time.c 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161
  1. /*
  2. * Common time routines among all ppc machines.
  3. *
  4. * Written by Cort Dougan (cort@cs.nmt.edu) to merge
  5. * Paul Mackerras' version and mine for PReP and Pmac.
  6. * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
  7. * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
  8. *
  9. * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
  10. * to make clock more stable (2.4.0-test5). The only thing
  11. * that this code assumes is that the timebases have been synchronized
  12. * by firmware on SMP and are never stopped (never do sleep
  13. * on SMP then, nap and doze are OK).
  14. *
  15. * Speeded up do_gettimeofday by getting rid of references to
  16. * xtime (which required locks for consistency). (mikejc@us.ibm.com)
  17. *
  18. * TODO (not necessarily in this file):
  19. * - improve precision and reproducibility of timebase frequency
  20. * measurement at boot time. (for iSeries, we calibrate the timebase
  21. * against the Titan chip's clock.)
  22. * - for astronomical applications: add a new function to get
  23. * non ambiguous timestamps even around leap seconds. This needs
  24. * a new timestamp format and a good name.
  25. *
  26. * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
  27. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  28. *
  29. * This program is free software; you can redistribute it and/or
  30. * modify it under the terms of the GNU General Public License
  31. * as published by the Free Software Foundation; either version
  32. * 2 of the License, or (at your option) any later version.
  33. */
  34. #include <linux/errno.h>
  35. #include <linux/module.h>
  36. #include <linux/sched.h>
  37. #include <linux/kernel.h>
  38. #include <linux/param.h>
  39. #include <linux/string.h>
  40. #include <linux/mm.h>
  41. #include <linux/interrupt.h>
  42. #include <linux/timex.h>
  43. #include <linux/kernel_stat.h>
  44. #include <linux/time.h>
  45. #include <linux/init.h>
  46. #include <linux/profile.h>
  47. #include <linux/cpu.h>
  48. #include <linux/security.h>
  49. #include <linux/percpu.h>
  50. #include <linux/rtc.h>
  51. #include <linux/jiffies.h>
  52. #include <linux/posix-timers.h>
  53. #include <linux/irq.h>
  54. #include <asm/io.h>
  55. #include <asm/processor.h>
  56. #include <asm/nvram.h>
  57. #include <asm/cache.h>
  58. #include <asm/machdep.h>
  59. #include <asm/uaccess.h>
  60. #include <asm/time.h>
  61. #include <asm/prom.h>
  62. #include <asm/irq.h>
  63. #include <asm/div64.h>
  64. #include <asm/smp.h>
  65. #include <asm/vdso_datapage.h>
  66. #ifdef CONFIG_PPC64
  67. #include <asm/firmware.h>
  68. #endif
  69. #ifdef CONFIG_PPC_ISERIES
  70. #include <asm/iseries/it_lp_queue.h>
  71. #include <asm/iseries/hv_call_xm.h>
  72. #endif
  73. #include <asm/smp.h>
  74. /* keep track of when we need to update the rtc */
  75. time_t last_rtc_update;
  76. #ifdef CONFIG_PPC_ISERIES
  77. static unsigned long __initdata iSeries_recal_titan;
  78. static signed long __initdata iSeries_recal_tb;
  79. #endif
  80. /* The decrementer counts down by 128 every 128ns on a 601. */
  81. #define DECREMENTER_COUNT_601 (1000000000 / HZ)
  82. #define XSEC_PER_SEC (1024*1024)
  83. #ifdef CONFIG_PPC64
  84. #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
  85. #else
  86. /* compute ((xsec << 12) * max) >> 32 */
  87. #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
  88. #endif
  89. unsigned long tb_ticks_per_jiffy;
  90. unsigned long tb_ticks_per_usec = 100; /* sane default */
  91. EXPORT_SYMBOL(tb_ticks_per_usec);
  92. unsigned long tb_ticks_per_sec;
  93. EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
  94. u64 tb_to_xs;
  95. unsigned tb_to_us;
  96. #define TICKLEN_SCALE TICK_LENGTH_SHIFT
  97. u64 last_tick_len; /* units are ns / 2^TICKLEN_SCALE */
  98. u64 ticklen_to_xs; /* 0.64 fraction */
  99. /* If last_tick_len corresponds to about 1/HZ seconds, then
  100. last_tick_len << TICKLEN_SHIFT will be about 2^63. */
  101. #define TICKLEN_SHIFT (63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
  102. DEFINE_SPINLOCK(rtc_lock);
  103. EXPORT_SYMBOL_GPL(rtc_lock);
  104. u64 tb_to_ns_scale;
  105. unsigned tb_to_ns_shift;
  106. struct gettimeofday_struct do_gtod;
  107. extern struct timezone sys_tz;
  108. static long timezone_offset;
  109. unsigned long ppc_proc_freq;
  110. unsigned long ppc_tb_freq;
  111. static u64 tb_last_jiffy __cacheline_aligned_in_smp;
  112. static DEFINE_PER_CPU(u64, last_jiffy);
  113. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  114. /*
  115. * Factors for converting from cputime_t (timebase ticks) to
  116. * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
  117. * These are all stored as 0.64 fixed-point binary fractions.
  118. */
  119. u64 __cputime_jiffies_factor;
  120. EXPORT_SYMBOL(__cputime_jiffies_factor);
  121. u64 __cputime_msec_factor;
  122. EXPORT_SYMBOL(__cputime_msec_factor);
  123. u64 __cputime_sec_factor;
  124. EXPORT_SYMBOL(__cputime_sec_factor);
  125. u64 __cputime_clockt_factor;
  126. EXPORT_SYMBOL(__cputime_clockt_factor);
  127. static void calc_cputime_factors(void)
  128. {
  129. struct div_result res;
  130. div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
  131. __cputime_jiffies_factor = res.result_low;
  132. div128_by_32(1000, 0, tb_ticks_per_sec, &res);
  133. __cputime_msec_factor = res.result_low;
  134. div128_by_32(1, 0, tb_ticks_per_sec, &res);
  135. __cputime_sec_factor = res.result_low;
  136. div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
  137. __cputime_clockt_factor = res.result_low;
  138. }
  139. /*
  140. * Read the PURR on systems that have it, otherwise the timebase.
  141. */
  142. static u64 read_purr(void)
  143. {
  144. if (cpu_has_feature(CPU_FTR_PURR))
  145. return mfspr(SPRN_PURR);
  146. return mftb();
  147. }
  148. /*
  149. * Account time for a transition between system, hard irq
  150. * or soft irq state.
  151. */
  152. void account_system_vtime(struct task_struct *tsk)
  153. {
  154. u64 now, delta;
  155. unsigned long flags;
  156. local_irq_save(flags);
  157. now = read_purr();
  158. delta = now - get_paca()->startpurr;
  159. get_paca()->startpurr = now;
  160. if (!in_interrupt()) {
  161. delta += get_paca()->system_time;
  162. get_paca()->system_time = 0;
  163. }
  164. account_system_time(tsk, 0, delta);
  165. local_irq_restore(flags);
  166. }
  167. /*
  168. * Transfer the user and system times accumulated in the paca
  169. * by the exception entry and exit code to the generic process
  170. * user and system time records.
  171. * Must be called with interrupts disabled.
  172. */
  173. void account_process_vtime(struct task_struct *tsk)
  174. {
  175. cputime_t utime;
  176. utime = get_paca()->user_time;
  177. get_paca()->user_time = 0;
  178. account_user_time(tsk, utime);
  179. }
  180. static void account_process_time(struct pt_regs *regs)
  181. {
  182. int cpu = smp_processor_id();
  183. account_process_vtime(current);
  184. run_local_timers();
  185. if (rcu_pending(cpu))
  186. rcu_check_callbacks(cpu, user_mode(regs));
  187. scheduler_tick();
  188. run_posix_cpu_timers(current);
  189. }
  190. /*
  191. * Stuff for accounting stolen time.
  192. */
  193. struct cpu_purr_data {
  194. int initialized; /* thread is running */
  195. u64 tb; /* last TB value read */
  196. u64 purr; /* last PURR value read */
  197. };
  198. /*
  199. * Each entry in the cpu_purr_data array is manipulated only by its
  200. * "owner" cpu -- usually in the timer interrupt but also occasionally
  201. * in process context for cpu online. As long as cpus do not touch
  202. * each others' cpu_purr_data, disabling local interrupts is
  203. * sufficient to serialize accesses.
  204. */
  205. static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
  206. static void snapshot_tb_and_purr(void *data)
  207. {
  208. unsigned long flags;
  209. struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
  210. local_irq_save(flags);
  211. p->tb = mftb();
  212. p->purr = mfspr(SPRN_PURR);
  213. wmb();
  214. p->initialized = 1;
  215. local_irq_restore(flags);
  216. }
  217. /*
  218. * Called during boot when all cpus have come up.
  219. */
  220. void snapshot_timebases(void)
  221. {
  222. if (!cpu_has_feature(CPU_FTR_PURR))
  223. return;
  224. on_each_cpu(snapshot_tb_and_purr, NULL, 0, 1);
  225. }
  226. /*
  227. * Must be called with interrupts disabled.
  228. */
  229. void calculate_steal_time(void)
  230. {
  231. u64 tb, purr;
  232. s64 stolen;
  233. struct cpu_purr_data *pme;
  234. if (!cpu_has_feature(CPU_FTR_PURR))
  235. return;
  236. pme = &per_cpu(cpu_purr_data, smp_processor_id());
  237. if (!pme->initialized)
  238. return; /* this can happen in early boot */
  239. tb = mftb();
  240. purr = mfspr(SPRN_PURR);
  241. stolen = (tb - pme->tb) - (purr - pme->purr);
  242. if (stolen > 0)
  243. account_steal_time(current, stolen);
  244. pme->tb = tb;
  245. pme->purr = purr;
  246. }
  247. #ifdef CONFIG_PPC_SPLPAR
  248. /*
  249. * Must be called before the cpu is added to the online map when
  250. * a cpu is being brought up at runtime.
  251. */
  252. static void snapshot_purr(void)
  253. {
  254. struct cpu_purr_data *pme;
  255. unsigned long flags;
  256. if (!cpu_has_feature(CPU_FTR_PURR))
  257. return;
  258. local_irq_save(flags);
  259. pme = &per_cpu(cpu_purr_data, smp_processor_id());
  260. pme->tb = mftb();
  261. pme->purr = mfspr(SPRN_PURR);
  262. pme->initialized = 1;
  263. local_irq_restore(flags);
  264. }
  265. #endif /* CONFIG_PPC_SPLPAR */
  266. #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
  267. #define calc_cputime_factors()
  268. #define account_process_time(regs) update_process_times(user_mode(regs))
  269. #define calculate_steal_time() do { } while (0)
  270. #endif
  271. #if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
  272. #define snapshot_purr() do { } while (0)
  273. #endif
  274. /*
  275. * Called when a cpu comes up after the system has finished booting,
  276. * i.e. as a result of a hotplug cpu action.
  277. */
  278. void snapshot_timebase(void)
  279. {
  280. __get_cpu_var(last_jiffy) = get_tb();
  281. snapshot_purr();
  282. }
  283. void __delay(unsigned long loops)
  284. {
  285. unsigned long start;
  286. int diff;
  287. if (__USE_RTC()) {
  288. start = get_rtcl();
  289. do {
  290. /* the RTCL register wraps at 1000000000 */
  291. diff = get_rtcl() - start;
  292. if (diff < 0)
  293. diff += 1000000000;
  294. } while (diff < loops);
  295. } else {
  296. start = get_tbl();
  297. while (get_tbl() - start < loops)
  298. HMT_low();
  299. HMT_medium();
  300. }
  301. }
  302. EXPORT_SYMBOL(__delay);
  303. void udelay(unsigned long usecs)
  304. {
  305. __delay(tb_ticks_per_usec * usecs);
  306. }
  307. EXPORT_SYMBOL(udelay);
  308. static __inline__ void timer_check_rtc(void)
  309. {
  310. /*
  311. * update the rtc when needed, this should be performed on the
  312. * right fraction of a second. Half or full second ?
  313. * Full second works on mk48t59 clocks, others need testing.
  314. * Note that this update is basically only used through
  315. * the adjtimex system calls. Setting the HW clock in
  316. * any other way is a /dev/rtc and userland business.
  317. * This is still wrong by -0.5/+1.5 jiffies because of the
  318. * timer interrupt resolution and possible delay, but here we
  319. * hit a quantization limit which can only be solved by higher
  320. * resolution timers and decoupling time management from timer
  321. * interrupts. This is also wrong on the clocks
  322. * which require being written at the half second boundary.
  323. * We should have an rtc call that only sets the minutes and
  324. * seconds like on Intel to avoid problems with non UTC clocks.
  325. */
  326. if (ppc_md.set_rtc_time && ntp_synced() &&
  327. xtime.tv_sec - last_rtc_update >= 659 &&
  328. abs((xtime.tv_nsec/1000) - (1000000-1000000/HZ)) < 500000/HZ) {
  329. struct rtc_time tm;
  330. to_tm(xtime.tv_sec + 1 + timezone_offset, &tm);
  331. tm.tm_year -= 1900;
  332. tm.tm_mon -= 1;
  333. if (ppc_md.set_rtc_time(&tm) == 0)
  334. last_rtc_update = xtime.tv_sec + 1;
  335. else
  336. /* Try again one minute later */
  337. last_rtc_update += 60;
  338. }
  339. }
  340. /*
  341. * This version of gettimeofday has microsecond resolution.
  342. */
  343. static inline void __do_gettimeofday(struct timeval *tv)
  344. {
  345. unsigned long sec, usec;
  346. u64 tb_ticks, xsec;
  347. struct gettimeofday_vars *temp_varp;
  348. u64 temp_tb_to_xs, temp_stamp_xsec;
  349. /*
  350. * These calculations are faster (gets rid of divides)
  351. * if done in units of 1/2^20 rather than microseconds.
  352. * The conversion to microseconds at the end is done
  353. * without a divide (and in fact, without a multiply)
  354. */
  355. temp_varp = do_gtod.varp;
  356. /* Sampling the time base must be done after loading
  357. * do_gtod.varp in order to avoid racing with update_gtod.
  358. */
  359. data_barrier(temp_varp);
  360. tb_ticks = get_tb() - temp_varp->tb_orig_stamp;
  361. temp_tb_to_xs = temp_varp->tb_to_xs;
  362. temp_stamp_xsec = temp_varp->stamp_xsec;
  363. xsec = temp_stamp_xsec + mulhdu(tb_ticks, temp_tb_to_xs);
  364. sec = xsec / XSEC_PER_SEC;
  365. usec = (unsigned long)xsec & (XSEC_PER_SEC - 1);
  366. usec = SCALE_XSEC(usec, 1000000);
  367. tv->tv_sec = sec;
  368. tv->tv_usec = usec;
  369. }
  370. void do_gettimeofday(struct timeval *tv)
  371. {
  372. if (__USE_RTC()) {
  373. /* do this the old way */
  374. unsigned long flags, seq;
  375. unsigned int sec, nsec, usec;
  376. do {
  377. seq = read_seqbegin_irqsave(&xtime_lock, flags);
  378. sec = xtime.tv_sec;
  379. nsec = xtime.tv_nsec + tb_ticks_since(tb_last_jiffy);
  380. } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
  381. usec = nsec / 1000;
  382. while (usec >= 1000000) {
  383. usec -= 1000000;
  384. ++sec;
  385. }
  386. tv->tv_sec = sec;
  387. tv->tv_usec = usec;
  388. return;
  389. }
  390. __do_gettimeofday(tv);
  391. }
  392. EXPORT_SYMBOL(do_gettimeofday);
  393. /*
  394. * There are two copies of tb_to_xs and stamp_xsec so that no
  395. * lock is needed to access and use these values in
  396. * do_gettimeofday. We alternate the copies and as long as a
  397. * reasonable time elapses between changes, there will never
  398. * be inconsistent values. ntpd has a minimum of one minute
  399. * between updates.
  400. */
  401. static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
  402. u64 new_tb_to_xs)
  403. {
  404. unsigned temp_idx;
  405. struct gettimeofday_vars *temp_varp;
  406. temp_idx = (do_gtod.var_idx == 0);
  407. temp_varp = &do_gtod.vars[temp_idx];
  408. temp_varp->tb_to_xs = new_tb_to_xs;
  409. temp_varp->tb_orig_stamp = new_tb_stamp;
  410. temp_varp->stamp_xsec = new_stamp_xsec;
  411. smp_mb();
  412. do_gtod.varp = temp_varp;
  413. do_gtod.var_idx = temp_idx;
  414. /*
  415. * tb_update_count is used to allow the userspace gettimeofday code
  416. * to assure itself that it sees a consistent view of the tb_to_xs and
  417. * stamp_xsec variables. It reads the tb_update_count, then reads
  418. * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
  419. * the two values of tb_update_count match and are even then the
  420. * tb_to_xs and stamp_xsec values are consistent. If not, then it
  421. * loops back and reads them again until this criteria is met.
  422. * We expect the caller to have done the first increment of
  423. * vdso_data->tb_update_count already.
  424. */
  425. vdso_data->tb_orig_stamp = new_tb_stamp;
  426. vdso_data->stamp_xsec = new_stamp_xsec;
  427. vdso_data->tb_to_xs = new_tb_to_xs;
  428. vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
  429. vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
  430. smp_wmb();
  431. ++(vdso_data->tb_update_count);
  432. }
  433. /*
  434. * When the timebase - tb_orig_stamp gets too big, we do a manipulation
  435. * between tb_orig_stamp and stamp_xsec. The goal here is to keep the
  436. * difference tb - tb_orig_stamp small enough to always fit inside a
  437. * 32 bits number. This is a requirement of our fast 32 bits userland
  438. * implementation in the vdso. If we "miss" a call to this function
  439. * (interrupt latency, CPU locked in a spinlock, ...) and we end up
  440. * with a too big difference, then the vdso will fallback to calling
  441. * the syscall
  442. */
  443. static __inline__ void timer_recalc_offset(u64 cur_tb)
  444. {
  445. unsigned long offset;
  446. u64 new_stamp_xsec;
  447. u64 tlen, t2x;
  448. u64 tb, xsec_old, xsec_new;
  449. struct gettimeofday_vars *varp;
  450. if (__USE_RTC())
  451. return;
  452. tlen = current_tick_length();
  453. offset = cur_tb - do_gtod.varp->tb_orig_stamp;
  454. if (tlen == last_tick_len && offset < 0x80000000u)
  455. return;
  456. if (tlen != last_tick_len) {
  457. t2x = mulhdu(tlen << TICKLEN_SHIFT, ticklen_to_xs);
  458. last_tick_len = tlen;
  459. } else
  460. t2x = do_gtod.varp->tb_to_xs;
  461. new_stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
  462. do_div(new_stamp_xsec, 1000000000);
  463. new_stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
  464. ++vdso_data->tb_update_count;
  465. smp_mb();
  466. /*
  467. * Make sure time doesn't go backwards for userspace gettimeofday.
  468. */
  469. tb = get_tb();
  470. varp = do_gtod.varp;
  471. xsec_old = mulhdu(tb - varp->tb_orig_stamp, varp->tb_to_xs)
  472. + varp->stamp_xsec;
  473. xsec_new = mulhdu(tb - cur_tb, t2x) + new_stamp_xsec;
  474. if (xsec_new < xsec_old)
  475. new_stamp_xsec += xsec_old - xsec_new;
  476. update_gtod(cur_tb, new_stamp_xsec, t2x);
  477. }
  478. #ifdef CONFIG_SMP
  479. unsigned long profile_pc(struct pt_regs *regs)
  480. {
  481. unsigned long pc = instruction_pointer(regs);
  482. if (in_lock_functions(pc))
  483. return regs->link;
  484. return pc;
  485. }
  486. EXPORT_SYMBOL(profile_pc);
  487. #endif
  488. #ifdef CONFIG_PPC_ISERIES
  489. /*
  490. * This function recalibrates the timebase based on the 49-bit time-of-day
  491. * value in the Titan chip. The Titan is much more accurate than the value
  492. * returned by the service processor for the timebase frequency.
  493. */
  494. static int __init iSeries_tb_recal(void)
  495. {
  496. struct div_result divres;
  497. unsigned long titan, tb;
  498. /* Make sure we only run on iSeries */
  499. if (!firmware_has_feature(FW_FEATURE_ISERIES))
  500. return -ENODEV;
  501. tb = get_tb();
  502. titan = HvCallXm_loadTod();
  503. if ( iSeries_recal_titan ) {
  504. unsigned long tb_ticks = tb - iSeries_recal_tb;
  505. unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
  506. unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
  507. unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
  508. long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
  509. char sign = '+';
  510. /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
  511. new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
  512. if ( tick_diff < 0 ) {
  513. tick_diff = -tick_diff;
  514. sign = '-';
  515. }
  516. if ( tick_diff ) {
  517. if ( tick_diff < tb_ticks_per_jiffy/25 ) {
  518. printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
  519. new_tb_ticks_per_jiffy, sign, tick_diff );
  520. tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
  521. tb_ticks_per_sec = new_tb_ticks_per_sec;
  522. calc_cputime_factors();
  523. div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
  524. do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
  525. tb_to_xs = divres.result_low;
  526. do_gtod.varp->tb_to_xs = tb_to_xs;
  527. vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
  528. vdso_data->tb_to_xs = tb_to_xs;
  529. }
  530. else {
  531. printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
  532. " new tb_ticks_per_jiffy = %lu\n"
  533. " old tb_ticks_per_jiffy = %lu\n",
  534. new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
  535. }
  536. }
  537. }
  538. iSeries_recal_titan = titan;
  539. iSeries_recal_tb = tb;
  540. return 0;
  541. }
  542. late_initcall(iSeries_tb_recal);
  543. /* Called from platform early init */
  544. void __init iSeries_time_init_early(void)
  545. {
  546. iSeries_recal_tb = get_tb();
  547. iSeries_recal_titan = HvCallXm_loadTod();
  548. }
  549. #endif /* CONFIG_PPC_ISERIES */
  550. /*
  551. * For iSeries shared processors, we have to let the hypervisor
  552. * set the hardware decrementer. We set a virtual decrementer
  553. * in the lppaca and call the hypervisor if the virtual
  554. * decrementer is less than the current value in the hardware
  555. * decrementer. (almost always the new decrementer value will
  556. * be greater than the current hardware decementer so the hypervisor
  557. * call will not be needed)
  558. */
  559. /*
  560. * timer_interrupt - gets called when the decrementer overflows,
  561. * with interrupts disabled.
  562. */
  563. void timer_interrupt(struct pt_regs * regs)
  564. {
  565. struct pt_regs *old_regs;
  566. int next_dec;
  567. int cpu = smp_processor_id();
  568. unsigned long ticks;
  569. u64 tb_next_jiffy;
  570. #ifdef CONFIG_PPC32
  571. if (atomic_read(&ppc_n_lost_interrupts) != 0)
  572. do_IRQ(regs);
  573. #endif
  574. old_regs = set_irq_regs(regs);
  575. irq_enter();
  576. profile_tick(CPU_PROFILING);
  577. calculate_steal_time();
  578. #ifdef CONFIG_PPC_ISERIES
  579. if (firmware_has_feature(FW_FEATURE_ISERIES))
  580. get_lppaca()->int_dword.fields.decr_int = 0;
  581. #endif
  582. while ((ticks = tb_ticks_since(per_cpu(last_jiffy, cpu)))
  583. >= tb_ticks_per_jiffy) {
  584. /* Update last_jiffy */
  585. per_cpu(last_jiffy, cpu) += tb_ticks_per_jiffy;
  586. /* Handle RTCL overflow on 601 */
  587. if (__USE_RTC() && per_cpu(last_jiffy, cpu) >= 1000000000)
  588. per_cpu(last_jiffy, cpu) -= 1000000000;
  589. /*
  590. * We cannot disable the decrementer, so in the period
  591. * between this cpu's being marked offline in cpu_online_map
  592. * and calling stop-self, it is taking timer interrupts.
  593. * Avoid calling into the scheduler rebalancing code if this
  594. * is the case.
  595. */
  596. if (!cpu_is_offline(cpu))
  597. account_process_time(regs);
  598. /*
  599. * No need to check whether cpu is offline here; boot_cpuid
  600. * should have been fixed up by now.
  601. */
  602. if (cpu != boot_cpuid)
  603. continue;
  604. write_seqlock(&xtime_lock);
  605. tb_next_jiffy = tb_last_jiffy + tb_ticks_per_jiffy;
  606. if (per_cpu(last_jiffy, cpu) >= tb_next_jiffy) {
  607. tb_last_jiffy = tb_next_jiffy;
  608. do_timer(1);
  609. timer_recalc_offset(tb_last_jiffy);
  610. timer_check_rtc();
  611. }
  612. write_sequnlock(&xtime_lock);
  613. }
  614. next_dec = tb_ticks_per_jiffy - ticks;
  615. set_dec(next_dec);
  616. #ifdef CONFIG_PPC_ISERIES
  617. if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
  618. process_hvlpevents();
  619. #endif
  620. #ifdef CONFIG_PPC64
  621. /* collect purr register values often, for accurate calculations */
  622. if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
  623. struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
  624. cu->current_tb = mfspr(SPRN_PURR);
  625. }
  626. #endif
  627. irq_exit();
  628. set_irq_regs(old_regs);
  629. }
  630. void wakeup_decrementer(void)
  631. {
  632. unsigned long ticks;
  633. /*
  634. * The timebase gets saved on sleep and restored on wakeup,
  635. * so all we need to do is to reset the decrementer.
  636. */
  637. ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
  638. if (ticks < tb_ticks_per_jiffy)
  639. ticks = tb_ticks_per_jiffy - ticks;
  640. else
  641. ticks = 1;
  642. set_dec(ticks);
  643. }
  644. #ifdef CONFIG_SMP
  645. void __init smp_space_timers(unsigned int max_cpus)
  646. {
  647. int i;
  648. u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
  649. /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
  650. previous_tb -= tb_ticks_per_jiffy;
  651. for_each_possible_cpu(i) {
  652. if (i == boot_cpuid)
  653. continue;
  654. per_cpu(last_jiffy, i) = previous_tb;
  655. }
  656. }
  657. #endif
  658. /*
  659. * Scheduler clock - returns current time in nanosec units.
  660. *
  661. * Note: mulhdu(a, b) (multiply high double unsigned) returns
  662. * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
  663. * are 64-bit unsigned numbers.
  664. */
  665. unsigned long long sched_clock(void)
  666. {
  667. if (__USE_RTC())
  668. return get_rtc();
  669. return mulhdu(get_tb(), tb_to_ns_scale) << tb_to_ns_shift;
  670. }
  671. int do_settimeofday(struct timespec *tv)
  672. {
  673. time_t wtm_sec, new_sec = tv->tv_sec;
  674. long wtm_nsec, new_nsec = tv->tv_nsec;
  675. unsigned long flags;
  676. u64 new_xsec;
  677. unsigned long tb_delta;
  678. if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
  679. return -EINVAL;
  680. write_seqlock_irqsave(&xtime_lock, flags);
  681. /*
  682. * Updating the RTC is not the job of this code. If the time is
  683. * stepped under NTP, the RTC will be updated after STA_UNSYNC
  684. * is cleared. Tools like clock/hwclock either copy the RTC
  685. * to the system time, in which case there is no point in writing
  686. * to the RTC again, or write to the RTC but then they don't call
  687. * settimeofday to perform this operation.
  688. */
  689. /* Make userspace gettimeofday spin until we're done. */
  690. ++vdso_data->tb_update_count;
  691. smp_mb();
  692. /*
  693. * Subtract off the number of nanoseconds since the
  694. * beginning of the last tick.
  695. */
  696. tb_delta = tb_ticks_since(tb_last_jiffy);
  697. tb_delta = mulhdu(tb_delta, do_gtod.varp->tb_to_xs); /* in xsec */
  698. new_nsec -= SCALE_XSEC(tb_delta, 1000000000);
  699. wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - new_sec);
  700. wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - new_nsec);
  701. set_normalized_timespec(&xtime, new_sec, new_nsec);
  702. set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
  703. /* In case of a large backwards jump in time with NTP, we want the
  704. * clock to be updated as soon as the PLL is again in lock.
  705. */
  706. last_rtc_update = new_sec - 658;
  707. ntp_clear();
  708. new_xsec = xtime.tv_nsec;
  709. if (new_xsec != 0) {
  710. new_xsec *= XSEC_PER_SEC;
  711. do_div(new_xsec, NSEC_PER_SEC);
  712. }
  713. new_xsec += (u64)xtime.tv_sec * XSEC_PER_SEC;
  714. update_gtod(tb_last_jiffy, new_xsec, do_gtod.varp->tb_to_xs);
  715. vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
  716. vdso_data->tz_dsttime = sys_tz.tz_dsttime;
  717. write_sequnlock_irqrestore(&xtime_lock, flags);
  718. clock_was_set();
  719. return 0;
  720. }
  721. EXPORT_SYMBOL(do_settimeofday);
  722. static int __init get_freq(char *name, int cells, unsigned long *val)
  723. {
  724. struct device_node *cpu;
  725. const unsigned int *fp;
  726. int found = 0;
  727. /* The cpu node should have timebase and clock frequency properties */
  728. cpu = of_find_node_by_type(NULL, "cpu");
  729. if (cpu) {
  730. fp = of_get_property(cpu, name, NULL);
  731. if (fp) {
  732. found = 1;
  733. *val = of_read_ulong(fp, cells);
  734. }
  735. of_node_put(cpu);
  736. }
  737. return found;
  738. }
  739. void __init generic_calibrate_decr(void)
  740. {
  741. ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
  742. if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
  743. !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
  744. printk(KERN_ERR "WARNING: Estimating decrementer frequency "
  745. "(not found)\n");
  746. }
  747. ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
  748. if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
  749. !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
  750. printk(KERN_ERR "WARNING: Estimating processor frequency "
  751. "(not found)\n");
  752. }
  753. #ifdef CONFIG_BOOKE
  754. /* Set the time base to zero */
  755. mtspr(SPRN_TBWL, 0);
  756. mtspr(SPRN_TBWU, 0);
  757. /* Clear any pending timer interrupts */
  758. mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
  759. /* Enable decrementer interrupt */
  760. mtspr(SPRN_TCR, TCR_DIE);
  761. #endif
  762. }
  763. unsigned long get_boot_time(void)
  764. {
  765. struct rtc_time tm;
  766. if (ppc_md.get_boot_time)
  767. return ppc_md.get_boot_time();
  768. if (!ppc_md.get_rtc_time)
  769. return 0;
  770. ppc_md.get_rtc_time(&tm);
  771. return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
  772. tm.tm_hour, tm.tm_min, tm.tm_sec);
  773. }
  774. /* This function is only called on the boot processor */
  775. void __init time_init(void)
  776. {
  777. unsigned long flags;
  778. unsigned long tm = 0;
  779. struct div_result res;
  780. u64 scale, x;
  781. unsigned shift;
  782. if (ppc_md.time_init != NULL)
  783. timezone_offset = ppc_md.time_init();
  784. if (__USE_RTC()) {
  785. /* 601 processor: dec counts down by 128 every 128ns */
  786. ppc_tb_freq = 1000000000;
  787. tb_last_jiffy = get_rtcl();
  788. } else {
  789. /* Normal PowerPC with timebase register */
  790. ppc_md.calibrate_decr();
  791. printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
  792. ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
  793. printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
  794. ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
  795. tb_last_jiffy = get_tb();
  796. }
  797. tb_ticks_per_jiffy = ppc_tb_freq / HZ;
  798. tb_ticks_per_sec = ppc_tb_freq;
  799. tb_ticks_per_usec = ppc_tb_freq / 1000000;
  800. tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
  801. calc_cputime_factors();
  802. /*
  803. * Calculate the length of each tick in ns. It will not be
  804. * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
  805. * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
  806. * rounded up.
  807. */
  808. x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
  809. do_div(x, ppc_tb_freq);
  810. tick_nsec = x;
  811. last_tick_len = x << TICKLEN_SCALE;
  812. /*
  813. * Compute ticklen_to_xs, which is a factor which gets multiplied
  814. * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
  815. * It is computed as:
  816. * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
  817. * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
  818. * which turns out to be N = 51 - SHIFT_HZ.
  819. * This gives the result as a 0.64 fixed-point fraction.
  820. * That value is reduced by an offset amounting to 1 xsec per
  821. * 2^31 timebase ticks to avoid problems with time going backwards
  822. * by 1 xsec when we do timer_recalc_offset due to losing the
  823. * fractional xsec. That offset is equal to ppc_tb_freq/2^51
  824. * since there are 2^20 xsec in a second.
  825. */
  826. div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
  827. tb_ticks_per_jiffy << SHIFT_HZ, &res);
  828. div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
  829. ticklen_to_xs = res.result_low;
  830. /* Compute tb_to_xs from tick_nsec */
  831. tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
  832. /*
  833. * Compute scale factor for sched_clock.
  834. * The calibrate_decr() function has set tb_ticks_per_sec,
  835. * which is the timebase frequency.
  836. * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
  837. * the 128-bit result as a 64.64 fixed-point number.
  838. * We then shift that number right until it is less than 1.0,
  839. * giving us the scale factor and shift count to use in
  840. * sched_clock().
  841. */
  842. div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
  843. scale = res.result_low;
  844. for (shift = 0; res.result_high != 0; ++shift) {
  845. scale = (scale >> 1) | (res.result_high << 63);
  846. res.result_high >>= 1;
  847. }
  848. tb_to_ns_scale = scale;
  849. tb_to_ns_shift = shift;
  850. tm = get_boot_time();
  851. write_seqlock_irqsave(&xtime_lock, flags);
  852. /* If platform provided a timezone (pmac), we correct the time */
  853. if (timezone_offset) {
  854. sys_tz.tz_minuteswest = -timezone_offset / 60;
  855. sys_tz.tz_dsttime = 0;
  856. tm -= timezone_offset;
  857. }
  858. xtime.tv_sec = tm;
  859. xtime.tv_nsec = 0;
  860. do_gtod.varp = &do_gtod.vars[0];
  861. do_gtod.var_idx = 0;
  862. do_gtod.varp->tb_orig_stamp = tb_last_jiffy;
  863. __get_cpu_var(last_jiffy) = tb_last_jiffy;
  864. do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
  865. do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
  866. do_gtod.varp->tb_to_xs = tb_to_xs;
  867. do_gtod.tb_to_us = tb_to_us;
  868. vdso_data->tb_orig_stamp = tb_last_jiffy;
  869. vdso_data->tb_update_count = 0;
  870. vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
  871. vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
  872. vdso_data->tb_to_xs = tb_to_xs;
  873. time_freq = 0;
  874. last_rtc_update = xtime.tv_sec;
  875. set_normalized_timespec(&wall_to_monotonic,
  876. -xtime.tv_sec, -xtime.tv_nsec);
  877. write_sequnlock_irqrestore(&xtime_lock, flags);
  878. /* Not exact, but the timer interrupt takes care of this */
  879. set_dec(tb_ticks_per_jiffy);
  880. }
  881. #define FEBRUARY 2
  882. #define STARTOFTIME 1970
  883. #define SECDAY 86400L
  884. #define SECYR (SECDAY * 365)
  885. #define leapyear(year) ((year) % 4 == 0 && \
  886. ((year) % 100 != 0 || (year) % 400 == 0))
  887. #define days_in_year(a) (leapyear(a) ? 366 : 365)
  888. #define days_in_month(a) (month_days[(a) - 1])
  889. static int month_days[12] = {
  890. 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
  891. };
  892. /*
  893. * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
  894. */
  895. void GregorianDay(struct rtc_time * tm)
  896. {
  897. int leapsToDate;
  898. int lastYear;
  899. int day;
  900. int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
  901. lastYear = tm->tm_year - 1;
  902. /*
  903. * Number of leap corrections to apply up to end of last year
  904. */
  905. leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
  906. /*
  907. * This year is a leap year if it is divisible by 4 except when it is
  908. * divisible by 100 unless it is divisible by 400
  909. *
  910. * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
  911. */
  912. day = tm->tm_mon > 2 && leapyear(tm->tm_year);
  913. day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
  914. tm->tm_mday;
  915. tm->tm_wday = day % 7;
  916. }
  917. void to_tm(int tim, struct rtc_time * tm)
  918. {
  919. register int i;
  920. register long hms, day;
  921. day = tim / SECDAY;
  922. hms = tim % SECDAY;
  923. /* Hours, minutes, seconds are easy */
  924. tm->tm_hour = hms / 3600;
  925. tm->tm_min = (hms % 3600) / 60;
  926. tm->tm_sec = (hms % 3600) % 60;
  927. /* Number of years in days */
  928. for (i = STARTOFTIME; day >= days_in_year(i); i++)
  929. day -= days_in_year(i);
  930. tm->tm_year = i;
  931. /* Number of months in days left */
  932. if (leapyear(tm->tm_year))
  933. days_in_month(FEBRUARY) = 29;
  934. for (i = 1; day >= days_in_month(i); i++)
  935. day -= days_in_month(i);
  936. days_in_month(FEBRUARY) = 28;
  937. tm->tm_mon = i;
  938. /* Days are what is left over (+1) from all that. */
  939. tm->tm_mday = day + 1;
  940. /*
  941. * Determine the day of week
  942. */
  943. GregorianDay(tm);
  944. }
  945. /* Auxiliary function to compute scaling factors */
  946. /* Actually the choice of a timebase running at 1/4 the of the bus
  947. * frequency giving resolution of a few tens of nanoseconds is quite nice.
  948. * It makes this computation very precise (27-28 bits typically) which
  949. * is optimistic considering the stability of most processor clock
  950. * oscillators and the precision with which the timebase frequency
  951. * is measured but does not harm.
  952. */
  953. unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
  954. {
  955. unsigned mlt=0, tmp, err;
  956. /* No concern for performance, it's done once: use a stupid
  957. * but safe and compact method to find the multiplier.
  958. */
  959. for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
  960. if (mulhwu(inscale, mlt|tmp) < outscale)
  961. mlt |= tmp;
  962. }
  963. /* We might still be off by 1 for the best approximation.
  964. * A side effect of this is that if outscale is too large
  965. * the returned value will be zero.
  966. * Many corner cases have been checked and seem to work,
  967. * some might have been forgotten in the test however.
  968. */
  969. err = inscale * (mlt+1);
  970. if (err <= inscale/2)
  971. mlt++;
  972. return mlt;
  973. }
  974. /*
  975. * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
  976. * result.
  977. */
  978. void div128_by_32(u64 dividend_high, u64 dividend_low,
  979. unsigned divisor, struct div_result *dr)
  980. {
  981. unsigned long a, b, c, d;
  982. unsigned long w, x, y, z;
  983. u64 ra, rb, rc;
  984. a = dividend_high >> 32;
  985. b = dividend_high & 0xffffffff;
  986. c = dividend_low >> 32;
  987. d = dividend_low & 0xffffffff;
  988. w = a / divisor;
  989. ra = ((u64)(a - (w * divisor)) << 32) + b;
  990. rb = ((u64) do_div(ra, divisor) << 32) + c;
  991. x = ra;
  992. rc = ((u64) do_div(rb, divisor) << 32) + d;
  993. y = rb;
  994. do_div(rc, divisor);
  995. z = rc;
  996. dr->result_high = ((u64)w << 32) + x;
  997. dr->result_low = ((u64)y << 32) + z;
  998. }