pid.h 4.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167
  1. #ifndef _LINUX_PID_H
  2. #define _LINUX_PID_H
  3. #include <linux/rcupdate.h>
  4. enum pid_type
  5. {
  6. PIDTYPE_PID,
  7. PIDTYPE_PGID,
  8. PIDTYPE_SID,
  9. PIDTYPE_MAX
  10. };
  11. /*
  12. * What is struct pid?
  13. *
  14. * A struct pid is the kernel's internal notion of a process identifier.
  15. * It refers to individual tasks, process groups, and sessions. While
  16. * there are processes attached to it the struct pid lives in a hash
  17. * table, so it and then the processes that it refers to can be found
  18. * quickly from the numeric pid value. The attached processes may be
  19. * quickly accessed by following pointers from struct pid.
  20. *
  21. * Storing pid_t values in the kernel and refering to them later has a
  22. * problem. The process originally with that pid may have exited and the
  23. * pid allocator wrapped, and another process could have come along
  24. * and been assigned that pid.
  25. *
  26. * Referring to user space processes by holding a reference to struct
  27. * task_struct has a problem. When the user space process exits
  28. * the now useless task_struct is still kept. A task_struct plus a
  29. * stack consumes around 10K of low kernel memory. More precisely
  30. * this is THREAD_SIZE + sizeof(struct task_struct). By comparison
  31. * a struct pid is about 64 bytes.
  32. *
  33. * Holding a reference to struct pid solves both of these problems.
  34. * It is small so holding a reference does not consume a lot of
  35. * resources, and since a new struct pid is allocated when the numeric pid
  36. * value is reused (when pids wrap around) we don't mistakenly refer to new
  37. * processes.
  38. */
  39. /*
  40. * struct upid is used to get the id of the struct pid, as it is
  41. * seen in particular namespace. Later the struct pid is found with
  42. * find_pid_ns() using the int nr and struct pid_namespace *ns.
  43. */
  44. struct upid {
  45. /* Try to keep pid_chain in the same cacheline as nr for find_pid */
  46. int nr;
  47. struct pid_namespace *ns;
  48. struct hlist_node pid_chain;
  49. };
  50. struct pid
  51. {
  52. atomic_t count;
  53. /* lists of tasks that use this pid */
  54. struct hlist_head tasks[PIDTYPE_MAX];
  55. struct rcu_head rcu;
  56. int level;
  57. struct upid numbers[1];
  58. };
  59. extern struct pid init_struct_pid;
  60. struct pid_link
  61. {
  62. struct hlist_node node;
  63. struct pid *pid;
  64. };
  65. static inline struct pid *get_pid(struct pid *pid)
  66. {
  67. if (pid)
  68. atomic_inc(&pid->count);
  69. return pid;
  70. }
  71. extern void FASTCALL(put_pid(struct pid *pid));
  72. extern struct task_struct *FASTCALL(pid_task(struct pid *pid, enum pid_type));
  73. extern struct task_struct *FASTCALL(get_pid_task(struct pid *pid,
  74. enum pid_type));
  75. extern struct pid *get_task_pid(struct task_struct *task, enum pid_type type);
  76. /*
  77. * attach_pid() and detach_pid() must be called with the tasklist_lock
  78. * write-held.
  79. */
  80. extern int FASTCALL(attach_pid(struct task_struct *task,
  81. enum pid_type type, struct pid *pid));
  82. extern void FASTCALL(detach_pid(struct task_struct *task, enum pid_type));
  83. extern void FASTCALL(transfer_pid(struct task_struct *old,
  84. struct task_struct *new, enum pid_type));
  85. struct pid_namespace;
  86. extern struct pid_namespace init_pid_ns;
  87. /*
  88. * look up a PID in the hash table. Must be called with the tasklist_lock
  89. * or rcu_read_lock() held.
  90. *
  91. * find_pid_ns() finds the pid in the namespace specified
  92. * find_pid() find the pid by its global id, i.e. in the init namespace
  93. * find_vpid() finr the pid by its virtual id, i.e. in the current namespace
  94. *
  95. * see also find_task_by_pid() set in include/linux/sched.h
  96. */
  97. extern struct pid *FASTCALL(find_pid_ns(int nr, struct pid_namespace *ns));
  98. extern struct pid *find_vpid(int nr);
  99. extern struct pid *find_pid(int nr);
  100. /*
  101. * Lookup a PID in the hash table, and return with it's count elevated.
  102. */
  103. extern struct pid *find_get_pid(int nr);
  104. extern struct pid *find_ge_pid(int nr, struct pid_namespace *);
  105. int next_pidmap(struct pid_namespace *pid_ns, int last);
  106. extern struct pid *alloc_pid(struct pid_namespace *ns);
  107. extern void FASTCALL(free_pid(struct pid *pid));
  108. /*
  109. * the helpers to get the pid's id seen from different namespaces
  110. *
  111. * pid_nr() : global id, i.e. the id seen from the init namespace;
  112. * pid_vnr() : virtual id, i.e. the id seen from the namespace this pid
  113. * belongs to. this only makes sence when called in the
  114. * context of the task that belongs to the same namespace;
  115. * pid_nr_ns() : id seen from the ns specified.
  116. *
  117. * see also task_xid_nr() etc in include/linux/sched.h
  118. */
  119. static inline pid_t pid_nr(struct pid *pid)
  120. {
  121. pid_t nr = 0;
  122. if (pid)
  123. nr = pid->numbers[0].nr;
  124. return nr;
  125. }
  126. pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns);
  127. static inline pid_t pid_vnr(struct pid *pid)
  128. {
  129. pid_t nr = 0;
  130. if (pid)
  131. nr = pid->numbers[pid->level].nr;
  132. return nr;
  133. }
  134. #define do_each_pid_task(pid, type, task) \
  135. do { \
  136. struct hlist_node *pos___; \
  137. if (pid != NULL) \
  138. hlist_for_each_entry_rcu((task), pos___, \
  139. &pid->tasks[type], pids[type].node) {
  140. #define while_each_pid_task(pid, type, task) \
  141. } \
  142. } while (0)
  143. #endif /* _LINUX_PID_H */