init.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480
  1. /*
  2. * Copyright (C) 2004-2006 Atmel Corporation
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License version 2 as
  6. * published by the Free Software Foundation.
  7. */
  8. #include <linux/kernel.h>
  9. #include <linux/mm.h>
  10. #include <linux/swap.h>
  11. #include <linux/init.h>
  12. #include <linux/initrd.h>
  13. #include <linux/mmzone.h>
  14. #include <linux/bootmem.h>
  15. #include <linux/pagemap.h>
  16. #include <linux/pfn.h>
  17. #include <linux/nodemask.h>
  18. #include <asm/page.h>
  19. #include <asm/mmu_context.h>
  20. #include <asm/tlb.h>
  21. #include <asm/io.h>
  22. #include <asm/dma.h>
  23. #include <asm/setup.h>
  24. #include <asm/sections.h>
  25. DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
  26. pgd_t swapper_pg_dir[PTRS_PER_PGD];
  27. struct page *empty_zero_page;
  28. /*
  29. * Cache of MMU context last used.
  30. */
  31. unsigned long mmu_context_cache = NO_CONTEXT;
  32. #define START_PFN (NODE_DATA(0)->bdata->node_boot_start >> PAGE_SHIFT)
  33. #define MAX_LOW_PFN (NODE_DATA(0)->bdata->node_low_pfn)
  34. void show_mem(void)
  35. {
  36. int total = 0, reserved = 0, cached = 0;
  37. int slab = 0, free = 0, shared = 0;
  38. pg_data_t *pgdat;
  39. printk("Mem-info:\n");
  40. show_free_areas();
  41. for_each_online_pgdat(pgdat) {
  42. struct page *page, *end;
  43. page = pgdat->node_mem_map;
  44. end = page + pgdat->node_spanned_pages;
  45. do {
  46. total++;
  47. if (PageReserved(page))
  48. reserved++;
  49. else if (PageSwapCache(page))
  50. cached++;
  51. else if (PageSlab(page))
  52. slab++;
  53. else if (!page_count(page))
  54. free++;
  55. else
  56. shared += page_count(page) - 1;
  57. page++;
  58. } while (page < end);
  59. }
  60. printk ("%d pages of RAM\n", total);
  61. printk ("%d free pages\n", free);
  62. printk ("%d reserved pages\n", reserved);
  63. printk ("%d slab pages\n", slab);
  64. printk ("%d pages shared\n", shared);
  65. printk ("%d pages swap cached\n", cached);
  66. }
  67. static void __init print_memory_map(const char *what,
  68. struct tag_mem_range *mem)
  69. {
  70. printk ("%s:\n", what);
  71. for (; mem; mem = mem->next) {
  72. printk (" %08lx - %08lx\n",
  73. (unsigned long)mem->addr,
  74. (unsigned long)(mem->addr + mem->size));
  75. }
  76. }
  77. #define MAX_LOWMEM HIGHMEM_START
  78. #define MAX_LOWMEM_PFN PFN_DOWN(MAX_LOWMEM)
  79. /*
  80. * Sort a list of memory regions in-place by ascending address.
  81. *
  82. * We're using bubble sort because we only have singly linked lists
  83. * with few elements.
  84. */
  85. static void __init sort_mem_list(struct tag_mem_range **pmem)
  86. {
  87. int done;
  88. struct tag_mem_range **a, **b;
  89. if (!*pmem)
  90. return;
  91. do {
  92. done = 1;
  93. a = pmem, b = &(*pmem)->next;
  94. while (*b) {
  95. if ((*a)->addr > (*b)->addr) {
  96. struct tag_mem_range *tmp;
  97. tmp = (*b)->next;
  98. (*b)->next = *a;
  99. *a = *b;
  100. *b = tmp;
  101. done = 0;
  102. }
  103. a = &(*a)->next;
  104. b = &(*a)->next;
  105. }
  106. } while (!done);
  107. }
  108. /*
  109. * Find a free memory region large enough for storing the
  110. * bootmem bitmap.
  111. */
  112. static unsigned long __init
  113. find_bootmap_pfn(const struct tag_mem_range *mem)
  114. {
  115. unsigned long bootmap_pages, bootmap_len;
  116. unsigned long node_pages = PFN_UP(mem->size);
  117. unsigned long bootmap_addr = mem->addr;
  118. struct tag_mem_range *reserved = mem_reserved;
  119. struct tag_mem_range *ramdisk = mem_ramdisk;
  120. unsigned long kern_start = virt_to_phys(_stext);
  121. unsigned long kern_end = virt_to_phys(_end);
  122. bootmap_pages = bootmem_bootmap_pages(node_pages);
  123. bootmap_len = bootmap_pages << PAGE_SHIFT;
  124. /*
  125. * Find a large enough region without reserved pages for
  126. * storing the bootmem bitmap. We can take advantage of the
  127. * fact that all lists have been sorted.
  128. *
  129. * We have to check explicitly reserved regions as well as the
  130. * kernel image and any RAMDISK images...
  131. *
  132. * Oh, and we have to make sure we don't overwrite the taglist
  133. * since we're going to use it until the bootmem allocator is
  134. * fully up and running.
  135. */
  136. while (1) {
  137. if ((bootmap_addr < kern_end) &&
  138. ((bootmap_addr + bootmap_len) > kern_start))
  139. bootmap_addr = kern_end;
  140. while (reserved &&
  141. (bootmap_addr >= (reserved->addr + reserved->size)))
  142. reserved = reserved->next;
  143. if (reserved &&
  144. ((bootmap_addr + bootmap_len) >= reserved->addr)) {
  145. bootmap_addr = reserved->addr + reserved->size;
  146. continue;
  147. }
  148. while (ramdisk &&
  149. (bootmap_addr >= (ramdisk->addr + ramdisk->size)))
  150. ramdisk = ramdisk->next;
  151. if (!ramdisk ||
  152. ((bootmap_addr + bootmap_len) < ramdisk->addr))
  153. break;
  154. bootmap_addr = ramdisk->addr + ramdisk->size;
  155. }
  156. if ((PFN_UP(bootmap_addr) + bootmap_len) >= (mem->addr + mem->size))
  157. return ~0UL;
  158. return PFN_UP(bootmap_addr);
  159. }
  160. void __init setup_bootmem(void)
  161. {
  162. unsigned bootmap_size;
  163. unsigned long first_pfn, bootmap_pfn, pages;
  164. unsigned long max_pfn, max_low_pfn;
  165. unsigned long kern_start = virt_to_phys(_stext);
  166. unsigned long kern_end = virt_to_phys(_end);
  167. unsigned node = 0;
  168. struct tag_mem_range *bank, *res;
  169. sort_mem_list(&mem_phys);
  170. sort_mem_list(&mem_reserved);
  171. print_memory_map("Physical memory", mem_phys);
  172. print_memory_map("Reserved memory", mem_reserved);
  173. nodes_clear(node_online_map);
  174. if (mem_ramdisk) {
  175. #ifdef CONFIG_BLK_DEV_INITRD
  176. initrd_start = __va(mem_ramdisk->addr);
  177. initrd_end = initrd_start + mem_ramdisk->size;
  178. print_memory_map("RAMDISK images", mem_ramdisk);
  179. if (mem_ramdisk->next)
  180. printk(KERN_WARNING
  181. "Warning: Only the first RAMDISK image "
  182. "will be used\n");
  183. sort_mem_list(&mem_ramdisk);
  184. #else
  185. printk(KERN_WARNING "RAM disk image present, but "
  186. "no initrd support in kernel!\n");
  187. #endif
  188. }
  189. if (mem_phys->next)
  190. printk(KERN_WARNING "Only using first memory bank\n");
  191. for (bank = mem_phys; bank; bank = NULL) {
  192. first_pfn = PFN_UP(bank->addr);
  193. max_low_pfn = max_pfn = PFN_DOWN(bank->addr + bank->size);
  194. bootmap_pfn = find_bootmap_pfn(bank);
  195. if (bootmap_pfn > max_pfn)
  196. panic("No space for bootmem bitmap!\n");
  197. if (max_low_pfn > MAX_LOWMEM_PFN) {
  198. max_low_pfn = MAX_LOWMEM_PFN;
  199. #ifndef CONFIG_HIGHMEM
  200. /*
  201. * Lowmem is memory that can be addressed
  202. * directly through P1/P2
  203. */
  204. printk(KERN_WARNING
  205. "Node %u: Only %ld MiB of memory will be used.\n",
  206. node, MAX_LOWMEM >> 20);
  207. printk(KERN_WARNING "Use a HIGHMEM enabled kernel.\n");
  208. #else
  209. #error HIGHMEM is not supported by AVR32 yet
  210. #endif
  211. }
  212. /* Initialize the boot-time allocator with low memory only. */
  213. bootmap_size = init_bootmem_node(NODE_DATA(node), bootmap_pfn,
  214. first_pfn, max_low_pfn);
  215. printk("Node %u: bdata = %p, bdata->node_bootmem_map = %p\n",
  216. node, NODE_DATA(node)->bdata,
  217. NODE_DATA(node)->bdata->node_bootmem_map);
  218. /*
  219. * Register fully available RAM pages with the bootmem
  220. * allocator.
  221. */
  222. pages = max_low_pfn - first_pfn;
  223. free_bootmem_node (NODE_DATA(node), PFN_PHYS(first_pfn),
  224. PFN_PHYS(pages));
  225. /*
  226. * Reserve space for the kernel image (if present in
  227. * this node)...
  228. */
  229. if ((kern_start >= PFN_PHYS(first_pfn)) &&
  230. (kern_start < PFN_PHYS(max_pfn))) {
  231. printk("Node %u: Kernel image %08lx - %08lx\n",
  232. node, kern_start, kern_end);
  233. reserve_bootmem_node(NODE_DATA(node), kern_start,
  234. kern_end - kern_start);
  235. }
  236. /* ...the bootmem bitmap... */
  237. reserve_bootmem_node(NODE_DATA(node),
  238. PFN_PHYS(bootmap_pfn),
  239. bootmap_size);
  240. /* ...any RAMDISK images... */
  241. for (res = mem_ramdisk; res; res = res->next) {
  242. if (res->addr > PFN_PHYS(max_pfn))
  243. break;
  244. if (res->addr >= PFN_PHYS(first_pfn)) {
  245. printk("Node %u: RAMDISK %08lx - %08lx\n",
  246. node,
  247. (unsigned long)res->addr,
  248. (unsigned long)(res->addr + res->size));
  249. reserve_bootmem_node(NODE_DATA(node),
  250. res->addr, res->size);
  251. }
  252. }
  253. /* ...and any other reserved regions. */
  254. for (res = mem_reserved; res; res = res->next) {
  255. if (res->addr > PFN_PHYS(max_pfn))
  256. break;
  257. if (res->addr >= PFN_PHYS(first_pfn)) {
  258. printk("Node %u: Reserved %08lx - %08lx\n",
  259. node,
  260. (unsigned long)res->addr,
  261. (unsigned long)(res->addr + res->size));
  262. reserve_bootmem_node(NODE_DATA(node),
  263. res->addr, res->size);
  264. }
  265. }
  266. node_set_online(node);
  267. }
  268. }
  269. /*
  270. * paging_init() sets up the page tables
  271. *
  272. * This routine also unmaps the page at virtual kernel address 0, so
  273. * that we can trap those pesky NULL-reference errors in the kernel.
  274. */
  275. void __init paging_init(void)
  276. {
  277. extern unsigned long _evba;
  278. void *zero_page;
  279. int nid;
  280. /*
  281. * Make sure we can handle exceptions before enabling
  282. * paging. Not that we should ever _get_ any exceptions this
  283. * early, but you never know...
  284. */
  285. printk("Exception vectors start at %p\n", &_evba);
  286. sysreg_write(EVBA, (unsigned long)&_evba);
  287. /*
  288. * Since we are ready to handle exceptions now, we should let
  289. * the CPU generate them...
  290. */
  291. __asm__ __volatile__ ("csrf %0" : : "i"(SR_EM_BIT));
  292. /*
  293. * Allocate the zero page. The allocator will panic if it
  294. * can't satisfy the request, so no need to check.
  295. */
  296. zero_page = alloc_bootmem_low_pages_node(NODE_DATA(0),
  297. PAGE_SIZE);
  298. {
  299. pgd_t *pg_dir;
  300. int i;
  301. pg_dir = swapper_pg_dir;
  302. sysreg_write(PTBR, (unsigned long)pg_dir);
  303. for (i = 0; i < PTRS_PER_PGD; i++)
  304. pgd_val(pg_dir[i]) = 0;
  305. enable_mmu();
  306. printk ("CPU: Paging enabled\n");
  307. }
  308. for_each_online_node(nid) {
  309. pg_data_t *pgdat = NODE_DATA(nid);
  310. unsigned long zones_size[MAX_NR_ZONES];
  311. unsigned long low, start_pfn;
  312. start_pfn = pgdat->bdata->node_boot_start;
  313. start_pfn >>= PAGE_SHIFT;
  314. low = pgdat->bdata->node_low_pfn;
  315. memset(zones_size, 0, sizeof(zones_size));
  316. zones_size[ZONE_NORMAL] = low - start_pfn;
  317. printk("Node %u: start_pfn = 0x%lx, low = 0x%lx\n",
  318. nid, start_pfn, low);
  319. free_area_init_node(nid, pgdat, zones_size, start_pfn, NULL);
  320. printk("Node %u: mem_map starts at %p\n",
  321. pgdat->node_id, pgdat->node_mem_map);
  322. }
  323. mem_map = NODE_DATA(0)->node_mem_map;
  324. memset(zero_page, 0, PAGE_SIZE);
  325. empty_zero_page = virt_to_page(zero_page);
  326. flush_dcache_page(empty_zero_page);
  327. }
  328. void __init mem_init(void)
  329. {
  330. int codesize, reservedpages, datasize, initsize;
  331. int nid, i;
  332. reservedpages = 0;
  333. high_memory = NULL;
  334. /* this will put all low memory onto the freelists */
  335. for_each_online_node(nid) {
  336. pg_data_t *pgdat = NODE_DATA(nid);
  337. unsigned long node_pages = 0;
  338. void *node_high_memory;
  339. num_physpages += pgdat->node_present_pages;
  340. if (pgdat->node_spanned_pages != 0)
  341. node_pages = free_all_bootmem_node(pgdat);
  342. totalram_pages += node_pages;
  343. for (i = 0; i < node_pages; i++)
  344. if (PageReserved(pgdat->node_mem_map + i))
  345. reservedpages++;
  346. node_high_memory = (void *)((pgdat->node_start_pfn
  347. + pgdat->node_spanned_pages)
  348. << PAGE_SHIFT);
  349. if (node_high_memory > high_memory)
  350. high_memory = node_high_memory;
  351. }
  352. max_mapnr = MAP_NR(high_memory);
  353. codesize = (unsigned long)_etext - (unsigned long)_text;
  354. datasize = (unsigned long)_edata - (unsigned long)_data;
  355. initsize = (unsigned long)__init_end - (unsigned long)__init_begin;
  356. printk ("Memory: %luk/%luk available (%dk kernel code, "
  357. "%dk reserved, %dk data, %dk init)\n",
  358. (unsigned long)nr_free_pages() << (PAGE_SHIFT - 10),
  359. totalram_pages << (PAGE_SHIFT - 10),
  360. codesize >> 10,
  361. reservedpages << (PAGE_SHIFT - 10),
  362. datasize >> 10,
  363. initsize >> 10);
  364. }
  365. static inline void free_area(unsigned long addr, unsigned long end, char *s)
  366. {
  367. unsigned int size = (end - addr) >> 10;
  368. for (; addr < end; addr += PAGE_SIZE) {
  369. struct page *page = virt_to_page(addr);
  370. ClearPageReserved(page);
  371. init_page_count(page);
  372. free_page(addr);
  373. totalram_pages++;
  374. }
  375. if (size && s)
  376. printk(KERN_INFO "Freeing %s memory: %dK (%lx - %lx)\n",
  377. s, size, end - (size << 10), end);
  378. }
  379. void free_initmem(void)
  380. {
  381. free_area((unsigned long)__init_begin, (unsigned long)__init_end,
  382. "init");
  383. }
  384. #ifdef CONFIG_BLK_DEV_INITRD
  385. static int keep_initrd;
  386. void free_initrd_mem(unsigned long start, unsigned long end)
  387. {
  388. if (!keep_initrd)
  389. free_area(start, end, "initrd");
  390. }
  391. static int __init keepinitrd_setup(char *__unused)
  392. {
  393. keep_initrd = 1;
  394. return 1;
  395. }
  396. __setup("keepinitrd", keepinitrd_setup);
  397. #endif