kvm_main.c 58 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. *
  14. * This work is licensed under the terms of the GNU GPL, version 2. See
  15. * the COPYING file in the top-level directory.
  16. *
  17. */
  18. #include "iodev.h"
  19. #include <linux/kvm_host.h>
  20. #include <linux/kvm.h>
  21. #include <linux/module.h>
  22. #include <linux/errno.h>
  23. #include <linux/percpu.h>
  24. #include <linux/mm.h>
  25. #include <linux/miscdevice.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/reboot.h>
  28. #include <linux/debugfs.h>
  29. #include <linux/highmem.h>
  30. #include <linux/file.h>
  31. #include <linux/syscore_ops.h>
  32. #include <linux/cpu.h>
  33. #include <linux/sched.h>
  34. #include <linux/cpumask.h>
  35. #include <linux/smp.h>
  36. #include <linux/anon_inodes.h>
  37. #include <linux/profile.h>
  38. #include <linux/kvm_para.h>
  39. #include <linux/pagemap.h>
  40. #include <linux/mman.h>
  41. #include <linux/swap.h>
  42. #include <linux/bitops.h>
  43. #include <linux/spinlock.h>
  44. #include <linux/compat.h>
  45. #include <linux/srcu.h>
  46. #include <linux/hugetlb.h>
  47. #include <linux/slab.h>
  48. #include <asm/processor.h>
  49. #include <asm/io.h>
  50. #include <asm/uaccess.h>
  51. #include <asm/pgtable.h>
  52. #include "coalesced_mmio.h"
  53. #include "async_pf.h"
  54. #define CREATE_TRACE_POINTS
  55. #include <trace/events/kvm.h>
  56. MODULE_AUTHOR("Qumranet");
  57. MODULE_LICENSE("GPL");
  58. /*
  59. * Ordering of locks:
  60. *
  61. * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
  62. */
  63. DEFINE_RAW_SPINLOCK(kvm_lock);
  64. LIST_HEAD(vm_list);
  65. static cpumask_var_t cpus_hardware_enabled;
  66. static int kvm_usage_count = 0;
  67. static atomic_t hardware_enable_failed;
  68. struct kmem_cache *kvm_vcpu_cache;
  69. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  70. static __read_mostly struct preempt_ops kvm_preempt_ops;
  71. struct dentry *kvm_debugfs_dir;
  72. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  73. unsigned long arg);
  74. static int hardware_enable_all(void);
  75. static void hardware_disable_all(void);
  76. static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
  77. bool kvm_rebooting;
  78. EXPORT_SYMBOL_GPL(kvm_rebooting);
  79. static bool largepages_enabled = true;
  80. static struct page *hwpoison_page;
  81. static pfn_t hwpoison_pfn;
  82. static struct page *fault_page;
  83. static pfn_t fault_pfn;
  84. inline int kvm_is_mmio_pfn(pfn_t pfn)
  85. {
  86. if (pfn_valid(pfn)) {
  87. int reserved;
  88. struct page *tail = pfn_to_page(pfn);
  89. struct page *head = compound_trans_head(tail);
  90. reserved = PageReserved(head);
  91. if (head != tail) {
  92. /*
  93. * "head" is not a dangling pointer
  94. * (compound_trans_head takes care of that)
  95. * but the hugepage may have been splitted
  96. * from under us (and we may not hold a
  97. * reference count on the head page so it can
  98. * be reused before we run PageReferenced), so
  99. * we've to check PageTail before returning
  100. * what we just read.
  101. */
  102. smp_rmb();
  103. if (PageTail(tail))
  104. return reserved;
  105. }
  106. return PageReserved(tail);
  107. }
  108. return true;
  109. }
  110. /*
  111. * Switches to specified vcpu, until a matching vcpu_put()
  112. */
  113. void vcpu_load(struct kvm_vcpu *vcpu)
  114. {
  115. int cpu;
  116. mutex_lock(&vcpu->mutex);
  117. if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
  118. /* The thread running this VCPU changed. */
  119. struct pid *oldpid = vcpu->pid;
  120. struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
  121. rcu_assign_pointer(vcpu->pid, newpid);
  122. synchronize_rcu();
  123. put_pid(oldpid);
  124. }
  125. cpu = get_cpu();
  126. preempt_notifier_register(&vcpu->preempt_notifier);
  127. kvm_arch_vcpu_load(vcpu, cpu);
  128. put_cpu();
  129. }
  130. void vcpu_put(struct kvm_vcpu *vcpu)
  131. {
  132. preempt_disable();
  133. kvm_arch_vcpu_put(vcpu);
  134. preempt_notifier_unregister(&vcpu->preempt_notifier);
  135. preempt_enable();
  136. mutex_unlock(&vcpu->mutex);
  137. }
  138. static void ack_flush(void *_completed)
  139. {
  140. }
  141. static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
  142. {
  143. int i, cpu, me;
  144. cpumask_var_t cpus;
  145. bool called = true;
  146. struct kvm_vcpu *vcpu;
  147. zalloc_cpumask_var(&cpus, GFP_ATOMIC);
  148. me = get_cpu();
  149. kvm_for_each_vcpu(i, vcpu, kvm) {
  150. kvm_make_request(req, vcpu);
  151. cpu = vcpu->cpu;
  152. /* Set ->requests bit before we read ->mode */
  153. smp_mb();
  154. if (cpus != NULL && cpu != -1 && cpu != me &&
  155. kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
  156. cpumask_set_cpu(cpu, cpus);
  157. }
  158. if (unlikely(cpus == NULL))
  159. smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
  160. else if (!cpumask_empty(cpus))
  161. smp_call_function_many(cpus, ack_flush, NULL, 1);
  162. else
  163. called = false;
  164. put_cpu();
  165. free_cpumask_var(cpus);
  166. return called;
  167. }
  168. void kvm_flush_remote_tlbs(struct kvm *kvm)
  169. {
  170. int dirty_count = kvm->tlbs_dirty;
  171. smp_mb();
  172. if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
  173. ++kvm->stat.remote_tlb_flush;
  174. cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
  175. }
  176. void kvm_reload_remote_mmus(struct kvm *kvm)
  177. {
  178. make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
  179. }
  180. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  181. {
  182. struct page *page;
  183. int r;
  184. mutex_init(&vcpu->mutex);
  185. vcpu->cpu = -1;
  186. vcpu->kvm = kvm;
  187. vcpu->vcpu_id = id;
  188. vcpu->pid = NULL;
  189. init_waitqueue_head(&vcpu->wq);
  190. kvm_async_pf_vcpu_init(vcpu);
  191. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  192. if (!page) {
  193. r = -ENOMEM;
  194. goto fail;
  195. }
  196. vcpu->run = page_address(page);
  197. r = kvm_arch_vcpu_init(vcpu);
  198. if (r < 0)
  199. goto fail_free_run;
  200. return 0;
  201. fail_free_run:
  202. free_page((unsigned long)vcpu->run);
  203. fail:
  204. return r;
  205. }
  206. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  207. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  208. {
  209. put_pid(vcpu->pid);
  210. kvm_arch_vcpu_uninit(vcpu);
  211. free_page((unsigned long)vcpu->run);
  212. }
  213. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  214. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  215. static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
  216. {
  217. return container_of(mn, struct kvm, mmu_notifier);
  218. }
  219. static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
  220. struct mm_struct *mm,
  221. unsigned long address)
  222. {
  223. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  224. int need_tlb_flush, idx;
  225. /*
  226. * When ->invalidate_page runs, the linux pte has been zapped
  227. * already but the page is still allocated until
  228. * ->invalidate_page returns. So if we increase the sequence
  229. * here the kvm page fault will notice if the spte can't be
  230. * established because the page is going to be freed. If
  231. * instead the kvm page fault establishes the spte before
  232. * ->invalidate_page runs, kvm_unmap_hva will release it
  233. * before returning.
  234. *
  235. * The sequence increase only need to be seen at spin_unlock
  236. * time, and not at spin_lock time.
  237. *
  238. * Increasing the sequence after the spin_unlock would be
  239. * unsafe because the kvm page fault could then establish the
  240. * pte after kvm_unmap_hva returned, without noticing the page
  241. * is going to be freed.
  242. */
  243. idx = srcu_read_lock(&kvm->srcu);
  244. spin_lock(&kvm->mmu_lock);
  245. kvm->mmu_notifier_seq++;
  246. need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
  247. spin_unlock(&kvm->mmu_lock);
  248. srcu_read_unlock(&kvm->srcu, idx);
  249. /* we've to flush the tlb before the pages can be freed */
  250. if (need_tlb_flush)
  251. kvm_flush_remote_tlbs(kvm);
  252. }
  253. static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
  254. struct mm_struct *mm,
  255. unsigned long address,
  256. pte_t pte)
  257. {
  258. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  259. int idx;
  260. idx = srcu_read_lock(&kvm->srcu);
  261. spin_lock(&kvm->mmu_lock);
  262. kvm->mmu_notifier_seq++;
  263. kvm_set_spte_hva(kvm, address, pte);
  264. spin_unlock(&kvm->mmu_lock);
  265. srcu_read_unlock(&kvm->srcu, idx);
  266. }
  267. static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
  268. struct mm_struct *mm,
  269. unsigned long start,
  270. unsigned long end)
  271. {
  272. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  273. int need_tlb_flush = 0, idx;
  274. idx = srcu_read_lock(&kvm->srcu);
  275. spin_lock(&kvm->mmu_lock);
  276. /*
  277. * The count increase must become visible at unlock time as no
  278. * spte can be established without taking the mmu_lock and
  279. * count is also read inside the mmu_lock critical section.
  280. */
  281. kvm->mmu_notifier_count++;
  282. for (; start < end; start += PAGE_SIZE)
  283. need_tlb_flush |= kvm_unmap_hva(kvm, start);
  284. need_tlb_flush |= kvm->tlbs_dirty;
  285. spin_unlock(&kvm->mmu_lock);
  286. srcu_read_unlock(&kvm->srcu, idx);
  287. /* we've to flush the tlb before the pages can be freed */
  288. if (need_tlb_flush)
  289. kvm_flush_remote_tlbs(kvm);
  290. }
  291. static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
  292. struct mm_struct *mm,
  293. unsigned long start,
  294. unsigned long end)
  295. {
  296. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  297. spin_lock(&kvm->mmu_lock);
  298. /*
  299. * This sequence increase will notify the kvm page fault that
  300. * the page that is going to be mapped in the spte could have
  301. * been freed.
  302. */
  303. kvm->mmu_notifier_seq++;
  304. /*
  305. * The above sequence increase must be visible before the
  306. * below count decrease but both values are read by the kvm
  307. * page fault under mmu_lock spinlock so we don't need to add
  308. * a smb_wmb() here in between the two.
  309. */
  310. kvm->mmu_notifier_count--;
  311. spin_unlock(&kvm->mmu_lock);
  312. BUG_ON(kvm->mmu_notifier_count < 0);
  313. }
  314. static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
  315. struct mm_struct *mm,
  316. unsigned long address)
  317. {
  318. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  319. int young, idx;
  320. idx = srcu_read_lock(&kvm->srcu);
  321. spin_lock(&kvm->mmu_lock);
  322. young = kvm_age_hva(kvm, address);
  323. spin_unlock(&kvm->mmu_lock);
  324. srcu_read_unlock(&kvm->srcu, idx);
  325. if (young)
  326. kvm_flush_remote_tlbs(kvm);
  327. return young;
  328. }
  329. static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
  330. struct mm_struct *mm,
  331. unsigned long address)
  332. {
  333. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  334. int young, idx;
  335. idx = srcu_read_lock(&kvm->srcu);
  336. spin_lock(&kvm->mmu_lock);
  337. young = kvm_test_age_hva(kvm, address);
  338. spin_unlock(&kvm->mmu_lock);
  339. srcu_read_unlock(&kvm->srcu, idx);
  340. return young;
  341. }
  342. static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
  343. struct mm_struct *mm)
  344. {
  345. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  346. int idx;
  347. idx = srcu_read_lock(&kvm->srcu);
  348. kvm_arch_flush_shadow(kvm);
  349. srcu_read_unlock(&kvm->srcu, idx);
  350. }
  351. static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
  352. .invalidate_page = kvm_mmu_notifier_invalidate_page,
  353. .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
  354. .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
  355. .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
  356. .test_young = kvm_mmu_notifier_test_young,
  357. .change_pte = kvm_mmu_notifier_change_pte,
  358. .release = kvm_mmu_notifier_release,
  359. };
  360. static int kvm_init_mmu_notifier(struct kvm *kvm)
  361. {
  362. kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
  363. return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
  364. }
  365. #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
  366. static int kvm_init_mmu_notifier(struct kvm *kvm)
  367. {
  368. return 0;
  369. }
  370. #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
  371. static struct kvm *kvm_create_vm(void)
  372. {
  373. int r, i;
  374. struct kvm *kvm = kvm_arch_alloc_vm();
  375. if (!kvm)
  376. return ERR_PTR(-ENOMEM);
  377. r = kvm_arch_init_vm(kvm);
  378. if (r)
  379. goto out_err_nodisable;
  380. r = hardware_enable_all();
  381. if (r)
  382. goto out_err_nodisable;
  383. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  384. INIT_HLIST_HEAD(&kvm->mask_notifier_list);
  385. INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
  386. #endif
  387. r = -ENOMEM;
  388. kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  389. if (!kvm->memslots)
  390. goto out_err_nosrcu;
  391. if (init_srcu_struct(&kvm->srcu))
  392. goto out_err_nosrcu;
  393. for (i = 0; i < KVM_NR_BUSES; i++) {
  394. kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
  395. GFP_KERNEL);
  396. if (!kvm->buses[i])
  397. goto out_err;
  398. }
  399. spin_lock_init(&kvm->mmu_lock);
  400. kvm->mm = current->mm;
  401. atomic_inc(&kvm->mm->mm_count);
  402. kvm_eventfd_init(kvm);
  403. mutex_init(&kvm->lock);
  404. mutex_init(&kvm->irq_lock);
  405. mutex_init(&kvm->slots_lock);
  406. atomic_set(&kvm->users_count, 1);
  407. r = kvm_init_mmu_notifier(kvm);
  408. if (r)
  409. goto out_err;
  410. raw_spin_lock(&kvm_lock);
  411. list_add(&kvm->vm_list, &vm_list);
  412. raw_spin_unlock(&kvm_lock);
  413. return kvm;
  414. out_err:
  415. cleanup_srcu_struct(&kvm->srcu);
  416. out_err_nosrcu:
  417. hardware_disable_all();
  418. out_err_nodisable:
  419. for (i = 0; i < KVM_NR_BUSES; i++)
  420. kfree(kvm->buses[i]);
  421. kfree(kvm->memslots);
  422. kvm_arch_free_vm(kvm);
  423. return ERR_PTR(r);
  424. }
  425. static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
  426. {
  427. if (!memslot->dirty_bitmap)
  428. return;
  429. if (2 * kvm_dirty_bitmap_bytes(memslot) > PAGE_SIZE)
  430. vfree(memslot->dirty_bitmap_head);
  431. else
  432. kfree(memslot->dirty_bitmap_head);
  433. memslot->dirty_bitmap = NULL;
  434. memslot->dirty_bitmap_head = NULL;
  435. }
  436. /*
  437. * Free any memory in @free but not in @dont.
  438. */
  439. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  440. struct kvm_memory_slot *dont)
  441. {
  442. int i;
  443. if (!dont || free->rmap != dont->rmap)
  444. vfree(free->rmap);
  445. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  446. kvm_destroy_dirty_bitmap(free);
  447. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
  448. if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
  449. vfree(free->lpage_info[i]);
  450. free->lpage_info[i] = NULL;
  451. }
  452. }
  453. free->npages = 0;
  454. free->rmap = NULL;
  455. }
  456. void kvm_free_physmem(struct kvm *kvm)
  457. {
  458. int i;
  459. struct kvm_memslots *slots = kvm->memslots;
  460. for (i = 0; i < slots->nmemslots; ++i)
  461. kvm_free_physmem_slot(&slots->memslots[i], NULL);
  462. kfree(kvm->memslots);
  463. }
  464. static void kvm_destroy_vm(struct kvm *kvm)
  465. {
  466. int i;
  467. struct mm_struct *mm = kvm->mm;
  468. kvm_arch_sync_events(kvm);
  469. raw_spin_lock(&kvm_lock);
  470. list_del(&kvm->vm_list);
  471. raw_spin_unlock(&kvm_lock);
  472. kvm_free_irq_routing(kvm);
  473. for (i = 0; i < KVM_NR_BUSES; i++)
  474. kvm_io_bus_destroy(kvm->buses[i]);
  475. kvm_coalesced_mmio_free(kvm);
  476. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  477. mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
  478. #else
  479. kvm_arch_flush_shadow(kvm);
  480. #endif
  481. kvm_arch_destroy_vm(kvm);
  482. kvm_free_physmem(kvm);
  483. cleanup_srcu_struct(&kvm->srcu);
  484. kvm_arch_free_vm(kvm);
  485. hardware_disable_all();
  486. mmdrop(mm);
  487. }
  488. void kvm_get_kvm(struct kvm *kvm)
  489. {
  490. atomic_inc(&kvm->users_count);
  491. }
  492. EXPORT_SYMBOL_GPL(kvm_get_kvm);
  493. void kvm_put_kvm(struct kvm *kvm)
  494. {
  495. if (atomic_dec_and_test(&kvm->users_count))
  496. kvm_destroy_vm(kvm);
  497. }
  498. EXPORT_SYMBOL_GPL(kvm_put_kvm);
  499. static int kvm_vm_release(struct inode *inode, struct file *filp)
  500. {
  501. struct kvm *kvm = filp->private_data;
  502. kvm_irqfd_release(kvm);
  503. kvm_put_kvm(kvm);
  504. return 0;
  505. }
  506. #ifndef CONFIG_S390
  507. /*
  508. * Allocation size is twice as large as the actual dirty bitmap size.
  509. * This makes it possible to do double buffering: see x86's
  510. * kvm_vm_ioctl_get_dirty_log().
  511. */
  512. static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
  513. {
  514. unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
  515. if (dirty_bytes > PAGE_SIZE)
  516. memslot->dirty_bitmap = vzalloc(dirty_bytes);
  517. else
  518. memslot->dirty_bitmap = kzalloc(dirty_bytes, GFP_KERNEL);
  519. if (!memslot->dirty_bitmap)
  520. return -ENOMEM;
  521. memslot->dirty_bitmap_head = memslot->dirty_bitmap;
  522. return 0;
  523. }
  524. #endif /* !CONFIG_S390 */
  525. /*
  526. * Allocate some memory and give it an address in the guest physical address
  527. * space.
  528. *
  529. * Discontiguous memory is allowed, mostly for framebuffers.
  530. *
  531. * Must be called holding mmap_sem for write.
  532. */
  533. int __kvm_set_memory_region(struct kvm *kvm,
  534. struct kvm_userspace_memory_region *mem,
  535. int user_alloc)
  536. {
  537. int r;
  538. gfn_t base_gfn;
  539. unsigned long npages;
  540. unsigned long i;
  541. struct kvm_memory_slot *memslot;
  542. struct kvm_memory_slot old, new;
  543. struct kvm_memslots *slots, *old_memslots;
  544. r = -EINVAL;
  545. /* General sanity checks */
  546. if (mem->memory_size & (PAGE_SIZE - 1))
  547. goto out;
  548. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  549. goto out;
  550. /* We can read the guest memory with __xxx_user() later on. */
  551. if (user_alloc &&
  552. ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
  553. !access_ok(VERIFY_WRITE,
  554. (void __user *)(unsigned long)mem->userspace_addr,
  555. mem->memory_size)))
  556. goto out;
  557. if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
  558. goto out;
  559. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  560. goto out;
  561. memslot = &kvm->memslots->memslots[mem->slot];
  562. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  563. npages = mem->memory_size >> PAGE_SHIFT;
  564. r = -EINVAL;
  565. if (npages > KVM_MEM_MAX_NR_PAGES)
  566. goto out;
  567. if (!npages)
  568. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  569. new = old = *memslot;
  570. new.id = mem->slot;
  571. new.base_gfn = base_gfn;
  572. new.npages = npages;
  573. new.flags = mem->flags;
  574. /* Disallow changing a memory slot's size. */
  575. r = -EINVAL;
  576. if (npages && old.npages && npages != old.npages)
  577. goto out_free;
  578. /* Check for overlaps */
  579. r = -EEXIST;
  580. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  581. struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
  582. if (s == memslot || !s->npages)
  583. continue;
  584. if (!((base_gfn + npages <= s->base_gfn) ||
  585. (base_gfn >= s->base_gfn + s->npages)))
  586. goto out_free;
  587. }
  588. /* Free page dirty bitmap if unneeded */
  589. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  590. new.dirty_bitmap = NULL;
  591. r = -ENOMEM;
  592. /* Allocate if a slot is being created */
  593. #ifndef CONFIG_S390
  594. if (npages && !new.rmap) {
  595. new.rmap = vzalloc(npages * sizeof(*new.rmap));
  596. if (!new.rmap)
  597. goto out_free;
  598. new.user_alloc = user_alloc;
  599. new.userspace_addr = mem->userspace_addr;
  600. }
  601. if (!npages)
  602. goto skip_lpage;
  603. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
  604. unsigned long ugfn;
  605. unsigned long j;
  606. int lpages;
  607. int level = i + 2;
  608. /* Avoid unused variable warning if no large pages */
  609. (void)level;
  610. if (new.lpage_info[i])
  611. continue;
  612. lpages = 1 + ((base_gfn + npages - 1)
  613. >> KVM_HPAGE_GFN_SHIFT(level));
  614. lpages -= base_gfn >> KVM_HPAGE_GFN_SHIFT(level);
  615. new.lpage_info[i] = vzalloc(lpages * sizeof(*new.lpage_info[i]));
  616. if (!new.lpage_info[i])
  617. goto out_free;
  618. if (base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
  619. new.lpage_info[i][0].write_count = 1;
  620. if ((base_gfn+npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
  621. new.lpage_info[i][lpages - 1].write_count = 1;
  622. ugfn = new.userspace_addr >> PAGE_SHIFT;
  623. /*
  624. * If the gfn and userspace address are not aligned wrt each
  625. * other, or if explicitly asked to, disable large page
  626. * support for this slot
  627. */
  628. if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
  629. !largepages_enabled)
  630. for (j = 0; j < lpages; ++j)
  631. new.lpage_info[i][j].write_count = 1;
  632. }
  633. skip_lpage:
  634. /* Allocate page dirty bitmap if needed */
  635. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  636. if (kvm_create_dirty_bitmap(&new) < 0)
  637. goto out_free;
  638. /* destroy any largepage mappings for dirty tracking */
  639. }
  640. #else /* not defined CONFIG_S390 */
  641. new.user_alloc = user_alloc;
  642. if (user_alloc)
  643. new.userspace_addr = mem->userspace_addr;
  644. #endif /* not defined CONFIG_S390 */
  645. if (!npages) {
  646. r = -ENOMEM;
  647. slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  648. if (!slots)
  649. goto out_free;
  650. memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
  651. if (mem->slot >= slots->nmemslots)
  652. slots->nmemslots = mem->slot + 1;
  653. slots->generation++;
  654. slots->memslots[mem->slot].flags |= KVM_MEMSLOT_INVALID;
  655. old_memslots = kvm->memslots;
  656. rcu_assign_pointer(kvm->memslots, slots);
  657. synchronize_srcu_expedited(&kvm->srcu);
  658. /* From this point no new shadow pages pointing to a deleted
  659. * memslot will be created.
  660. *
  661. * validation of sp->gfn happens in:
  662. * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
  663. * - kvm_is_visible_gfn (mmu_check_roots)
  664. */
  665. kvm_arch_flush_shadow(kvm);
  666. kfree(old_memslots);
  667. }
  668. r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
  669. if (r)
  670. goto out_free;
  671. /* map the pages in iommu page table */
  672. if (npages) {
  673. r = kvm_iommu_map_pages(kvm, &new);
  674. if (r)
  675. goto out_free;
  676. }
  677. r = -ENOMEM;
  678. slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  679. if (!slots)
  680. goto out_free;
  681. memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
  682. if (mem->slot >= slots->nmemslots)
  683. slots->nmemslots = mem->slot + 1;
  684. slots->generation++;
  685. /* actual memory is freed via old in kvm_free_physmem_slot below */
  686. if (!npages) {
  687. new.rmap = NULL;
  688. new.dirty_bitmap = NULL;
  689. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i)
  690. new.lpage_info[i] = NULL;
  691. }
  692. slots->memslots[mem->slot] = new;
  693. old_memslots = kvm->memslots;
  694. rcu_assign_pointer(kvm->memslots, slots);
  695. synchronize_srcu_expedited(&kvm->srcu);
  696. kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
  697. kvm_free_physmem_slot(&old, &new);
  698. kfree(old_memslots);
  699. return 0;
  700. out_free:
  701. kvm_free_physmem_slot(&new, &old);
  702. out:
  703. return r;
  704. }
  705. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  706. int kvm_set_memory_region(struct kvm *kvm,
  707. struct kvm_userspace_memory_region *mem,
  708. int user_alloc)
  709. {
  710. int r;
  711. mutex_lock(&kvm->slots_lock);
  712. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  713. mutex_unlock(&kvm->slots_lock);
  714. return r;
  715. }
  716. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  717. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  718. struct
  719. kvm_userspace_memory_region *mem,
  720. int user_alloc)
  721. {
  722. if (mem->slot >= KVM_MEMORY_SLOTS)
  723. return -EINVAL;
  724. return kvm_set_memory_region(kvm, mem, user_alloc);
  725. }
  726. int kvm_get_dirty_log(struct kvm *kvm,
  727. struct kvm_dirty_log *log, int *is_dirty)
  728. {
  729. struct kvm_memory_slot *memslot;
  730. int r, i;
  731. unsigned long n;
  732. unsigned long any = 0;
  733. r = -EINVAL;
  734. if (log->slot >= KVM_MEMORY_SLOTS)
  735. goto out;
  736. memslot = &kvm->memslots->memslots[log->slot];
  737. r = -ENOENT;
  738. if (!memslot->dirty_bitmap)
  739. goto out;
  740. n = kvm_dirty_bitmap_bytes(memslot);
  741. for (i = 0; !any && i < n/sizeof(long); ++i)
  742. any = memslot->dirty_bitmap[i];
  743. r = -EFAULT;
  744. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  745. goto out;
  746. if (any)
  747. *is_dirty = 1;
  748. r = 0;
  749. out:
  750. return r;
  751. }
  752. void kvm_disable_largepages(void)
  753. {
  754. largepages_enabled = false;
  755. }
  756. EXPORT_SYMBOL_GPL(kvm_disable_largepages);
  757. int is_error_page(struct page *page)
  758. {
  759. return page == bad_page || page == hwpoison_page || page == fault_page;
  760. }
  761. EXPORT_SYMBOL_GPL(is_error_page);
  762. int is_error_pfn(pfn_t pfn)
  763. {
  764. return pfn == bad_pfn || pfn == hwpoison_pfn || pfn == fault_pfn;
  765. }
  766. EXPORT_SYMBOL_GPL(is_error_pfn);
  767. int is_hwpoison_pfn(pfn_t pfn)
  768. {
  769. return pfn == hwpoison_pfn;
  770. }
  771. EXPORT_SYMBOL_GPL(is_hwpoison_pfn);
  772. int is_fault_pfn(pfn_t pfn)
  773. {
  774. return pfn == fault_pfn;
  775. }
  776. EXPORT_SYMBOL_GPL(is_fault_pfn);
  777. static inline unsigned long bad_hva(void)
  778. {
  779. return PAGE_OFFSET;
  780. }
  781. int kvm_is_error_hva(unsigned long addr)
  782. {
  783. return addr == bad_hva();
  784. }
  785. EXPORT_SYMBOL_GPL(kvm_is_error_hva);
  786. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm_memslots *slots,
  787. gfn_t gfn)
  788. {
  789. int i;
  790. for (i = 0; i < slots->nmemslots; ++i) {
  791. struct kvm_memory_slot *memslot = &slots->memslots[i];
  792. if (gfn >= memslot->base_gfn
  793. && gfn < memslot->base_gfn + memslot->npages)
  794. return memslot;
  795. }
  796. return NULL;
  797. }
  798. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  799. {
  800. return __gfn_to_memslot(kvm_memslots(kvm), gfn);
  801. }
  802. EXPORT_SYMBOL_GPL(gfn_to_memslot);
  803. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  804. {
  805. int i;
  806. struct kvm_memslots *slots = kvm_memslots(kvm);
  807. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  808. struct kvm_memory_slot *memslot = &slots->memslots[i];
  809. if (memslot->flags & KVM_MEMSLOT_INVALID)
  810. continue;
  811. if (gfn >= memslot->base_gfn
  812. && gfn < memslot->base_gfn + memslot->npages)
  813. return 1;
  814. }
  815. return 0;
  816. }
  817. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  818. unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
  819. {
  820. struct vm_area_struct *vma;
  821. unsigned long addr, size;
  822. size = PAGE_SIZE;
  823. addr = gfn_to_hva(kvm, gfn);
  824. if (kvm_is_error_hva(addr))
  825. return PAGE_SIZE;
  826. down_read(&current->mm->mmap_sem);
  827. vma = find_vma(current->mm, addr);
  828. if (!vma)
  829. goto out;
  830. size = vma_kernel_pagesize(vma);
  831. out:
  832. up_read(&current->mm->mmap_sem);
  833. return size;
  834. }
  835. static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
  836. gfn_t *nr_pages)
  837. {
  838. if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
  839. return bad_hva();
  840. if (nr_pages)
  841. *nr_pages = slot->npages - (gfn - slot->base_gfn);
  842. return gfn_to_hva_memslot(slot, gfn);
  843. }
  844. unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
  845. {
  846. return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
  847. }
  848. EXPORT_SYMBOL_GPL(gfn_to_hva);
  849. static pfn_t get_fault_pfn(void)
  850. {
  851. get_page(fault_page);
  852. return fault_pfn;
  853. }
  854. int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
  855. unsigned long start, int write, struct page **page)
  856. {
  857. int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
  858. if (write)
  859. flags |= FOLL_WRITE;
  860. return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
  861. }
  862. static inline int check_user_page_hwpoison(unsigned long addr)
  863. {
  864. int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
  865. rc = __get_user_pages(current, current->mm, addr, 1,
  866. flags, NULL, NULL, NULL);
  867. return rc == -EHWPOISON;
  868. }
  869. static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr, bool atomic,
  870. bool *async, bool write_fault, bool *writable)
  871. {
  872. struct page *page[1];
  873. int npages = 0;
  874. pfn_t pfn;
  875. /* we can do it either atomically or asynchronously, not both */
  876. BUG_ON(atomic && async);
  877. BUG_ON(!write_fault && !writable);
  878. if (writable)
  879. *writable = true;
  880. if (atomic || async)
  881. npages = __get_user_pages_fast(addr, 1, 1, page);
  882. if (unlikely(npages != 1) && !atomic) {
  883. might_sleep();
  884. if (writable)
  885. *writable = write_fault;
  886. if (async) {
  887. down_read(&current->mm->mmap_sem);
  888. npages = get_user_page_nowait(current, current->mm,
  889. addr, write_fault, page);
  890. up_read(&current->mm->mmap_sem);
  891. } else
  892. npages = get_user_pages_fast(addr, 1, write_fault,
  893. page);
  894. /* map read fault as writable if possible */
  895. if (unlikely(!write_fault) && npages == 1) {
  896. struct page *wpage[1];
  897. npages = __get_user_pages_fast(addr, 1, 1, wpage);
  898. if (npages == 1) {
  899. *writable = true;
  900. put_page(page[0]);
  901. page[0] = wpage[0];
  902. }
  903. npages = 1;
  904. }
  905. }
  906. if (unlikely(npages != 1)) {
  907. struct vm_area_struct *vma;
  908. if (atomic)
  909. return get_fault_pfn();
  910. down_read(&current->mm->mmap_sem);
  911. if (npages == -EHWPOISON ||
  912. (!async && check_user_page_hwpoison(addr))) {
  913. up_read(&current->mm->mmap_sem);
  914. get_page(hwpoison_page);
  915. return page_to_pfn(hwpoison_page);
  916. }
  917. vma = find_vma_intersection(current->mm, addr, addr+1);
  918. if (vma == NULL)
  919. pfn = get_fault_pfn();
  920. else if ((vma->vm_flags & VM_PFNMAP)) {
  921. pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
  922. vma->vm_pgoff;
  923. BUG_ON(!kvm_is_mmio_pfn(pfn));
  924. } else {
  925. if (async && (vma->vm_flags & VM_WRITE))
  926. *async = true;
  927. pfn = get_fault_pfn();
  928. }
  929. up_read(&current->mm->mmap_sem);
  930. } else
  931. pfn = page_to_pfn(page[0]);
  932. return pfn;
  933. }
  934. pfn_t hva_to_pfn_atomic(struct kvm *kvm, unsigned long addr)
  935. {
  936. return hva_to_pfn(kvm, addr, true, NULL, true, NULL);
  937. }
  938. EXPORT_SYMBOL_GPL(hva_to_pfn_atomic);
  939. static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
  940. bool write_fault, bool *writable)
  941. {
  942. unsigned long addr;
  943. if (async)
  944. *async = false;
  945. addr = gfn_to_hva(kvm, gfn);
  946. if (kvm_is_error_hva(addr)) {
  947. get_page(bad_page);
  948. return page_to_pfn(bad_page);
  949. }
  950. return hva_to_pfn(kvm, addr, atomic, async, write_fault, writable);
  951. }
  952. pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
  953. {
  954. return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
  955. }
  956. EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
  957. pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
  958. bool write_fault, bool *writable)
  959. {
  960. return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
  961. }
  962. EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
  963. pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
  964. {
  965. return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
  966. }
  967. EXPORT_SYMBOL_GPL(gfn_to_pfn);
  968. pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
  969. bool *writable)
  970. {
  971. return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
  972. }
  973. EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
  974. pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
  975. struct kvm_memory_slot *slot, gfn_t gfn)
  976. {
  977. unsigned long addr = gfn_to_hva_memslot(slot, gfn);
  978. return hva_to_pfn(kvm, addr, false, NULL, true, NULL);
  979. }
  980. int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
  981. int nr_pages)
  982. {
  983. unsigned long addr;
  984. gfn_t entry;
  985. addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
  986. if (kvm_is_error_hva(addr))
  987. return -1;
  988. if (entry < nr_pages)
  989. return 0;
  990. return __get_user_pages_fast(addr, nr_pages, 1, pages);
  991. }
  992. EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
  993. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  994. {
  995. pfn_t pfn;
  996. pfn = gfn_to_pfn(kvm, gfn);
  997. if (!kvm_is_mmio_pfn(pfn))
  998. return pfn_to_page(pfn);
  999. WARN_ON(kvm_is_mmio_pfn(pfn));
  1000. get_page(bad_page);
  1001. return bad_page;
  1002. }
  1003. EXPORT_SYMBOL_GPL(gfn_to_page);
  1004. void kvm_release_page_clean(struct page *page)
  1005. {
  1006. kvm_release_pfn_clean(page_to_pfn(page));
  1007. }
  1008. EXPORT_SYMBOL_GPL(kvm_release_page_clean);
  1009. void kvm_release_pfn_clean(pfn_t pfn)
  1010. {
  1011. if (!kvm_is_mmio_pfn(pfn))
  1012. put_page(pfn_to_page(pfn));
  1013. }
  1014. EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
  1015. void kvm_release_page_dirty(struct page *page)
  1016. {
  1017. kvm_release_pfn_dirty(page_to_pfn(page));
  1018. }
  1019. EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
  1020. void kvm_release_pfn_dirty(pfn_t pfn)
  1021. {
  1022. kvm_set_pfn_dirty(pfn);
  1023. kvm_release_pfn_clean(pfn);
  1024. }
  1025. EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
  1026. void kvm_set_page_dirty(struct page *page)
  1027. {
  1028. kvm_set_pfn_dirty(page_to_pfn(page));
  1029. }
  1030. EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
  1031. void kvm_set_pfn_dirty(pfn_t pfn)
  1032. {
  1033. if (!kvm_is_mmio_pfn(pfn)) {
  1034. struct page *page = pfn_to_page(pfn);
  1035. if (!PageReserved(page))
  1036. SetPageDirty(page);
  1037. }
  1038. }
  1039. EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
  1040. void kvm_set_pfn_accessed(pfn_t pfn)
  1041. {
  1042. if (!kvm_is_mmio_pfn(pfn))
  1043. mark_page_accessed(pfn_to_page(pfn));
  1044. }
  1045. EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
  1046. void kvm_get_pfn(pfn_t pfn)
  1047. {
  1048. if (!kvm_is_mmio_pfn(pfn))
  1049. get_page(pfn_to_page(pfn));
  1050. }
  1051. EXPORT_SYMBOL_GPL(kvm_get_pfn);
  1052. static int next_segment(unsigned long len, int offset)
  1053. {
  1054. if (len > PAGE_SIZE - offset)
  1055. return PAGE_SIZE - offset;
  1056. else
  1057. return len;
  1058. }
  1059. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  1060. int len)
  1061. {
  1062. int r;
  1063. unsigned long addr;
  1064. addr = gfn_to_hva(kvm, gfn);
  1065. if (kvm_is_error_hva(addr))
  1066. return -EFAULT;
  1067. r = __copy_from_user(data, (void __user *)addr + offset, len);
  1068. if (r)
  1069. return -EFAULT;
  1070. return 0;
  1071. }
  1072. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  1073. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  1074. {
  1075. gfn_t gfn = gpa >> PAGE_SHIFT;
  1076. int seg;
  1077. int offset = offset_in_page(gpa);
  1078. int ret;
  1079. while ((seg = next_segment(len, offset)) != 0) {
  1080. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  1081. if (ret < 0)
  1082. return ret;
  1083. offset = 0;
  1084. len -= seg;
  1085. data += seg;
  1086. ++gfn;
  1087. }
  1088. return 0;
  1089. }
  1090. EXPORT_SYMBOL_GPL(kvm_read_guest);
  1091. int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
  1092. unsigned long len)
  1093. {
  1094. int r;
  1095. unsigned long addr;
  1096. gfn_t gfn = gpa >> PAGE_SHIFT;
  1097. int offset = offset_in_page(gpa);
  1098. addr = gfn_to_hva(kvm, gfn);
  1099. if (kvm_is_error_hva(addr))
  1100. return -EFAULT;
  1101. pagefault_disable();
  1102. r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
  1103. pagefault_enable();
  1104. if (r)
  1105. return -EFAULT;
  1106. return 0;
  1107. }
  1108. EXPORT_SYMBOL(kvm_read_guest_atomic);
  1109. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  1110. int offset, int len)
  1111. {
  1112. int r;
  1113. unsigned long addr;
  1114. addr = gfn_to_hva(kvm, gfn);
  1115. if (kvm_is_error_hva(addr))
  1116. return -EFAULT;
  1117. r = copy_to_user((void __user *)addr + offset, data, len);
  1118. if (r)
  1119. return -EFAULT;
  1120. mark_page_dirty(kvm, gfn);
  1121. return 0;
  1122. }
  1123. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  1124. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  1125. unsigned long len)
  1126. {
  1127. gfn_t gfn = gpa >> PAGE_SHIFT;
  1128. int seg;
  1129. int offset = offset_in_page(gpa);
  1130. int ret;
  1131. while ((seg = next_segment(len, offset)) != 0) {
  1132. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  1133. if (ret < 0)
  1134. return ret;
  1135. offset = 0;
  1136. len -= seg;
  1137. data += seg;
  1138. ++gfn;
  1139. }
  1140. return 0;
  1141. }
  1142. int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
  1143. gpa_t gpa)
  1144. {
  1145. struct kvm_memslots *slots = kvm_memslots(kvm);
  1146. int offset = offset_in_page(gpa);
  1147. gfn_t gfn = gpa >> PAGE_SHIFT;
  1148. ghc->gpa = gpa;
  1149. ghc->generation = slots->generation;
  1150. ghc->memslot = __gfn_to_memslot(slots, gfn);
  1151. ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
  1152. if (!kvm_is_error_hva(ghc->hva))
  1153. ghc->hva += offset;
  1154. else
  1155. return -EFAULT;
  1156. return 0;
  1157. }
  1158. EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
  1159. int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
  1160. void *data, unsigned long len)
  1161. {
  1162. struct kvm_memslots *slots = kvm_memslots(kvm);
  1163. int r;
  1164. if (slots->generation != ghc->generation)
  1165. kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
  1166. if (kvm_is_error_hva(ghc->hva))
  1167. return -EFAULT;
  1168. r = copy_to_user((void __user *)ghc->hva, data, len);
  1169. if (r)
  1170. return -EFAULT;
  1171. mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
  1172. return 0;
  1173. }
  1174. EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
  1175. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  1176. {
  1177. return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
  1178. offset, len);
  1179. }
  1180. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  1181. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  1182. {
  1183. gfn_t gfn = gpa >> PAGE_SHIFT;
  1184. int seg;
  1185. int offset = offset_in_page(gpa);
  1186. int ret;
  1187. while ((seg = next_segment(len, offset)) != 0) {
  1188. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  1189. if (ret < 0)
  1190. return ret;
  1191. offset = 0;
  1192. len -= seg;
  1193. ++gfn;
  1194. }
  1195. return 0;
  1196. }
  1197. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  1198. void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
  1199. gfn_t gfn)
  1200. {
  1201. if (memslot && memslot->dirty_bitmap) {
  1202. unsigned long rel_gfn = gfn - memslot->base_gfn;
  1203. __set_bit_le(rel_gfn, memslot->dirty_bitmap);
  1204. }
  1205. }
  1206. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  1207. {
  1208. struct kvm_memory_slot *memslot;
  1209. memslot = gfn_to_memslot(kvm, gfn);
  1210. mark_page_dirty_in_slot(kvm, memslot, gfn);
  1211. }
  1212. /*
  1213. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  1214. */
  1215. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  1216. {
  1217. DEFINE_WAIT(wait);
  1218. for (;;) {
  1219. prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
  1220. if (kvm_arch_vcpu_runnable(vcpu)) {
  1221. kvm_make_request(KVM_REQ_UNHALT, vcpu);
  1222. break;
  1223. }
  1224. if (kvm_cpu_has_pending_timer(vcpu))
  1225. break;
  1226. if (signal_pending(current))
  1227. break;
  1228. schedule();
  1229. }
  1230. finish_wait(&vcpu->wq, &wait);
  1231. }
  1232. void kvm_resched(struct kvm_vcpu *vcpu)
  1233. {
  1234. if (!need_resched())
  1235. return;
  1236. cond_resched();
  1237. }
  1238. EXPORT_SYMBOL_GPL(kvm_resched);
  1239. void kvm_vcpu_on_spin(struct kvm_vcpu *me)
  1240. {
  1241. struct kvm *kvm = me->kvm;
  1242. struct kvm_vcpu *vcpu;
  1243. int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
  1244. int yielded = 0;
  1245. int pass;
  1246. int i;
  1247. /*
  1248. * We boost the priority of a VCPU that is runnable but not
  1249. * currently running, because it got preempted by something
  1250. * else and called schedule in __vcpu_run. Hopefully that
  1251. * VCPU is holding the lock that we need and will release it.
  1252. * We approximate round-robin by starting at the last boosted VCPU.
  1253. */
  1254. for (pass = 0; pass < 2 && !yielded; pass++) {
  1255. kvm_for_each_vcpu(i, vcpu, kvm) {
  1256. struct task_struct *task = NULL;
  1257. struct pid *pid;
  1258. if (!pass && i < last_boosted_vcpu) {
  1259. i = last_boosted_vcpu;
  1260. continue;
  1261. } else if (pass && i > last_boosted_vcpu)
  1262. break;
  1263. if (vcpu == me)
  1264. continue;
  1265. if (waitqueue_active(&vcpu->wq))
  1266. continue;
  1267. rcu_read_lock();
  1268. pid = rcu_dereference(vcpu->pid);
  1269. if (pid)
  1270. task = get_pid_task(vcpu->pid, PIDTYPE_PID);
  1271. rcu_read_unlock();
  1272. if (!task)
  1273. continue;
  1274. if (task->flags & PF_VCPU) {
  1275. put_task_struct(task);
  1276. continue;
  1277. }
  1278. if (yield_to(task, 1)) {
  1279. put_task_struct(task);
  1280. kvm->last_boosted_vcpu = i;
  1281. yielded = 1;
  1282. break;
  1283. }
  1284. put_task_struct(task);
  1285. }
  1286. }
  1287. }
  1288. EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
  1289. static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1290. {
  1291. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1292. struct page *page;
  1293. if (vmf->pgoff == 0)
  1294. page = virt_to_page(vcpu->run);
  1295. #ifdef CONFIG_X86
  1296. else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
  1297. page = virt_to_page(vcpu->arch.pio_data);
  1298. #endif
  1299. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1300. else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
  1301. page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
  1302. #endif
  1303. else
  1304. return VM_FAULT_SIGBUS;
  1305. get_page(page);
  1306. vmf->page = page;
  1307. return 0;
  1308. }
  1309. static const struct vm_operations_struct kvm_vcpu_vm_ops = {
  1310. .fault = kvm_vcpu_fault,
  1311. };
  1312. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1313. {
  1314. vma->vm_ops = &kvm_vcpu_vm_ops;
  1315. return 0;
  1316. }
  1317. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1318. {
  1319. struct kvm_vcpu *vcpu = filp->private_data;
  1320. kvm_put_kvm(vcpu->kvm);
  1321. return 0;
  1322. }
  1323. static struct file_operations kvm_vcpu_fops = {
  1324. .release = kvm_vcpu_release,
  1325. .unlocked_ioctl = kvm_vcpu_ioctl,
  1326. .compat_ioctl = kvm_vcpu_ioctl,
  1327. .mmap = kvm_vcpu_mmap,
  1328. .llseek = noop_llseek,
  1329. };
  1330. /*
  1331. * Allocates an inode for the vcpu.
  1332. */
  1333. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  1334. {
  1335. return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
  1336. }
  1337. /*
  1338. * Creates some virtual cpus. Good luck creating more than one.
  1339. */
  1340. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
  1341. {
  1342. int r;
  1343. struct kvm_vcpu *vcpu, *v;
  1344. vcpu = kvm_arch_vcpu_create(kvm, id);
  1345. if (IS_ERR(vcpu))
  1346. return PTR_ERR(vcpu);
  1347. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  1348. r = kvm_arch_vcpu_setup(vcpu);
  1349. if (r)
  1350. return r;
  1351. mutex_lock(&kvm->lock);
  1352. if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
  1353. r = -EINVAL;
  1354. goto vcpu_destroy;
  1355. }
  1356. kvm_for_each_vcpu(r, v, kvm)
  1357. if (v->vcpu_id == id) {
  1358. r = -EEXIST;
  1359. goto vcpu_destroy;
  1360. }
  1361. BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
  1362. /* Now it's all set up, let userspace reach it */
  1363. kvm_get_kvm(kvm);
  1364. r = create_vcpu_fd(vcpu);
  1365. if (r < 0) {
  1366. kvm_put_kvm(kvm);
  1367. goto vcpu_destroy;
  1368. }
  1369. kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
  1370. smp_wmb();
  1371. atomic_inc(&kvm->online_vcpus);
  1372. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1373. if (kvm->bsp_vcpu_id == id)
  1374. kvm->bsp_vcpu = vcpu;
  1375. #endif
  1376. mutex_unlock(&kvm->lock);
  1377. return r;
  1378. vcpu_destroy:
  1379. mutex_unlock(&kvm->lock);
  1380. kvm_arch_vcpu_destroy(vcpu);
  1381. return r;
  1382. }
  1383. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  1384. {
  1385. if (sigset) {
  1386. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  1387. vcpu->sigset_active = 1;
  1388. vcpu->sigset = *sigset;
  1389. } else
  1390. vcpu->sigset_active = 0;
  1391. return 0;
  1392. }
  1393. static long kvm_vcpu_ioctl(struct file *filp,
  1394. unsigned int ioctl, unsigned long arg)
  1395. {
  1396. struct kvm_vcpu *vcpu = filp->private_data;
  1397. void __user *argp = (void __user *)arg;
  1398. int r;
  1399. struct kvm_fpu *fpu = NULL;
  1400. struct kvm_sregs *kvm_sregs = NULL;
  1401. if (vcpu->kvm->mm != current->mm)
  1402. return -EIO;
  1403. #if defined(CONFIG_S390) || defined(CONFIG_PPC)
  1404. /*
  1405. * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
  1406. * so vcpu_load() would break it.
  1407. */
  1408. if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
  1409. return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1410. #endif
  1411. vcpu_load(vcpu);
  1412. switch (ioctl) {
  1413. case KVM_RUN:
  1414. r = -EINVAL;
  1415. if (arg)
  1416. goto out;
  1417. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  1418. trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
  1419. break;
  1420. case KVM_GET_REGS: {
  1421. struct kvm_regs *kvm_regs;
  1422. r = -ENOMEM;
  1423. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1424. if (!kvm_regs)
  1425. goto out;
  1426. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
  1427. if (r)
  1428. goto out_free1;
  1429. r = -EFAULT;
  1430. if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
  1431. goto out_free1;
  1432. r = 0;
  1433. out_free1:
  1434. kfree(kvm_regs);
  1435. break;
  1436. }
  1437. case KVM_SET_REGS: {
  1438. struct kvm_regs *kvm_regs;
  1439. r = -ENOMEM;
  1440. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1441. if (!kvm_regs)
  1442. goto out;
  1443. r = -EFAULT;
  1444. if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
  1445. goto out_free2;
  1446. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
  1447. if (r)
  1448. goto out_free2;
  1449. r = 0;
  1450. out_free2:
  1451. kfree(kvm_regs);
  1452. break;
  1453. }
  1454. case KVM_GET_SREGS: {
  1455. kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1456. r = -ENOMEM;
  1457. if (!kvm_sregs)
  1458. goto out;
  1459. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
  1460. if (r)
  1461. goto out;
  1462. r = -EFAULT;
  1463. if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
  1464. goto out;
  1465. r = 0;
  1466. break;
  1467. }
  1468. case KVM_SET_SREGS: {
  1469. kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1470. r = -ENOMEM;
  1471. if (!kvm_sregs)
  1472. goto out;
  1473. r = -EFAULT;
  1474. if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
  1475. goto out;
  1476. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
  1477. if (r)
  1478. goto out;
  1479. r = 0;
  1480. break;
  1481. }
  1482. case KVM_GET_MP_STATE: {
  1483. struct kvm_mp_state mp_state;
  1484. r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
  1485. if (r)
  1486. goto out;
  1487. r = -EFAULT;
  1488. if (copy_to_user(argp, &mp_state, sizeof mp_state))
  1489. goto out;
  1490. r = 0;
  1491. break;
  1492. }
  1493. case KVM_SET_MP_STATE: {
  1494. struct kvm_mp_state mp_state;
  1495. r = -EFAULT;
  1496. if (copy_from_user(&mp_state, argp, sizeof mp_state))
  1497. goto out;
  1498. r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
  1499. if (r)
  1500. goto out;
  1501. r = 0;
  1502. break;
  1503. }
  1504. case KVM_TRANSLATE: {
  1505. struct kvm_translation tr;
  1506. r = -EFAULT;
  1507. if (copy_from_user(&tr, argp, sizeof tr))
  1508. goto out;
  1509. r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
  1510. if (r)
  1511. goto out;
  1512. r = -EFAULT;
  1513. if (copy_to_user(argp, &tr, sizeof tr))
  1514. goto out;
  1515. r = 0;
  1516. break;
  1517. }
  1518. case KVM_SET_GUEST_DEBUG: {
  1519. struct kvm_guest_debug dbg;
  1520. r = -EFAULT;
  1521. if (copy_from_user(&dbg, argp, sizeof dbg))
  1522. goto out;
  1523. r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
  1524. if (r)
  1525. goto out;
  1526. r = 0;
  1527. break;
  1528. }
  1529. case KVM_SET_SIGNAL_MASK: {
  1530. struct kvm_signal_mask __user *sigmask_arg = argp;
  1531. struct kvm_signal_mask kvm_sigmask;
  1532. sigset_t sigset, *p;
  1533. p = NULL;
  1534. if (argp) {
  1535. r = -EFAULT;
  1536. if (copy_from_user(&kvm_sigmask, argp,
  1537. sizeof kvm_sigmask))
  1538. goto out;
  1539. r = -EINVAL;
  1540. if (kvm_sigmask.len != sizeof sigset)
  1541. goto out;
  1542. r = -EFAULT;
  1543. if (copy_from_user(&sigset, sigmask_arg->sigset,
  1544. sizeof sigset))
  1545. goto out;
  1546. p = &sigset;
  1547. }
  1548. r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
  1549. break;
  1550. }
  1551. case KVM_GET_FPU: {
  1552. fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1553. r = -ENOMEM;
  1554. if (!fpu)
  1555. goto out;
  1556. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
  1557. if (r)
  1558. goto out;
  1559. r = -EFAULT;
  1560. if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
  1561. goto out;
  1562. r = 0;
  1563. break;
  1564. }
  1565. case KVM_SET_FPU: {
  1566. fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1567. r = -ENOMEM;
  1568. if (!fpu)
  1569. goto out;
  1570. r = -EFAULT;
  1571. if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
  1572. goto out;
  1573. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
  1574. if (r)
  1575. goto out;
  1576. r = 0;
  1577. break;
  1578. }
  1579. default:
  1580. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1581. }
  1582. out:
  1583. vcpu_put(vcpu);
  1584. kfree(fpu);
  1585. kfree(kvm_sregs);
  1586. return r;
  1587. }
  1588. static long kvm_vm_ioctl(struct file *filp,
  1589. unsigned int ioctl, unsigned long arg)
  1590. {
  1591. struct kvm *kvm = filp->private_data;
  1592. void __user *argp = (void __user *)arg;
  1593. int r;
  1594. if (kvm->mm != current->mm)
  1595. return -EIO;
  1596. switch (ioctl) {
  1597. case KVM_CREATE_VCPU:
  1598. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  1599. if (r < 0)
  1600. goto out;
  1601. break;
  1602. case KVM_SET_USER_MEMORY_REGION: {
  1603. struct kvm_userspace_memory_region kvm_userspace_mem;
  1604. r = -EFAULT;
  1605. if (copy_from_user(&kvm_userspace_mem, argp,
  1606. sizeof kvm_userspace_mem))
  1607. goto out;
  1608. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  1609. if (r)
  1610. goto out;
  1611. break;
  1612. }
  1613. case KVM_GET_DIRTY_LOG: {
  1614. struct kvm_dirty_log log;
  1615. r = -EFAULT;
  1616. if (copy_from_user(&log, argp, sizeof log))
  1617. goto out;
  1618. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1619. if (r)
  1620. goto out;
  1621. break;
  1622. }
  1623. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1624. case KVM_REGISTER_COALESCED_MMIO: {
  1625. struct kvm_coalesced_mmio_zone zone;
  1626. r = -EFAULT;
  1627. if (copy_from_user(&zone, argp, sizeof zone))
  1628. goto out;
  1629. r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
  1630. if (r)
  1631. goto out;
  1632. r = 0;
  1633. break;
  1634. }
  1635. case KVM_UNREGISTER_COALESCED_MMIO: {
  1636. struct kvm_coalesced_mmio_zone zone;
  1637. r = -EFAULT;
  1638. if (copy_from_user(&zone, argp, sizeof zone))
  1639. goto out;
  1640. r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
  1641. if (r)
  1642. goto out;
  1643. r = 0;
  1644. break;
  1645. }
  1646. #endif
  1647. case KVM_IRQFD: {
  1648. struct kvm_irqfd data;
  1649. r = -EFAULT;
  1650. if (copy_from_user(&data, argp, sizeof data))
  1651. goto out;
  1652. r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
  1653. break;
  1654. }
  1655. case KVM_IOEVENTFD: {
  1656. struct kvm_ioeventfd data;
  1657. r = -EFAULT;
  1658. if (copy_from_user(&data, argp, sizeof data))
  1659. goto out;
  1660. r = kvm_ioeventfd(kvm, &data);
  1661. break;
  1662. }
  1663. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1664. case KVM_SET_BOOT_CPU_ID:
  1665. r = 0;
  1666. mutex_lock(&kvm->lock);
  1667. if (atomic_read(&kvm->online_vcpus) != 0)
  1668. r = -EBUSY;
  1669. else
  1670. kvm->bsp_vcpu_id = arg;
  1671. mutex_unlock(&kvm->lock);
  1672. break;
  1673. #endif
  1674. default:
  1675. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  1676. if (r == -ENOTTY)
  1677. r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
  1678. }
  1679. out:
  1680. return r;
  1681. }
  1682. #ifdef CONFIG_COMPAT
  1683. struct compat_kvm_dirty_log {
  1684. __u32 slot;
  1685. __u32 padding1;
  1686. union {
  1687. compat_uptr_t dirty_bitmap; /* one bit per page */
  1688. __u64 padding2;
  1689. };
  1690. };
  1691. static long kvm_vm_compat_ioctl(struct file *filp,
  1692. unsigned int ioctl, unsigned long arg)
  1693. {
  1694. struct kvm *kvm = filp->private_data;
  1695. int r;
  1696. if (kvm->mm != current->mm)
  1697. return -EIO;
  1698. switch (ioctl) {
  1699. case KVM_GET_DIRTY_LOG: {
  1700. struct compat_kvm_dirty_log compat_log;
  1701. struct kvm_dirty_log log;
  1702. r = -EFAULT;
  1703. if (copy_from_user(&compat_log, (void __user *)arg,
  1704. sizeof(compat_log)))
  1705. goto out;
  1706. log.slot = compat_log.slot;
  1707. log.padding1 = compat_log.padding1;
  1708. log.padding2 = compat_log.padding2;
  1709. log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
  1710. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1711. if (r)
  1712. goto out;
  1713. break;
  1714. }
  1715. default:
  1716. r = kvm_vm_ioctl(filp, ioctl, arg);
  1717. }
  1718. out:
  1719. return r;
  1720. }
  1721. #endif
  1722. static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1723. {
  1724. struct page *page[1];
  1725. unsigned long addr;
  1726. int npages;
  1727. gfn_t gfn = vmf->pgoff;
  1728. struct kvm *kvm = vma->vm_file->private_data;
  1729. addr = gfn_to_hva(kvm, gfn);
  1730. if (kvm_is_error_hva(addr))
  1731. return VM_FAULT_SIGBUS;
  1732. npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
  1733. NULL);
  1734. if (unlikely(npages != 1))
  1735. return VM_FAULT_SIGBUS;
  1736. vmf->page = page[0];
  1737. return 0;
  1738. }
  1739. static const struct vm_operations_struct kvm_vm_vm_ops = {
  1740. .fault = kvm_vm_fault,
  1741. };
  1742. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  1743. {
  1744. vma->vm_ops = &kvm_vm_vm_ops;
  1745. return 0;
  1746. }
  1747. static struct file_operations kvm_vm_fops = {
  1748. .release = kvm_vm_release,
  1749. .unlocked_ioctl = kvm_vm_ioctl,
  1750. #ifdef CONFIG_COMPAT
  1751. .compat_ioctl = kvm_vm_compat_ioctl,
  1752. #endif
  1753. .mmap = kvm_vm_mmap,
  1754. .llseek = noop_llseek,
  1755. };
  1756. static int kvm_dev_ioctl_create_vm(void)
  1757. {
  1758. int r;
  1759. struct kvm *kvm;
  1760. kvm = kvm_create_vm();
  1761. if (IS_ERR(kvm))
  1762. return PTR_ERR(kvm);
  1763. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1764. r = kvm_coalesced_mmio_init(kvm);
  1765. if (r < 0) {
  1766. kvm_put_kvm(kvm);
  1767. return r;
  1768. }
  1769. #endif
  1770. r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
  1771. if (r < 0)
  1772. kvm_put_kvm(kvm);
  1773. return r;
  1774. }
  1775. static long kvm_dev_ioctl_check_extension_generic(long arg)
  1776. {
  1777. switch (arg) {
  1778. case KVM_CAP_USER_MEMORY:
  1779. case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
  1780. case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
  1781. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1782. case KVM_CAP_SET_BOOT_CPU_ID:
  1783. #endif
  1784. case KVM_CAP_INTERNAL_ERROR_DATA:
  1785. return 1;
  1786. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  1787. case KVM_CAP_IRQ_ROUTING:
  1788. return KVM_MAX_IRQ_ROUTES;
  1789. #endif
  1790. default:
  1791. break;
  1792. }
  1793. return kvm_dev_ioctl_check_extension(arg);
  1794. }
  1795. static long kvm_dev_ioctl(struct file *filp,
  1796. unsigned int ioctl, unsigned long arg)
  1797. {
  1798. long r = -EINVAL;
  1799. switch (ioctl) {
  1800. case KVM_GET_API_VERSION:
  1801. r = -EINVAL;
  1802. if (arg)
  1803. goto out;
  1804. r = KVM_API_VERSION;
  1805. break;
  1806. case KVM_CREATE_VM:
  1807. r = -EINVAL;
  1808. if (arg)
  1809. goto out;
  1810. r = kvm_dev_ioctl_create_vm();
  1811. break;
  1812. case KVM_CHECK_EXTENSION:
  1813. r = kvm_dev_ioctl_check_extension_generic(arg);
  1814. break;
  1815. case KVM_GET_VCPU_MMAP_SIZE:
  1816. r = -EINVAL;
  1817. if (arg)
  1818. goto out;
  1819. r = PAGE_SIZE; /* struct kvm_run */
  1820. #ifdef CONFIG_X86
  1821. r += PAGE_SIZE; /* pio data page */
  1822. #endif
  1823. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1824. r += PAGE_SIZE; /* coalesced mmio ring page */
  1825. #endif
  1826. break;
  1827. case KVM_TRACE_ENABLE:
  1828. case KVM_TRACE_PAUSE:
  1829. case KVM_TRACE_DISABLE:
  1830. r = -EOPNOTSUPP;
  1831. break;
  1832. default:
  1833. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  1834. }
  1835. out:
  1836. return r;
  1837. }
  1838. static struct file_operations kvm_chardev_ops = {
  1839. .unlocked_ioctl = kvm_dev_ioctl,
  1840. .compat_ioctl = kvm_dev_ioctl,
  1841. .llseek = noop_llseek,
  1842. };
  1843. static struct miscdevice kvm_dev = {
  1844. KVM_MINOR,
  1845. "kvm",
  1846. &kvm_chardev_ops,
  1847. };
  1848. static void hardware_enable_nolock(void *junk)
  1849. {
  1850. int cpu = raw_smp_processor_id();
  1851. int r;
  1852. if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
  1853. return;
  1854. cpumask_set_cpu(cpu, cpus_hardware_enabled);
  1855. r = kvm_arch_hardware_enable(NULL);
  1856. if (r) {
  1857. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  1858. atomic_inc(&hardware_enable_failed);
  1859. printk(KERN_INFO "kvm: enabling virtualization on "
  1860. "CPU%d failed\n", cpu);
  1861. }
  1862. }
  1863. static void hardware_enable(void *junk)
  1864. {
  1865. raw_spin_lock(&kvm_lock);
  1866. hardware_enable_nolock(junk);
  1867. raw_spin_unlock(&kvm_lock);
  1868. }
  1869. static void hardware_disable_nolock(void *junk)
  1870. {
  1871. int cpu = raw_smp_processor_id();
  1872. if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
  1873. return;
  1874. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  1875. kvm_arch_hardware_disable(NULL);
  1876. }
  1877. static void hardware_disable(void *junk)
  1878. {
  1879. raw_spin_lock(&kvm_lock);
  1880. hardware_disable_nolock(junk);
  1881. raw_spin_unlock(&kvm_lock);
  1882. }
  1883. static void hardware_disable_all_nolock(void)
  1884. {
  1885. BUG_ON(!kvm_usage_count);
  1886. kvm_usage_count--;
  1887. if (!kvm_usage_count)
  1888. on_each_cpu(hardware_disable_nolock, NULL, 1);
  1889. }
  1890. static void hardware_disable_all(void)
  1891. {
  1892. raw_spin_lock(&kvm_lock);
  1893. hardware_disable_all_nolock();
  1894. raw_spin_unlock(&kvm_lock);
  1895. }
  1896. static int hardware_enable_all(void)
  1897. {
  1898. int r = 0;
  1899. raw_spin_lock(&kvm_lock);
  1900. kvm_usage_count++;
  1901. if (kvm_usage_count == 1) {
  1902. atomic_set(&hardware_enable_failed, 0);
  1903. on_each_cpu(hardware_enable_nolock, NULL, 1);
  1904. if (atomic_read(&hardware_enable_failed)) {
  1905. hardware_disable_all_nolock();
  1906. r = -EBUSY;
  1907. }
  1908. }
  1909. raw_spin_unlock(&kvm_lock);
  1910. return r;
  1911. }
  1912. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  1913. void *v)
  1914. {
  1915. int cpu = (long)v;
  1916. if (!kvm_usage_count)
  1917. return NOTIFY_OK;
  1918. val &= ~CPU_TASKS_FROZEN;
  1919. switch (val) {
  1920. case CPU_DYING:
  1921. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1922. cpu);
  1923. hardware_disable(NULL);
  1924. break;
  1925. case CPU_STARTING:
  1926. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  1927. cpu);
  1928. hardware_enable(NULL);
  1929. break;
  1930. }
  1931. return NOTIFY_OK;
  1932. }
  1933. asmlinkage void kvm_spurious_fault(void)
  1934. {
  1935. /* Fault while not rebooting. We want the trace. */
  1936. BUG();
  1937. }
  1938. EXPORT_SYMBOL_GPL(kvm_spurious_fault);
  1939. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  1940. void *v)
  1941. {
  1942. /*
  1943. * Some (well, at least mine) BIOSes hang on reboot if
  1944. * in vmx root mode.
  1945. *
  1946. * And Intel TXT required VMX off for all cpu when system shutdown.
  1947. */
  1948. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  1949. kvm_rebooting = true;
  1950. on_each_cpu(hardware_disable_nolock, NULL, 1);
  1951. return NOTIFY_OK;
  1952. }
  1953. static struct notifier_block kvm_reboot_notifier = {
  1954. .notifier_call = kvm_reboot,
  1955. .priority = 0,
  1956. };
  1957. static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  1958. {
  1959. int i;
  1960. for (i = 0; i < bus->dev_count; i++) {
  1961. struct kvm_io_device *pos = bus->devs[i];
  1962. kvm_iodevice_destructor(pos);
  1963. }
  1964. kfree(bus);
  1965. }
  1966. /* kvm_io_bus_write - called under kvm->slots_lock */
  1967. int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
  1968. int len, const void *val)
  1969. {
  1970. int i;
  1971. struct kvm_io_bus *bus;
  1972. bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
  1973. for (i = 0; i < bus->dev_count; i++)
  1974. if (!kvm_iodevice_write(bus->devs[i], addr, len, val))
  1975. return 0;
  1976. return -EOPNOTSUPP;
  1977. }
  1978. /* kvm_io_bus_read - called under kvm->slots_lock */
  1979. int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
  1980. int len, void *val)
  1981. {
  1982. int i;
  1983. struct kvm_io_bus *bus;
  1984. bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
  1985. for (i = 0; i < bus->dev_count; i++)
  1986. if (!kvm_iodevice_read(bus->devs[i], addr, len, val))
  1987. return 0;
  1988. return -EOPNOTSUPP;
  1989. }
  1990. /* Caller must hold slots_lock. */
  1991. int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx,
  1992. struct kvm_io_device *dev)
  1993. {
  1994. struct kvm_io_bus *new_bus, *bus;
  1995. bus = kvm->buses[bus_idx];
  1996. if (bus->dev_count > NR_IOBUS_DEVS-1)
  1997. return -ENOSPC;
  1998. new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
  1999. if (!new_bus)
  2000. return -ENOMEM;
  2001. memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
  2002. new_bus->devs[new_bus->dev_count++] = dev;
  2003. rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
  2004. synchronize_srcu_expedited(&kvm->srcu);
  2005. kfree(bus);
  2006. return 0;
  2007. }
  2008. /* Caller must hold slots_lock. */
  2009. int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
  2010. struct kvm_io_device *dev)
  2011. {
  2012. int i, r;
  2013. struct kvm_io_bus *new_bus, *bus;
  2014. new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
  2015. if (!new_bus)
  2016. return -ENOMEM;
  2017. bus = kvm->buses[bus_idx];
  2018. memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
  2019. r = -ENOENT;
  2020. for (i = 0; i < new_bus->dev_count; i++)
  2021. if (new_bus->devs[i] == dev) {
  2022. r = 0;
  2023. new_bus->devs[i] = new_bus->devs[--new_bus->dev_count];
  2024. break;
  2025. }
  2026. if (r) {
  2027. kfree(new_bus);
  2028. return r;
  2029. }
  2030. rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
  2031. synchronize_srcu_expedited(&kvm->srcu);
  2032. kfree(bus);
  2033. return r;
  2034. }
  2035. static struct notifier_block kvm_cpu_notifier = {
  2036. .notifier_call = kvm_cpu_hotplug,
  2037. };
  2038. static int vm_stat_get(void *_offset, u64 *val)
  2039. {
  2040. unsigned offset = (long)_offset;
  2041. struct kvm *kvm;
  2042. *val = 0;
  2043. raw_spin_lock(&kvm_lock);
  2044. list_for_each_entry(kvm, &vm_list, vm_list)
  2045. *val += *(u32 *)((void *)kvm + offset);
  2046. raw_spin_unlock(&kvm_lock);
  2047. return 0;
  2048. }
  2049. DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
  2050. static int vcpu_stat_get(void *_offset, u64 *val)
  2051. {
  2052. unsigned offset = (long)_offset;
  2053. struct kvm *kvm;
  2054. struct kvm_vcpu *vcpu;
  2055. int i;
  2056. *val = 0;
  2057. raw_spin_lock(&kvm_lock);
  2058. list_for_each_entry(kvm, &vm_list, vm_list)
  2059. kvm_for_each_vcpu(i, vcpu, kvm)
  2060. *val += *(u32 *)((void *)vcpu + offset);
  2061. raw_spin_unlock(&kvm_lock);
  2062. return 0;
  2063. }
  2064. DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
  2065. static const struct file_operations *stat_fops[] = {
  2066. [KVM_STAT_VCPU] = &vcpu_stat_fops,
  2067. [KVM_STAT_VM] = &vm_stat_fops,
  2068. };
  2069. static void kvm_init_debug(void)
  2070. {
  2071. struct kvm_stats_debugfs_item *p;
  2072. kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
  2073. for (p = debugfs_entries; p->name; ++p)
  2074. p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
  2075. (void *)(long)p->offset,
  2076. stat_fops[p->kind]);
  2077. }
  2078. static void kvm_exit_debug(void)
  2079. {
  2080. struct kvm_stats_debugfs_item *p;
  2081. for (p = debugfs_entries; p->name; ++p)
  2082. debugfs_remove(p->dentry);
  2083. debugfs_remove(kvm_debugfs_dir);
  2084. }
  2085. static int kvm_suspend(void)
  2086. {
  2087. if (kvm_usage_count)
  2088. hardware_disable_nolock(NULL);
  2089. return 0;
  2090. }
  2091. static void kvm_resume(void)
  2092. {
  2093. if (kvm_usage_count) {
  2094. WARN_ON(raw_spin_is_locked(&kvm_lock));
  2095. hardware_enable_nolock(NULL);
  2096. }
  2097. }
  2098. static struct syscore_ops kvm_syscore_ops = {
  2099. .suspend = kvm_suspend,
  2100. .resume = kvm_resume,
  2101. };
  2102. struct page *bad_page;
  2103. pfn_t bad_pfn;
  2104. static inline
  2105. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  2106. {
  2107. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  2108. }
  2109. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  2110. {
  2111. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2112. kvm_arch_vcpu_load(vcpu, cpu);
  2113. }
  2114. static void kvm_sched_out(struct preempt_notifier *pn,
  2115. struct task_struct *next)
  2116. {
  2117. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2118. kvm_arch_vcpu_put(vcpu);
  2119. }
  2120. int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
  2121. struct module *module)
  2122. {
  2123. int r;
  2124. int cpu;
  2125. r = kvm_arch_init(opaque);
  2126. if (r)
  2127. goto out_fail;
  2128. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2129. if (bad_page == NULL) {
  2130. r = -ENOMEM;
  2131. goto out;
  2132. }
  2133. bad_pfn = page_to_pfn(bad_page);
  2134. hwpoison_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2135. if (hwpoison_page == NULL) {
  2136. r = -ENOMEM;
  2137. goto out_free_0;
  2138. }
  2139. hwpoison_pfn = page_to_pfn(hwpoison_page);
  2140. fault_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2141. if (fault_page == NULL) {
  2142. r = -ENOMEM;
  2143. goto out_free_0;
  2144. }
  2145. fault_pfn = page_to_pfn(fault_page);
  2146. if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
  2147. r = -ENOMEM;
  2148. goto out_free_0;
  2149. }
  2150. r = kvm_arch_hardware_setup();
  2151. if (r < 0)
  2152. goto out_free_0a;
  2153. for_each_online_cpu(cpu) {
  2154. smp_call_function_single(cpu,
  2155. kvm_arch_check_processor_compat,
  2156. &r, 1);
  2157. if (r < 0)
  2158. goto out_free_1;
  2159. }
  2160. r = register_cpu_notifier(&kvm_cpu_notifier);
  2161. if (r)
  2162. goto out_free_2;
  2163. register_reboot_notifier(&kvm_reboot_notifier);
  2164. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  2165. if (!vcpu_align)
  2166. vcpu_align = __alignof__(struct kvm_vcpu);
  2167. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
  2168. 0, NULL);
  2169. if (!kvm_vcpu_cache) {
  2170. r = -ENOMEM;
  2171. goto out_free_3;
  2172. }
  2173. r = kvm_async_pf_init();
  2174. if (r)
  2175. goto out_free;
  2176. kvm_chardev_ops.owner = module;
  2177. kvm_vm_fops.owner = module;
  2178. kvm_vcpu_fops.owner = module;
  2179. r = misc_register(&kvm_dev);
  2180. if (r) {
  2181. printk(KERN_ERR "kvm: misc device register failed\n");
  2182. goto out_unreg;
  2183. }
  2184. register_syscore_ops(&kvm_syscore_ops);
  2185. kvm_preempt_ops.sched_in = kvm_sched_in;
  2186. kvm_preempt_ops.sched_out = kvm_sched_out;
  2187. kvm_init_debug();
  2188. return 0;
  2189. out_unreg:
  2190. kvm_async_pf_deinit();
  2191. out_free:
  2192. kmem_cache_destroy(kvm_vcpu_cache);
  2193. out_free_3:
  2194. unregister_reboot_notifier(&kvm_reboot_notifier);
  2195. unregister_cpu_notifier(&kvm_cpu_notifier);
  2196. out_free_2:
  2197. out_free_1:
  2198. kvm_arch_hardware_unsetup();
  2199. out_free_0a:
  2200. free_cpumask_var(cpus_hardware_enabled);
  2201. out_free_0:
  2202. if (fault_page)
  2203. __free_page(fault_page);
  2204. if (hwpoison_page)
  2205. __free_page(hwpoison_page);
  2206. __free_page(bad_page);
  2207. out:
  2208. kvm_arch_exit();
  2209. out_fail:
  2210. return r;
  2211. }
  2212. EXPORT_SYMBOL_GPL(kvm_init);
  2213. void kvm_exit(void)
  2214. {
  2215. kvm_exit_debug();
  2216. misc_deregister(&kvm_dev);
  2217. kmem_cache_destroy(kvm_vcpu_cache);
  2218. kvm_async_pf_deinit();
  2219. unregister_syscore_ops(&kvm_syscore_ops);
  2220. unregister_reboot_notifier(&kvm_reboot_notifier);
  2221. unregister_cpu_notifier(&kvm_cpu_notifier);
  2222. on_each_cpu(hardware_disable_nolock, NULL, 1);
  2223. kvm_arch_hardware_unsetup();
  2224. kvm_arch_exit();
  2225. free_cpumask_var(cpus_hardware_enabled);
  2226. __free_page(hwpoison_page);
  2227. __free_page(bad_page);
  2228. }
  2229. EXPORT_SYMBOL_GPL(kvm_exit);