pat.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960
  1. /*
  2. * Handle caching attributes in page tables (PAT)
  3. *
  4. * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
  5. * Suresh B Siddha <suresh.b.siddha@intel.com>
  6. *
  7. * Loosely based on earlier PAT patchset from Eric Biederman and Andi Kleen.
  8. */
  9. #include <linux/seq_file.h>
  10. #include <linux/bootmem.h>
  11. #include <linux/debugfs.h>
  12. #include <linux/kernel.h>
  13. #include <linux/gfp.h>
  14. #include <linux/mm.h>
  15. #include <linux/fs.h>
  16. #include <asm/cacheflush.h>
  17. #include <asm/processor.h>
  18. #include <asm/tlbflush.h>
  19. #include <asm/pgtable.h>
  20. #include <asm/fcntl.h>
  21. #include <asm/e820.h>
  22. #include <asm/mtrr.h>
  23. #include <asm/page.h>
  24. #include <asm/msr.h>
  25. #include <asm/pat.h>
  26. #include <asm/io.h>
  27. #ifdef CONFIG_X86_PAT
  28. int __read_mostly pat_enabled = 1;
  29. void __cpuinit pat_disable(const char *reason)
  30. {
  31. pat_enabled = 0;
  32. printk(KERN_INFO "%s\n", reason);
  33. }
  34. static int __init nopat(char *str)
  35. {
  36. pat_disable("PAT support disabled.");
  37. return 0;
  38. }
  39. early_param("nopat", nopat);
  40. #else
  41. static inline void pat_disable(const char *reason)
  42. {
  43. (void)reason;
  44. }
  45. #endif
  46. static int debug_enable;
  47. static int __init pat_debug_setup(char *str)
  48. {
  49. debug_enable = 1;
  50. return 0;
  51. }
  52. __setup("debugpat", pat_debug_setup);
  53. #define dprintk(fmt, arg...) \
  54. do { if (debug_enable) printk(KERN_INFO fmt, ##arg); } while (0)
  55. static u64 __read_mostly boot_pat_state;
  56. enum {
  57. PAT_UC = 0, /* uncached */
  58. PAT_WC = 1, /* Write combining */
  59. PAT_WT = 4, /* Write Through */
  60. PAT_WP = 5, /* Write Protected */
  61. PAT_WB = 6, /* Write Back (default) */
  62. PAT_UC_MINUS = 7, /* UC, but can be overriden by MTRR */
  63. };
  64. #define PAT(x, y) ((u64)PAT_ ## y << ((x)*8))
  65. void pat_init(void)
  66. {
  67. u64 pat;
  68. if (!pat_enabled)
  69. return;
  70. if (!cpu_has_pat) {
  71. if (!boot_pat_state) {
  72. pat_disable("PAT not supported by CPU.");
  73. return;
  74. } else {
  75. /*
  76. * If this happens we are on a secondary CPU, but
  77. * switched to PAT on the boot CPU. We have no way to
  78. * undo PAT.
  79. */
  80. printk(KERN_ERR "PAT enabled, "
  81. "but not supported by secondary CPU\n");
  82. BUG();
  83. }
  84. }
  85. /* Set PWT to Write-Combining. All other bits stay the same */
  86. /*
  87. * PTE encoding used in Linux:
  88. * PAT
  89. * |PCD
  90. * ||PWT
  91. * |||
  92. * 000 WB _PAGE_CACHE_WB
  93. * 001 WC _PAGE_CACHE_WC
  94. * 010 UC- _PAGE_CACHE_UC_MINUS
  95. * 011 UC _PAGE_CACHE_UC
  96. * PAT bit unused
  97. */
  98. pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) |
  99. PAT(4, WB) | PAT(5, WC) | PAT(6, UC_MINUS) | PAT(7, UC);
  100. /* Boot CPU check */
  101. if (!boot_pat_state)
  102. rdmsrl(MSR_IA32_CR_PAT, boot_pat_state);
  103. wrmsrl(MSR_IA32_CR_PAT, pat);
  104. printk(KERN_INFO "x86 PAT enabled: cpu %d, old 0x%Lx, new 0x%Lx\n",
  105. smp_processor_id(), boot_pat_state, pat);
  106. }
  107. #undef PAT
  108. static char *cattr_name(unsigned long flags)
  109. {
  110. switch (flags & _PAGE_CACHE_MASK) {
  111. case _PAGE_CACHE_UC: return "uncached";
  112. case _PAGE_CACHE_UC_MINUS: return "uncached-minus";
  113. case _PAGE_CACHE_WB: return "write-back";
  114. case _PAGE_CACHE_WC: return "write-combining";
  115. default: return "broken";
  116. }
  117. }
  118. /*
  119. * The global memtype list keeps track of memory type for specific
  120. * physical memory areas. Conflicting memory types in different
  121. * mappings can cause CPU cache corruption. To avoid this we keep track.
  122. *
  123. * The list is sorted based on starting address and can contain multiple
  124. * entries for each address (this allows reference counting for overlapping
  125. * areas). All the aliases have the same cache attributes of course.
  126. * Zero attributes are represented as holes.
  127. *
  128. * Currently the data structure is a list because the number of mappings
  129. * are expected to be relatively small. If this should be a problem
  130. * it could be changed to a rbtree or similar.
  131. *
  132. * memtype_lock protects the whole list.
  133. */
  134. struct memtype {
  135. u64 start;
  136. u64 end;
  137. unsigned long type;
  138. struct list_head nd;
  139. };
  140. static LIST_HEAD(memtype_list);
  141. static DEFINE_SPINLOCK(memtype_lock); /* protects memtype list */
  142. /*
  143. * Does intersection of PAT memory type and MTRR memory type and returns
  144. * the resulting memory type as PAT understands it.
  145. * (Type in pat and mtrr will not have same value)
  146. * The intersection is based on "Effective Memory Type" tables in IA-32
  147. * SDM vol 3a
  148. */
  149. static unsigned long pat_x_mtrr_type(u64 start, u64 end, unsigned long req_type)
  150. {
  151. /*
  152. * Look for MTRR hint to get the effective type in case where PAT
  153. * request is for WB.
  154. */
  155. if (req_type == _PAGE_CACHE_WB) {
  156. u8 mtrr_type;
  157. mtrr_type = mtrr_type_lookup(start, end);
  158. if (mtrr_type == MTRR_TYPE_UNCACHABLE)
  159. return _PAGE_CACHE_UC;
  160. if (mtrr_type == MTRR_TYPE_WRCOMB)
  161. return _PAGE_CACHE_WC;
  162. }
  163. return req_type;
  164. }
  165. static int
  166. chk_conflict(struct memtype *new, struct memtype *entry, unsigned long *type)
  167. {
  168. if (new->type != entry->type) {
  169. if (type) {
  170. new->type = entry->type;
  171. *type = entry->type;
  172. } else
  173. goto conflict;
  174. }
  175. /* check overlaps with more than one entry in the list */
  176. list_for_each_entry_continue(entry, &memtype_list, nd) {
  177. if (new->end <= entry->start)
  178. break;
  179. else if (new->type != entry->type)
  180. goto conflict;
  181. }
  182. return 0;
  183. conflict:
  184. printk(KERN_INFO "%s:%d conflicting memory types "
  185. "%Lx-%Lx %s<->%s\n", current->comm, current->pid, new->start,
  186. new->end, cattr_name(new->type), cattr_name(entry->type));
  187. return -EBUSY;
  188. }
  189. static struct memtype *cached_entry;
  190. static u64 cached_start;
  191. /*
  192. * For RAM pages, mark the pages as non WB memory type using
  193. * PageNonWB (PG_arch_1). We allow only one set_memory_uc() or
  194. * set_memory_wc() on a RAM page at a time before marking it as WB again.
  195. * This is ok, because only one driver will be owning the page and
  196. * doing set_memory_*() calls.
  197. *
  198. * For now, we use PageNonWB to track that the RAM page is being mapped
  199. * as non WB. In future, we will have to use one more flag
  200. * (or some other mechanism in page_struct) to distinguish between
  201. * UC and WC mapping.
  202. */
  203. static int reserve_ram_pages_type(u64 start, u64 end, unsigned long req_type,
  204. unsigned long *new_type)
  205. {
  206. struct page *page;
  207. u64 pfn, end_pfn;
  208. for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
  209. page = pfn_to_page(pfn);
  210. if (page_mapped(page) || PageNonWB(page))
  211. goto out;
  212. SetPageNonWB(page);
  213. }
  214. return 0;
  215. out:
  216. end_pfn = pfn;
  217. for (pfn = (start >> PAGE_SHIFT); pfn < end_pfn; ++pfn) {
  218. page = pfn_to_page(pfn);
  219. ClearPageNonWB(page);
  220. }
  221. return -EINVAL;
  222. }
  223. static int free_ram_pages_type(u64 start, u64 end)
  224. {
  225. struct page *page;
  226. u64 pfn, end_pfn;
  227. for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
  228. page = pfn_to_page(pfn);
  229. if (page_mapped(page) || !PageNonWB(page))
  230. goto out;
  231. ClearPageNonWB(page);
  232. }
  233. return 0;
  234. out:
  235. end_pfn = pfn;
  236. for (pfn = (start >> PAGE_SHIFT); pfn < end_pfn; ++pfn) {
  237. page = pfn_to_page(pfn);
  238. SetPageNonWB(page);
  239. }
  240. return -EINVAL;
  241. }
  242. /*
  243. * req_type typically has one of the:
  244. * - _PAGE_CACHE_WB
  245. * - _PAGE_CACHE_WC
  246. * - _PAGE_CACHE_UC_MINUS
  247. * - _PAGE_CACHE_UC
  248. *
  249. * req_type will have a special case value '-1', when requester want to inherit
  250. * the memory type from mtrr (if WB), existing PAT, defaulting to UC_MINUS.
  251. *
  252. * If new_type is NULL, function will return an error if it cannot reserve the
  253. * region with req_type. If new_type is non-NULL, function will return
  254. * available type in new_type in case of no error. In case of any error
  255. * it will return a negative return value.
  256. */
  257. int reserve_memtype(u64 start, u64 end, unsigned long req_type,
  258. unsigned long *new_type)
  259. {
  260. struct memtype *new, *entry;
  261. unsigned long actual_type;
  262. struct list_head *where;
  263. int is_range_ram;
  264. int err = 0;
  265. BUG_ON(start >= end); /* end is exclusive */
  266. if (!pat_enabled) {
  267. /* This is identical to page table setting without PAT */
  268. if (new_type) {
  269. if (req_type == -1)
  270. *new_type = _PAGE_CACHE_WB;
  271. else
  272. *new_type = req_type & _PAGE_CACHE_MASK;
  273. }
  274. return 0;
  275. }
  276. /* Low ISA region is always mapped WB in page table. No need to track */
  277. if (is_ISA_range(start, end - 1)) {
  278. if (new_type)
  279. *new_type = _PAGE_CACHE_WB;
  280. return 0;
  281. }
  282. if (req_type == -1) {
  283. /*
  284. * Call mtrr_lookup to get the type hint. This is an
  285. * optimization for /dev/mem mmap'ers into WB memory (BIOS
  286. * tools and ACPI tools). Use WB request for WB memory and use
  287. * UC_MINUS otherwise.
  288. */
  289. u8 mtrr_type = mtrr_type_lookup(start, end);
  290. if (mtrr_type == MTRR_TYPE_WRBACK)
  291. actual_type = _PAGE_CACHE_WB;
  292. else
  293. actual_type = _PAGE_CACHE_UC_MINUS;
  294. } else {
  295. actual_type = pat_x_mtrr_type(start, end,
  296. req_type & _PAGE_CACHE_MASK);
  297. }
  298. if (new_type)
  299. *new_type = actual_type;
  300. /*
  301. * For legacy reasons, some parts of the physical address range in the
  302. * legacy 1MB region is treated as non-RAM (even when listed as RAM in
  303. * the e820 tables). So we will track the memory attributes of this
  304. * legacy 1MB region using the linear memtype_list always.
  305. */
  306. if (end >= ISA_END_ADDRESS) {
  307. is_range_ram = pagerange_is_ram(start, end);
  308. if (is_range_ram == 1)
  309. return reserve_ram_pages_type(start, end, req_type,
  310. new_type);
  311. else if (is_range_ram < 0)
  312. return -EINVAL;
  313. }
  314. new = kmalloc(sizeof(struct memtype), GFP_KERNEL);
  315. if (!new)
  316. return -ENOMEM;
  317. new->start = start;
  318. new->end = end;
  319. new->type = actual_type;
  320. spin_lock(&memtype_lock);
  321. if (cached_entry && start >= cached_start)
  322. entry = cached_entry;
  323. else
  324. entry = list_entry(&memtype_list, struct memtype, nd);
  325. /* Search for existing mapping that overlaps the current range */
  326. where = NULL;
  327. list_for_each_entry_continue(entry, &memtype_list, nd) {
  328. if (end <= entry->start) {
  329. where = entry->nd.prev;
  330. cached_entry = list_entry(where, struct memtype, nd);
  331. break;
  332. } else if (start <= entry->start) { /* end > entry->start */
  333. err = chk_conflict(new, entry, new_type);
  334. if (!err) {
  335. dprintk("Overlap at 0x%Lx-0x%Lx\n",
  336. entry->start, entry->end);
  337. where = entry->nd.prev;
  338. cached_entry = list_entry(where,
  339. struct memtype, nd);
  340. }
  341. break;
  342. } else if (start < entry->end) { /* start > entry->start */
  343. err = chk_conflict(new, entry, new_type);
  344. if (!err) {
  345. dprintk("Overlap at 0x%Lx-0x%Lx\n",
  346. entry->start, entry->end);
  347. cached_entry = list_entry(entry->nd.prev,
  348. struct memtype, nd);
  349. /*
  350. * Move to right position in the linked
  351. * list to add this new entry
  352. */
  353. list_for_each_entry_continue(entry,
  354. &memtype_list, nd) {
  355. if (start <= entry->start) {
  356. where = entry->nd.prev;
  357. break;
  358. }
  359. }
  360. }
  361. break;
  362. }
  363. }
  364. if (err) {
  365. printk(KERN_INFO "reserve_memtype failed 0x%Lx-0x%Lx, "
  366. "track %s, req %s\n",
  367. start, end, cattr_name(new->type), cattr_name(req_type));
  368. kfree(new);
  369. spin_unlock(&memtype_lock);
  370. return err;
  371. }
  372. cached_start = start;
  373. if (where)
  374. list_add(&new->nd, where);
  375. else
  376. list_add_tail(&new->nd, &memtype_list);
  377. spin_unlock(&memtype_lock);
  378. dprintk("reserve_memtype added 0x%Lx-0x%Lx, track %s, req %s, ret %s\n",
  379. start, end, cattr_name(new->type), cattr_name(req_type),
  380. new_type ? cattr_name(*new_type) : "-");
  381. return err;
  382. }
  383. int free_memtype(u64 start, u64 end)
  384. {
  385. struct memtype *entry;
  386. int err = -EINVAL;
  387. int is_range_ram;
  388. if (!pat_enabled)
  389. return 0;
  390. /* Low ISA region is always mapped WB. No need to track */
  391. if (is_ISA_range(start, end - 1))
  392. return 0;
  393. /*
  394. * For legacy reasons, some parts of the physical address range in the
  395. * legacy 1MB region is treated as non-RAM (even when listed as RAM in
  396. * the e820 tables). So we will track the memory attributes of this
  397. * legacy 1MB region using the linear memtype_list always.
  398. */
  399. if (end >= ISA_END_ADDRESS) {
  400. is_range_ram = pagerange_is_ram(start, end);
  401. if (is_range_ram == 1)
  402. return free_ram_pages_type(start, end);
  403. else if (is_range_ram < 0)
  404. return -EINVAL;
  405. }
  406. spin_lock(&memtype_lock);
  407. list_for_each_entry(entry, &memtype_list, nd) {
  408. if (entry->start == start && entry->end == end) {
  409. if (cached_entry == entry || cached_start == start)
  410. cached_entry = NULL;
  411. list_del(&entry->nd);
  412. kfree(entry);
  413. err = 0;
  414. break;
  415. }
  416. }
  417. spin_unlock(&memtype_lock);
  418. if (err) {
  419. printk(KERN_INFO "%s:%d freeing invalid memtype %Lx-%Lx\n",
  420. current->comm, current->pid, start, end);
  421. }
  422. dprintk("free_memtype request 0x%Lx-0x%Lx\n", start, end);
  423. return err;
  424. }
  425. pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
  426. unsigned long size, pgprot_t vma_prot)
  427. {
  428. return vma_prot;
  429. }
  430. #ifdef CONFIG_STRICT_DEVMEM
  431. /* This check is done in drivers/char/mem.c in case of STRICT_DEVMEM*/
  432. static inline int range_is_allowed(unsigned long pfn, unsigned long size)
  433. {
  434. return 1;
  435. }
  436. #else
  437. /* This check is needed to avoid cache aliasing when PAT is enabled */
  438. static inline int range_is_allowed(unsigned long pfn, unsigned long size)
  439. {
  440. u64 from = ((u64)pfn) << PAGE_SHIFT;
  441. u64 to = from + size;
  442. u64 cursor = from;
  443. if (!pat_enabled)
  444. return 1;
  445. while (cursor < to) {
  446. if (!devmem_is_allowed(pfn)) {
  447. printk(KERN_INFO
  448. "Program %s tried to access /dev/mem between %Lx->%Lx.\n",
  449. current->comm, from, to);
  450. return 0;
  451. }
  452. cursor += PAGE_SIZE;
  453. pfn++;
  454. }
  455. return 1;
  456. }
  457. #endif /* CONFIG_STRICT_DEVMEM */
  458. int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
  459. unsigned long size, pgprot_t *vma_prot)
  460. {
  461. u64 offset = ((u64) pfn) << PAGE_SHIFT;
  462. unsigned long flags = -1;
  463. int retval;
  464. if (!range_is_allowed(pfn, size))
  465. return 0;
  466. if (file->f_flags & O_SYNC) {
  467. flags = _PAGE_CACHE_UC_MINUS;
  468. }
  469. #ifdef CONFIG_X86_32
  470. /*
  471. * On the PPro and successors, the MTRRs are used to set
  472. * memory types for physical addresses outside main memory,
  473. * so blindly setting UC or PWT on those pages is wrong.
  474. * For Pentiums and earlier, the surround logic should disable
  475. * caching for the high addresses through the KEN pin, but
  476. * we maintain the tradition of paranoia in this code.
  477. */
  478. if (!pat_enabled &&
  479. !(boot_cpu_has(X86_FEATURE_MTRR) ||
  480. boot_cpu_has(X86_FEATURE_K6_MTRR) ||
  481. boot_cpu_has(X86_FEATURE_CYRIX_ARR) ||
  482. boot_cpu_has(X86_FEATURE_CENTAUR_MCR)) &&
  483. (pfn << PAGE_SHIFT) >= __pa(high_memory)) {
  484. flags = _PAGE_CACHE_UC;
  485. }
  486. #endif
  487. /*
  488. * With O_SYNC, we can only take UC_MINUS mapping. Fail if we cannot.
  489. *
  490. * Without O_SYNC, we want to get
  491. * - WB for WB-able memory and no other conflicting mappings
  492. * - UC_MINUS for non-WB-able memory with no other conflicting mappings
  493. * - Inherit from confliting mappings otherwise
  494. */
  495. if (flags != -1) {
  496. retval = reserve_memtype(offset, offset + size, flags, NULL);
  497. } else {
  498. retval = reserve_memtype(offset, offset + size, -1, &flags);
  499. }
  500. if (retval < 0)
  501. return 0;
  502. if (((pfn < max_low_pfn_mapped) ||
  503. (pfn >= (1UL<<(32 - PAGE_SHIFT)) && pfn < max_pfn_mapped)) &&
  504. ioremap_change_attr((unsigned long)__va(offset), size, flags) < 0) {
  505. free_memtype(offset, offset + size);
  506. printk(KERN_INFO
  507. "%s:%d /dev/mem ioremap_change_attr failed %s for %Lx-%Lx\n",
  508. current->comm, current->pid,
  509. cattr_name(flags),
  510. offset, (unsigned long long)(offset + size));
  511. return 0;
  512. }
  513. *vma_prot = __pgprot((pgprot_val(*vma_prot) & ~_PAGE_CACHE_MASK) |
  514. flags);
  515. return 1;
  516. }
  517. void map_devmem(unsigned long pfn, unsigned long size, pgprot_t vma_prot)
  518. {
  519. unsigned long want_flags = (pgprot_val(vma_prot) & _PAGE_CACHE_MASK);
  520. u64 addr = (u64)pfn << PAGE_SHIFT;
  521. unsigned long flags;
  522. reserve_memtype(addr, addr + size, want_flags, &flags);
  523. if (flags != want_flags) {
  524. printk(KERN_INFO
  525. "%s:%d /dev/mem expected mapping type %s for %Lx-%Lx, got %s\n",
  526. current->comm, current->pid,
  527. cattr_name(want_flags),
  528. addr, (unsigned long long)(addr + size),
  529. cattr_name(flags));
  530. }
  531. }
  532. void unmap_devmem(unsigned long pfn, unsigned long size, pgprot_t vma_prot)
  533. {
  534. u64 addr = (u64)pfn << PAGE_SHIFT;
  535. free_memtype(addr, addr + size);
  536. }
  537. /*
  538. * Internal interface to reserve a range of physical memory with prot.
  539. * Reserved non RAM regions only and after successful reserve_memtype,
  540. * this func also keeps identity mapping (if any) in sync with this new prot.
  541. */
  542. static int reserve_pfn_range(u64 paddr, unsigned long size, pgprot_t *vma_prot,
  543. int strict_prot)
  544. {
  545. int is_ram = 0;
  546. int id_sz, ret;
  547. unsigned long flags;
  548. unsigned long want_flags = (pgprot_val(*vma_prot) & _PAGE_CACHE_MASK);
  549. is_ram = pagerange_is_ram(paddr, paddr + size);
  550. if (is_ram != 0) {
  551. /*
  552. * For mapping RAM pages, drivers need to call
  553. * set_memory_[uc|wc|wb] directly, for reserve and free, before
  554. * setting up the PTE.
  555. */
  556. WARN_ON_ONCE(1);
  557. return 0;
  558. }
  559. ret = reserve_memtype(paddr, paddr + size, want_flags, &flags);
  560. if (ret)
  561. return ret;
  562. if (flags != want_flags) {
  563. if (strict_prot || !is_new_memtype_allowed(want_flags, flags)) {
  564. free_memtype(paddr, paddr + size);
  565. printk(KERN_ERR "%s:%d map pfn expected mapping type %s"
  566. " for %Lx-%Lx, got %s\n",
  567. current->comm, current->pid,
  568. cattr_name(want_flags),
  569. (unsigned long long)paddr,
  570. (unsigned long long)(paddr + size),
  571. cattr_name(flags));
  572. return -EINVAL;
  573. }
  574. /*
  575. * We allow returning different type than the one requested in
  576. * non strict case.
  577. */
  578. *vma_prot = __pgprot((pgprot_val(*vma_prot) &
  579. (~_PAGE_CACHE_MASK)) |
  580. flags);
  581. }
  582. /* Need to keep identity mapping in sync */
  583. if (paddr >= __pa(high_memory))
  584. return 0;
  585. id_sz = (__pa(high_memory) < paddr + size) ?
  586. __pa(high_memory) - paddr :
  587. size;
  588. if (ioremap_change_attr((unsigned long)__va(paddr), id_sz, flags) < 0) {
  589. free_memtype(paddr, paddr + size);
  590. printk(KERN_ERR
  591. "%s:%d reserve_pfn_range ioremap_change_attr failed %s "
  592. "for %Lx-%Lx\n",
  593. current->comm, current->pid,
  594. cattr_name(flags),
  595. (unsigned long long)paddr,
  596. (unsigned long long)(paddr + size));
  597. return -EINVAL;
  598. }
  599. return 0;
  600. }
  601. /*
  602. * Internal interface to free a range of physical memory.
  603. * Frees non RAM regions only.
  604. */
  605. static void free_pfn_range(u64 paddr, unsigned long size)
  606. {
  607. int is_ram;
  608. is_ram = pagerange_is_ram(paddr, paddr + size);
  609. if (is_ram == 0)
  610. free_memtype(paddr, paddr + size);
  611. }
  612. /*
  613. * track_pfn_vma_copy is called when vma that is covering the pfnmap gets
  614. * copied through copy_page_range().
  615. *
  616. * If the vma has a linear pfn mapping for the entire range, we get the prot
  617. * from pte and reserve the entire vma range with single reserve_pfn_range call.
  618. * Otherwise, we reserve the entire vma range, my ging through the PTEs page
  619. * by page to get physical address and protection.
  620. */
  621. int track_pfn_vma_copy(struct vm_area_struct *vma)
  622. {
  623. int retval = 0;
  624. unsigned long i, j;
  625. resource_size_t paddr;
  626. unsigned long prot;
  627. unsigned long vma_start = vma->vm_start;
  628. unsigned long vma_end = vma->vm_end;
  629. unsigned long vma_size = vma_end - vma_start;
  630. pgprot_t pgprot;
  631. if (!pat_enabled)
  632. return 0;
  633. if (is_linear_pfn_mapping(vma)) {
  634. /*
  635. * reserve the whole chunk covered by vma. We need the
  636. * starting address and protection from pte.
  637. */
  638. if (follow_phys(vma, vma_start, 0, &prot, &paddr)) {
  639. WARN_ON_ONCE(1);
  640. return -EINVAL;
  641. }
  642. pgprot = __pgprot(prot);
  643. return reserve_pfn_range(paddr, vma_size, &pgprot, 1);
  644. }
  645. /* reserve entire vma page by page, using pfn and prot from pte */
  646. for (i = 0; i < vma_size; i += PAGE_SIZE) {
  647. if (follow_phys(vma, vma_start + i, 0, &prot, &paddr))
  648. continue;
  649. pgprot = __pgprot(prot);
  650. retval = reserve_pfn_range(paddr, PAGE_SIZE, &pgprot, 1);
  651. if (retval)
  652. goto cleanup_ret;
  653. }
  654. return 0;
  655. cleanup_ret:
  656. /* Reserve error: Cleanup partial reservation and return error */
  657. for (j = 0; j < i; j += PAGE_SIZE) {
  658. if (follow_phys(vma, vma_start + j, 0, &prot, &paddr))
  659. continue;
  660. free_pfn_range(paddr, PAGE_SIZE);
  661. }
  662. return retval;
  663. }
  664. /*
  665. * track_pfn_vma_new is called when a _new_ pfn mapping is being established
  666. * for physical range indicated by pfn and size.
  667. *
  668. * prot is passed in as a parameter for the new mapping. If the vma has a
  669. * linear pfn mapping for the entire range reserve the entire vma range with
  670. * single reserve_pfn_range call.
  671. * Otherwise, we look t the pfn and size and reserve only the specified range
  672. * page by page.
  673. *
  674. * Note that this function can be called with caller trying to map only a
  675. * subrange/page inside the vma.
  676. */
  677. int track_pfn_vma_new(struct vm_area_struct *vma, pgprot_t *prot,
  678. unsigned long pfn, unsigned long size)
  679. {
  680. int retval = 0;
  681. unsigned long i, j;
  682. resource_size_t base_paddr;
  683. resource_size_t paddr;
  684. unsigned long vma_start = vma->vm_start;
  685. unsigned long vma_end = vma->vm_end;
  686. unsigned long vma_size = vma_end - vma_start;
  687. if (!pat_enabled)
  688. return 0;
  689. if (is_linear_pfn_mapping(vma)) {
  690. /* reserve the whole chunk starting from vm_pgoff */
  691. paddr = (resource_size_t)vma->vm_pgoff << PAGE_SHIFT;
  692. return reserve_pfn_range(paddr, vma_size, prot, 0);
  693. }
  694. /* reserve page by page using pfn and size */
  695. base_paddr = (resource_size_t)pfn << PAGE_SHIFT;
  696. for (i = 0; i < size; i += PAGE_SIZE) {
  697. paddr = base_paddr + i;
  698. retval = reserve_pfn_range(paddr, PAGE_SIZE, prot, 0);
  699. if (retval)
  700. goto cleanup_ret;
  701. }
  702. return 0;
  703. cleanup_ret:
  704. /* Reserve error: Cleanup partial reservation and return error */
  705. for (j = 0; j < i; j += PAGE_SIZE) {
  706. paddr = base_paddr + j;
  707. free_pfn_range(paddr, PAGE_SIZE);
  708. }
  709. return retval;
  710. }
  711. /*
  712. * untrack_pfn_vma is called while unmapping a pfnmap for a region.
  713. * untrack can be called for a specific region indicated by pfn and size or
  714. * can be for the entire vma (in which case size can be zero).
  715. */
  716. void untrack_pfn_vma(struct vm_area_struct *vma, unsigned long pfn,
  717. unsigned long size)
  718. {
  719. unsigned long i;
  720. resource_size_t paddr;
  721. unsigned long prot;
  722. unsigned long vma_start = vma->vm_start;
  723. unsigned long vma_end = vma->vm_end;
  724. unsigned long vma_size = vma_end - vma_start;
  725. if (!pat_enabled)
  726. return;
  727. if (is_linear_pfn_mapping(vma)) {
  728. /* free the whole chunk starting from vm_pgoff */
  729. paddr = (resource_size_t)vma->vm_pgoff << PAGE_SHIFT;
  730. free_pfn_range(paddr, vma_size);
  731. return;
  732. }
  733. if (size != 0 && size != vma_size) {
  734. /* free page by page, using pfn and size */
  735. paddr = (resource_size_t)pfn << PAGE_SHIFT;
  736. for (i = 0; i < size; i += PAGE_SIZE) {
  737. paddr = paddr + i;
  738. free_pfn_range(paddr, PAGE_SIZE);
  739. }
  740. } else {
  741. /* free entire vma, page by page, using the pfn from pte */
  742. for (i = 0; i < vma_size; i += PAGE_SIZE) {
  743. if (follow_phys(vma, vma_start + i, 0, &prot, &paddr))
  744. continue;
  745. free_pfn_range(paddr, PAGE_SIZE);
  746. }
  747. }
  748. }
  749. pgprot_t pgprot_writecombine(pgprot_t prot)
  750. {
  751. if (pat_enabled)
  752. return __pgprot(pgprot_val(prot) | _PAGE_CACHE_WC);
  753. else
  754. return pgprot_noncached(prot);
  755. }
  756. #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_X86_PAT)
  757. /* get Nth element of the linked list */
  758. static struct memtype *memtype_get_idx(loff_t pos)
  759. {
  760. struct memtype *list_node, *print_entry;
  761. int i = 1;
  762. print_entry = kmalloc(sizeof(struct memtype), GFP_KERNEL);
  763. if (!print_entry)
  764. return NULL;
  765. spin_lock(&memtype_lock);
  766. list_for_each_entry(list_node, &memtype_list, nd) {
  767. if (pos == i) {
  768. *print_entry = *list_node;
  769. spin_unlock(&memtype_lock);
  770. return print_entry;
  771. }
  772. ++i;
  773. }
  774. spin_unlock(&memtype_lock);
  775. kfree(print_entry);
  776. return NULL;
  777. }
  778. static void *memtype_seq_start(struct seq_file *seq, loff_t *pos)
  779. {
  780. if (*pos == 0) {
  781. ++*pos;
  782. seq_printf(seq, "PAT memtype list:\n");
  783. }
  784. return memtype_get_idx(*pos);
  785. }
  786. static void *memtype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  787. {
  788. ++*pos;
  789. return memtype_get_idx(*pos);
  790. }
  791. static void memtype_seq_stop(struct seq_file *seq, void *v)
  792. {
  793. }
  794. static int memtype_seq_show(struct seq_file *seq, void *v)
  795. {
  796. struct memtype *print_entry = (struct memtype *)v;
  797. seq_printf(seq, "%s @ 0x%Lx-0x%Lx\n", cattr_name(print_entry->type),
  798. print_entry->start, print_entry->end);
  799. kfree(print_entry);
  800. return 0;
  801. }
  802. static struct seq_operations memtype_seq_ops = {
  803. .start = memtype_seq_start,
  804. .next = memtype_seq_next,
  805. .stop = memtype_seq_stop,
  806. .show = memtype_seq_show,
  807. };
  808. static int memtype_seq_open(struct inode *inode, struct file *file)
  809. {
  810. return seq_open(file, &memtype_seq_ops);
  811. }
  812. static const struct file_operations memtype_fops = {
  813. .open = memtype_seq_open,
  814. .read = seq_read,
  815. .llseek = seq_lseek,
  816. .release = seq_release,
  817. };
  818. static int __init pat_memtype_list_init(void)
  819. {
  820. debugfs_create_file("pat_memtype_list", S_IRUSR, arch_debugfs_dir,
  821. NULL, &memtype_fops);
  822. return 0;
  823. }
  824. late_initcall(pat_memtype_list_init);
  825. #endif /* CONFIG_DEBUG_FS && CONFIG_X86_PAT */