigned long)&page->index);
  202. pgd_list = page;
  203. set_page_private(page, (unsigned long)&pgd_list);
  204. }
  205. static inline void pgd_list_del(pgd_t *pgd)
  206. {
  207. struct page *next, **pprev, *page = virt_to_page(pgd);
  208. next = (struct page *)page->index;
  209. pprev = (struct page **)page_private(page);
  210. *pprev = next;
  211. if (next)
  212. set_page_private(next, (unsigned long)pprev);
  213. }
  214. void pgd_ctor(void *pgd, kmem_cache_t *cache, unsigned long unused)
  215. {
  216. unsigned long flags;
  217. if (PTRS_PER_PMD == 1) {
  218. memset(pgd, 0, USER_PTRS_PER_PGD*sizeof(pgd_t));
  219. spin_lock_irqsave(&pgd_lock, flags);
  220. }
  221. clone_pgd_range((pgd_t *)pgd + USER_PTRS_PER_PGD,
  222. swapper_pg_dir + USER_PTRS_PER_PGD,
  223. KERNEL_PGD_PTRS);
  224. if (PTRS_PER_PMD > 1)
  225. return;
  226. pgd_list_add(pgd);
  227. spin_unlock_irqrestore(&pgd_lock, flags);
  228. }
  229. /* never called when PTRS_PER_PMD > 1 */
  230. void pgd_dtor(void *pgd, kmem_cache_t *cache, unsigned long unused)
  231. {
  232. unsigned long flags; /* can be called from interrupt context */
  233. spin_lock_irqsave(&pgd_lock, flags);
  234. pgd_list_del(pgd);
  235. spin_unlock_irqrestore(&pgd_lock, flags);
  236. }
  237. pgd_t *pgd_alloc(struct mm_struct *mm)
  238. {
  239. int i;
  240. pgd_t *pgd = kmem_cache_alloc(pgd_cache, GFP_KERNEL);
  241. if (PTRS_PER_PMD == 1 || !pgd)
  242. return pgd;
  243. for (i = 0; i < USER_PTRS_PER_PGD; ++i) {
  244. pmd_t *pmd = kmem_cache_alloc(pmd_cache, GFP_KERNEL);
  245. if (!pmd)
  246. goto out_oom;
  247. set_pgd(&pgd[i], __pgd(1 + __pa(pmd)));
  248. }
  249. return pgd;
  250. out_oom:
  251. for (i--; i >= 0; i--)
  252. kmem_cache_free(pmd_cache, (void *)__va(pgd_val(pgd[i])-1));
  253. kmem_cache_free(pgd_cache, pgd);
  254. return NULL;
  255. }
  256. void pgd_free(pgd_t *pgd)
  257. {
  258. int i;
  259. /* in the PAE case user pgd entries are overwritten before usage */
  260. if (PTRS_PER_PMD > 1)
  261. for (i = 0; i < USER_PTRS_PER_PGD; ++i)
  262. kmem_cache_free(pmd_cache, (void *)__va(pgd_val(pgd[i])-1));
  263. /* in the non-PAE case, free_pgtables() clears user pgd entries */
  264. kmem_cache_free(pgd_cache, pgd);
  265. }