common.c 27 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148
  1. #include <linux/init.h>
  2. #include <linux/kernel.h>
  3. #include <linux/sched.h>
  4. #include <linux/string.h>
  5. #include <linux/bootmem.h>
  6. #include <linux/bitops.h>
  7. #include <linux/module.h>
  8. #include <linux/kgdb.h>
  9. #include <linux/topology.h>
  10. #include <linux/delay.h>
  11. #include <linux/smp.h>
  12. #include <linux/percpu.h>
  13. #include <asm/i387.h>
  14. #include <asm/msr.h>
  15. #include <asm/io.h>
  16. #include <asm/linkage.h>
  17. #include <asm/mmu_context.h>
  18. #include <asm/mtrr.h>
  19. #include <asm/mce.h>
  20. #include <asm/pat.h>
  21. #include <asm/asm.h>
  22. #include <asm/numa.h>
  23. #ifdef CONFIG_X86_LOCAL_APIC
  24. #include <asm/mpspec.h>
  25. #include <asm/apic.h>
  26. #include <mach_apic.h>
  27. #include <asm/genapic.h>
  28. #endif
  29. #include <asm/pda.h>
  30. #include <asm/pgtable.h>
  31. #include <asm/processor.h>
  32. #include <asm/desc.h>
  33. #include <asm/atomic.h>
  34. #include <asm/proto.h>
  35. #include <asm/sections.h>
  36. #include <asm/setup.h>
  37. #include "cpu.h"
  38. static struct cpu_dev *this_cpu __cpuinitdata;
  39. #ifdef CONFIG_X86_64
  40. /* We need valid kernel segments for data and code in long mode too
  41. * IRET will check the segment types kkeil 2000/10/28
  42. * Also sysret mandates a special GDT layout
  43. */
  44. /* The TLS descriptors are currently at a different place compared to i386.
  45. Hopefully nobody expects them at a fixed place (Wine?) */
  46. DEFINE_PER_CPU(struct gdt_page, gdt_page) = { .gdt = {
  47. [GDT_ENTRY_KERNEL32_CS] = { { { 0x0000ffff, 0x00cf9b00 } } },
  48. [GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00af9b00 } } },
  49. [GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9300 } } },
  50. [GDT_ENTRY_DEFAULT_USER32_CS] = { { { 0x0000ffff, 0x00cffb00 } } },
  51. [GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff300 } } },
  52. [GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00affb00 } } },
  53. } };
  54. #else
  55. DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
  56. [GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00cf9a00 } } },
  57. [GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9200 } } },
  58. [GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00cffa00 } } },
  59. [GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff200 } } },
  60. /*
  61. * Segments used for calling PnP BIOS have byte granularity.
  62. * They code segments and data segments have fixed 64k limits,
  63. * the transfer segment sizes are set at run time.
  64. */
  65. /* 32-bit code */
  66. [GDT_ENTRY_PNPBIOS_CS32] = { { { 0x0000ffff, 0x00409a00 } } },
  67. /* 16-bit code */
  68. [GDT_ENTRY_PNPBIOS_CS16] = { { { 0x0000ffff, 0x00009a00 } } },
  69. /* 16-bit data */
  70. [GDT_ENTRY_PNPBIOS_DS] = { { { 0x0000ffff, 0x00009200 } } },
  71. /* 16-bit data */
  72. [GDT_ENTRY_PNPBIOS_TS1] = { { { 0x00000000, 0x00009200 } } },
  73. /* 16-bit data */
  74. [GDT_ENTRY_PNPBIOS_TS2] = { { { 0x00000000, 0x00009200 } } },
  75. /*
  76. * The APM segments have byte granularity and their bases
  77. * are set at run time. All have 64k limits.
  78. */
  79. /* 32-bit code */
  80. [GDT_ENTRY_APMBIOS_BASE] = { { { 0x0000ffff, 0x00409a00 } } },
  81. /* 16-bit code */
  82. [GDT_ENTRY_APMBIOS_BASE+1] = { { { 0x0000ffff, 0x00009a00 } } },
  83. /* data */
  84. [GDT_ENTRY_APMBIOS_BASE+2] = { { { 0x0000ffff, 0x00409200 } } },
  85. [GDT_ENTRY_ESPFIX_SS] = { { { 0x00000000, 0x00c09200 } } },
  86. [GDT_ENTRY_PERCPU] = { { { 0x00000000, 0x00000000 } } },
  87. } };
  88. #endif
  89. EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
  90. #ifdef CONFIG_X86_32
  91. static int cachesize_override __cpuinitdata = -1;
  92. static int disable_x86_serial_nr __cpuinitdata = 1;
  93. static int __init cachesize_setup(char *str)
  94. {
  95. get_option(&str, &cachesize_override);
  96. return 1;
  97. }
  98. __setup("cachesize=", cachesize_setup);
  99. static int __init x86_fxsr_setup(char *s)
  100. {
  101. setup_clear_cpu_cap(X86_FEATURE_FXSR);
  102. setup_clear_cpu_cap(X86_FEATURE_XMM);
  103. return 1;
  104. }
  105. __setup("nofxsr", x86_fxsr_setup);
  106. static int __init x86_sep_setup(char *s)
  107. {
  108. setup_clear_cpu_cap(X86_FEATURE_SEP);
  109. return 1;
  110. }
  111. __setup("nosep", x86_sep_setup);
  112. /* Standard macro to see if a specific flag is changeable */
  113. static inline int flag_is_changeable_p(u32 flag)
  114. {
  115. u32 f1, f2;
  116. /*
  117. * Cyrix and IDT cpus allow disabling of CPUID
  118. * so the code below may return different results
  119. * when it is executed before and after enabling
  120. * the CPUID. Add "volatile" to not allow gcc to
  121. * optimize the subsequent calls to this function.
  122. */
  123. asm volatile ("pushfl\n\t"
  124. "pushfl\n\t"
  125. "popl %0\n\t"
  126. "movl %0,%1\n\t"
  127. "xorl %2,%0\n\t"
  128. "pushl %0\n\t"
  129. "popfl\n\t"
  130. "pushfl\n\t"
  131. "popl %0\n\t"
  132. "popfl\n\t"
  133. : "=&r" (f1), "=&r" (f2)
  134. : "ir" (flag));
  135. return ((f1^f2) & flag) != 0;
  136. }
  137. /* Probe for the CPUID instruction */
  138. static int __cpuinit have_cpuid_p(void)
  139. {
  140. return flag_is_changeable_p(X86_EFLAGS_ID);
  141. }
  142. static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
  143. {
  144. if (cpu_has(c, X86_FEATURE_PN) && disable_x86_serial_nr) {
  145. /* Disable processor serial number */
  146. unsigned long lo, hi;
  147. rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
  148. lo |= 0x200000;
  149. wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
  150. printk(KERN_NOTICE "CPU serial number disabled.\n");
  151. clear_cpu_cap(c, X86_FEATURE_PN);
  152. /* Disabling the serial number may affect the cpuid level */
  153. c->cpuid_level = cpuid_eax(0);
  154. }
  155. }
  156. static int __init x86_serial_nr_setup(char *s)
  157. {
  158. disable_x86_serial_nr = 0;
  159. return 1;
  160. }
  161. __setup("serialnumber", x86_serial_nr_setup);
  162. #else
  163. static inline int flag_is_changeable_p(u32 flag)
  164. {
  165. return 1;
  166. }
  167. /* Probe for the CPUID instruction */
  168. static inline int have_cpuid_p(void)
  169. {
  170. return 1;
  171. }
  172. static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
  173. {
  174. }
  175. #endif
  176. /*
  177. * Naming convention should be: <Name> [(<Codename>)]
  178. * This table only is used unless init_<vendor>() below doesn't set it;
  179. * in particular, if CPUID levels 0x80000002..4 are supported, this isn't used
  180. *
  181. */
  182. /* Look up CPU names by table lookup. */
  183. static char __cpuinit *table_lookup_model(struct cpuinfo_x86 *c)
  184. {
  185. struct cpu_model_info *info;
  186. if (c->x86_model >= 16)
  187. return NULL; /* Range check */
  188. if (!this_cpu)
  189. return NULL;
  190. info = this_cpu->c_models;
  191. while (info && info->family) {
  192. if (info->family == c->x86)
  193. return info->model_names[c->x86_model];
  194. info++;
  195. }
  196. return NULL; /* Not found */
  197. }
  198. __u32 cleared_cpu_caps[NCAPINTS] __cpuinitdata;
  199. /* Current gdt points %fs at the "master" per-cpu area: after this,
  200. * it's on the real one. */
  201. void switch_to_new_gdt(void)
  202. {
  203. struct desc_ptr gdt_descr;
  204. gdt_descr.address = (long)get_cpu_gdt_table(smp_processor_id());
  205. gdt_descr.size = GDT_SIZE - 1;
  206. load_gdt(&gdt_descr);
  207. #ifdef CONFIG_X86_32
  208. asm("mov %0, %%fs" : : "r" (__KERNEL_PERCPU) : "memory");
  209. #endif
  210. }
  211. static struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
  212. static void __cpuinit default_init(struct cpuinfo_x86 *c)
  213. {
  214. #ifdef CONFIG_X86_64
  215. display_cacheinfo(c);
  216. #else
  217. /* Not much we can do here... */
  218. /* Check if at least it has cpuid */
  219. if (c->cpuid_level == -1) {
  220. /* No cpuid. It must be an ancient CPU */
  221. if (c->x86 == 4)
  222. strcpy(c->x86_model_id, "486");
  223. else if (c->x86 == 3)
  224. strcpy(c->x86_model_id, "386");
  225. }
  226. #endif
  227. }
  228. static struct cpu_dev __cpuinitdata default_cpu = {
  229. .c_init = default_init,
  230. .c_vendor = "Unknown",
  231. .c_x86_vendor = X86_VENDOR_UNKNOWN,
  232. };
  233. static void __cpuinit get_model_name(struct cpuinfo_x86 *c)
  234. {
  235. unsigned int *v;
  236. char *p, *q;
  237. if (c->extended_cpuid_level < 0x80000004)
  238. return;
  239. v = (unsigned int *) c->x86_model_id;
  240. cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
  241. cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
  242. cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
  243. c->x86_model_id[48] = 0;
  244. /* Intel chips right-justify this string for some dumb reason;
  245. undo that brain damage */
  246. p = q = &c->x86_model_id[0];
  247. while (*p == ' ')
  248. p++;
  249. if (p != q) {
  250. while (*p)
  251. *q++ = *p++;
  252. while (q <= &c->x86_model_id[48])
  253. *q++ = '\0'; /* Zero-pad the rest */
  254. }
  255. }
  256. void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
  257. {
  258. unsigned int n, dummy, ebx, ecx, edx, l2size;
  259. n = c->extended_cpuid_level;
  260. if (n >= 0x80000005) {
  261. cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
  262. printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
  263. edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
  264. c->x86_cache_size = (ecx>>24) + (edx>>24);
  265. #ifdef CONFIG_X86_64
  266. /* On K8 L1 TLB is inclusive, so don't count it */
  267. c->x86_tlbsize = 0;
  268. #endif
  269. }
  270. if (n < 0x80000006) /* Some chips just has a large L1. */
  271. return;
  272. cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
  273. l2size = ecx >> 16;
  274. #ifdef CONFIG_X86_64
  275. c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
  276. #else
  277. /* do processor-specific cache resizing */
  278. if (this_cpu->c_size_cache)
  279. l2size = this_cpu->c_size_cache(c, l2size);
  280. /* Allow user to override all this if necessary. */
  281. if (cachesize_override != -1)
  282. l2size = cachesize_override;
  283. if (l2size == 0)
  284. return; /* Again, no L2 cache is possible */
  285. #endif
  286. c->x86_cache_size = l2size;
  287. printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
  288. l2size, ecx & 0xFF);
  289. }
  290. void __cpuinit detect_ht(struct cpuinfo_x86 *c)
  291. {
  292. #ifdef CONFIG_X86_HT
  293. u32 eax, ebx, ecx, edx;
  294. int index_msb, core_bits;
  295. if (!cpu_has(c, X86_FEATURE_HT))
  296. return;
  297. if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
  298. goto out;
  299. if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
  300. return;
  301. cpuid(1, &eax, &ebx, &ecx, &edx);
  302. smp_num_siblings = (ebx & 0xff0000) >> 16;
  303. if (smp_num_siblings == 1) {
  304. printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
  305. } else if (smp_num_siblings > 1) {
  306. if (smp_num_siblings > NR_CPUS) {
  307. printk(KERN_WARNING "CPU: Unsupported number of siblings %d",
  308. smp_num_siblings);
  309. smp_num_siblings = 1;
  310. return;
  311. }
  312. index_msb = get_count_order(smp_num_siblings);
  313. #ifdef CONFIG_X86_64
  314. c->phys_proc_id = phys_pkg_id(index_msb);
  315. #else
  316. c->phys_proc_id = phys_pkg_id(c->initial_apicid, index_msb);
  317. #endif
  318. smp_num_siblings = smp_num_siblings / c->x86_max_cores;
  319. index_msb = get_count_order(smp_num_siblings);
  320. core_bits = get_count_order(c->x86_max_cores);
  321. #ifdef CONFIG_X86_64
  322. c->cpu_core_id = phys_pkg_id(index_msb) &
  323. ((1 << core_bits) - 1);
  324. #else
  325. c->cpu_core_id = phys_pkg_id(c->initial_apicid, index_msb) &
  326. ((1 << core_bits) - 1);
  327. #endif
  328. }
  329. out:
  330. if ((c->x86_max_cores * smp_num_siblings) > 1) {
  331. printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
  332. c->phys_proc_id);
  333. printk(KERN_INFO "CPU: Processor Core ID: %d\n",
  334. c->cpu_core_id);
  335. }
  336. #endif
  337. }
  338. static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
  339. {
  340. char *v = c->x86_vendor_id;
  341. int i;
  342. static int printed;
  343. for (i = 0; i < X86_VENDOR_NUM; i++) {
  344. if (!cpu_devs[i])
  345. break;
  346. if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
  347. (cpu_devs[i]->c_ident[1] &&
  348. !strcmp(v, cpu_devs[i]->c_ident[1]))) {
  349. this_cpu = cpu_devs[i];
  350. c->x86_vendor = this_cpu->c_x86_vendor;
  351. return;
  352. }
  353. }
  354. if (!printed) {
  355. printed++;
  356. printk(KERN_ERR "CPU: vendor_id '%s' unknown, using generic init.\n", v);
  357. printk(KERN_ERR "CPU: Your system may be unstable.\n");
  358. }
  359. c->x86_vendor = X86_VENDOR_UNKNOWN;
  360. this_cpu = &default_cpu;
  361. }
  362. void __cpuinit cpu_detect(struct cpuinfo_x86 *c)
  363. {
  364. /* Get vendor name */
  365. cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
  366. (unsigned int *)&c->x86_vendor_id[0],
  367. (unsigned int *)&c->x86_vendor_id[8],
  368. (unsigned int *)&c->x86_vendor_id[4]);
  369. c->x86 = 4;
  370. /* Intel-defined flags: level 0x00000001 */
  371. if (c->cpuid_level >= 0x00000001) {
  372. u32 junk, tfms, cap0, misc;
  373. cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
  374. c->x86 = (tfms >> 8) & 0xf;
  375. c->x86_model = (tfms >> 4) & 0xf;
  376. c->x86_mask = tfms & 0xf;
  377. if (c->x86 == 0xf)
  378. c->x86 += (tfms >> 20) & 0xff;
  379. if (c->x86 >= 0x6)
  380. c->x86_model += ((tfms >> 16) & 0xf) << 4;
  381. if (cap0 & (1<<19)) {
  382. c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
  383. c->x86_cache_alignment = c->x86_clflush_size;
  384. }
  385. }
  386. }
  387. static void __cpuinit get_cpu_cap(struct cpuinfo_x86 *c)
  388. {
  389. u32 tfms, xlvl;
  390. u32 ebx;
  391. /* Intel-defined flags: level 0x00000001 */
  392. if (c->cpuid_level >= 0x00000001) {
  393. u32 capability, excap;
  394. cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
  395. c->x86_capability[0] = capability;
  396. c->x86_capability[4] = excap;
  397. }
  398. /* AMD-defined flags: level 0x80000001 */
  399. xlvl = cpuid_eax(0x80000000);
  400. c->extended_cpuid_level = xlvl;
  401. if ((xlvl & 0xffff0000) == 0x80000000) {
  402. if (xlvl >= 0x80000001) {
  403. c->x86_capability[1] = cpuid_edx(0x80000001);
  404. c->x86_capability[6] = cpuid_ecx(0x80000001);
  405. }
  406. }
  407. #ifdef CONFIG_X86_64
  408. if (c->extended_cpuid_level >= 0x80000008) {
  409. u32 eax = cpuid_eax(0x80000008);
  410. c->x86_virt_bits = (eax >> 8) & 0xff;
  411. c->x86_phys_bits = eax & 0xff;
  412. }
  413. #endif
  414. if (c->extended_cpuid_level >= 0x80000007)
  415. c->x86_power = cpuid_edx(0x80000007);
  416. }
  417. static void __cpuinit identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
  418. {
  419. #ifdef CONFIG_X86_32
  420. int i;
  421. /*
  422. * First of all, decide if this is a 486 or higher
  423. * It's a 486 if we can modify the AC flag
  424. */
  425. if (flag_is_changeable_p(X86_EFLAGS_AC))
  426. c->x86 = 4;
  427. else
  428. c->x86 = 3;
  429. for (i = 0; i < X86_VENDOR_NUM; i++)
  430. if (cpu_devs[i] && cpu_devs[i]->c_identify) {
  431. c->x86_vendor_id[0] = 0;
  432. cpu_devs[i]->c_identify(c);
  433. if (c->x86_vendor_id[0]) {
  434. get_cpu_vendor(c);
  435. break;
  436. }
  437. }
  438. #endif
  439. }
  440. /*
  441. * Do minimum CPU detection early.
  442. * Fields really needed: vendor, cpuid_level, family, model, mask,
  443. * cache alignment.
  444. * The others are not touched to avoid unwanted side effects.
  445. *
  446. * WARNING: this function is only called on the BP. Don't add code here
  447. * that is supposed to run on all CPUs.
  448. */
  449. static void __init early_identify_cpu(struct cpuinfo_x86 *c)
  450. {
  451. #ifdef CONFIG_X86_64
  452. c->x86_clflush_size = 64;
  453. #else
  454. c->x86_clflush_size = 32;
  455. #endif
  456. c->x86_cache_alignment = c->x86_clflush_size;
  457. memset(&c->x86_capability, 0, sizeof c->x86_capability);
  458. c->extended_cpuid_level = 0;
  459. if (!have_cpuid_p())
  460. identify_cpu_without_cpuid(c);
  461. /* cyrix could have cpuid enabled via c_identify()*/
  462. if (!have_cpuid_p())
  463. return;
  464. cpu_detect(c);
  465. get_cpu_vendor(c);
  466. get_cpu_cap(c);
  467. if (this_cpu->c_early_init)
  468. this_cpu->c_early_init(c);
  469. validate_pat_support(c);
  470. #ifdef CONFIG_SMP
  471. c->cpu_index = boot_cpu_id;
  472. #endif
  473. }
  474. void __init early_cpu_init(void)
  475. {
  476. struct cpu_dev **cdev;
  477. int count = 0;
  478. printk("KERNEL supported cpus:\n");
  479. for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
  480. struct cpu_dev *cpudev = *cdev;
  481. unsigned int j;
  482. if (count >= X86_VENDOR_NUM)
  483. break;
  484. cpu_devs[count] = cpudev;
  485. count++;
  486. for (j = 0; j < 2; j++) {
  487. if (!cpudev->c_ident[j])
  488. continue;
  489. printk(" %s %s\n", cpudev->c_vendor,
  490. cpudev->c_ident[j]);
  491. }
  492. }
  493. early_identify_cpu(&boot_cpu_data);
  494. }
  495. /*
  496. * The NOPL instruction is supposed to exist on all CPUs with
  497. * family >= 6; unfortunately, that's not true in practice because
  498. * of early VIA chips and (more importantly) broken virtualizers that
  499. * are not easy to detect. In the latter case it doesn't even *fail*
  500. * reliably, so probing for it doesn't even work. Disable it completely
  501. * unless we can find a reliable way to detect all the broken cases.
  502. */
  503. static void __cpuinit detect_nopl(struct cpuinfo_x86 *c)
  504. {
  505. clear_cpu_cap(c, X86_FEATURE_NOPL);
  506. }
  507. static void __cpuinit generic_identify(struct cpuinfo_x86 *c)
  508. {
  509. c->extended_cpuid_level = 0;
  510. if (!have_cpuid_p())
  511. identify_cpu_without_cpuid(c);
  512. /* cyrix could have cpuid enabled via c_identify()*/
  513. if (!have_cpuid_p())
  514. return;
  515. cpu_detect(c);
  516. get_cpu_vendor(c);
  517. get_cpu_cap(c);
  518. if (c->cpuid_level >= 0x00000001) {
  519. c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
  520. #ifdef CONFIG_X86_32
  521. # ifdef CONFIG_X86_HT
  522. c->apicid = phys_pkg_id(c->initial_apicid, 0);
  523. # else
  524. c->apicid = c->initial_apicid;
  525. # endif
  526. #endif
  527. #ifdef CONFIG_X86_HT
  528. c->phys_proc_id = c->initial_apicid;
  529. #endif
  530. }
  531. get_model_name(c); /* Default name */
  532. init_scattered_cpuid_features(c);
  533. detect_nopl(c);
  534. }
  535. /*
  536. * This does the hard work of actually picking apart the CPU stuff...
  537. */
  538. static void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
  539. {
  540. int i;
  541. c->loops_per_jiffy = loops_per_jiffy;
  542. c->x86_cache_size = -1;
  543. c->x86_vendor = X86_VENDOR_UNKNOWN;
  544. c->x86_model = c->x86_mask = 0; /* So far unknown... */
  545. c->x86_vendor_id[0] = '\0'; /* Unset */
  546. c->x86_model_id[0] = '\0'; /* Unset */
  547. c->x86_max_cores = 1;
  548. c->x86_coreid_bits = 0;
  549. #ifdef CONFIG_X86_64
  550. c->x86_clflush_size = 64;
  551. #else
  552. c->cpuid_level = -1; /* CPUID not detected */
  553. c->x86_clflush_size = 32;
  554. #endif
  555. c->x86_cache_alignment = c->x86_clflush_size;
  556. memset(&c->x86_capability, 0, sizeof c->x86_capability);
  557. generic_identify(c);
  558. if (this_cpu->c_identify)
  559. this_cpu->c_identify(c);
  560. #ifdef CONFIG_X86_64
  561. c->apicid = phys_pkg_id(0);
  562. #endif
  563. /*
  564. * Vendor-specific initialization. In this section we
  565. * canonicalize the feature flags, meaning if there are
  566. * features a certain CPU supports which CPUID doesn't
  567. * tell us, CPUID claiming incorrect flags, or other bugs,
  568. * we handle them here.
  569. *
  570. * At the end of this section, c->x86_capability better
  571. * indicate the features this CPU genuinely supports!
  572. */
  573. if (this_cpu->c_init)
  574. this_cpu->c_init(c);
  575. /* Disable the PN if appropriate */
  576. squash_the_stupid_serial_number(c);
  577. /*
  578. * The vendor-specific functions might have changed features. Now
  579. * we do "generic changes."
  580. */
  581. /* If the model name is still unset, do table lookup. */
  582. if (!c->x86_model_id[0]) {
  583. char *p;
  584. p = table_lookup_model(c);
  585. if (p)
  586. strcpy(c->x86_model_id, p);
  587. else
  588. /* Last resort... */
  589. sprintf(c->x86_model_id, "%02x/%02x",
  590. c->x86, c->x86_model);
  591. }
  592. #ifdef CONFIG_X86_64
  593. detect_ht(c);
  594. #endif
  595. /*
  596. * On SMP, boot_cpu_data holds the common feature set between
  597. * all CPUs; so make sure that we indicate which features are
  598. * common between the CPUs. The first time this routine gets
  599. * executed, c == &boot_cpu_data.
  600. */
  601. if (c != &boot_cpu_data) {
  602. /* AND the already accumulated flags with these */
  603. for (i = 0; i < NCAPINTS; i++)
  604. boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
  605. }
  606. /* Clear all flags overriden by options */
  607. for (i = 0; i < NCAPINTS; i++)
  608. c->x86_capability[i] &= ~cleared_cpu_caps[i];
  609. #ifdef CONFIG_X86_MCE
  610. /* Init Machine Check Exception if available. */
  611. mcheck_init(c);
  612. #endif
  613. select_idle_routine(c);
  614. #if defined(CONFIG_NUMA) && defined(CONFIG_X86_64)
  615. numa_add_cpu(smp_processor_id());
  616. #endif
  617. }
  618. #ifdef CONFIG_X86_64
  619. static void vgetcpu_set_mode(void)
  620. {
  621. if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
  622. vgetcpu_mode = VGETCPU_RDTSCP;
  623. else
  624. vgetcpu_mode = VGETCPU_LSL;
  625. }
  626. #endif
  627. void __init identify_boot_cpu(void)
  628. {
  629. identify_cpu(&boot_cpu_data);
  630. #ifdef CONFIG_X86_32
  631. sysenter_setup();
  632. enable_sep_cpu();
  633. #else
  634. vgetcpu_set_mode();
  635. #endif
  636. }
  637. void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c)
  638. {
  639. BUG_ON(c == &boot_cpu_data);
  640. identify_cpu(c);
  641. #ifdef CONFIG_X86_32
  642. enable_sep_cpu();
  643. #endif
  644. mtrr_ap_init();
  645. }
  646. struct msr_range {
  647. unsigned min;
  648. unsigned max;
  649. };
  650. static struct msr_range msr_range_array[] __cpuinitdata = {
  651. { 0x00000000, 0x00000418},
  652. { 0xc0000000, 0xc000040b},
  653. { 0xc0010000, 0xc0010142},
  654. { 0xc0011000, 0xc001103b},
  655. };
  656. static void __cpuinit print_cpu_msr(void)
  657. {
  658. unsigned index;
  659. u64 val;
  660. int i;
  661. unsigned index_min, index_max;
  662. for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
  663. index_min = msr_range_array[i].min;
  664. index_max = msr_range_array[i].max;
  665. for (index = index_min; index < index_max; index++) {
  666. if (rdmsrl_amd_safe(index, &val))
  667. continue;
  668. printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
  669. }
  670. }
  671. }
  672. static int show_msr __cpuinitdata;
  673. static __init int setup_show_msr(char *arg)
  674. {
  675. int num;
  676. get_option(&arg, &num);
  677. if (num > 0)
  678. show_msr = num;
  679. return 1;
  680. }
  681. __setup("show_msr=", setup_show_msr);
  682. static __init int setup_noclflush(char *arg)
  683. {
  684. setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
  685. return 1;
  686. }
  687. __setup("noclflush", setup_noclflush);
  688. void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
  689. {
  690. char *vendor = NULL;
  691. if (c->x86_vendor < X86_VENDOR_NUM)
  692. vendor = this_cpu->c_vendor;
  693. else if (c->cpuid_level >= 0)
  694. vendor = c->x86_vendor_id;
  695. if (vendor && !strstr(c->x86_model_id, vendor))
  696. printk(KERN_CONT "%s ", vendor);
  697. if (c->x86_model_id[0])
  698. printk(KERN_CONT "%s", c->x86_model_id);
  699. else
  700. printk(KERN_CONT "%d86", c->x86);
  701. if (c->x86_mask || c->cpuid_level >= 0)
  702. printk(KERN_CONT " stepping %02x\n", c->x86_mask);
  703. else
  704. printk(KERN_CONT "\n");
  705. #ifdef CONFIG_SMP
  706. if (c->cpu_index < show_msr)
  707. print_cpu_msr();
  708. #else
  709. if (show_msr)
  710. print_cpu_msr();
  711. #endif
  712. }
  713. static __init int setup_disablecpuid(char *arg)
  714. {
  715. int bit;
  716. if (get_option(&arg, &bit) && bit < NCAPINTS*32)
  717. setup_clear_cpu_cap(bit);
  718. else
  719. return 0;
  720. return 1;
  721. }
  722. __setup("clearcpuid=", setup_disablecpuid);
  723. cpumask_t cpu_initialized __cpuinitdata = CPU_MASK_NONE;
  724. #ifdef CONFIG_X86_64
  725. struct x8664_pda **_cpu_pda __read_mostly;
  726. EXPORT_SYMBOL(_cpu_pda);
  727. struct desc_ptr idt_descr = { 256 * 16 - 1, (unsigned long) idt_table };
  728. char boot_cpu_stack[IRQSTACKSIZE] __page_aligned_bss;
  729. void __cpuinit pda_init(int cpu)
  730. {
  731. struct x8664_pda *pda = cpu_pda(cpu);
  732. /* Setup up data that may be needed in __get_free_pages early */
  733. loadsegment(fs, 0);
  734. loadsegment(gs, 0);
  735. /* Memory clobbers used to order PDA accessed */
  736. mb();
  737. wrmsrl(MSR_GS_BASE, pda);
  738. mb();
  739. pda->cpunumber = cpu;
  740. pda->irqcount = -1;
  741. pda->kernelstack = (unsigned long)stack_thread_info() -
  742. PDA_STACKOFFSET + THREAD_SIZE;
  743. pda->active_mm = &init_mm;
  744. pda->mmu_state = 0;
  745. if (cpu == 0) {
  746. /* others are initialized in smpboot.c */
  747. pda->pcurrent = &init_task;
  748. pda->irqstackptr = boot_cpu_stack;
  749. pda->irqstackptr += IRQSTACKSIZE - 64;
  750. } else {
  751. if (!pda->irqstackptr) {
  752. pda->irqstackptr = (char *)
  753. __get_free_pages(GFP_ATOMIC, IRQSTACK_ORDER);
  754. if (!pda->irqstackptr)
  755. panic("cannot allocate irqstack for cpu %d",
  756. cpu);
  757. pda->irqstackptr += IRQSTACKSIZE - 64;
  758. }
  759. if (pda->nodenumber == 0 && cpu_to_node(cpu) != NUMA_NO_NODE)
  760. pda->nodenumber = cpu_to_node(cpu);
  761. }
  762. }
  763. char boot_exception_stacks[(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ +
  764. DEBUG_STKSZ] __page_aligned_bss;
  765. extern asmlinkage void ignore_sysret(void);
  766. /* May not be marked __init: used by software suspend */
  767. void syscall_init(void)
  768. {
  769. /*
  770. * LSTAR and STAR live in a bit strange symbiosis.
  771. * They both write to the same internal register. STAR allows to
  772. * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
  773. */
  774. wrmsrl(MSR_STAR, ((u64)__USER32_CS)<<48 | ((u64)__KERNEL_CS)<<32);
  775. wrmsrl(MSR_LSTAR, system_call);
  776. wrmsrl(MSR_CSTAR, ignore_sysret);
  777. #ifdef CONFIG_IA32_EMULATION
  778. syscall32_cpu_init();
  779. #endif
  780. /* Flags to clear on syscall */
  781. wrmsrl(MSR_SYSCALL_MASK,
  782. X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|X86_EFLAGS_IOPL);
  783. }
  784. unsigned long kernel_eflags;
  785. /*
  786. * Copies of the original ist values from the tss are only accessed during
  787. * debugging, no special alignment required.
  788. */
  789. DEFINE_PER_CPU(struct orig_ist, orig_ist);
  790. #else
  791. /* Make sure %fs is initialized properly in idle threads */
  792. struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs)
  793. {
  794. memset(regs, 0, sizeof(struct pt_regs));
  795. regs->fs = __KERNEL_PERCPU;
  796. return regs;
  797. }
  798. #endif
  799. /*
  800. * cpu_init() initializes state that is per-CPU. Some data is already
  801. * initialized (naturally) in the bootstrap process, such as the GDT
  802. * and IDT. We reload them nevertheless, this function acts as a
  803. * 'CPU state barrier', nothing should get across.
  804. * A lot of state is already set up in PDA init for 64 bit
  805. */
  806. #ifdef CONFIG_X86_64
  807. void __cpuinit cpu_init(void)
  808. {
  809. int cpu = stack_smp_processor_id();
  810. struct tss_struct *t = &per_cpu(init_tss, cpu);
  811. struct orig_ist *orig_ist = &per_cpu(orig_ist, cpu);
  812. unsigned long v;
  813. char *estacks = NULL;
  814. struct task_struct *me;
  815. int i;
  816. /* CPU 0 is initialised in head64.c */
  817. if (cpu != 0)
  818. pda_init(cpu);
  819. else
  820. estacks = boot_exception_stacks;
  821. me = current;
  822. if (cpu_test_and_set(cpu, cpu_initialized))
  823. panic("CPU#%d already initialized!\n", cpu);
  824. printk(KERN_INFO "Initializing CPU#%d\n", cpu);
  825. clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
  826. /*
  827. * Initialize the per-CPU GDT with the boot GDT,
  828. * and set up the GDT descriptor:
  829. */
  830. switch_to_new_gdt();
  831. load_idt((const struct desc_ptr *)&idt_descr);
  832. memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
  833. syscall_init();
  834. wrmsrl(MSR_FS_BASE, 0);
  835. wrmsrl(MSR_KERNEL_GS_BASE, 0);
  836. barrier();
  837. check_efer();
  838. if (cpu != 0 && x2apic)
  839. enable_x2apic();
  840. /*
  841. * set up and load the per-CPU TSS
  842. */
  843. if (!orig_ist->ist[0]) {
  844. static const unsigned int order[N_EXCEPTION_STACKS] = {
  845. [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STACK_ORDER,
  846. [DEBUG_STACK - 1] = DEBUG_STACK_ORDER
  847. };
  848. for (v = 0; v < N_EXCEPTION_STACKS; v++) {
  849. if (cpu) {
  850. estacks = (char *)__get_free_pages(GFP_ATOMIC, order[v]);
  851. if (!estacks)
  852. panic("Cannot allocate exception "
  853. "stack %ld %d\n", v, cpu);
  854. }
  855. estacks += PAGE_SIZE << order[v];
  856. orig_ist->ist[v] = t->x86_tss.ist[v] =
  857. (unsigned long)estacks;
  858. }
  859. }
  860. t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
  861. /*
  862. * <= is required because the CPU will access up to
  863. * 8 bits beyond the end of the IO permission bitmap.
  864. */
  865. for (i = 0; i <= IO_BITMAP_LONGS; i++)
  866. t->io_bitmap[i] = ~0UL;
  867. atomic_inc(&init_mm.mm_count);
  868. me->active_mm = &init_mm;
  869. if (me->mm)
  870. BUG();
  871. enter_lazy_tlb(&init_mm, me);
  872. load_sp0(t, &current->thread);
  873. set_tss_desc(cpu, t);
  874. load_TR_desc();
  875. load_LDT(&init_mm.context);
  876. #ifdef CONFIG_KGDB
  877. /*
  878. * If the kgdb is connected no debug regs should be altered. This
  879. * is only applicable when KGDB and a KGDB I/O module are built
  880. * into the kernel and you are using early debugging with
  881. * kgdbwait. KGDB will control the kernel HW breakpoint registers.
  882. */
  883. if (kgdb_connected && arch_kgdb_ops.correct_hw_break)
  884. arch_kgdb_ops.correct_hw_break();
  885. else {
  886. #endif
  887. /*
  888. * Clear all 6 debug registers:
  889. */
  890. set_debugreg(0UL, 0);
  891. set_debugreg(0UL, 1);
  892. set_debugreg(0UL, 2);
  893. set_debugreg(0UL, 3);
  894. set_debugreg(0UL, 6);
  895. set_debugreg(0UL, 7);
  896. #ifdef CONFIG_KGDB
  897. /* If the kgdb is connected no debug regs should be altered. */
  898. }
  899. #endif
  900. fpu_init();
  901. raw_local_save_flags(kernel_eflags);
  902. if (is_uv_system())
  903. uv_cpu_init();
  904. }
  905. #else
  906. void __cpuinit cpu_init(void)
  907. {
  908. int cpu = smp_processor_id();
  909. struct task_struct *curr = current;
  910. struct tss_struct *t = &per_cpu(init_tss, cpu);
  911. struct thread_struct *thread = &curr->thread;
  912. if (cpu_test_and_set(cpu, cpu_initialized)) {
  913. printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
  914. for (;;) local_irq_enable();
  915. }
  916. printk(KERN_INFO "Initializing CPU#%d\n", cpu);
  917. if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
  918. clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
  919. load_idt(&idt_descr);
  920. switch_to_new_gdt();
  921. /*
  922. * Set up and load the per-CPU TSS and LDT
  923. */
  924. atomic_inc(&init_mm.mm_count);
  925. curr->active_mm = &init_mm;
  926. if (curr->mm)
  927. BUG();
  928. enter_lazy_tlb(&init_mm, curr);
  929. load_sp0(t, thread);
  930. set_tss_desc(cpu, t);
  931. load_TR_desc();
  932. load_LDT(&init_mm.context);
  933. #ifdef CONFIG_DOUBLEFAULT
  934. /* Set up doublefault TSS pointer in the GDT */
  935. __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
  936. #endif
  937. /* Clear %gs. */
  938. asm volatile ("mov %0, %%gs" : : "r" (0));
  939. /* Clear all 6 debug registers: */
  940. set_debugreg(0, 0);
  941. set_debugreg(0, 1);
  942. set_debugreg(0, 2);
  943. set_debugreg(0, 3);
  944. set_debugreg(0, 6);
  945. set_debugreg(0, 7);
  946. /*
  947. * Force FPU initialization:
  948. */
  949. if (cpu_has_xsave)
  950. current_thread_info()->status = TS_XSAVE;
  951. else
  952. current_thread_info()->status = 0;
  953. clear_used_math();
  954. mxcsr_feature_mask_init();
  955. /*
  956. * Boot processor to setup the FP and extended state context info.
  957. */
  958. if (smp_processor_id() == boot_cpu_id)
  959. init_thread_xstate();
  960. xsave_init();
  961. }
  962. #endif