extents_status.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797
  1. /*
  2. * fs/ext4/extents_status.c
  3. *
  4. * Written by Yongqiang Yang <xiaoqiangnk@gmail.com>
  5. * Modified by
  6. * Allison Henderson <achender@linux.vnet.ibm.com>
  7. * Hugh Dickins <hughd@google.com>
  8. * Zheng Liu <wenqing.lz@taobao.com>
  9. *
  10. * Ext4 extents status tree core functions.
  11. */
  12. #include <linux/rbtree.h>
  13. #include "ext4.h"
  14. #include "extents_status.h"
  15. #include "ext4_extents.h"
  16. #include <trace/events/ext4.h>
  17. /*
  18. * According to previous discussion in Ext4 Developer Workshop, we
  19. * will introduce a new structure called io tree to track all extent
  20. * status in order to solve some problems that we have met
  21. * (e.g. Reservation space warning), and provide extent-level locking.
  22. * Delay extent tree is the first step to achieve this goal. It is
  23. * original built by Yongqiang Yang. At that time it is called delay
  24. * extent tree, whose goal is only track delayed extents in memory to
  25. * simplify the implementation of fiemap and bigalloc, and introduce
  26. * lseek SEEK_DATA/SEEK_HOLE support. That is why it is still called
  27. * delay extent tree at the first commit. But for better understand
  28. * what it does, it has been rename to extent status tree.
  29. *
  30. * Step1:
  31. * Currently the first step has been done. All delayed extents are
  32. * tracked in the tree. It maintains the delayed extent when a delayed
  33. * allocation is issued, and the delayed extent is written out or
  34. * invalidated. Therefore the implementation of fiemap and bigalloc
  35. * are simplified, and SEEK_DATA/SEEK_HOLE are introduced.
  36. *
  37. * The following comment describes the implemenmtation of extent
  38. * status tree and future works.
  39. *
  40. * Step2:
  41. * In this step all extent status are tracked by extent status tree.
  42. * Thus, we can first try to lookup a block mapping in this tree before
  43. * finding it in extent tree. Hence, single extent cache can be removed
  44. * because extent status tree can do a better job. Extents in status
  45. * tree are loaded on-demand. Therefore, the extent status tree may not
  46. * contain all of the extents in a file. Meanwhile we define a shrinker
  47. * to reclaim memory from extent status tree because fragmented extent
  48. * tree will make status tree cost too much memory. written/unwritten/-
  49. * hole extents in the tree will be reclaimed by this shrinker when we
  50. * are under high memory pressure. Delayed extents will not be
  51. * reclimed because fiemap, bigalloc, and seek_data/hole need it.
  52. */
  53. /*
  54. * Extent status tree implementation for ext4.
  55. *
  56. *
  57. * ==========================================================================
  58. * Extent status tree tracks all extent status.
  59. *
  60. * 1. Why we need to implement extent status tree?
  61. *
  62. * Without extent status tree, ext4 identifies a delayed extent by looking
  63. * up page cache, this has several deficiencies - complicated, buggy,
  64. * and inefficient code.
  65. *
  66. * FIEMAP, SEEK_HOLE/DATA, bigalloc, and writeout all need to know if a
  67. * block or a range of blocks are belonged to a delayed extent.
  68. *
  69. * Let us have a look at how they do without extent status tree.
  70. * -- FIEMAP
  71. * FIEMAP looks up page cache to identify delayed allocations from holes.
  72. *
  73. * -- SEEK_HOLE/DATA
  74. * SEEK_HOLE/DATA has the same problem as FIEMAP.
  75. *
  76. * -- bigalloc
  77. * bigalloc looks up page cache to figure out if a block is
  78. * already under delayed allocation or not to determine whether
  79. * quota reserving is needed for the cluster.
  80. *
  81. * -- writeout
  82. * Writeout looks up whole page cache to see if a buffer is
  83. * mapped, If there are not very many delayed buffers, then it is
  84. * time comsuming.
  85. *
  86. * With extent status tree implementation, FIEMAP, SEEK_HOLE/DATA,
  87. * bigalloc and writeout can figure out if a block or a range of
  88. * blocks is under delayed allocation(belonged to a delayed extent) or
  89. * not by searching the extent tree.
  90. *
  91. *
  92. * ==========================================================================
  93. * 2. Ext4 extent status tree impelmentation
  94. *
  95. * -- extent
  96. * A extent is a range of blocks which are contiguous logically and
  97. * physically. Unlike extent in extent tree, this extent in ext4 is
  98. * a in-memory struct, there is no corresponding on-disk data. There
  99. * is no limit on length of extent, so an extent can contain as many
  100. * blocks as they are contiguous logically and physically.
  101. *
  102. * -- extent status tree
  103. * Every inode has an extent status tree and all allocation blocks
  104. * are added to the tree with different status. The extent in the
  105. * tree are ordered by logical block no.
  106. *
  107. * -- operations on a extent status tree
  108. * There are three important operations on a delayed extent tree: find
  109. * next extent, adding a extent(a range of blocks) and removing a extent.
  110. *
  111. * -- race on a extent status tree
  112. * Extent status tree is protected by inode->i_es_lock.
  113. *
  114. * -- memory consumption
  115. * Fragmented extent tree will make extent status tree cost too much
  116. * memory. Hence, we will reclaim written/unwritten/hole extents from
  117. * the tree under a heavy memory pressure.
  118. *
  119. *
  120. * ==========================================================================
  121. * 3. Performance analysis
  122. *
  123. * -- overhead
  124. * 1. There is a cache extent for write access, so if writes are
  125. * not very random, adding space operaions are in O(1) time.
  126. *
  127. * -- gain
  128. * 2. Code is much simpler, more readable, more maintainable and
  129. * more efficient.
  130. *
  131. *
  132. * ==========================================================================
  133. * 4. TODO list
  134. *
  135. * -- Refactor delayed space reservation
  136. *
  137. * -- Extent-level locking
  138. */
  139. static struct kmem_cache *ext4_es_cachep;
  140. static int __es_insert_extent(struct inode *inode, struct extent_status *newes);
  141. static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
  142. ext4_lblk_t end);
  143. static int __es_try_to_reclaim_extents(struct ext4_inode_info *ei,
  144. int nr_to_scan);
  145. static int ext4_es_reclaim_extents_count(struct super_block *sb);
  146. int __init ext4_init_es(void)
  147. {
  148. ext4_es_cachep = KMEM_CACHE(extent_status, SLAB_RECLAIM_ACCOUNT);
  149. if (ext4_es_cachep == NULL)
  150. return -ENOMEM;
  151. return 0;
  152. }
  153. void ext4_exit_es(void)
  154. {
  155. if (ext4_es_cachep)
  156. kmem_cache_destroy(ext4_es_cachep);
  157. }
  158. void ext4_es_init_tree(struct ext4_es_tree *tree)
  159. {
  160. tree->root = RB_ROOT;
  161. tree->cache_es = NULL;
  162. }
  163. #ifdef ES_DEBUG__
  164. static void ext4_es_print_tree(struct inode *inode)
  165. {
  166. struct ext4_es_tree *tree;
  167. struct rb_node *node;
  168. printk(KERN_DEBUG "status extents for inode %lu:", inode->i_ino);
  169. tree = &EXT4_I(inode)->i_es_tree;
  170. node = rb_first(&tree->root);
  171. while (node) {
  172. struct extent_status *es;
  173. es = rb_entry(node, struct extent_status, rb_node);
  174. printk(KERN_DEBUG " [%u/%u) %llu %llx",
  175. es->es_lblk, es->es_len,
  176. ext4_es_pblock(es), ext4_es_status(es));
  177. node = rb_next(node);
  178. }
  179. printk(KERN_DEBUG "\n");
  180. }
  181. #else
  182. #define ext4_es_print_tree(inode)
  183. #endif
  184. static inline ext4_lblk_t ext4_es_end(struct extent_status *es)
  185. {
  186. BUG_ON(es->es_lblk + es->es_len < es->es_lblk);
  187. return es->es_lblk + es->es_len - 1;
  188. }
  189. /*
  190. * search through the tree for an delayed extent with a given offset. If
  191. * it can't be found, try to find next extent.
  192. */
  193. static struct extent_status *__es_tree_search(struct rb_root *root,
  194. ext4_lblk_t lblk)
  195. {
  196. struct rb_node *node = root->rb_node;
  197. struct extent_status *es = NULL;
  198. while (node) {
  199. es = rb_entry(node, struct extent_status, rb_node);
  200. if (lblk < es->es_lblk)
  201. node = node->rb_left;
  202. else if (lblk > ext4_es_end(es))
  203. node = node->rb_right;
  204. else
  205. return es;
  206. }
  207. if (es && lblk < es->es_lblk)
  208. return es;
  209. if (es && lblk > ext4_es_end(es)) {
  210. node = rb_next(&es->rb_node);
  211. return node ? rb_entry(node, struct extent_status, rb_node) :
  212. NULL;
  213. }
  214. return NULL;
  215. }
  216. /*
  217. * ext4_es_find_delayed_extent: find the 1st delayed extent covering @es->lblk
  218. * if it exists, otherwise, the next extent after @es->lblk.
  219. *
  220. * @inode: the inode which owns delayed extents
  221. * @lblk: the offset where we start to search
  222. * @es: delayed extent that we found
  223. */
  224. void ext4_es_find_delayed_extent(struct inode *inode, ext4_lblk_t lblk,
  225. struct extent_status *es)
  226. {
  227. struct ext4_es_tree *tree = NULL;
  228. struct extent_status *es1 = NULL;
  229. struct rb_node *node;
  230. BUG_ON(es == NULL);
  231. trace_ext4_es_find_delayed_extent_enter(inode, lblk);
  232. read_lock(&EXT4_I(inode)->i_es_lock);
  233. tree = &EXT4_I(inode)->i_es_tree;
  234. /* find extent in cache firstly */
  235. es->es_lblk = es->es_len = es->es_pblk = 0;
  236. if (tree->cache_es) {
  237. es1 = tree->cache_es;
  238. if (in_range(lblk, es1->es_lblk, es1->es_len)) {
  239. es_debug("%u cached by [%u/%u) %llu %llx\n",
  240. lblk, es1->es_lblk, es1->es_len,
  241. ext4_es_pblock(es1), ext4_es_status(es1));
  242. goto out;
  243. }
  244. }
  245. es1 = __es_tree_search(&tree->root, lblk);
  246. out:
  247. if (es1 && !ext4_es_is_delayed(es1)) {
  248. while ((node = rb_next(&es1->rb_node)) != NULL) {
  249. es1 = rb_entry(node, struct extent_status, rb_node);
  250. if (ext4_es_is_delayed(es1))
  251. break;
  252. }
  253. }
  254. if (es1 && ext4_es_is_delayed(es1)) {
  255. tree->cache_es = es1;
  256. es->es_lblk = es1->es_lblk;
  257. es->es_len = es1->es_len;
  258. es->es_pblk = es1->es_pblk;
  259. }
  260. read_unlock(&EXT4_I(inode)->i_es_lock);
  261. ext4_es_lru_add(inode);
  262. trace_ext4_es_find_delayed_extent_exit(inode, es);
  263. }
  264. static struct extent_status *
  265. ext4_es_alloc_extent(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t len,
  266. ext4_fsblk_t pblk)
  267. {
  268. struct extent_status *es;
  269. es = kmem_cache_alloc(ext4_es_cachep, GFP_ATOMIC);
  270. if (es == NULL)
  271. return NULL;
  272. es->es_lblk = lblk;
  273. es->es_len = len;
  274. es->es_pblk = pblk;
  275. /*
  276. * We don't count delayed extent because we never try to reclaim them
  277. */
  278. if (!ext4_es_is_delayed(es))
  279. EXT4_I(inode)->i_es_lru_nr++;
  280. return es;
  281. }
  282. static void ext4_es_free_extent(struct inode *inode, struct extent_status *es)
  283. {
  284. /* Decrease the lru counter when this es is not delayed */
  285. if (!ext4_es_is_delayed(es)) {
  286. BUG_ON(EXT4_I(inode)->i_es_lru_nr == 0);
  287. EXT4_I(inode)->i_es_lru_nr--;
  288. }
  289. kmem_cache_free(ext4_es_cachep, es);
  290. }
  291. /*
  292. * Check whether or not two extents can be merged
  293. * Condition:
  294. * - logical block number is contiguous
  295. * - physical block number is contiguous
  296. * - status is equal
  297. */
  298. static int ext4_es_can_be_merged(struct extent_status *es1,
  299. struct extent_status *es2)
  300. {
  301. if (es1->es_lblk + es1->es_len != es2->es_lblk)
  302. return 0;
  303. if (ext4_es_status(es1) != ext4_es_status(es2))
  304. return 0;
  305. if ((ext4_es_is_written(es1) || ext4_es_is_unwritten(es1)) &&
  306. (ext4_es_pblock(es1) + es1->es_len != ext4_es_pblock(es2)))
  307. return 0;
  308. return 1;
  309. }
  310. static struct extent_status *
  311. ext4_es_try_to_merge_left(struct inode *inode, struct extent_status *es)
  312. {
  313. struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
  314. struct extent_status *es1;
  315. struct rb_node *node;
  316. node = rb_prev(&es->rb_node);
  317. if (!node)
  318. return es;
  319. es1 = rb_entry(node, struct extent_status, rb_node);
  320. if (ext4_es_can_be_merged(es1, es)) {
  321. es1->es_len += es->es_len;
  322. rb_erase(&es->rb_node, &tree->root);
  323. ext4_es_free_extent(inode, es);
  324. es = es1;
  325. }
  326. return es;
  327. }
  328. static struct extent_status *
  329. ext4_es_try_to_merge_right(struct inode *inode, struct extent_status *es)
  330. {
  331. struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
  332. struct extent_status *es1;
  333. struct rb_node *node;
  334. node = rb_next(&es->rb_node);
  335. if (!node)
  336. return es;
  337. es1 = rb_entry(node, struct extent_status, rb_node);
  338. if (ext4_es_can_be_merged(es, es1)) {
  339. es->es_len += es1->es_len;
  340. rb_erase(node, &tree->root);
  341. ext4_es_free_extent(inode, es1);
  342. }
  343. return es;
  344. }
  345. static int __es_insert_extent(struct inode *inode, struct extent_status *newes)
  346. {
  347. struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
  348. struct rb_node **p = &tree->root.rb_node;
  349. struct rb_node *parent = NULL;
  350. struct extent_status *es;
  351. while (*p) {
  352. parent = *p;
  353. es = rb_entry(parent, struct extent_status, rb_node);
  354. if (newes->es_lblk < es->es_lblk) {
  355. if (ext4_es_can_be_merged(newes, es)) {
  356. /*
  357. * Here we can modify es_lblk directly
  358. * because it isn't overlapped.
  359. */
  360. es->es_lblk = newes->es_lblk;
  361. es->es_len += newes->es_len;
  362. if (ext4_es_is_written(es) ||
  363. ext4_es_is_unwritten(es))
  364. ext4_es_store_pblock(es,
  365. newes->es_pblk);
  366. es = ext4_es_try_to_merge_left(inode, es);
  367. goto out;
  368. }
  369. p = &(*p)->rb_left;
  370. } else if (newes->es_lblk > ext4_es_end(es)) {
  371. if (ext4_es_can_be_merged(es, newes)) {
  372. es->es_len += newes->es_len;
  373. es = ext4_es_try_to_merge_right(inode, es);
  374. goto out;
  375. }
  376. p = &(*p)->rb_right;
  377. } else {
  378. BUG_ON(1);
  379. return -EINVAL;
  380. }
  381. }
  382. es = ext4_es_alloc_extent(inode, newes->es_lblk, newes->es_len,
  383. newes->es_pblk);
  384. if (!es)
  385. return -ENOMEM;
  386. rb_link_node(&es->rb_node, parent, p);
  387. rb_insert_color(&es->rb_node, &tree->root);
  388. out:
  389. tree->cache_es = es;
  390. return 0;
  391. }
  392. /*
  393. * ext4_es_insert_extent() adds a space to a extent status tree.
  394. *
  395. * ext4_es_insert_extent is called by ext4_da_write_begin and
  396. * ext4_es_remove_extent.
  397. *
  398. * Return 0 on success, error code on failure.
  399. */
  400. int ext4_es_insert_extent(struct inode *inode, ext4_lblk_t lblk,
  401. ext4_lblk_t len, ext4_fsblk_t pblk,
  402. unsigned long long status)
  403. {
  404. struct extent_status newes;
  405. ext4_lblk_t end = lblk + len - 1;
  406. int err = 0;
  407. es_debug("add [%u/%u) %llu %llx to extent status tree of inode %lu\n",
  408. lblk, len, pblk, status, inode->i_ino);
  409. BUG_ON(end < lblk);
  410. newes.es_lblk = lblk;
  411. newes.es_len = len;
  412. ext4_es_store_pblock(&newes, pblk);
  413. ext4_es_store_status(&newes, status);
  414. trace_ext4_es_insert_extent(inode, &newes);
  415. write_lock(&EXT4_I(inode)->i_es_lock);
  416. err = __es_remove_extent(inode, lblk, end);
  417. if (err != 0)
  418. goto error;
  419. err = __es_insert_extent(inode, &newes);
  420. error:
  421. write_unlock(&EXT4_I(inode)->i_es_lock);
  422. ext4_es_lru_add(inode);
  423. ext4_es_print_tree(inode);
  424. return err;
  425. }
  426. /*
  427. * ext4_es_lookup_extent() looks up an extent in extent status tree.
  428. *
  429. * ext4_es_lookup_extent is called by ext4_map_blocks/ext4_da_map_blocks.
  430. *
  431. * Return: 1 on found, 0 on not
  432. */
  433. int ext4_es_lookup_extent(struct inode *inode, ext4_lblk_t lblk,
  434. struct extent_status *es)
  435. {
  436. struct ext4_es_tree *tree;
  437. struct extent_status *es1 = NULL;
  438. struct rb_node *node;
  439. int found = 0;
  440. trace_ext4_es_lookup_extent_enter(inode, lblk);
  441. es_debug("lookup extent in block %u\n", lblk);
  442. tree = &EXT4_I(inode)->i_es_tree;
  443. read_lock(&EXT4_I(inode)->i_es_lock);
  444. /* find extent in cache firstly */
  445. es->es_lblk = es->es_len = es->es_pblk = 0;
  446. if (tree->cache_es) {
  447. es1 = tree->cache_es;
  448. if (in_range(lblk, es1->es_lblk, es1->es_len)) {
  449. es_debug("%u cached by [%u/%u)\n",
  450. lblk, es1->es_lblk, es1->es_len);
  451. found = 1;
  452. goto out;
  453. }
  454. }
  455. node = tree->root.rb_node;
  456. while (node) {
  457. es1 = rb_entry(node, struct extent_status, rb_node);
  458. if (lblk < es1->es_lblk)
  459. node = node->rb_left;
  460. else if (lblk > ext4_es_end(es1))
  461. node = node->rb_right;
  462. else {
  463. found = 1;
  464. break;
  465. }
  466. }
  467. out:
  468. if (found) {
  469. BUG_ON(!es1);
  470. es->es_lblk = es1->es_lblk;
  471. es->es_len = es1->es_len;
  472. es->es_pblk = es1->es_pblk;
  473. }
  474. read_unlock(&EXT4_I(inode)->i_es_lock);
  475. ext4_es_lru_add(inode);
  476. trace_ext4_es_lookup_extent_exit(inode, es, found);
  477. return found;
  478. }
  479. static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
  480. ext4_lblk_t end)
  481. {
  482. struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
  483. struct rb_node *node;
  484. struct extent_status *es;
  485. struct extent_status orig_es;
  486. ext4_lblk_t len1, len2;
  487. ext4_fsblk_t block;
  488. int err = 0;
  489. es = __es_tree_search(&tree->root, lblk);
  490. if (!es)
  491. goto out;
  492. if (es->es_lblk > end)
  493. goto out;
  494. /* Simply invalidate cache_es. */
  495. tree->cache_es = NULL;
  496. orig_es.es_lblk = es->es_lblk;
  497. orig_es.es_len = es->es_len;
  498. orig_es.es_pblk = es->es_pblk;
  499. len1 = lblk > es->es_lblk ? lblk - es->es_lblk : 0;
  500. len2 = ext4_es_end(es) > end ? ext4_es_end(es) - end : 0;
  501. if (len1 > 0)
  502. es->es_len = len1;
  503. if (len2 > 0) {
  504. if (len1 > 0) {
  505. struct extent_status newes;
  506. newes.es_lblk = end + 1;
  507. newes.es_len = len2;
  508. if (ext4_es_is_written(&orig_es) ||
  509. ext4_es_is_unwritten(&orig_es)) {
  510. block = ext4_es_pblock(&orig_es) +
  511. orig_es.es_len - len2;
  512. ext4_es_store_pblock(&newes, block);
  513. }
  514. ext4_es_store_status(&newes, ext4_es_status(&orig_es));
  515. err = __es_insert_extent(inode, &newes);
  516. if (err) {
  517. es->es_lblk = orig_es.es_lblk;
  518. es->es_len = orig_es.es_len;
  519. goto out;
  520. }
  521. } else {
  522. es->es_lblk = end + 1;
  523. es->es_len = len2;
  524. if (ext4_es_is_written(es) ||
  525. ext4_es_is_unwritten(es)) {
  526. block = orig_es.es_pblk + orig_es.es_len - len2;
  527. ext4_es_store_pblock(es, block);
  528. }
  529. }
  530. goto out;
  531. }
  532. if (len1 > 0) {
  533. node = rb_next(&es->rb_node);
  534. if (node)
  535. es = rb_entry(node, struct extent_status, rb_node);
  536. else
  537. es = NULL;
  538. }
  539. while (es && ext4_es_end(es) <= end) {
  540. node = rb_next(&es->rb_node);
  541. rb_erase(&es->rb_node, &tree->root);
  542. ext4_es_free_extent(inode, es);
  543. if (!node) {
  544. es = NULL;
  545. break;
  546. }
  547. es = rb_entry(node, struct extent_status, rb_node);
  548. }
  549. if (es && es->es_lblk < end + 1) {
  550. ext4_lblk_t orig_len = es->es_len;
  551. len1 = ext4_es_end(es) - end;
  552. es->es_lblk = end + 1;
  553. es->es_len = len1;
  554. if (ext4_es_is_written(es) || ext4_es_is_unwritten(es)) {
  555. block = es->es_pblk + orig_len - len1;
  556. ext4_es_store_pblock(es, block);
  557. }
  558. }
  559. out:
  560. return err;
  561. }
  562. /*
  563. * ext4_es_remove_extent() removes a space from a extent status tree.
  564. *
  565. * Return 0 on success, error code on failure.
  566. */
  567. int ext4_es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
  568. ext4_lblk_t len)
  569. {
  570. ext4_lblk_t end;
  571. int err = 0;
  572. trace_ext4_es_remove_extent(inode, lblk, len);
  573. es_debug("remove [%u/%u) from extent status tree of inode %lu\n",
  574. lblk, len, inode->i_ino);
  575. end = lblk + len - 1;
  576. BUG_ON(end < lblk);
  577. write_lock(&EXT4_I(inode)->i_es_lock);
  578. err = __es_remove_extent(inode, lblk, end);
  579. write_unlock(&EXT4_I(inode)->i_es_lock);
  580. ext4_es_print_tree(inode);
  581. return err;
  582. }
  583. static int ext4_es_shrink(struct shrinker *shrink, struct shrink_control *sc)
  584. {
  585. struct ext4_sb_info *sbi = container_of(shrink,
  586. struct ext4_sb_info, s_es_shrinker);
  587. struct ext4_inode_info *ei;
  588. struct list_head *cur, *tmp, scanned;
  589. int nr_to_scan = sc->nr_to_scan;
  590. int ret, nr_shrunk = 0;
  591. trace_ext4_es_shrink_enter(sbi->s_sb, nr_to_scan);
  592. if (!nr_to_scan)
  593. return ext4_es_reclaim_extents_count(sbi->s_sb);
  594. INIT_LIST_HEAD(&scanned);
  595. spin_lock(&sbi->s_es_lru_lock);
  596. list_for_each_safe(cur, tmp, &sbi->s_es_lru) {
  597. list_move_tail(cur, &scanned);
  598. ei = list_entry(cur, struct ext4_inode_info, i_es_lru);
  599. read_lock(&ei->i_es_lock);
  600. if (ei->i_es_lru_nr == 0) {
  601. read_unlock(&ei->i_es_lock);
  602. continue;
  603. }
  604. read_unlock(&ei->i_es_lock);
  605. write_lock(&ei->i_es_lock);
  606. ret = __es_try_to_reclaim_extents(ei, nr_to_scan);
  607. write_unlock(&ei->i_es_lock);
  608. nr_shrunk += ret;
  609. nr_to_scan -= ret;
  610. if (nr_to_scan == 0)
  611. break;
  612. }
  613. list_splice_tail(&scanned, &sbi->s_es_lru);
  614. spin_unlock(&sbi->s_es_lru_lock);
  615. trace_ext4_es_shrink_exit(sbi->s_sb, nr_shrunk);
  616. return ext4_es_reclaim_extents_count(sbi->s_sb);
  617. }
  618. void ext4_es_register_shrinker(struct super_block *sb)
  619. {
  620. struct ext4_sb_info *sbi;
  621. sbi = EXT4_SB(sb);
  622. INIT_LIST_HEAD(&sbi->s_es_lru);
  623. spin_lock_init(&sbi->s_es_lru_lock);
  624. sbi->s_es_shrinker.shrink = ext4_es_shrink;
  625. sbi->s_es_shrinker.seeks = DEFAULT_SEEKS;
  626. register_shrinker(&sbi->s_es_shrinker);
  627. }
  628. void ext4_es_unregister_shrinker(struct super_block *sb)
  629. {
  630. unregister_shrinker(&EXT4_SB(sb)->s_es_shrinker);
  631. }
  632. void ext4_es_lru_add(struct inode *inode)
  633. {
  634. struct ext4_inode_info *ei = EXT4_I(inode);
  635. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  636. spin_lock(&sbi->s_es_lru_lock);
  637. if (list_empty(&ei->i_es_lru))
  638. list_add_tail(&ei->i_es_lru, &sbi->s_es_lru);
  639. else
  640. list_move_tail(&ei->i_es_lru, &sbi->s_es_lru);
  641. spin_unlock(&sbi->s_es_lru_lock);
  642. }
  643. void ext4_es_lru_del(struct inode *inode)
  644. {
  645. struct ext4_inode_info *ei = EXT4_I(inode);
  646. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  647. spin_lock(&sbi->s_es_lru_lock);
  648. if (!list_empty(&ei->i_es_lru))
  649. list_del_init(&ei->i_es_lru);
  650. spin_unlock(&sbi->s_es_lru_lock);
  651. }
  652. static int ext4_es_reclaim_extents_count(struct super_block *sb)
  653. {
  654. struct ext4_sb_info *sbi = EXT4_SB(sb);
  655. struct ext4_inode_info *ei;
  656. struct list_head *cur;
  657. int nr_cached = 0;
  658. spin_lock(&sbi->s_es_lru_lock);
  659. list_for_each(cur, &sbi->s_es_lru) {
  660. ei = list_entry(cur, struct ext4_inode_info, i_es_lru);
  661. read_lock(&ei->i_es_lock);
  662. nr_cached += ei->i_es_lru_nr;
  663. read_unlock(&ei->i_es_lock);
  664. }
  665. spin_unlock(&sbi->s_es_lru_lock);
  666. trace_ext4_es_reclaim_extents_count(sb, nr_cached);
  667. return nr_cached;
  668. }
  669. static int __es_try_to_reclaim_extents(struct ext4_inode_info *ei,
  670. int nr_to_scan)
  671. {
  672. struct inode *inode = &ei->vfs_inode;
  673. struct ext4_es_tree *tree = &ei->i_es_tree;
  674. struct rb_node *node;
  675. struct extent_status *es;
  676. int nr_shrunk = 0;
  677. if (ei->i_es_lru_nr == 0)
  678. return 0;
  679. node = rb_first(&tree->root);
  680. while (node != NULL) {
  681. es = rb_entry(node, struct extent_status, rb_node);
  682. node = rb_next(&es->rb_node);
  683. /*
  684. * We can't reclaim delayed extent from status tree because
  685. * fiemap, bigallic, and seek_data/hole need to use it.
  686. */
  687. if (!ext4_es_is_delayed(es)) {
  688. rb_erase(&es->rb_node, &tree->root);
  689. ext4_es_free_extent(inode, es);
  690. nr_shrunk++;
  691. if (--nr_to_scan == 0)
  692. break;
  693. }
  694. }
  695. tree->cache_es = NULL;
  696. return nr_shrunk;
  697. }