core.c 180 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563
  1. /*
  2. * kernel/sched/core.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <asm/mmu_context.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/capability.h>
  37. #include <linux/completion.h>
  38. #include <linux/kernel_stat.h>
  39. #include <linux/debug_locks.h>
  40. #include <linux/perf_event.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/proc_fs.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/unistd.h>
  65. #include <linux/pagemap.h>
  66. #include <linux/hrtimer.h>
  67. #include <linux/tick.h>
  68. #include <linux/debugfs.h>
  69. #include <linux/ctype.h>
  70. #include <linux/ftrace.h>
  71. #include <linux/slab.h>
  72. #include <linux/init_task.h>
  73. #include <linux/binfmts.h>
  74. #include <linux/context_tracking.h>
  75. #include <asm/switch_to.h>
  76. #include <asm/tlb.h>
  77. #include <asm/irq_regs.h>
  78. #include <asm/mutex.h>
  79. #ifdef CONFIG_PARAVIRT
  80. #include <asm/paravirt.h>
  81. #endif
  82. #include "sched.h"
  83. #include "../workqueue_internal.h"
  84. #include "../smpboot.h"
  85. #define CREATE_TRACE_POINTS
  86. #include <trace/events/sched.h>
  87. void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
  88. {
  89. unsigned long delta;
  90. ktime_t soft, hard, now;
  91. for (;;) {
  92. if (hrtimer_active(period_timer))
  93. break;
  94. now = hrtimer_cb_get_time(period_timer);
  95. hrtimer_forward(period_timer, now, period);
  96. soft = hrtimer_get_softexpires(period_timer);
  97. hard = hrtimer_get_expires(period_timer);
  98. delta = ktime_to_ns(ktime_sub(hard, soft));
  99. __hrtimer_start_range_ns(period_timer, soft, delta,
  100. HRTIMER_MODE_ABS_PINNED, 0);
  101. }
  102. }
  103. DEFINE_MUTEX(sched_domains_mutex);
  104. DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  105. static void update_rq_clock_task(struct rq *rq, s64 delta);
  106. void update_rq_clock(struct rq *rq)
  107. {
  108. s64 delta;
  109. if (rq->skip_clock_update > 0)
  110. return;
  111. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  112. rq->clock += delta;
  113. update_rq_clock_task(rq, delta);
  114. }
  115. /*
  116. * Debugging: various feature bits
  117. */
  118. #define SCHED_FEAT(name, enabled) \
  119. (1UL << __SCHED_FEAT_##name) * enabled |
  120. const_debug unsigned int sysctl_sched_features =
  121. #include "features.h"
  122. 0;
  123. #undef SCHED_FEAT
  124. #ifdef CONFIG_SCHED_DEBUG
  125. #define SCHED_FEAT(name, enabled) \
  126. #name ,
  127. static const char * const sched_feat_names[] = {
  128. #include "features.h"
  129. };
  130. #undef SCHED_FEAT
  131. static int sched_feat_show(struct seq_file *m, void *v)
  132. {
  133. int i;
  134. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  135. if (!(sysctl_sched_features & (1UL << i)))
  136. seq_puts(m, "NO_");
  137. seq_printf(m, "%s ", sched_feat_names[i]);
  138. }
  139. seq_puts(m, "\n");
  140. return 0;
  141. }
  142. #ifdef HAVE_JUMP_LABEL
  143. #define jump_label_key__true STATIC_KEY_INIT_TRUE
  144. #define jump_label_key__false STATIC_KEY_INIT_FALSE
  145. #define SCHED_FEAT(name, enabled) \
  146. jump_label_key__##enabled ,
  147. struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
  148. #include "features.h"
  149. };
  150. #undef SCHED_FEAT
  151. static void sched_feat_disable(int i)
  152. {
  153. if (static_key_enabled(&sched_feat_keys[i]))
  154. static_key_slow_dec(&sched_feat_keys[i]);
  155. }
  156. static void sched_feat_enable(int i)
  157. {
  158. if (!static_key_enabled(&sched_feat_keys[i]))
  159. static_key_slow_inc(&sched_feat_keys[i]);
  160. }
  161. #else
  162. static void sched_feat_disable(int i) { };
  163. static void sched_feat_enable(int i) { };
  164. #endif /* HAVE_JUMP_LABEL */
  165. static int sched_feat_set(char *cmp)
  166. {
  167. int i;
  168. int neg = 0;
  169. if (strncmp(cmp, "NO_", 3) == 0) {
  170. neg = 1;
  171. cmp += 3;
  172. }
  173. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  174. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  175. if (neg) {
  176. sysctl_sched_features &= ~(1UL << i);
  177. sched_feat_disable(i);
  178. } else {
  179. sysctl_sched_features |= (1UL << i);
  180. sched_feat_enable(i);
  181. }
  182. break;
  183. }
  184. }
  185. return i;
  186. }
  187. static ssize_t
  188. sched_feat_write(struct file *filp, const char __user *ubuf,
  189. size_t cnt, loff_t *ppos)
  190. {
  191. char buf[64];
  192. char *cmp;
  193. int i;
  194. if (cnt > 63)
  195. cnt = 63;
  196. if (copy_from_user(&buf, ubuf, cnt))
  197. return -EFAULT;
  198. buf[cnt] = 0;
  199. cmp = strstrip(buf);
  200. i = sched_feat_set(cmp);
  201. if (i == __SCHED_FEAT_NR)
  202. return -EINVAL;
  203. *ppos += cnt;
  204. return cnt;
  205. }
  206. static int sched_feat_open(struct inode *inode, struct file *filp)
  207. {
  208. return single_open(filp, sched_feat_show, NULL);
  209. }
  210. static const struct file_operations sched_feat_fops = {
  211. .open = sched_feat_open,
  212. .write = sched_feat_write,
  213. .read = seq_read,
  214. .llseek = seq_lseek,
  215. .release = single_release,
  216. };
  217. static __init int sched_init_debug(void)
  218. {
  219. debugfs_create_file("sched_features", 0644, NULL, NULL,
  220. &sched_feat_fops);
  221. return 0;
  222. }
  223. late_initcall(sched_init_debug);
  224. #endif /* CONFIG_SCHED_DEBUG */
  225. /*
  226. * Number of tasks to iterate in a single balance run.
  227. * Limited because this is done with IRQs disabled.
  228. */
  229. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  230. /*
  231. * period over which we average the RT time consumption, measured
  232. * in ms.
  233. *
  234. * default: 1s
  235. */
  236. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  237. /*
  238. * period over which we measure -rt task cpu usage in us.
  239. * default: 1s
  240. */
  241. unsigned int sysctl_sched_rt_period = 1000000;
  242. __read_mostly int scheduler_running;
  243. /*
  244. * part of the period that we allow rt tasks to run in us.
  245. * default: 0.95s
  246. */
  247. int sysctl_sched_rt_runtime = 950000;
  248. /*
  249. * __task_rq_lock - lock the rq @p resides on.
  250. */
  251. static inline struct rq *__task_rq_lock(struct task_struct *p)
  252. __acquires(rq->lock)
  253. {
  254. struct rq *rq;
  255. lockdep_assert_held(&p->pi_lock);
  256. for (;;) {
  257. rq = task_rq(p);
  258. raw_spin_lock(&rq->lock);
  259. if (likely(rq == task_rq(p)))
  260. return rq;
  261. raw_spin_unlock(&rq->lock);
  262. }
  263. }
  264. /*
  265. * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
  266. */
  267. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  268. __acquires(p->pi_lock)
  269. __acquires(rq->lock)
  270. {
  271. struct rq *rq;
  272. for (;;) {
  273. raw_spin_lock_irqsave(&p->pi_lock, *flags);
  274. rq = task_rq(p);
  275. raw_spin_lock(&rq->lock);
  276. if (likely(rq == task_rq(p)))
  277. return rq;
  278. raw_spin_unlock(&rq->lock);
  279. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  280. }
  281. }
  282. static void __task_rq_unlock(struct rq *rq)
  283. __releases(rq->lock)
  284. {
  285. raw_spin_unlock(&rq->lock);
  286. }
  287. static inline void
  288. task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
  289. __releases(rq->lock)
  290. __releases(p->pi_lock)
  291. {
  292. raw_spin_unlock(&rq->lock);
  293. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  294. }
  295. /*
  296. * this_rq_lock - lock this runqueue and disable interrupts.
  297. */
  298. static struct rq *this_rq_lock(void)
  299. __acquires(rq->lock)
  300. {
  301. struct rq *rq;
  302. local_irq_disable();
  303. rq = this_rq();
  304. raw_spin_lock(&rq->lock);
  305. return rq;
  306. }
  307. #ifdef CONFIG_SCHED_HRTICK
  308. /*
  309. * Use HR-timers to deliver accurate preemption points.
  310. */
  311. static void hrtick_clear(struct rq *rq)
  312. {
  313. if (hrtimer_active(&rq->hrtick_timer))
  314. hrtimer_cancel(&rq->hrtick_timer);
  315. }
  316. /*
  317. * High-resolution timer tick.
  318. * Runs from hardirq context with interrupts disabled.
  319. */
  320. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  321. {
  322. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  323. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  324. raw_spin_lock(&rq->lock);
  325. update_rq_clock(rq);
  326. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  327. raw_spin_unlock(&rq->lock);
  328. return HRTIMER_NORESTART;
  329. }
  330. #ifdef CONFIG_SMP
  331. static int __hrtick_restart(struct rq *rq)
  332. {
  333. struct hrtimer *timer = &rq->hrtick_timer;
  334. ktime_t time = hrtimer_get_softexpires(timer);
  335. return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
  336. }
  337. /*
  338. * called from hardirq (IPI) context
  339. */
  340. static void __hrtick_start(void *arg)
  341. {
  342. struct rq *rq = arg;
  343. raw_spin_lock(&rq->lock);
  344. __hrtick_restart(rq);
  345. rq->hrtick_csd_pending = 0;
  346. raw_spin_unlock(&rq->lock);
  347. }
  348. /*
  349. * Called to set the hrtick timer state.
  350. *
  351. * called with rq->lock held and irqs disabled
  352. */
  353. void hrtick_start(struct rq *rq, u64 delay)
  354. {
  355. struct hrtimer *timer = &rq->hrtick_timer;
  356. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  357. hrtimer_set_expires(timer, time);
  358. if (rq == this_rq()) {
  359. __hrtick_restart(rq);
  360. } else if (!rq->hrtick_csd_pending) {
  361. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  362. rq->hrtick_csd_pending = 1;
  363. }
  364. }
  365. static int
  366. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  367. {
  368. int cpu = (int)(long)hcpu;
  369. switch (action) {
  370. case CPU_UP_CANCELED:
  371. case CPU_UP_CANCELED_FROZEN:
  372. case CPU_DOWN_PREPARE:
  373. case CPU_DOWN_PREPARE_FROZEN:
  374. case CPU_DEAD:
  375. case CPU_DEAD_FROZEN:
  376. hrtick_clear(cpu_rq(cpu));
  377. return NOTIFY_OK;
  378. }
  379. return NOTIFY_DONE;
  380. }
  381. static __init void init_hrtick(void)
  382. {
  383. hotcpu_notifier(hotplug_hrtick, 0);
  384. }
  385. #else
  386. /*
  387. * Called to set the hrtick timer state.
  388. *
  389. * called with rq->lock held and irqs disabled
  390. */
  391. void hrtick_start(struct rq *rq, u64 delay)
  392. {
  393. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  394. HRTIMER_MODE_REL_PINNED, 0);
  395. }
  396. static inline void init_hrtick(void)
  397. {
  398. }
  399. #endif /* CONFIG_SMP */
  400. static void init_rq_hrtick(struct rq *rq)
  401. {
  402. #ifdef CONFIG_SMP
  403. rq->hrtick_csd_pending = 0;
  404. rq->hrtick_csd.flags = 0;
  405. rq->hrtick_csd.func = __hrtick_start;
  406. rq->hrtick_csd.info = rq;
  407. #endif
  408. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  409. rq->hrtick_timer.function = hrtick;
  410. }
  411. #else /* CONFIG_SCHED_HRTICK */
  412. static inline void hrtick_clear(struct rq *rq)
  413. {
  414. }
  415. static inline void init_rq_hrtick(struct rq *rq)
  416. {
  417. }
  418. static inline void init_hrtick(void)
  419. {
  420. }
  421. #endif /* CONFIG_SCHED_HRTICK */
  422. /*
  423. * resched_task - mark a task 'to be rescheduled now'.
  424. *
  425. * On UP this means the setting of the need_resched flag, on SMP it
  426. * might also involve a cross-CPU call to trigger the scheduler on
  427. * the target CPU.
  428. */
  429. void resched_task(struct task_struct *p)
  430. {
  431. int cpu;
  432. lockdep_assert_held(&task_rq(p)->lock);
  433. if (test_tsk_need_resched(p))
  434. return;
  435. set_tsk_need_resched(p);
  436. cpu = task_cpu(p);
  437. if (cpu == smp_processor_id()) {
  438. set_preempt_need_resched();
  439. return;
  440. }
  441. /* NEED_RESCHED must be visible before we test polling */
  442. smp_mb();
  443. if (!tsk_is_polling(p))
  444. smp_send_reschedule(cpu);
  445. }
  446. void resched_cpu(int cpu)
  447. {
  448. struct rq *rq = cpu_rq(cpu);
  449. unsigned long flags;
  450. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  451. return;
  452. resched_task(cpu_curr(cpu));
  453. raw_spin_unlock_irqrestore(&rq->lock, flags);
  454. }
  455. #ifdef CONFIG_SMP
  456. #ifdef CONFIG_NO_HZ_COMMON
  457. /*
  458. * In the semi idle case, use the nearest busy cpu for migrating timers
  459. * from an idle cpu. This is good for power-savings.
  460. *
  461. * We don't do similar optimization for completely idle system, as
  462. * selecting an idle cpu will add more delays to the timers than intended
  463. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  464. */
  465. int get_nohz_timer_target(void)
  466. {
  467. int cpu = smp_processor_id();
  468. int i;
  469. struct sched_domain *sd;
  470. rcu_read_lock();
  471. for_each_domain(cpu, sd) {
  472. for_each_cpu(i, sched_domain_span(sd)) {
  473. if (!idle_cpu(i)) {
  474. cpu = i;
  475. goto unlock;
  476. }
  477. }
  478. }
  479. unlock:
  480. rcu_read_unlock();
  481. return cpu;
  482. }
  483. /*
  484. * When add_timer_on() enqueues a timer into the timer wheel of an
  485. * idle CPU then this timer might expire before the next timer event
  486. * which is scheduled to wake up that CPU. In case of a completely
  487. * idle system the next event might even be infinite time into the
  488. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  489. * leaves the inner idle loop so the newly added timer is taken into
  490. * account when the CPU goes back to idle and evaluates the timer
  491. * wheel for the next timer event.
  492. */
  493. static void wake_up_idle_cpu(int cpu)
  494. {
  495. struct rq *rq = cpu_rq(cpu);
  496. if (cpu == smp_processor_id())
  497. return;
  498. /*
  499. * This is safe, as this function is called with the timer
  500. * wheel base lock of (cpu) held. When the CPU is on the way
  501. * to idle and has not yet set rq->curr to idle then it will
  502. * be serialized on the timer wheel base lock and take the new
  503. * timer into account automatically.
  504. */
  505. if (rq->curr != rq->idle)
  506. return;
  507. /*
  508. * We can set TIF_RESCHED on the idle task of the other CPU
  509. * lockless. The worst case is that the other CPU runs the
  510. * idle task through an additional NOOP schedule()
  511. */
  512. set_tsk_need_resched(rq->idle);
  513. /* NEED_RESCHED must be visible before we test polling */
  514. smp_mb();
  515. if (!tsk_is_polling(rq->idle))
  516. smp_send_reschedule(cpu);
  517. }
  518. static bool wake_up_full_nohz_cpu(int cpu)
  519. {
  520. if (tick_nohz_full_cpu(cpu)) {
  521. if (cpu != smp_processor_id() ||
  522. tick_nohz_tick_stopped())
  523. smp_send_reschedule(cpu);
  524. return true;
  525. }
  526. return false;
  527. }
  528. void wake_up_nohz_cpu(int cpu)
  529. {
  530. if (!wake_up_full_nohz_cpu(cpu))
  531. wake_up_idle_cpu(cpu);
  532. }
  533. static inline bool got_nohz_idle_kick(void)
  534. {
  535. int cpu = smp_processor_id();
  536. if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
  537. return false;
  538. if (idle_cpu(cpu) && !need_resched())
  539. return true;
  540. /*
  541. * We can't run Idle Load Balance on this CPU for this time so we
  542. * cancel it and clear NOHZ_BALANCE_KICK
  543. */
  544. clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
  545. return false;
  546. }
  547. #else /* CONFIG_NO_HZ_COMMON */
  548. static inline bool got_nohz_idle_kick(void)
  549. {
  550. return false;
  551. }
  552. #endif /* CONFIG_NO_HZ_COMMON */
  553. #ifdef CONFIG_NO_HZ_FULL
  554. bool sched_can_stop_tick(void)
  555. {
  556. struct rq *rq;
  557. rq = this_rq();
  558. /* Make sure rq->nr_running update is visible after the IPI */
  559. smp_rmb();
  560. /* More than one running task need preemption */
  561. if (rq->nr_running > 1)
  562. return false;
  563. return true;
  564. }
  565. #endif /* CONFIG_NO_HZ_FULL */
  566. void sched_avg_update(struct rq *rq)
  567. {
  568. s64 period = sched_avg_period();
  569. while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
  570. /*
  571. * Inline assembly required to prevent the compiler
  572. * optimising this loop into a divmod call.
  573. * See __iter_div_u64_rem() for another example of this.
  574. */
  575. asm("" : "+rm" (rq->age_stamp));
  576. rq->age_stamp += period;
  577. rq->rt_avg /= 2;
  578. }
  579. }
  580. #endif /* CONFIG_SMP */
  581. #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
  582. (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
  583. /*
  584. * Iterate task_group tree rooted at *from, calling @down when first entering a
  585. * node and @up when leaving it for the final time.
  586. *
  587. * Caller must hold rcu_lock or sufficient equivalent.
  588. */
  589. int walk_tg_tree_from(struct task_group *from,
  590. tg_visitor down, tg_visitor up, void *data)
  591. {
  592. struct task_group *parent, *child;
  593. int ret;
  594. parent = from;
  595. down:
  596. ret = (*down)(parent, data);
  597. if (ret)
  598. goto out;
  599. list_for_each_entry_rcu(child, &parent->children, siblings) {
  600. parent = child;
  601. goto down;
  602. up:
  603. continue;
  604. }
  605. ret = (*up)(parent, data);
  606. if (ret || parent == from)
  607. goto out;
  608. child = parent;
  609. parent = parent->parent;
  610. if (parent)
  611. goto up;
  612. out:
  613. return ret;
  614. }
  615. int tg_nop(struct task_group *tg, void *data)
  616. {
  617. return 0;
  618. }
  619. #endif
  620. static void set_load_weight(struct task_struct *p)
  621. {
  622. int prio = p->static_prio - MAX_RT_PRIO;
  623. struct load_weight *load = &p->se.load;
  624. /*
  625. * SCHED_IDLE tasks get minimal weight:
  626. */
  627. if (p->policy == SCHED_IDLE) {
  628. load->weight = scale_load(WEIGHT_IDLEPRIO);
  629. load->inv_weight = WMULT_IDLEPRIO;
  630. return;
  631. }
  632. load->weight = scale_load(prio_to_weight[prio]);
  633. load->inv_weight = prio_to_wmult[prio];
  634. }
  635. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  636. {
  637. update_rq_clock(rq);
  638. sched_info_queued(rq, p);
  639. p->sched_class->enqueue_task(rq, p, flags);
  640. }
  641. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  642. {
  643. update_rq_clock(rq);
  644. sched_info_dequeued(rq, p);
  645. p->sched_class->dequeue_task(rq, p, flags);
  646. }
  647. void activate_task(struct rq *rq, struct task_struct *p, int flags)
  648. {
  649. if (task_contributes_to_load(p))
  650. rq->nr_uninterruptible--;
  651. enqueue_task(rq, p, flags);
  652. }
  653. void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  654. {
  655. if (task_contributes_to_load(p))
  656. rq->nr_uninterruptible++;
  657. dequeue_task(rq, p, flags);
  658. }
  659. static void update_rq_clock_task(struct rq *rq, s64 delta)
  660. {
  661. /*
  662. * In theory, the compile should just see 0 here, and optimize out the call
  663. * to sched_rt_avg_update. But I don't trust it...
  664. */
  665. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  666. s64 steal = 0, irq_delta = 0;
  667. #endif
  668. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  669. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  670. /*
  671. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  672. * this case when a previous update_rq_clock() happened inside a
  673. * {soft,}irq region.
  674. *
  675. * When this happens, we stop ->clock_task and only update the
  676. * prev_irq_time stamp to account for the part that fit, so that a next
  677. * update will consume the rest. This ensures ->clock_task is
  678. * monotonic.
  679. *
  680. * It does however cause some slight miss-attribution of {soft,}irq
  681. * time, a more accurate solution would be to update the irq_time using
  682. * the current rq->clock timestamp, except that would require using
  683. * atomic ops.
  684. */
  685. if (irq_delta > delta)
  686. irq_delta = delta;
  687. rq->prev_irq_time += irq_delta;
  688. delta -= irq_delta;
  689. #endif
  690. #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  691. if (static_key_false((&paravirt_steal_rq_enabled))) {
  692. u64 st;
  693. steal = paravirt_steal_clock(cpu_of(rq));
  694. steal -= rq->prev_steal_time_rq;
  695. if (unlikely(steal > delta))
  696. steal = delta;
  697. st = steal_ticks(steal);
  698. steal = st * TICK_NSEC;
  699. rq->prev_steal_time_rq += steal;
  700. delta -= steal;
  701. }
  702. #endif
  703. rq->clock_task += delta;
  704. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  705. if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
  706. sched_rt_avg_update(rq, irq_delta + steal);
  707. #endif
  708. }
  709. void sched_set_stop_task(int cpu, struct task_struct *stop)
  710. {
  711. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  712. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  713. if (stop) {
  714. /*
  715. * Make it appear like a SCHED_FIFO task, its something
  716. * userspace knows about and won't get confused about.
  717. *
  718. * Also, it will make PI more or less work without too
  719. * much confusion -- but then, stop work should not
  720. * rely on PI working anyway.
  721. */
  722. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  723. stop->sched_class = &stop_sched_class;
  724. }
  725. cpu_rq(cpu)->stop = stop;
  726. if (old_stop) {
  727. /*
  728. * Reset it back to a normal scheduling class so that
  729. * it can die in pieces.
  730. */
  731. old_stop->sched_class = &rt_sched_class;
  732. }
  733. }
  734. /*
  735. * __normal_prio - return the priority that is based on the static prio
  736. */
  737. static inline int __normal_prio(struct task_struct *p)
  738. {
  739. return p->static_prio;
  740. }
  741. /*
  742. * Calculate the expected normal priority: i.e. priority
  743. * without taking RT-inheritance into account. Might be
  744. * boosted by interactivity modifiers. Changes upon fork,
  745. * setprio syscalls, and whenever the interactivity
  746. * estimator recalculates.
  747. */
  748. static inline int normal_prio(struct task_struct *p)
  749. {
  750. int prio;
  751. if (task_has_rt_policy(p))
  752. prio = MAX_RT_PRIO-1 - p->rt_priority;
  753. else
  754. prio = __normal_prio(p);
  755. return prio;
  756. }
  757. /*
  758. * Calculate the current priority, i.e. the priority
  759. * taken into account by the scheduler. This value might
  760. * be boosted by RT tasks, or might be boosted by
  761. * interactivity modifiers. Will be RT if the task got
  762. * RT-boosted. If not then it returns p->normal_prio.
  763. */
  764. static int effective_prio(struct task_struct *p)
  765. {
  766. p->normal_prio = normal_prio(p);
  767. /*
  768. * If we are RT tasks or we were boosted to RT priority,
  769. * keep the priority unchanged. Otherwise, update priority
  770. * to the normal priority:
  771. */
  772. if (!rt_prio(p->prio))
  773. return p->normal_prio;
  774. return p->prio;
  775. }
  776. /**
  777. * task_curr - is this task currently executing on a CPU?
  778. * @p: the task in question.
  779. *
  780. * Return: 1 if the task is currently executing. 0 otherwise.
  781. */
  782. inline int task_curr(const struct task_struct *p)
  783. {
  784. return cpu_curr(task_cpu(p)) == p;
  785. }
  786. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  787. const struct sched_class *prev_class,
  788. int oldprio)
  789. {
  790. if (prev_class != p->sched_class) {
  791. if (prev_class->switched_from)
  792. prev_class->switched_from(rq, p);
  793. p->sched_class->switched_to(rq, p);
  794. } else if (oldprio != p->prio)
  795. p->sched_class->prio_changed(rq, p, oldprio);
  796. }
  797. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  798. {
  799. const struct sched_class *class;
  800. if (p->sched_class == rq->curr->sched_class) {
  801. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  802. } else {
  803. for_each_class(class) {
  804. if (class == rq->curr->sched_class)
  805. break;
  806. if (class == p->sched_class) {
  807. resched_task(rq->curr);
  808. break;
  809. }
  810. }
  811. }
  812. /*
  813. * A queue event has occurred, and we're going to schedule. In
  814. * this case, we can save a useless back to back clock update.
  815. */
  816. if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
  817. rq->skip_clock_update = 1;
  818. }
  819. #ifdef CONFIG_SMP
  820. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  821. {
  822. #ifdef CONFIG_SCHED_DEBUG
  823. /*
  824. * We should never call set_task_cpu() on a blocked task,
  825. * ttwu() will sort out the placement.
  826. */
  827. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  828. !(task_preempt_count(p) & PREEMPT_ACTIVE));
  829. #ifdef CONFIG_LOCKDEP
  830. /*
  831. * The caller should hold either p->pi_lock or rq->lock, when changing
  832. * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
  833. *
  834. * sched_move_task() holds both and thus holding either pins the cgroup,
  835. * see task_group().
  836. *
  837. * Furthermore, all task_rq users should acquire both locks, see
  838. * task_rq_lock().
  839. */
  840. WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
  841. lockdep_is_held(&task_rq(p)->lock)));
  842. #endif
  843. #endif
  844. trace_sched_migrate_task(p, new_cpu);
  845. if (task_cpu(p) != new_cpu) {
  846. if (p->sched_class->migrate_task_rq)
  847. p->sched_class->migrate_task_rq(p, new_cpu);
  848. p->se.nr_migrations++;
  849. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
  850. }
  851. __set_task_cpu(p, new_cpu);
  852. }
  853. struct migration_arg {
  854. struct task_struct *task;
  855. int dest_cpu;
  856. };
  857. static int migration_cpu_stop(void *data);
  858. /*
  859. * wait_task_inactive - wait for a thread to unschedule.
  860. *
  861. * If @match_state is nonzero, it's the @p->state value just checked and
  862. * not expected to change. If it changes, i.e. @p might have woken up,
  863. * then return zero. When we succeed in waiting for @p to be off its CPU,
  864. * we return a positive number (its total switch count). If a second call
  865. * a short while later returns the same number, the caller can be sure that
  866. * @p has remained unscheduled the whole time.
  867. *
  868. * The caller must ensure that the task *will* unschedule sometime soon,
  869. * else this function might spin for a *long* time. This function can't
  870. * be called with interrupts off, or it may introduce deadlock with
  871. * smp_call_function() if an IPI is sent by the same process we are
  872. * waiting to become inactive.
  873. */
  874. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  875. {
  876. unsigned long flags;
  877. int running, on_rq;
  878. unsigned long ncsw;
  879. struct rq *rq;
  880. for (;;) {
  881. /*
  882. * We do the initial early heuristics without holding
  883. * any task-queue locks at all. We'll only try to get
  884. * the runqueue lock when things look like they will
  885. * work out!
  886. */
  887. rq = task_rq(p);
  888. /*
  889. * If the task is actively running on another CPU
  890. * still, just relax and busy-wait without holding
  891. * any locks.
  892. *
  893. * NOTE! Since we don't hold any locks, it's not
  894. * even sure that "rq" stays as the right runqueue!
  895. * But we don't care, since "task_running()" will
  896. * return false if the runqueue has changed and p
  897. * is actually now running somewhere else!
  898. */
  899. while (task_running(rq, p)) {
  900. if (match_state && unlikely(p->state != match_state))
  901. return 0;
  902. cpu_relax();
  903. }
  904. /*
  905. * Ok, time to look more closely! We need the rq
  906. * lock now, to be *sure*. If we're wrong, we'll
  907. * just go back and repeat.
  908. */
  909. rq = task_rq_lock(p, &flags);
  910. trace_sched_wait_task(p);
  911. running = task_running(rq, p);
  912. on_rq = p->on_rq;
  913. ncsw = 0;
  914. if (!match_state || p->state == match_state)
  915. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  916. task_rq_unlock(rq, p, &flags);
  917. /*
  918. * If it changed from the expected state, bail out now.
  919. */
  920. if (unlikely(!ncsw))
  921. break;
  922. /*
  923. * Was it really running after all now that we
  924. * checked with the proper locks actually held?
  925. *
  926. * Oops. Go back and try again..
  927. */
  928. if (unlikely(running)) {
  929. cpu_relax();
  930. continue;
  931. }
  932. /*
  933. * It's not enough that it's not actively running,
  934. * it must be off the runqueue _entirely_, and not
  935. * preempted!
  936. *
  937. * So if it was still runnable (but just not actively
  938. * running right now), it's preempted, and we should
  939. * yield - it could be a while.
  940. */
  941. if (unlikely(on_rq)) {
  942. ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
  943. set_current_state(TASK_UNINTERRUPTIBLE);
  944. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  945. continue;
  946. }
  947. /*
  948. * Ahh, all good. It wasn't running, and it wasn't
  949. * runnable, which means that it will never become
  950. * running in the future either. We're all done!
  951. */
  952. break;
  953. }
  954. return ncsw;
  955. }
  956. /***
  957. * kick_process - kick a running thread to enter/exit the kernel
  958. * @p: the to-be-kicked thread
  959. *
  960. * Cause a process which is running on another CPU to enter
  961. * kernel-mode, without any delay. (to get signals handled.)
  962. *
  963. * NOTE: this function doesn't have to take the runqueue lock,
  964. * because all it wants to ensure is that the remote task enters
  965. * the kernel. If the IPI races and the task has been migrated
  966. * to another CPU then no harm is done and the purpose has been
  967. * achieved as well.
  968. */
  969. void kick_process(struct task_struct *p)
  970. {
  971. int cpu;
  972. preempt_disable();
  973. cpu = task_cpu(p);
  974. if ((cpu != smp_processor_id()) && task_curr(p))
  975. smp_send_reschedule(cpu);
  976. preempt_enable();
  977. }
  978. EXPORT_SYMBOL_GPL(kick_process);
  979. #endif /* CONFIG_SMP */
  980. #ifdef CONFIG_SMP
  981. /*
  982. * ->cpus_allowed is protected by both rq->lock and p->pi_lock
  983. */
  984. static int select_fallback_rq(int cpu, struct task_struct *p)
  985. {
  986. int nid = cpu_to_node(cpu);
  987. const struct cpumask *nodemask = NULL;
  988. enum { cpuset, possible, fail } state = cpuset;
  989. int dest_cpu;
  990. /*
  991. * If the node that the cpu is on has been offlined, cpu_to_node()
  992. * will return -1. There is no cpu on the node, and we should
  993. * select the cpu on the other node.
  994. */
  995. if (nid != -1) {
  996. nodemask = cpumask_of_node(nid);
  997. /* Look for allowed, online CPU in same node. */
  998. for_each_cpu(dest_cpu, nodemask) {
  999. if (!cpu_online(dest_cpu))
  1000. continue;
  1001. if (!cpu_active(dest_cpu))
  1002. continue;
  1003. if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  1004. return dest_cpu;
  1005. }
  1006. }
  1007. for (;;) {
  1008. /* Any allowed, online CPU? */
  1009. for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
  1010. if (!cpu_online(dest_cpu))
  1011. continue;
  1012. if (!cpu_active(dest_cpu))
  1013. continue;
  1014. goto out;
  1015. }
  1016. switch (state) {
  1017. case cpuset:
  1018. /* No more Mr. Nice Guy. */
  1019. cpuset_cpus_allowed_fallback(p);
  1020. state = possible;
  1021. break;
  1022. case possible:
  1023. do_set_cpus_allowed(p, cpu_possible_mask);
  1024. state = fail;
  1025. break;
  1026. case fail:
  1027. BUG();
  1028. break;
  1029. }
  1030. }
  1031. out:
  1032. if (state != cpuset) {
  1033. /*
  1034. * Don't tell them about moving exiting tasks or
  1035. * kernel threads (both mm NULL), since they never
  1036. * leave kernel.
  1037. */
  1038. if (p->mm && printk_ratelimit()) {
  1039. printk_sched("process %d (%s) no longer affine to cpu%d\n",
  1040. task_pid_nr(p), p->comm, cpu);
  1041. }
  1042. }
  1043. return dest_cpu;
  1044. }
  1045. /*
  1046. * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
  1047. */
  1048. static inline
  1049. int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
  1050. {
  1051. int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
  1052. /*
  1053. * In order not to call set_task_cpu() on a blocking task we need
  1054. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1055. * cpu.
  1056. *
  1057. * Since this is common to all placement strategies, this lives here.
  1058. *
  1059. * [ this allows ->select_task() to simply return task_cpu(p) and
  1060. * not worry about this generic constraint ]
  1061. */
  1062. if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
  1063. !cpu_online(cpu)))
  1064. cpu = select_fallback_rq(task_cpu(p), p);
  1065. return cpu;
  1066. }
  1067. static void update_avg(u64 *avg, u64 sample)
  1068. {
  1069. s64 diff = sample - *avg;
  1070. *avg += diff >> 3;
  1071. }
  1072. #endif
  1073. static void
  1074. ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
  1075. {
  1076. #ifdef CONFIG_SCHEDSTATS
  1077. struct rq *rq = this_rq();
  1078. #ifdef CONFIG_SMP
  1079. int this_cpu = smp_processor_id();
  1080. if (cpu == this_cpu) {
  1081. schedstat_inc(rq, ttwu_local);
  1082. schedstat_inc(p, se.statistics.nr_wakeups_local);
  1083. } else {
  1084. struct sched_domain *sd;
  1085. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  1086. rcu_read_lock();
  1087. for_each_domain(this_cpu, sd) {
  1088. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1089. schedstat_inc(sd, ttwu_wake_remote);
  1090. break;
  1091. }
  1092. }
  1093. rcu_read_unlock();
  1094. }
  1095. if (wake_flags & WF_MIGRATED)
  1096. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  1097. #endif /* CONFIG_SMP */
  1098. schedstat_inc(rq, ttwu_count);
  1099. schedstat_inc(p, se.statistics.nr_wakeups);
  1100. if (wake_flags & WF_SYNC)
  1101. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  1102. #endif /* CONFIG_SCHEDSTATS */
  1103. }
  1104. static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
  1105. {
  1106. activate_task(rq, p, en_flags);
  1107. p->on_rq = 1;
  1108. /* if a worker is waking up, notify workqueue */
  1109. if (p->flags & PF_WQ_WORKER)
  1110. wq_worker_waking_up(p, cpu_of(rq));
  1111. }
  1112. /*
  1113. * Mark the task runnable and perform wakeup-preemption.
  1114. */
  1115. static void
  1116. ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  1117. {
  1118. check_preempt_curr(rq, p, wake_flags);
  1119. trace_sched_wakeup(p, true);
  1120. p->state = TASK_RUNNING;
  1121. #ifdef CONFIG_SMP
  1122. if (p->sched_class->task_woken)
  1123. p->sched_class->task_woken(rq, p);
  1124. if (rq->idle_stamp) {
  1125. u64 delta = rq_clock(rq) - rq->idle_stamp;
  1126. u64 max = 2*rq->max_idle_balance_cost;
  1127. update_avg(&rq->avg_idle, delta);
  1128. if (rq->avg_idle > max)
  1129. rq->avg_idle = max;
  1130. rq->idle_stamp = 0;
  1131. }
  1132. #endif
  1133. }
  1134. static void
  1135. ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
  1136. {
  1137. #ifdef CONFIG_SMP
  1138. if (p->sched_contributes_to_load)
  1139. rq->nr_uninterruptible--;
  1140. #endif
  1141. ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
  1142. ttwu_do_wakeup(rq, p, wake_flags);
  1143. }
  1144. /*
  1145. * Called in case the task @p isn't fully descheduled from its runqueue,
  1146. * in this case we must do a remote wakeup. Its a 'light' wakeup though,
  1147. * since all we need to do is flip p->state to TASK_RUNNING, since
  1148. * the task is still ->on_rq.
  1149. */
  1150. static int ttwu_remote(struct task_struct *p, int wake_flags)
  1151. {
  1152. struct rq *rq;
  1153. int ret = 0;
  1154. rq = __task_rq_lock(p);
  1155. if (p->on_rq) {
  1156. /* check_preempt_curr() may use rq clock */
  1157. update_rq_clock(rq);
  1158. ttwu_do_wakeup(rq, p, wake_flags);
  1159. ret = 1;
  1160. }
  1161. __task_rq_unlock(rq);
  1162. return ret;
  1163. }
  1164. #ifdef CONFIG_SMP
  1165. static void sched_ttwu_pending(void)
  1166. {
  1167. struct rq *rq = this_rq();
  1168. struct llist_node *llist = llist_del_all(&rq->wake_list);
  1169. struct task_struct *p;
  1170. raw_spin_lock(&rq->lock);
  1171. while (llist) {
  1172. p = llist_entry(llist, struct task_struct, wake_entry);
  1173. llist = llist_next(llist);
  1174. ttwu_do_activate(rq, p, 0);
  1175. }
  1176. raw_spin_unlock(&rq->lock);
  1177. }
  1178. void scheduler_ipi(void)
  1179. {
  1180. /*
  1181. * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
  1182. * TIF_NEED_RESCHED remotely (for the first time) will also send
  1183. * this IPI.
  1184. */
  1185. if (tif_need_resched())
  1186. set_preempt_need_resched();
  1187. if (llist_empty(&this_rq()->wake_list)
  1188. && !tick_nohz_full_cpu(smp_processor_id())
  1189. && !got_nohz_idle_kick())
  1190. return;
  1191. /*
  1192. * Not all reschedule IPI handlers call irq_enter/irq_exit, since
  1193. * traditionally all their work was done from the interrupt return
  1194. * path. Now that we actually do some work, we need to make sure
  1195. * we do call them.
  1196. *
  1197. * Some archs already do call them, luckily irq_enter/exit nest
  1198. * properly.
  1199. *
  1200. * Arguably we should visit all archs and update all handlers,
  1201. * however a fair share of IPIs are still resched only so this would
  1202. * somewhat pessimize the simple resched case.
  1203. */
  1204. irq_enter();
  1205. tick_nohz_full_check();
  1206. sched_ttwu_pending();
  1207. /*
  1208. * Check if someone kicked us for doing the nohz idle load balance.
  1209. */
  1210. if (unlikely(got_nohz_idle_kick())) {
  1211. this_rq()->idle_balance = 1;
  1212. raise_softirq_irqoff(SCHED_SOFTIRQ);
  1213. }
  1214. irq_exit();
  1215. }
  1216. static void ttwu_queue_remote(struct task_struct *p, int cpu)
  1217. {
  1218. if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
  1219. smp_send_reschedule(cpu);
  1220. }
  1221. bool cpus_share_cache(int this_cpu, int that_cpu)
  1222. {
  1223. return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
  1224. }
  1225. #endif /* CONFIG_SMP */
  1226. static void ttwu_queue(struct task_struct *p, int cpu)
  1227. {
  1228. struct rq *rq = cpu_rq(cpu);
  1229. #if defined(CONFIG_SMP)
  1230. if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
  1231. sched_clock_cpu(cpu); /* sync clocks x-cpu */
  1232. ttwu_queue_remote(p, cpu);
  1233. return;
  1234. }
  1235. #endif
  1236. raw_spin_lock(&rq->lock);
  1237. ttwu_do_activate(rq, p, 0);
  1238. raw_spin_unlock(&rq->lock);
  1239. }
  1240. /**
  1241. * try_to_wake_up - wake up a thread
  1242. * @p: the thread to be awakened
  1243. * @state: the mask of task states that can be woken
  1244. * @wake_flags: wake modifier flags (WF_*)
  1245. *
  1246. * Put it on the run-queue if it's not already there. The "current"
  1247. * thread is always on the run-queue (except when the actual
  1248. * re-schedule is in progress), and as such you're allowed to do
  1249. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1250. * runnable without the overhead of this.
  1251. *
  1252. * Return: %true if @p was woken up, %false if it was already running.
  1253. * or @state didn't match @p's state.
  1254. */
  1255. static int
  1256. try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
  1257. {
  1258. unsigned long flags;
  1259. int cpu, success = 0;
  1260. /*
  1261. * If we are going to wake up a thread waiting for CONDITION we
  1262. * need to ensure that CONDITION=1 done by the caller can not be
  1263. * reordered with p->state check below. This pairs with mb() in
  1264. * set_current_state() the waiting thread does.
  1265. */
  1266. smp_mb__before_spinlock();
  1267. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1268. if (!(p->state & state))
  1269. goto out;
  1270. success = 1; /* we're going to change ->state */
  1271. cpu = task_cpu(p);
  1272. if (p->on_rq && ttwu_remote(p, wake_flags))
  1273. goto stat;
  1274. #ifdef CONFIG_SMP
  1275. /*
  1276. * If the owning (remote) cpu is still in the middle of schedule() with
  1277. * this task as prev, wait until its done referencing the task.
  1278. */
  1279. while (p->on_cpu)
  1280. cpu_relax();
  1281. /*
  1282. * Pairs with the smp_wmb() in finish_lock_switch().
  1283. */
  1284. smp_rmb();
  1285. p->sched_contributes_to_load = !!task_contributes_to_load(p);
  1286. p->state = TASK_WAKING;
  1287. if (p->sched_class->task_waking)
  1288. p->sched_class->task_waking(p);
  1289. cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
  1290. if (task_cpu(p) != cpu) {
  1291. wake_flags |= WF_MIGRATED;
  1292. set_task_cpu(p, cpu);
  1293. }
  1294. #endif /* CONFIG_SMP */
  1295. ttwu_queue(p, cpu);
  1296. stat:
  1297. ttwu_stat(p, cpu, wake_flags);
  1298. out:
  1299. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1300. return success;
  1301. }
  1302. /**
  1303. * try_to_wake_up_local - try to wake up a local task with rq lock held
  1304. * @p: the thread to be awakened
  1305. *
  1306. * Put @p on the run-queue if it's not already there. The caller must
  1307. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  1308. * the current task.
  1309. */
  1310. static void try_to_wake_up_local(struct task_struct *p)
  1311. {
  1312. struct rq *rq = task_rq(p);
  1313. if (WARN_ON_ONCE(rq != this_rq()) ||
  1314. WARN_ON_ONCE(p == current))
  1315. return;
  1316. lockdep_assert_held(&rq->lock);
  1317. if (!raw_spin_trylock(&p->pi_lock)) {
  1318. raw_spin_unlock(&rq->lock);
  1319. raw_spin_lock(&p->pi_lock);
  1320. raw_spin_lock(&rq->lock);
  1321. }
  1322. if (!(p->state & TASK_NORMAL))
  1323. goto out;
  1324. if (!p->on_rq)
  1325. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  1326. ttwu_do_wakeup(rq, p, 0);
  1327. ttwu_stat(p, smp_processor_id(), 0);
  1328. out:
  1329. raw_spin_unlock(&p->pi_lock);
  1330. }
  1331. /**
  1332. * wake_up_process - Wake up a specific process
  1333. * @p: The process to be woken up.
  1334. *
  1335. * Attempt to wake up the nominated process and move it to the set of runnable
  1336. * processes.
  1337. *
  1338. * Return: 1 if the process was woken up, 0 if it was already running.
  1339. *
  1340. * It may be assumed that this function implies a write memory barrier before
  1341. * changing the task state if and only if any tasks are woken up.
  1342. */
  1343. int wake_up_process(struct task_struct *p)
  1344. {
  1345. WARN_ON(task_is_stopped_or_traced(p));
  1346. return try_to_wake_up(p, TASK_NORMAL, 0);
  1347. }
  1348. EXPORT_SYMBOL(wake_up_process);
  1349. int wake_up_state(struct task_struct *p, unsigned int state)
  1350. {
  1351. return try_to_wake_up(p, state, 0);
  1352. }
  1353. /*
  1354. * Perform scheduler related setup for a newly forked process p.
  1355. * p is forked by current.
  1356. *
  1357. * __sched_fork() is basic setup used by init_idle() too:
  1358. */
  1359. static void __sched_fork(struct task_struct *p)
  1360. {
  1361. p->on_rq = 0;
  1362. p->se.on_rq = 0;
  1363. p->se.exec_start = 0;
  1364. p->se.sum_exec_runtime = 0;
  1365. p->se.prev_sum_exec_runtime = 0;
  1366. p->se.nr_migrations = 0;
  1367. p->se.vruntime = 0;
  1368. INIT_LIST_HEAD(&p->se.group_node);
  1369. #ifdef CONFIG_SCHEDSTATS
  1370. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  1371. #endif
  1372. INIT_LIST_HEAD(&p->rt.run_list);
  1373. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1374. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1375. #endif
  1376. #ifdef CONFIG_NUMA_BALANCING
  1377. if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
  1378. p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
  1379. p->mm->numa_next_reset = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
  1380. p->mm->numa_scan_seq = 0;
  1381. }
  1382. p->node_stamp = 0ULL;
  1383. p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
  1384. p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
  1385. p->numa_scan_period = sysctl_numa_balancing_scan_delay;
  1386. p->numa_preferred_nid = -1;
  1387. p->numa_work.next = &p->numa_work;
  1388. p->numa_faults = NULL;
  1389. p->numa_faults_buffer = NULL;
  1390. #endif /* CONFIG_NUMA_BALANCING */
  1391. }
  1392. #ifdef CONFIG_NUMA_BALANCING
  1393. #ifdef CONFIG_SCHED_DEBUG
  1394. void set_numabalancing_state(bool enabled)
  1395. {
  1396. if (enabled)
  1397. sched_feat_set("NUMA");
  1398. else
  1399. sched_feat_set("NO_NUMA");
  1400. }
  1401. #else
  1402. __read_mostly bool numabalancing_enabled;
  1403. void set_numabalancing_state(bool enabled)
  1404. {
  1405. numabalancing_enabled = enabled;
  1406. }
  1407. #endif /* CONFIG_SCHED_DEBUG */
  1408. #endif /* CONFIG_NUMA_BALANCING */
  1409. /*
  1410. * fork()/clone()-time setup:
  1411. */
  1412. void sched_fork(struct task_struct *p)
  1413. {
  1414. unsigned long flags;
  1415. int cpu = get_cpu();
  1416. __sched_fork(p);
  1417. /*
  1418. * We mark the process as running here. This guarantees that
  1419. * nobody will actually run it, and a signal or other external
  1420. * event cannot wake it up and insert it on the runqueue either.
  1421. */
  1422. p->state = TASK_RUNNING;
  1423. /*
  1424. * Make sure we do not leak PI boosting priority to the child.
  1425. */
  1426. p->prio = current->normal_prio;
  1427. /*
  1428. * Revert to default priority/policy on fork if requested.
  1429. */
  1430. if (unlikely(p->sched_reset_on_fork)) {
  1431. if (task_has_rt_policy(p)) {
  1432. p->policy = SCHED_NORMAL;
  1433. p->static_prio = NICE_TO_PRIO(0);
  1434. p->rt_priority = 0;
  1435. } else if (PRIO_TO_NICE(p->static_prio) < 0)
  1436. p->static_prio = NICE_TO_PRIO(0);
  1437. p->prio = p->normal_prio = __normal_prio(p);
  1438. set_load_weight(p);
  1439. /*
  1440. * We don't need the reset flag anymore after the fork. It has
  1441. * fulfilled its duty:
  1442. */
  1443. p->sched_reset_on_fork = 0;
  1444. }
  1445. if (!rt_prio(p->prio))
  1446. p->sched_class = &fair_sched_class;
  1447. if (p->sched_class->task_fork)
  1448. p->sched_class->task_fork(p);
  1449. /*
  1450. * The child is not yet in the pid-hash so no cgroup attach races,
  1451. * and the cgroup is pinned to this child due to cgroup_fork()
  1452. * is ran before sched_fork().
  1453. *
  1454. * Silence PROVE_RCU.
  1455. */
  1456. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1457. set_task_cpu(p, cpu);
  1458. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1459. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1460. if (likely(sched_info_on()))
  1461. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1462. #endif
  1463. #if defined(CONFIG_SMP)
  1464. p->on_cpu = 0;
  1465. #endif
  1466. init_task_preempt_count(p);
  1467. #ifdef CONFIG_SMP
  1468. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  1469. #endif
  1470. put_cpu();
  1471. }
  1472. /*
  1473. * wake_up_new_task - wake up a newly created task for the first time.
  1474. *
  1475. * This function will do some initial scheduler statistics housekeeping
  1476. * that must be done for every newly created context, then puts the task
  1477. * on the runqueue and wakes it.
  1478. */
  1479. void wake_up_new_task(struct task_struct *p)
  1480. {
  1481. unsigned long flags;
  1482. struct rq *rq;
  1483. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1484. #ifdef CONFIG_SMP
  1485. /*
  1486. * Fork balancing, do it here and not earlier because:
  1487. * - cpus_allowed can change in the fork path
  1488. * - any previously selected cpu might disappear through hotplug
  1489. */
  1490. set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
  1491. #endif
  1492. /* Initialize new task's runnable average */
  1493. init_task_runnable_average(p);
  1494. rq = __task_rq_lock(p);
  1495. activate_task(rq, p, 0);
  1496. p->on_rq = 1;
  1497. trace_sched_wakeup_new(p, true);
  1498. check_preempt_curr(rq, p, WF_FORK);
  1499. #ifdef CONFIG_SMP
  1500. if (p->sched_class->task_woken)
  1501. p->sched_class->task_woken(rq, p);
  1502. #endif
  1503. task_rq_unlock(rq, p, &flags);
  1504. }
  1505. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1506. /**
  1507. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  1508. * @notifier: notifier struct to register
  1509. */
  1510. void preempt_notifier_register(struct preempt_notifier *notifier)
  1511. {
  1512. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1513. }
  1514. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1515. /**
  1516. * preempt_notifier_unregister - no longer interested in preemption notifications
  1517. * @notifier: notifier struct to unregister
  1518. *
  1519. * This is safe to call from within a preemption notifier.
  1520. */
  1521. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1522. {
  1523. hlist_del(&notifier->link);
  1524. }
  1525. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1526. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1527. {
  1528. struct preempt_notifier *notifier;
  1529. hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
  1530. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1531. }
  1532. static void
  1533. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1534. struct task_struct *next)
  1535. {
  1536. struct preempt_notifier *notifier;
  1537. hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
  1538. notifier->ops->sched_out(notifier, next);
  1539. }
  1540. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  1541. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1542. {
  1543. }
  1544. static void
  1545. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1546. struct task_struct *next)
  1547. {
  1548. }
  1549. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  1550. /**
  1551. * prepare_task_switch - prepare to switch tasks
  1552. * @rq: the runqueue preparing to switch
  1553. * @prev: the current task that is being switched out
  1554. * @next: the task we are going to switch to.
  1555. *
  1556. * This is called with the rq lock held and interrupts off. It must
  1557. * be paired with a subsequent finish_task_switch after the context
  1558. * switch.
  1559. *
  1560. * prepare_task_switch sets up locking and calls architecture specific
  1561. * hooks.
  1562. */
  1563. static inline void
  1564. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1565. struct task_struct *next)
  1566. {
  1567. trace_sched_switch(prev, next);
  1568. sched_info_switch(rq, prev, next);
  1569. perf_event_task_sched_out(prev, next);
  1570. fire_sched_out_preempt_notifiers(prev, next);
  1571. prepare_lock_switch(rq, next);
  1572. prepare_arch_switch(next);
  1573. }
  1574. /**
  1575. * finish_task_switch - clean up after a task-switch
  1576. * @rq: runqueue associated with task-switch
  1577. * @prev: the thread we just switched away from.
  1578. *
  1579. * finish_task_switch must be called after the context switch, paired
  1580. * with a prepare_task_switch call before the context switch.
  1581. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1582. * and do any other architecture-specific cleanup actions.
  1583. *
  1584. * Note that we may have delayed dropping an mm in context_switch(). If
  1585. * so, we finish that here outside of the runqueue lock. (Doing it
  1586. * with the lock held can cause deadlocks; see schedule() for
  1587. * details.)
  1588. */
  1589. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1590. __releases(rq->lock)
  1591. {
  1592. struct mm_struct *mm = rq->prev_mm;
  1593. long prev_state;
  1594. rq->prev_mm = NULL;
  1595. /*
  1596. * A task struct has one reference for the use as "current".
  1597. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1598. * schedule one last time. The schedule call will never return, and
  1599. * the scheduled task must drop that reference.
  1600. * The test for TASK_DEAD must occur while the runqueue locks are
  1601. * still held, otherwise prev could be scheduled on another cpu, die
  1602. * there before we look at prev->state, and then the reference would
  1603. * be dropped twice.
  1604. * Manfred Spraul <manfred@colorfullife.com>
  1605. */
  1606. prev_state = prev->state;
  1607. vtime_task_switch(prev);
  1608. finish_arch_switch(prev);
  1609. perf_event_task_sched_in(prev, current);
  1610. finish_lock_switch(rq, prev);
  1611. finish_arch_post_lock_switch();
  1612. fire_sched_in_preempt_notifiers(current);
  1613. if (mm)
  1614. mmdrop(mm);
  1615. if (unlikely(prev_state == TASK_DEAD)) {
  1616. task_numa_free(prev);
  1617. /*
  1618. * Remove function-return probe instances associated with this
  1619. * task and put them back on the free list.
  1620. */
  1621. kprobe_flush_task(prev);
  1622. put_task_struct(prev);
  1623. }
  1624. tick_nohz_task_switch(current);
  1625. }
  1626. #ifdef CONFIG_SMP
  1627. /* assumes rq->lock is held */
  1628. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  1629. {
  1630. if (prev->sched_class->pre_schedule)
  1631. prev->sched_class->pre_schedule(rq, prev);
  1632. }
  1633. /* rq->lock is NOT held, but preemption is disabled */
  1634. static inline void post_schedule(struct rq *rq)
  1635. {
  1636. if (rq->post_schedule) {
  1637. unsigned long flags;
  1638. raw_spin_lock_irqsave(&rq->lock, flags);
  1639. if (rq->curr->sched_class->post_schedule)
  1640. rq->curr->sched_class->post_schedule(rq);
  1641. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1642. rq->post_schedule = 0;
  1643. }
  1644. }
  1645. #else
  1646. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  1647. {
  1648. }
  1649. static inline void post_schedule(struct rq *rq)
  1650. {
  1651. }
  1652. #endif
  1653. /**
  1654. * schedule_tail - first thing a freshly forked thread must call.
  1655. * @prev: the thread we just switched away from.
  1656. */
  1657. asmlinkage void schedule_tail(struct task_struct *prev)
  1658. __releases(rq->lock)
  1659. {
  1660. struct rq *rq = this_rq();
  1661. finish_task_switch(rq, prev);
  1662. /*
  1663. * FIXME: do we need to worry about rq being invalidated by the
  1664. * task_switch?
  1665. */
  1666. post_schedule(rq);
  1667. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1668. /* In this case, finish_task_switch does not reenable preemption */
  1669. preempt_enable();
  1670. #endif
  1671. if (current->set_child_tid)
  1672. put_user(task_pid_vnr(current), current->set_child_tid);
  1673. }
  1674. /*
  1675. * context_switch - switch to the new MM and the new
  1676. * thread's register state.
  1677. */
  1678. static inline void
  1679. context_switch(struct rq *rq, struct task_struct *prev,
  1680. struct task_struct *next)
  1681. {
  1682. struct mm_struct *mm, *oldmm;
  1683. prepare_task_switch(rq, prev, next);
  1684. mm = next->mm;
  1685. oldmm = prev->active_mm;
  1686. /*
  1687. * For paravirt, this is coupled with an exit in switch_to to
  1688. * combine the page table reload and the switch backend into
  1689. * one hypercall.
  1690. */
  1691. arch_start_context_switch(prev);
  1692. if (!mm) {
  1693. next->active_mm = oldmm;
  1694. atomic_inc(&oldmm->mm_count);
  1695. enter_lazy_tlb(oldmm, next);
  1696. } else
  1697. switch_mm(oldmm, mm, next);
  1698. if (!prev->mm) {
  1699. prev->active_mm = NULL;
  1700. rq->prev_mm = oldmm;
  1701. }
  1702. /*
  1703. * Since the runqueue lock will be released by the next
  1704. * task (which is an invalid locking op but in the case
  1705. * of the scheduler it's an obvious special-case), so we
  1706. * do an early lockdep release here:
  1707. */
  1708. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1709. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1710. #endif
  1711. context_tracking_task_switch(prev, next);
  1712. /* Here we just switch the register state and the stack. */
  1713. switch_to(prev, next, prev);
  1714. barrier();
  1715. /*
  1716. * this_rq must be evaluated again because prev may have moved
  1717. * CPUs since it called schedule(), thus the 'rq' on its stack
  1718. * frame will be invalid.
  1719. */
  1720. finish_task_switch(this_rq(), prev);
  1721. }
  1722. /*
  1723. * nr_running and nr_context_switches:
  1724. *
  1725. * externally visible scheduler statistics: current number of runnable
  1726. * threads, total number of context switches performed since bootup.
  1727. */
  1728. unsigned long nr_running(void)
  1729. {
  1730. unsigned long i, sum = 0;
  1731. for_each_online_cpu(i)
  1732. sum += cpu_rq(i)->nr_running;
  1733. return sum;
  1734. }
  1735. unsigned long long nr_context_switches(void)
  1736. {
  1737. int i;
  1738. unsigned long long sum = 0;
  1739. for_each_possible_cpu(i)
  1740. sum += cpu_rq(i)->nr_switches;
  1741. return sum;
  1742. }
  1743. unsigned long nr_iowait(void)
  1744. {
  1745. unsigned long i, sum = 0;
  1746. for_each_possible_cpu(i)
  1747. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1748. return sum;
  1749. }
  1750. unsigned long nr_iowait_cpu(int cpu)
  1751. {
  1752. struct rq *this = cpu_rq(cpu);
  1753. return atomic_read(&this->nr_iowait);
  1754. }
  1755. #ifdef CONFIG_SMP
  1756. /*
  1757. * sched_exec - execve() is a valuable balancing opportunity, because at
  1758. * this point the task has the smallest effective memory and cache footprint.
  1759. */
  1760. void sched_exec(void)
  1761. {
  1762. struct task_struct *p = current;
  1763. unsigned long flags;
  1764. int dest_cpu;
  1765. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1766. dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
  1767. if (dest_cpu == smp_processor_id())
  1768. goto unlock;
  1769. if (likely(cpu_active(dest_cpu))) {
  1770. struct migration_arg arg = { p, dest_cpu };
  1771. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1772. stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
  1773. return;
  1774. }
  1775. unlock:
  1776. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1777. }
  1778. #endif
  1779. DEFINE_PER_CPU(struct kernel_stat, kstat);
  1780. DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
  1781. EXPORT_PER_CPU_SYMBOL(kstat);
  1782. EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
  1783. /*
  1784. * Return any ns on the sched_clock that have not yet been accounted in
  1785. * @p in case that task is currently running.
  1786. *
  1787. * Called with task_rq_lock() held on @rq.
  1788. */
  1789. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  1790. {
  1791. u64 ns = 0;
  1792. if (task_current(rq, p)) {
  1793. update_rq_clock(rq);
  1794. ns = rq_clock_task(rq) - p->se.exec_start;
  1795. if ((s64)ns < 0)
  1796. ns = 0;
  1797. }
  1798. return ns;
  1799. }
  1800. unsigned long long task_delta_exec(struct task_struct *p)
  1801. {
  1802. unsigned long flags;
  1803. struct rq *rq;
  1804. u64 ns = 0;
  1805. rq = task_rq_lock(p, &flags);
  1806. ns = do_task_delta_exec(p, rq);
  1807. task_rq_unlock(rq, p, &flags);
  1808. return ns;
  1809. }
  1810. /*
  1811. * Return accounted runtime for the task.
  1812. * In case the task is currently running, return the runtime plus current's
  1813. * pending runtime that have not been accounted yet.
  1814. */
  1815. unsigned long long task_sched_runtime(struct task_struct *p)
  1816. {
  1817. unsigned long flags;
  1818. struct rq *rq;
  1819. u64 ns = 0;
  1820. rq = task_rq_lock(p, &flags);
  1821. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  1822. task_rq_unlock(rq, p, &flags);
  1823. return ns;
  1824. }
  1825. /*
  1826. * This function gets called by the timer code, with HZ frequency.
  1827. * We call it with interrupts disabled.
  1828. */
  1829. void scheduler_tick(void)
  1830. {
  1831. int cpu = smp_processor_id();
  1832. struct rq *rq = cpu_rq(cpu);
  1833. struct task_struct *curr = rq->curr;
  1834. sched_clock_tick();
  1835. raw_spin_lock(&rq->lock);
  1836. update_rq_clock(rq);
  1837. curr->sched_class->task_tick(rq, curr, 0);
  1838. update_cpu_load_active(rq);
  1839. raw_spin_unlock(&rq->lock);
  1840. perf_event_task_tick();
  1841. #ifdef CONFIG_SMP
  1842. rq->idle_balance = idle_cpu(cpu);
  1843. trigger_load_balance(rq, cpu);
  1844. #endif
  1845. rq_last_tick_reset(rq);
  1846. }
  1847. #ifdef CONFIG_NO_HZ_FULL
  1848. /**
  1849. * scheduler_tick_max_deferment
  1850. *
  1851. * Keep at least one tick per second when a single
  1852. * active task is running because the scheduler doesn't
  1853. * yet completely support full dynticks environment.
  1854. *
  1855. * This makes sure that uptime, CFS vruntime, load
  1856. * balancing, etc... continue to move forward, even
  1857. * with a very low granularity.
  1858. *
  1859. * Return: Maximum deferment in nanoseconds.
  1860. */
  1861. u64 scheduler_tick_max_deferment(void)
  1862. {
  1863. struct rq *rq = this_rq();
  1864. unsigned long next, now = ACCESS_ONCE(jiffies);
  1865. next = rq->last_sched_tick + HZ;
  1866. if (time_before_eq(next, now))
  1867. return 0;
  1868. return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
  1869. }
  1870. #endif
  1871. notrace unsigned long get_parent_ip(unsigned long addr)
  1872. {
  1873. if (in_lock_functions(addr)) {
  1874. addr = CALLER_ADDR2;
  1875. if (in_lock_functions(addr))
  1876. addr = CALLER_ADDR3;
  1877. }
  1878. return addr;
  1879. }
  1880. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  1881. defined(CONFIG_PREEMPT_TRACER))
  1882. void __kprobes preempt_count_add(int val)
  1883. {
  1884. #ifdef CONFIG_DEBUG_PREEMPT
  1885. /*
  1886. * Underflow?
  1887. */
  1888. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  1889. return;
  1890. #endif
  1891. __preempt_count_add(val);
  1892. #ifdef CONFIG_DEBUG_PREEMPT
  1893. /*
  1894. * Spinlock count overflowing soon?
  1895. */
  1896. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  1897. PREEMPT_MASK - 10);
  1898. #endif
  1899. if (preempt_count() == val)
  1900. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  1901. }
  1902. EXPORT_SYMBOL(preempt_count_add);
  1903. void __kprobes preempt_count_sub(int val)
  1904. {
  1905. #ifdef CONFIG_DEBUG_PREEMPT
  1906. /*
  1907. * Underflow?
  1908. */
  1909. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  1910. return;
  1911. /*
  1912. * Is the spinlock portion underflowing?
  1913. */
  1914. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  1915. !(preempt_count() & PREEMPT_MASK)))
  1916. return;
  1917. #endif
  1918. if (preempt_count() == val)
  1919. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  1920. __preempt_count_sub(val);
  1921. }
  1922. EXPORT_SYMBOL(preempt_count_sub);
  1923. #endif
  1924. /*
  1925. * Print scheduling while atomic bug:
  1926. */
  1927. static noinline void __schedule_bug(struct task_struct *prev)
  1928. {
  1929. if (oops_in_progress)
  1930. return;
  1931. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  1932. prev->comm, prev->pid, preempt_count());
  1933. debug_show_held_locks(prev);
  1934. print_modules();
  1935. if (irqs_disabled())
  1936. print_irqtrace_events(prev);
  1937. dump_stack();
  1938. add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
  1939. }
  1940. /*
  1941. * Various schedule()-time debugging checks and statistics:
  1942. */
  1943. static inline void schedule_debug(struct task_struct *prev)
  1944. {
  1945. /*
  1946. * Test if we are atomic. Since do_exit() needs to call into
  1947. * schedule() atomically, we ignore that path for now.
  1948. * Otherwise, whine if we are scheduling when we should not be.
  1949. */
  1950. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  1951. __schedule_bug(prev);
  1952. rcu_sleep_check();
  1953. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  1954. schedstat_inc(this_rq(), sched_count);
  1955. }
  1956. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  1957. {
  1958. if (prev->on_rq || rq->skip_clock_update < 0)
  1959. update_rq_clock(rq);
  1960. prev->sched_class->put_prev_task(rq, prev);
  1961. }
  1962. /*
  1963. * Pick up the highest-prio task:
  1964. */
  1965. static inline struct task_struct *
  1966. pick_next_task(struct rq *rq)
  1967. {
  1968. const struct sched_class *class;
  1969. struct task_struct *p;
  1970. /*
  1971. * Optimization: we know that if all tasks are in
  1972. * the fair class we can call that function directly:
  1973. */
  1974. if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
  1975. p = fair_sched_class.pick_next_task(rq);
  1976. if (likely(p))
  1977. return p;
  1978. }
  1979. for_each_class(class) {
  1980. p = class->pick_next_task(rq);
  1981. if (p)
  1982. return p;
  1983. }
  1984. BUG(); /* the idle class will always have a runnable task */
  1985. }
  1986. /*
  1987. * __schedule() is the main scheduler function.
  1988. *
  1989. * The main means of driving the scheduler and thus entering this function are:
  1990. *
  1991. * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
  1992. *
  1993. * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
  1994. * paths. For example, see arch/x86/entry_64.S.
  1995. *
  1996. * To drive preemption between tasks, the scheduler sets the flag in timer
  1997. * interrupt handler scheduler_tick().
  1998. *
  1999. * 3. Wakeups don't really cause entry into schedule(). They add a
  2000. * task to the run-queue and that's it.
  2001. *
  2002. * Now, if the new task added to the run-queue preempts the current
  2003. * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
  2004. * called on the nearest possible occasion:
  2005. *
  2006. * - If the kernel is preemptible (CONFIG_PREEMPT=y):
  2007. *
  2008. * - in syscall or exception context, at the next outmost
  2009. * preempt_enable(). (this might be as soon as the wake_up()'s
  2010. * spin_unlock()!)
  2011. *
  2012. * - in IRQ context, return from interrupt-handler to
  2013. * preemptible context
  2014. *
  2015. * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
  2016. * then at the next:
  2017. *
  2018. * - cond_resched() call
  2019. * - explicit schedule() call
  2020. * - return from syscall or exception to user-space
  2021. * - return from interrupt-handler to user-space
  2022. */
  2023. static void __sched __schedule(void)
  2024. {
  2025. struct task_struct *prev, *next;
  2026. unsigned long *switch_count;
  2027. struct rq *rq;
  2028. int cpu;
  2029. need_resched:
  2030. preempt_disable();
  2031. cpu = smp_processor_id();
  2032. rq = cpu_rq(cpu);
  2033. rcu_note_context_switch(cpu);
  2034. prev = rq->curr;
  2035. schedule_debug(prev);
  2036. if (sched_feat(HRTICK))
  2037. hrtick_clear(rq);
  2038. /*
  2039. * Make sure that signal_pending_state()->signal_pending() below
  2040. * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
  2041. * done by the caller to avoid the race with signal_wake_up().
  2042. */
  2043. smp_mb__before_spinlock();
  2044. raw_spin_lock_irq(&rq->lock);
  2045. switch_count = &prev->nivcsw;
  2046. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2047. if (unlikely(signal_pending_state(prev->state, prev))) {
  2048. prev->state = TASK_RUNNING;
  2049. } else {
  2050. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  2051. prev->on_rq = 0;
  2052. /*
  2053. * If a worker went to sleep, notify and ask workqueue
  2054. * whether it wants to wake up a task to maintain
  2055. * concurrency.
  2056. */
  2057. if (prev->flags & PF_WQ_WORKER) {
  2058. struct task_struct *to_wakeup;
  2059. to_wakeup = wq_worker_sleeping(prev, cpu);
  2060. if (to_wakeup)
  2061. try_to_wake_up_local(to_wakeup);
  2062. }
  2063. }
  2064. switch_count = &prev->nvcsw;
  2065. }
  2066. pre_schedule(rq, prev);
  2067. if (unlikely(!rq->nr_running))
  2068. idle_balance(cpu, rq);
  2069. put_prev_task(rq, prev);
  2070. next = pick_next_task(rq);
  2071. clear_tsk_need_resched(prev);
  2072. clear_preempt_need_resched();
  2073. rq->skip_clock_update = 0;
  2074. if (likely(prev != next)) {
  2075. rq->nr_switches++;
  2076. rq->curr = next;
  2077. ++*switch_count;
  2078. context_switch(rq, prev, next); /* unlocks the rq */
  2079. /*
  2080. * The context switch have flipped the stack from under us
  2081. * and restored the local variables which were saved when
  2082. * this task called schedule() in the past. prev == current
  2083. * is still correct, but it can be moved to another cpu/rq.
  2084. */
  2085. cpu = smp_processor_id();
  2086. rq = cpu_rq(cpu);
  2087. } else
  2088. raw_spin_unlock_irq(&rq->lock);
  2089. post_schedule(rq);
  2090. sched_preempt_enable_no_resched();
  2091. if (need_resched())
  2092. goto need_resched;
  2093. }
  2094. static inline void sched_submit_work(struct task_struct *tsk)
  2095. {
  2096. if (!tsk->state || tsk_is_pi_blocked(tsk))
  2097. return;
  2098. /*
  2099. * If we are going to sleep and we have plugged IO queued,
  2100. * make sure to submit it to avoid deadlocks.
  2101. */
  2102. if (blk_needs_flush_plug(tsk))
  2103. blk_schedule_flush_plug(tsk);
  2104. }
  2105. asmlinkage void __sched schedule(void)
  2106. {
  2107. struct task_struct *tsk = current;
  2108. sched_submit_work(tsk);
  2109. __schedule();
  2110. }
  2111. EXPORT_SYMBOL(schedule);
  2112. #ifdef CONFIG_CONTEXT_TRACKING
  2113. asmlinkage void __sched schedule_user(void)
  2114. {
  2115. /*
  2116. * If we come here after a random call to set_need_resched(),
  2117. * or we have been woken up remotely but the IPI has not yet arrived,
  2118. * we haven't yet exited the RCU idle mode. Do it here manually until
  2119. * we find a better solution.
  2120. */
  2121. user_exit();
  2122. schedule();
  2123. user_enter();
  2124. }
  2125. #endif
  2126. /**
  2127. * schedule_preempt_disabled - called with preemption disabled
  2128. *
  2129. * Returns with preemption disabled. Note: preempt_count must be 1
  2130. */
  2131. void __sched schedule_preempt_disabled(void)
  2132. {
  2133. sched_preempt_enable_no_resched();
  2134. schedule();
  2135. preempt_disable();
  2136. }
  2137. #ifdef CONFIG_PREEMPT
  2138. /*
  2139. * this is the entry point to schedule() from in-kernel preemption
  2140. * off of preempt_enable. Kernel preemptions off return from interrupt
  2141. * occur there and call schedule directly.
  2142. */
  2143. asmlinkage void __sched notrace preempt_schedule(void)
  2144. {
  2145. /*
  2146. * If there is a non-zero preempt_count or interrupts are disabled,
  2147. * we do not want to preempt the current task. Just return..
  2148. */
  2149. if (likely(!preemptible()))
  2150. return;
  2151. do {
  2152. __preempt_count_add(PREEMPT_ACTIVE);
  2153. __schedule();
  2154. __preempt_count_sub(PREEMPT_ACTIVE);
  2155. /*
  2156. * Check again in case we missed a preemption opportunity
  2157. * between schedule and now.
  2158. */
  2159. barrier();
  2160. } while (need_resched());
  2161. }
  2162. EXPORT_SYMBOL(preempt_schedule);
  2163. /*
  2164. * this is the entry point to schedule() from kernel preemption
  2165. * off of irq context.
  2166. * Note, that this is called and return with irqs disabled. This will
  2167. * protect us against recursive calling from irq.
  2168. */
  2169. asmlinkage void __sched preempt_schedule_irq(void)
  2170. {
  2171. enum ctx_state prev_state;
  2172. /* Catch callers which need to be fixed */
  2173. BUG_ON(preempt_count() || !irqs_disabled());
  2174. prev_state = exception_enter();
  2175. do {
  2176. __preempt_count_add(PREEMPT_ACTIVE);
  2177. local_irq_enable();
  2178. __schedule();
  2179. local_irq_disable();
  2180. __preempt_count_sub(PREEMPT_ACTIVE);
  2181. /*
  2182. * Check again in case we missed a preemption opportunity
  2183. * between schedule and now.
  2184. */
  2185. barrier();
  2186. } while (need_resched());
  2187. exception_exit(prev_state);
  2188. }
  2189. #endif /* CONFIG_PREEMPT */
  2190. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  2191. void *key)
  2192. {
  2193. return try_to_wake_up(curr->private, mode, wake_flags);
  2194. }
  2195. EXPORT_SYMBOL(default_wake_function);
  2196. /*
  2197. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  2198. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  2199. * number) then we wake all the non-exclusive tasks and one exclusive task.
  2200. *
  2201. * There are circumstances in which we can try to wake a task which has already
  2202. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  2203. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  2204. */
  2205. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  2206. int nr_exclusive, int wake_flags, void *key)
  2207. {
  2208. wait_queue_t *curr, *next;
  2209. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  2210. unsigned flags = curr->flags;
  2211. if (curr->func(curr, mode, wake_flags, key) &&
  2212. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  2213. break;
  2214. }
  2215. }
  2216. /**
  2217. * __wake_up - wake up threads blocked on a waitqueue.
  2218. * @q: the waitqueue
  2219. * @mode: which threads
  2220. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  2221. * @key: is directly passed to the wakeup function
  2222. *
  2223. * It may be assumed that this function implies a write memory barrier before
  2224. * changing the task state if and only if any tasks are woken up.
  2225. */
  2226. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  2227. int nr_exclusive, void *key)
  2228. {
  2229. unsigned long flags;
  2230. spin_lock_irqsave(&q->lock, flags);
  2231. __wake_up_common(q, mode, nr_exclusive, 0, key);
  2232. spin_unlock_irqrestore(&q->lock, flags);
  2233. }
  2234. EXPORT_SYMBOL(__wake_up);
  2235. /*
  2236. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  2237. */
  2238. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
  2239. {
  2240. __wake_up_common(q, mode, nr, 0, NULL);
  2241. }
  2242. EXPORT_SYMBOL_GPL(__wake_up_locked);
  2243. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  2244. {
  2245. __wake_up_common(q, mode, 1, 0, key);
  2246. }
  2247. EXPORT_SYMBOL_GPL(__wake_up_locked_key);
  2248. /**
  2249. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  2250. * @q: the waitqueue
  2251. * @mode: which threads
  2252. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  2253. * @key: opaque value to be passed to wakeup targets
  2254. *
  2255. * The sync wakeup differs that the waker knows that it will schedule
  2256. * away soon, so while the target thread will be woken up, it will not
  2257. * be migrated to another CPU - ie. the two threads are 'synchronized'
  2258. * with each other. This can prevent needless bouncing between CPUs.
  2259. *
  2260. * On UP it can prevent extra preemption.
  2261. *
  2262. * It may be assumed that this function implies a write memory barrier before
  2263. * changing the task state if and only if any tasks are woken up.
  2264. */
  2265. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  2266. int nr_exclusive, void *key)
  2267. {
  2268. unsigned long flags;
  2269. int wake_flags = WF_SYNC;
  2270. if (unlikely(!q))
  2271. return;
  2272. if (unlikely(nr_exclusive != 1))
  2273. wake_flags = 0;
  2274. spin_lock_irqsave(&q->lock, flags);
  2275. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  2276. spin_unlock_irqrestore(&q->lock, flags);
  2277. }
  2278. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  2279. /*
  2280. * __wake_up_sync - see __wake_up_sync_key()
  2281. */
  2282. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  2283. {
  2284. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  2285. }
  2286. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  2287. /**
  2288. * complete: - signals a single thread waiting on this completion
  2289. * @x: holds the state of this particular completion
  2290. *
  2291. * This will wake up a single thread waiting on this completion. Threads will be
  2292. * awakened in the same order in which they were queued.
  2293. *
  2294. * See also complete_all(), wait_for_completion() and related routines.
  2295. *
  2296. * It may be assumed that this function implies a write memory barrier before
  2297. * changing the task state if and only if any tasks are woken up.
  2298. */
  2299. void complete(struct completion *x)
  2300. {
  2301. unsigned long flags;
  2302. spin_lock_irqsave(&x->wait.lock, flags);
  2303. x->done++;
  2304. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  2305. spin_unlock_irqrestore(&x->wait.lock, flags);
  2306. }
  2307. EXPORT_SYMBOL(complete);
  2308. /**
  2309. * complete_all: - signals all threads waiting on this completion
  2310. * @x: holds the state of this particular completion
  2311. *
  2312. * This will wake up all threads waiting on this particular completion event.
  2313. *
  2314. * It may be assumed that this function implies a write memory barrier before
  2315. * changing the task state if and only if any tasks are woken up.
  2316. */
  2317. void complete_all(struct completion *x)
  2318. {
  2319. unsigned long flags;
  2320. spin_lock_irqsave(&x->wait.lock, flags);
  2321. x->done += UINT_MAX/2;
  2322. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  2323. spin_unlock_irqrestore(&x->wait.lock, flags);
  2324. }
  2325. EXPORT_SYMBOL(complete_all);
  2326. static inline long __sched
  2327. do_wait_for_common(struct completion *x,
  2328. long (*action)(long), long timeout, int state)
  2329. {
  2330. if (!x->done) {
  2331. DECLARE_WAITQUEUE(wait, current);
  2332. __add_wait_queue_tail_exclusive(&x->wait, &wait);
  2333. do {
  2334. if (signal_pending_state(state, current)) {
  2335. timeout = -ERESTARTSYS;
  2336. break;
  2337. }
  2338. __set_current_state(state);
  2339. spin_unlock_irq(&x->wait.lock);
  2340. timeout = action(timeout);
  2341. spin_lock_irq(&x->wait.lock);
  2342. } while (!x->done && timeout);
  2343. __remove_wait_queue(&x->wait, &wait);
  2344. if (!x->done)
  2345. return timeout;
  2346. }
  2347. x->done--;
  2348. return timeout ?: 1;
  2349. }
  2350. static inline long __sched
  2351. __wait_for_common(struct completion *x,
  2352. long (*action)(long), long timeout, int state)
  2353. {
  2354. might_sleep();
  2355. spin_lock_irq(&x->wait.lock);
  2356. timeout = do_wait_for_common(x, action, timeout, state);
  2357. spin_unlock_irq(&x->wait.lock);
  2358. return timeout;
  2359. }
  2360. static long __sched
  2361. wait_for_common(struct completion *x, long timeout, int state)
  2362. {
  2363. return __wait_for_common(x, schedule_timeout, timeout, state);
  2364. }
  2365. static long __sched
  2366. wait_for_common_io(struct completion *x, long timeout, int state)
  2367. {
  2368. return __wait_for_common(x, io_schedule_timeout, timeout, state);
  2369. }
  2370. /**
  2371. * wait_for_completion: - waits for completion of a task
  2372. * @x: holds the state of this particular completion
  2373. *
  2374. * This waits to be signaled for completion of a specific task. It is NOT
  2375. * interruptible and there is no timeout.
  2376. *
  2377. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  2378. * and interrupt capability. Also see complete().
  2379. */
  2380. void __sched wait_for_completion(struct completion *x)
  2381. {
  2382. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  2383. }
  2384. EXPORT_SYMBOL(wait_for_completion);
  2385. /**
  2386. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  2387. * @x: holds the state of this particular completion
  2388. * @timeout: timeout value in jiffies
  2389. *
  2390. * This waits for either a completion of a specific task to be signaled or for a
  2391. * specified timeout to expire. The timeout is in jiffies. It is not
  2392. * interruptible.
  2393. *
  2394. * Return: 0 if timed out, and positive (at least 1, or number of jiffies left
  2395. * till timeout) if completed.
  2396. */
  2397. unsigned long __sched
  2398. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  2399. {
  2400. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  2401. }
  2402. EXPORT_SYMBOL(wait_for_completion_timeout);
  2403. /**
  2404. * wait_for_completion_io: - waits for completion of a task
  2405. * @x: holds the state of this particular completion
  2406. *
  2407. * This waits to be signaled for completion of a specific task. It is NOT
  2408. * interruptible and there is no timeout. The caller is accounted as waiting
  2409. * for IO.
  2410. */
  2411. void __sched wait_for_completion_io(struct completion *x)
  2412. {
  2413. wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  2414. }
  2415. EXPORT_SYMBOL(wait_for_completion_io);
  2416. /**
  2417. * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
  2418. * @x: holds the state of this particular completion
  2419. * @timeout: timeout value in jiffies
  2420. *
  2421. * This waits for either a completion of a specific task to be signaled or for a
  2422. * specified timeout to expire. The timeout is in jiffies. It is not
  2423. * interruptible. The caller is accounted as waiting for IO.
  2424. *
  2425. * Return: 0 if timed out, and positive (at least 1, or number of jiffies left
  2426. * till timeout) if completed.
  2427. */
  2428. unsigned long __sched
  2429. wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
  2430. {
  2431. return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
  2432. }
  2433. EXPORT_SYMBOL(wait_for_completion_io_timeout);
  2434. /**
  2435. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  2436. * @x: holds the state of this particular completion
  2437. *
  2438. * This waits for completion of a specific task to be signaled. It is
  2439. * interruptible.
  2440. *
  2441. * Return: -ERESTARTSYS if interrupted, 0 if completed.
  2442. */
  2443. int __sched wait_for_completion_interruptible(struct completion *x)
  2444. {
  2445. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  2446. if (t == -ERESTARTSYS)
  2447. return t;
  2448. return 0;
  2449. }
  2450. EXPORT_SYMBOL(wait_for_completion_interruptible);
  2451. /**
  2452. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  2453. * @x: holds the state of this particular completion
  2454. * @timeout: timeout value in jiffies
  2455. *
  2456. * This waits for either a completion of a specific task to be signaled or for a
  2457. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  2458. *
  2459. * Return: -ERESTARTSYS if interrupted, 0 if timed out, positive (at least 1,
  2460. * or number of jiffies left till timeout) if completed.
  2461. */
  2462. long __sched
  2463. wait_for_completion_interruptible_timeout(struct completion *x,
  2464. unsigned long timeout)
  2465. {
  2466. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  2467. }
  2468. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  2469. /**
  2470. * wait_for_completion_killable: - waits for completion of a task (killable)
  2471. * @x: holds the state of this particular completion
  2472. *
  2473. * This waits to be signaled for completion of a specific task. It can be
  2474. * interrupted by a kill signal.
  2475. *
  2476. * Return: -ERESTARTSYS if interrupted, 0 if completed.
  2477. */
  2478. int __sched wait_for_completion_killable(struct completion *x)
  2479. {
  2480. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  2481. if (t == -ERESTARTSYS)
  2482. return t;
  2483. return 0;
  2484. }
  2485. EXPORT_SYMBOL(wait_for_completion_killable);
  2486. /**
  2487. * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
  2488. * @x: holds the state of this particular completion
  2489. * @timeout: timeout value in jiffies
  2490. *
  2491. * This waits for either a completion of a specific task to be
  2492. * signaled or for a specified timeout to expire. It can be
  2493. * interrupted by a kill signal. The timeout is in jiffies.
  2494. *
  2495. * Return: -ERESTARTSYS if interrupted, 0 if timed out, positive (at least 1,
  2496. * or number of jiffies left till timeout) if completed.
  2497. */
  2498. long __sched
  2499. wait_for_completion_killable_timeout(struct completion *x,
  2500. unsigned long timeout)
  2501. {
  2502. return wait_for_common(x, timeout, TASK_KILLABLE);
  2503. }
  2504. EXPORT_SYMBOL(wait_for_completion_killable_timeout);
  2505. /**
  2506. * try_wait_for_completion - try to decrement a completion without blocking
  2507. * @x: completion structure
  2508. *
  2509. * Return: 0 if a decrement cannot be done without blocking
  2510. * 1 if a decrement succeeded.
  2511. *
  2512. * If a completion is being used as a counting completion,
  2513. * attempt to decrement the counter without blocking. This
  2514. * enables us to avoid waiting if the resource the completion
  2515. * is protecting is not available.
  2516. */
  2517. bool try_wait_for_completion(struct completion *x)
  2518. {
  2519. unsigned long flags;
  2520. int ret = 1;
  2521. spin_lock_irqsave(&x->wait.lock, flags);
  2522. if (!x->done)
  2523. ret = 0;
  2524. else
  2525. x->done--;
  2526. spin_unlock_irqrestore(&x->wait.lock, flags);
  2527. return ret;
  2528. }
  2529. EXPORT_SYMBOL(try_wait_for_completion);
  2530. /**
  2531. * completion_done - Test to see if a completion has any waiters
  2532. * @x: completion structure
  2533. *
  2534. * Return: 0 if there are waiters (wait_for_completion() in progress)
  2535. * 1 if there are no waiters.
  2536. *
  2537. */
  2538. bool completion_done(struct completion *x)
  2539. {
  2540. unsigned long flags;
  2541. int ret = 1;
  2542. spin_lock_irqsave(&x->wait.lock, flags);
  2543. if (!x->done)
  2544. ret = 0;
  2545. spin_unlock_irqrestore(&x->wait.lock, flags);
  2546. return ret;
  2547. }
  2548. EXPORT_SYMBOL(completion_done);
  2549. static long __sched
  2550. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  2551. {
  2552. unsigned long flags;
  2553. wait_queue_t wait;
  2554. init_waitqueue_entry(&wait, current);
  2555. __set_current_state(state);
  2556. spin_lock_irqsave(&q->lock, flags);
  2557. __add_wait_queue(q, &wait);
  2558. spin_unlock(&q->lock);
  2559. timeout = schedule_timeout(timeout);
  2560. spin_lock_irq(&q->lock);
  2561. __remove_wait_queue(q, &wait);
  2562. spin_unlock_irqrestore(&q->lock, flags);
  2563. return timeout;
  2564. }
  2565. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  2566. {
  2567. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  2568. }
  2569. EXPORT_SYMBOL(interruptible_sleep_on);
  2570. long __sched
  2571. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  2572. {
  2573. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  2574. }
  2575. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  2576. void __sched sleep_on(wait_queue_head_t *q)
  2577. {
  2578. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  2579. }
  2580. EXPORT_SYMBOL(sleep_on);
  2581. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  2582. {
  2583. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  2584. }
  2585. EXPORT_SYMBOL(sleep_on_timeout);
  2586. #ifdef CONFIG_RT_MUTEXES
  2587. /*
  2588. * rt_mutex_setprio - set the current priority of a task
  2589. * @p: task
  2590. * @prio: prio value (kernel-internal form)
  2591. *
  2592. * This function changes the 'effective' priority of a task. It does
  2593. * not touch ->normal_prio like __setscheduler().
  2594. *
  2595. * Used by the rt_mutex code to implement priority inheritance logic.
  2596. */
  2597. void rt_mutex_setprio(struct task_struct *p, int prio)
  2598. {
  2599. int oldprio, on_rq, running;
  2600. struct rq *rq;
  2601. const struct sched_class *prev_class;
  2602. BUG_ON(prio < 0 || prio > MAX_PRIO);
  2603. rq = __task_rq_lock(p);
  2604. /*
  2605. * Idle task boosting is a nono in general. There is one
  2606. * exception, when PREEMPT_RT and NOHZ is active:
  2607. *
  2608. * The idle task calls get_next_timer_interrupt() and holds
  2609. * the timer wheel base->lock on the CPU and another CPU wants
  2610. * to access the timer (probably to cancel it). We can safely
  2611. * ignore the boosting request, as the idle CPU runs this code
  2612. * with interrupts disabled and will complete the lock
  2613. * protected section without being interrupted. So there is no
  2614. * real need to boost.
  2615. */
  2616. if (unlikely(p == rq->idle)) {
  2617. WARN_ON(p != rq->curr);
  2618. WARN_ON(p->pi_blocked_on);
  2619. goto out_unlock;
  2620. }
  2621. trace_sched_pi_setprio(p, prio);
  2622. oldprio = p->prio;
  2623. prev_class = p->sched_class;
  2624. on_rq = p->on_rq;
  2625. running = task_current(rq, p);
  2626. if (on_rq)
  2627. dequeue_task(rq, p, 0);
  2628. if (running)
  2629. p->sched_class->put_prev_task(rq, p);
  2630. if (rt_prio(prio))
  2631. p->sched_class = &rt_sched_class;
  2632. else
  2633. p->sched_class = &fair_sched_class;
  2634. p->prio = prio;
  2635. if (running)
  2636. p->sched_class->set_curr_task(rq);
  2637. if (on_rq)
  2638. enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
  2639. check_class_changed(rq, p, prev_class, oldprio);
  2640. out_unlock:
  2641. __task_rq_unlock(rq);
  2642. }
  2643. #endif
  2644. void set_user_nice(struct task_struct *p, long nice)
  2645. {
  2646. int old_prio, delta, on_rq;
  2647. unsigned long flags;
  2648. struct rq *rq;
  2649. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  2650. return;
  2651. /*
  2652. * We have to be careful, if called from sys_setpriority(),
  2653. * the task might be in the middle of scheduling on another CPU.
  2654. */
  2655. rq = task_rq_lock(p, &flags);
  2656. /*
  2657. * The RT priorities are set via sched_setscheduler(), but we still
  2658. * allow the 'normal' nice value to be set - but as expected
  2659. * it wont have any effect on scheduling until the task is
  2660. * SCHED_FIFO/SCHED_RR:
  2661. */
  2662. if (task_has_rt_policy(p)) {
  2663. p->static_prio = NICE_TO_PRIO(nice);
  2664. goto out_unlock;
  2665. }
  2666. on_rq = p->on_rq;
  2667. if (on_rq)
  2668. dequeue_task(rq, p, 0);
  2669. p->static_prio = NICE_TO_PRIO(nice);
  2670. set_load_weight(p);
  2671. old_prio = p->prio;
  2672. p->prio = effective_prio(p);
  2673. delta = p->prio - old_prio;
  2674. if (on_rq) {
  2675. enqueue_task(rq, p, 0);
  2676. /*
  2677. * If the task increased its priority or is running and
  2678. * lowered its priority, then reschedule its CPU:
  2679. */
  2680. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  2681. resched_task(rq->curr);
  2682. }
  2683. out_unlock:
  2684. task_rq_unlock(rq, p, &flags);
  2685. }
  2686. EXPORT_SYMBOL(set_user_nice);
  2687. /*
  2688. * can_nice - check if a task can reduce its nice value
  2689. * @p: task
  2690. * @nice: nice value
  2691. */
  2692. int can_nice(const struct task_struct *p, const int nice)
  2693. {
  2694. /* convert nice value [19,-20] to rlimit style value [1,40] */
  2695. int nice_rlim = 20 - nice;
  2696. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  2697. capable(CAP_SYS_NICE));
  2698. }
  2699. #ifdef __ARCH_WANT_SYS_NICE
  2700. /*
  2701. * sys_nice - change the priority of the current process.
  2702. * @increment: priority increment
  2703. *
  2704. * sys_setpriority is a more generic, but much slower function that
  2705. * does similar things.
  2706. */
  2707. SYSCALL_DEFINE1(nice, int, increment)
  2708. {
  2709. long nice, retval;
  2710. /*
  2711. * Setpriority might change our priority at the same moment.
  2712. * We don't have to worry. Conceptually one call occurs first
  2713. * and we have a single winner.
  2714. */
  2715. if (increment < -40)
  2716. increment = -40;
  2717. if (increment > 40)
  2718. increment = 40;
  2719. nice = TASK_NICE(current) + increment;
  2720. if (nice < -20)
  2721. nice = -20;
  2722. if (nice > 19)
  2723. nice = 19;
  2724. if (increment < 0 && !can_nice(current, nice))
  2725. return -EPERM;
  2726. retval = security_task_setnice(current, nice);
  2727. if (retval)
  2728. return retval;
  2729. set_user_nice(current, nice);
  2730. return 0;
  2731. }
  2732. #endif
  2733. /**
  2734. * task_prio - return the priority value of a given task.
  2735. * @p: the task in question.
  2736. *
  2737. * Return: The priority value as seen by users in /proc.
  2738. * RT tasks are offset by -200. Normal tasks are centered
  2739. * around 0, value goes from -16 to +15.
  2740. */
  2741. int task_prio(const struct task_struct *p)
  2742. {
  2743. return p->prio - MAX_RT_PRIO;
  2744. }
  2745. /**
  2746. * task_nice - return the nice value of a given task.
  2747. * @p: the task in question.
  2748. *
  2749. * Return: The nice value [ -20 ... 0 ... 19 ].
  2750. */
  2751. int task_nice(const struct task_struct *p)
  2752. {
  2753. return TASK_NICE(p);
  2754. }
  2755. EXPORT_SYMBOL(task_nice);
  2756. /**
  2757. * idle_cpu - is a given cpu idle currently?
  2758. * @cpu: the processor in question.
  2759. *
  2760. * Return: 1 if the CPU is currently idle. 0 otherwise.
  2761. */
  2762. int idle_cpu(int cpu)
  2763. {
  2764. struct rq *rq = cpu_rq(cpu);
  2765. if (rq->curr != rq->idle)
  2766. return 0;
  2767. if (rq->nr_running)
  2768. return 0;
  2769. #ifdef CONFIG_SMP
  2770. if (!llist_empty(&rq->wake_list))
  2771. return 0;
  2772. #endif
  2773. return 1;
  2774. }
  2775. /**
  2776. * idle_task - return the idle task for a given cpu.
  2777. * @cpu: the processor in question.
  2778. *
  2779. * Return: The idle task for the cpu @cpu.
  2780. */
  2781. struct task_struct *idle_task(int cpu)
  2782. {
  2783. return cpu_rq(cpu)->idle;
  2784. }
  2785. /**
  2786. * find_process_by_pid - find a process with a matching PID value.
  2787. * @pid: the pid in question.
  2788. *
  2789. * The task of @pid, if found. %NULL otherwise.
  2790. */
  2791. static struct task_struct *find_process_by_pid(pid_t pid)
  2792. {
  2793. return pid ? find_task_by_vpid(pid) : current;
  2794. }
  2795. /* Actually do priority change: must hold rq lock. */
  2796. static void
  2797. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  2798. {
  2799. p->policy = policy;
  2800. p->rt_priority = prio;
  2801. p->normal_prio = normal_prio(p);
  2802. /* we are holding p->pi_lock already */
  2803. p->prio = rt_mutex_getprio(p);
  2804. if (rt_prio(p->prio))
  2805. p->sched_class = &rt_sched_class;
  2806. else
  2807. p->sched_class = &fair_sched_class;
  2808. set_load_weight(p);
  2809. }
  2810. /*
  2811. * check the target process has a UID that matches the current process's
  2812. */
  2813. static bool check_same_owner(struct task_struct *p)
  2814. {
  2815. const struct cred *cred = current_cred(), *pcred;
  2816. bool match;
  2817. rcu_read_lock();
  2818. pcred = __task_cred(p);
  2819. match = (uid_eq(cred->euid, pcred->euid) ||
  2820. uid_eq(cred->euid, pcred->uid));
  2821. rcu_read_unlock();
  2822. return match;
  2823. }
  2824. static int __sched_setscheduler(struct task_struct *p, int policy,
  2825. const struct sched_param *param, bool user)
  2826. {
  2827. int retval, oldprio, oldpolicy = -1, on_rq, running;
  2828. unsigned long flags;
  2829. const struct sched_class *prev_class;
  2830. struct rq *rq;
  2831. int reset_on_fork;
  2832. /* may grab non-irq protected spin_locks */
  2833. BUG_ON(in_interrupt());
  2834. recheck:
  2835. /* double check policy once rq lock held */
  2836. if (policy < 0) {
  2837. reset_on_fork = p->sched_reset_on_fork;
  2838. policy = oldpolicy = p->policy;
  2839. } else {
  2840. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  2841. policy &= ~SCHED_RESET_ON_FORK;
  2842. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  2843. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  2844. policy != SCHED_IDLE)
  2845. return -EINVAL;
  2846. }
  2847. /*
  2848. * Valid priorities for SCHED_FIFO and SCHED_RR are
  2849. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  2850. * SCHED_BATCH and SCHED_IDLE is 0.
  2851. */
  2852. if (param->sched_priority < 0 ||
  2853. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  2854. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  2855. return -EINVAL;
  2856. if (rt_policy(policy) != (param->sched_priority != 0))
  2857. return -EINVAL;
  2858. /*
  2859. * Allow unprivileged RT tasks to decrease priority:
  2860. */
  2861. if (user && !capable(CAP_SYS_NICE)) {
  2862. if (rt_policy(policy)) {
  2863. unsigned long rlim_rtprio =
  2864. task_rlimit(p, RLIMIT_RTPRIO);
  2865. /* can't set/change the rt policy */
  2866. if (policy != p->policy && !rlim_rtprio)
  2867. return -EPERM;
  2868. /* can't increase priority */
  2869. if (param->sched_priority > p->rt_priority &&
  2870. param->sched_priority > rlim_rtprio)
  2871. return -EPERM;
  2872. }
  2873. /*
  2874. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  2875. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  2876. */
  2877. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
  2878. if (!can_nice(p, TASK_NICE(p)))
  2879. return -EPERM;
  2880. }
  2881. /* can't change other user's priorities */
  2882. if (!check_same_owner(p))
  2883. return -EPERM;
  2884. /* Normal users shall not reset the sched_reset_on_fork flag */
  2885. if (p->sched_reset_on_fork && !reset_on_fork)
  2886. return -EPERM;
  2887. }
  2888. if (user) {
  2889. retval = security_task_setscheduler(p);
  2890. if (retval)
  2891. return retval;
  2892. }
  2893. /*
  2894. * make sure no PI-waiters arrive (or leave) while we are
  2895. * changing the priority of the task:
  2896. *
  2897. * To be able to change p->policy safely, the appropriate
  2898. * runqueue lock must be held.
  2899. */
  2900. rq = task_rq_lock(p, &flags);
  2901. /*
  2902. * Changing the policy of the stop threads its a very bad idea
  2903. */
  2904. if (p == rq->stop) {
  2905. task_rq_unlock(rq, p, &flags);
  2906. return -EINVAL;
  2907. }
  2908. /*
  2909. * If not changing anything there's no need to proceed further:
  2910. */
  2911. if (unlikely(policy == p->policy && (!rt_policy(policy) ||
  2912. param->sched_priority == p->rt_priority))) {
  2913. task_rq_unlock(rq, p, &flags);
  2914. return 0;
  2915. }
  2916. #ifdef CONFIG_RT_GROUP_SCHED
  2917. if (user) {
  2918. /*
  2919. * Do not allow realtime tasks into groups that have no runtime
  2920. * assigned.
  2921. */
  2922. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  2923. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  2924. !task_group_is_autogroup(task_group(p))) {
  2925. task_rq_unlock(rq, p, &flags);
  2926. return -EPERM;
  2927. }
  2928. }
  2929. #endif
  2930. /* recheck policy now with rq lock held */
  2931. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  2932. policy = oldpolicy = -1;
  2933. task_rq_unlock(rq, p, &flags);
  2934. goto recheck;
  2935. }
  2936. on_rq = p->on_rq;
  2937. running = task_current(rq, p);
  2938. if (on_rq)
  2939. dequeue_task(rq, p, 0);
  2940. if (running)
  2941. p->sched_class->put_prev_task(rq, p);
  2942. p->sched_reset_on_fork = reset_on_fork;
  2943. oldprio = p->prio;
  2944. prev_class = p->sched_class;
  2945. __setscheduler(rq, p, policy, param->sched_priority);
  2946. if (running)
  2947. p->sched_class->set_curr_task(rq);
  2948. if (on_rq)
  2949. enqueue_task(rq, p, 0);
  2950. check_class_changed(rq, p, prev_class, oldprio);
  2951. task_rq_unlock(rq, p, &flags);
  2952. rt_mutex_adjust_pi(p);
  2953. return 0;
  2954. }
  2955. /**
  2956. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  2957. * @p: the task in question.
  2958. * @policy: new policy.
  2959. * @param: structure containing the new RT priority.
  2960. *
  2961. * Return: 0 on success. An error code otherwise.
  2962. *
  2963. * NOTE that the task may be already dead.
  2964. */
  2965. int sched_setscheduler(struct task_struct *p, int policy,
  2966. const struct sched_param *param)
  2967. {
  2968. return __sched_setscheduler(p, policy, param, true);
  2969. }
  2970. EXPORT_SYMBOL_GPL(sched_setscheduler);
  2971. /**
  2972. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  2973. * @p: the task in question.
  2974. * @policy: new policy.
  2975. * @param: structure containing the new RT priority.
  2976. *
  2977. * Just like sched_setscheduler, only don't bother checking if the
  2978. * current context has permission. For example, this is needed in
  2979. * stop_machine(): we create temporary high priority worker threads,
  2980. * but our caller might not have that capability.
  2981. *
  2982. * Return: 0 on success. An error code otherwise.
  2983. */
  2984. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  2985. const struct sched_param *param)
  2986. {
  2987. return __sched_setscheduler(p, policy, param, false);
  2988. }
  2989. static int
  2990. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  2991. {
  2992. struct sched_param lparam;
  2993. struct task_struct *p;
  2994. int retval;
  2995. if (!param || pid < 0)
  2996. return -EINVAL;
  2997. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  2998. return -EFAULT;
  2999. rcu_read_lock();
  3000. retval = -ESRCH;
  3001. p = find_process_by_pid(pid);
  3002. if (p != NULL)
  3003. retval = sched_setscheduler(p, policy, &lparam);
  3004. rcu_read_unlock();
  3005. return retval;
  3006. }
  3007. /**
  3008. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3009. * @pid: the pid in question.
  3010. * @policy: new policy.
  3011. * @param: structure containing the new RT priority.
  3012. *
  3013. * Return: 0 on success. An error code otherwise.
  3014. */
  3015. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  3016. struct sched_param __user *, param)
  3017. {
  3018. /* negative values for policy are not valid */
  3019. if (policy < 0)
  3020. return -EINVAL;
  3021. return do_sched_setscheduler(pid, policy, param);
  3022. }
  3023. /**
  3024. * sys_sched_setparam - set/change the RT priority of a thread
  3025. * @pid: the pid in question.
  3026. * @param: structure containing the new RT priority.
  3027. *
  3028. * Return: 0 on success. An error code otherwise.
  3029. */
  3030. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  3031. {
  3032. return do_sched_setscheduler(pid, -1, param);
  3033. }
  3034. /**
  3035. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3036. * @pid: the pid in question.
  3037. *
  3038. * Return: On success, the policy of the thread. Otherwise, a negative error
  3039. * code.
  3040. */
  3041. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  3042. {
  3043. struct task_struct *p;
  3044. int retval;
  3045. if (pid < 0)
  3046. return -EINVAL;
  3047. retval = -ESRCH;
  3048. rcu_read_lock();
  3049. p = find_process_by_pid(pid);
  3050. if (p) {
  3051. retval = security_task_getscheduler(p);
  3052. if (!retval)
  3053. retval = p->policy
  3054. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  3055. }
  3056. rcu_read_unlock();
  3057. return retval;
  3058. }
  3059. /**
  3060. * sys_sched_getparam - get the RT priority of a thread
  3061. * @pid: the pid in question.
  3062. * @param: structure containing the RT priority.
  3063. *
  3064. * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
  3065. * code.
  3066. */
  3067. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  3068. {
  3069. struct sched_param lp;
  3070. struct task_struct *p;
  3071. int retval;
  3072. if (!param || pid < 0)
  3073. return -EINVAL;
  3074. rcu_read_lock();
  3075. p = find_process_by_pid(pid);
  3076. retval = -ESRCH;
  3077. if (!p)
  3078. goto out_unlock;
  3079. retval = security_task_getscheduler(p);
  3080. if (retval)
  3081. goto out_unlock;
  3082. lp.sched_priority = p->rt_priority;
  3083. rcu_read_unlock();
  3084. /*
  3085. * This one might sleep, we cannot do it with a spinlock held ...
  3086. */
  3087. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3088. return retval;
  3089. out_unlock:
  3090. rcu_read_unlock();
  3091. return retval;
  3092. }
  3093. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  3094. {
  3095. cpumask_var_t cpus_allowed, new_mask;
  3096. struct task_struct *p;
  3097. int retval;
  3098. get_online_cpus();
  3099. rcu_read_lock();
  3100. p = find_process_by_pid(pid);
  3101. if (!p) {
  3102. rcu_read_unlock();
  3103. put_online_cpus();
  3104. return -ESRCH;
  3105. }
  3106. /* Prevent p going away */
  3107. get_task_struct(p);
  3108. rcu_read_unlock();
  3109. if (p->flags & PF_NO_SETAFFINITY) {
  3110. retval = -EINVAL;
  3111. goto out_put_task;
  3112. }
  3113. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  3114. retval = -ENOMEM;
  3115. goto out_put_task;
  3116. }
  3117. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  3118. retval = -ENOMEM;
  3119. goto out_free_cpus_allowed;
  3120. }
  3121. retval = -EPERM;
  3122. if (!check_same_owner(p)) {
  3123. rcu_read_lock();
  3124. if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
  3125. rcu_read_unlock();
  3126. goto out_unlock;
  3127. }
  3128. rcu_read_unlock();
  3129. }
  3130. retval = security_task_setscheduler(p);
  3131. if (retval)
  3132. goto out_unlock;
  3133. cpuset_cpus_allowed(p, cpus_allowed);
  3134. cpumask_and(new_mask, in_mask, cpus_allowed);
  3135. again:
  3136. retval = set_cpus_allowed_ptr(p, new_mask);
  3137. if (!retval) {
  3138. cpuset_cpus_allowed(p, cpus_allowed);
  3139. if (!cpumask_subset(new_mask, cpus_allowed)) {
  3140. /*
  3141. * We must have raced with a concurrent cpuset
  3142. * update. Just reset the cpus_allowed to the
  3143. * cpuset's cpus_allowed
  3144. */
  3145. cpumask_copy(new_mask, cpus_allowed);
  3146. goto again;
  3147. }
  3148. }
  3149. out_unlock:
  3150. free_cpumask_var(new_mask);
  3151. out_free_cpus_allowed:
  3152. free_cpumask_var(cpus_allowed);
  3153. out_put_task:
  3154. put_task_struct(p);
  3155. put_online_cpus();
  3156. return retval;
  3157. }
  3158. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3159. struct cpumask *new_mask)
  3160. {
  3161. if (len < cpumask_size())
  3162. cpumask_clear(new_mask);
  3163. else if (len > cpumask_size())
  3164. len = cpumask_size();
  3165. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3166. }
  3167. /**
  3168. * sys_sched_setaffinity - set the cpu affinity of a process
  3169. * @pid: pid of the process
  3170. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3171. * @user_mask_ptr: user-space pointer to the new cpu mask
  3172. *
  3173. * Return: 0 on success. An error code otherwise.
  3174. */
  3175. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  3176. unsigned long __user *, user_mask_ptr)
  3177. {
  3178. cpumask_var_t new_mask;
  3179. int retval;
  3180. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  3181. return -ENOMEM;
  3182. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  3183. if (retval == 0)
  3184. retval = sched_setaffinity(pid, new_mask);
  3185. free_cpumask_var(new_mask);
  3186. return retval;
  3187. }
  3188. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  3189. {
  3190. struct task_struct *p;
  3191. unsigned long flags;
  3192. int retval;
  3193. get_online_cpus();
  3194. rcu_read_lock();
  3195. retval = -ESRCH;
  3196. p = find_process_by_pid(pid);
  3197. if (!p)
  3198. goto out_unlock;
  3199. retval = security_task_getscheduler(p);
  3200. if (retval)
  3201. goto out_unlock;
  3202. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3203. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  3204. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3205. out_unlock:
  3206. rcu_read_unlock();
  3207. put_online_cpus();
  3208. return retval;
  3209. }
  3210. /**
  3211. * sys_sched_getaffinity - get the cpu affinity of a process
  3212. * @pid: pid of the process
  3213. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3214. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3215. *
  3216. * Return: 0 on success. An error code otherwise.
  3217. */
  3218. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  3219. unsigned long __user *, user_mask_ptr)
  3220. {
  3221. int ret;
  3222. cpumask_var_t mask;
  3223. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  3224. return -EINVAL;
  3225. if (len & (sizeof(unsigned long)-1))
  3226. return -EINVAL;
  3227. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  3228. return -ENOMEM;
  3229. ret = sched_getaffinity(pid, mask);
  3230. if (ret == 0) {
  3231. size_t retlen = min_t(size_t, len, cpumask_size());
  3232. if (copy_to_user(user_mask_ptr, mask, retlen))
  3233. ret = -EFAULT;
  3234. else
  3235. ret = retlen;
  3236. }
  3237. free_cpumask_var(mask);
  3238. return ret;
  3239. }
  3240. /**
  3241. * sys_sched_yield - yield the current processor to other threads.
  3242. *
  3243. * This function yields the current CPU to other tasks. If there are no
  3244. * other threads running on this CPU then this function will return.
  3245. *
  3246. * Return: 0.
  3247. */
  3248. SYSCALL_DEFINE0(sched_yield)
  3249. {
  3250. struct rq *rq = this_rq_lock();
  3251. schedstat_inc(rq, yld_count);
  3252. current->sched_class->yield_task(rq);
  3253. /*
  3254. * Since we are going to call schedule() anyway, there's
  3255. * no need to preempt or enable interrupts:
  3256. */
  3257. __release(rq->lock);
  3258. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3259. do_raw_spin_unlock(&rq->lock);
  3260. sched_preempt_enable_no_resched();
  3261. schedule();
  3262. return 0;
  3263. }
  3264. static void __cond_resched(void)
  3265. {
  3266. __preempt_count_add(PREEMPT_ACTIVE);
  3267. __schedule();
  3268. __preempt_count_sub(PREEMPT_ACTIVE);
  3269. }
  3270. int __sched _cond_resched(void)
  3271. {
  3272. if (should_resched()) {
  3273. __cond_resched();
  3274. return 1;
  3275. }
  3276. return 0;
  3277. }
  3278. EXPORT_SYMBOL(_cond_resched);
  3279. /*
  3280. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3281. * call schedule, and on return reacquire the lock.
  3282. *
  3283. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3284. * operations here to prevent schedule() from being called twice (once via
  3285. * spin_unlock(), once by hand).
  3286. */
  3287. int __cond_resched_lock(spinlock_t *lock)
  3288. {
  3289. int resched = should_resched();
  3290. int ret = 0;
  3291. lockdep_assert_held(lock);
  3292. if (spin_needbreak(lock) || resched) {
  3293. spin_unlock(lock);
  3294. if (resched)
  3295. __cond_resched();
  3296. else
  3297. cpu_relax();
  3298. ret = 1;
  3299. spin_lock(lock);
  3300. }
  3301. return ret;
  3302. }
  3303. EXPORT_SYMBOL(__cond_resched_lock);
  3304. int __sched __cond_resched_softirq(void)
  3305. {
  3306. BUG_ON(!in_softirq());
  3307. if (should_resched()) {
  3308. local_bh_enable();
  3309. __cond_resched();
  3310. local_bh_disable();
  3311. return 1;
  3312. }
  3313. return 0;
  3314. }
  3315. EXPORT_SYMBOL(__cond_resched_softirq);
  3316. /**
  3317. * yield - yield the current processor to other threads.
  3318. *
  3319. * Do not ever use this function, there's a 99% chance you're doing it wrong.
  3320. *
  3321. * The scheduler is at all times free to pick the calling task as the most
  3322. * eligible task to run, if removing the yield() call from your code breaks
  3323. * it, its already broken.
  3324. *
  3325. * Typical broken usage is:
  3326. *
  3327. * while (!event)
  3328. * yield();
  3329. *
  3330. * where one assumes that yield() will let 'the other' process run that will
  3331. * make event true. If the current task is a SCHED_FIFO task that will never
  3332. * happen. Never use yield() as a progress guarantee!!
  3333. *
  3334. * If you want to use yield() to wait for something, use wait_event().
  3335. * If you want to use yield() to be 'nice' for others, use cond_resched().
  3336. * If you still want to use yield(), do not!
  3337. */
  3338. void __sched yield(void)
  3339. {
  3340. set_current_state(TASK_RUNNING);
  3341. sys_sched_yield();
  3342. }
  3343. EXPORT_SYMBOL(yield);
  3344. /**
  3345. * yield_to - yield the current processor to another thread in
  3346. * your thread group, or accelerate that thread toward the
  3347. * processor it's on.
  3348. * @p: target task
  3349. * @preempt: whether task preemption is allowed or not
  3350. *
  3351. * It's the caller's job to ensure that the target task struct
  3352. * can't go away on us before we can do any checks.
  3353. *
  3354. * Return:
  3355. * true (>0) if we indeed boosted the target task.
  3356. * false (0) if we failed to boost the target.
  3357. * -ESRCH if there's no task to yield to.
  3358. */
  3359. bool __sched yield_to(struct task_struct *p, bool preempt)
  3360. {
  3361. struct task_struct *curr = current;
  3362. struct rq *rq, *p_rq;
  3363. unsigned long flags;
  3364. int yielded = 0;
  3365. local_irq_save(flags);
  3366. rq = this_rq();
  3367. again:
  3368. p_rq = task_rq(p);
  3369. /*
  3370. * If we're the only runnable task on the rq and target rq also
  3371. * has only one task, there's absolutely no point in yielding.
  3372. */
  3373. if (rq->nr_running == 1 && p_rq->nr_running == 1) {
  3374. yielded = -ESRCH;
  3375. goto out_irq;
  3376. }
  3377. double_rq_lock(rq, p_rq);
  3378. while (task_rq(p) != p_rq) {
  3379. double_rq_unlock(rq, p_rq);
  3380. goto again;
  3381. }
  3382. if (!curr->sched_class->yield_to_task)
  3383. goto out_unlock;
  3384. if (curr->sched_class != p->sched_class)
  3385. goto out_unlock;
  3386. if (task_running(p_rq, p) || p->state)
  3387. goto out_unlock;
  3388. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  3389. if (yielded) {
  3390. schedstat_inc(rq, yld_count);
  3391. /*
  3392. * Make p's CPU reschedule; pick_next_entity takes care of
  3393. * fairness.
  3394. */
  3395. if (preempt && rq != p_rq)
  3396. resched_task(p_rq->curr);
  3397. }
  3398. out_unlock:
  3399. double_rq_unlock(rq, p_rq);
  3400. out_irq:
  3401. local_irq_restore(flags);
  3402. if (yielded > 0)
  3403. schedule();
  3404. return yielded;
  3405. }
  3406. EXPORT_SYMBOL_GPL(yield_to);
  3407. /*
  3408. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  3409. * that process accounting knows that this is a task in IO wait state.
  3410. */
  3411. void __sched io_schedule(void)
  3412. {
  3413. struct rq *rq = raw_rq();
  3414. delayacct_blkio_start();
  3415. atomic_inc(&rq->nr_iowait);
  3416. blk_flush_plug(current);
  3417. current->in_iowait = 1;
  3418. schedule();
  3419. current->in_iowait = 0;
  3420. atomic_dec(&rq->nr_iowait);
  3421. delayacct_blkio_end();
  3422. }
  3423. EXPORT_SYMBOL(io_schedule);
  3424. long __sched io_schedule_timeout(long timeout)
  3425. {
  3426. struct rq *rq = raw_rq();
  3427. long ret;
  3428. delayacct_blkio_start();
  3429. atomic_inc(&rq->nr_iowait);
  3430. blk_flush_plug(current);
  3431. current->in_iowait = 1;
  3432. ret = schedule_timeout(timeout);
  3433. current->in_iowait = 0;
  3434. atomic_dec(&rq->nr_iowait);
  3435. delayacct_blkio_end();
  3436. return ret;
  3437. }
  3438. /**
  3439. * sys_sched_get_priority_max - return maximum RT priority.
  3440. * @policy: scheduling class.
  3441. *
  3442. * Return: On success, this syscall returns the maximum
  3443. * rt_priority that can be used by a given scheduling class.
  3444. * On failure, a negative error code is returned.
  3445. */
  3446. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  3447. {
  3448. int ret = -EINVAL;
  3449. switch (policy) {
  3450. case SCHED_FIFO:
  3451. case SCHED_RR:
  3452. ret = MAX_USER_RT_PRIO-1;
  3453. break;
  3454. case SCHED_NORMAL:
  3455. case SCHED_BATCH:
  3456. case SCHED_IDLE:
  3457. ret = 0;
  3458. break;
  3459. }
  3460. return ret;
  3461. }
  3462. /**
  3463. * sys_sched_get_priority_min - return minimum RT priority.
  3464. * @policy: scheduling class.
  3465. *
  3466. * Return: On success, this syscall returns the minimum
  3467. * rt_priority that can be used by a given scheduling class.
  3468. * On failure, a negative error code is returned.
  3469. */
  3470. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  3471. {
  3472. int ret = -EINVAL;
  3473. switch (policy) {
  3474. case SCHED_FIFO:
  3475. case SCHED_RR:
  3476. ret = 1;
  3477. break;
  3478. case SCHED_NORMAL:
  3479. case SCHED_BATCH:
  3480. case SCHED_IDLE:
  3481. ret = 0;
  3482. }
  3483. return ret;
  3484. }
  3485. /**
  3486. * sys_sched_rr_get_interval - return the default timeslice of a process.
  3487. * @pid: pid of the process.
  3488. * @interval: userspace pointer to the timeslice value.
  3489. *
  3490. * this syscall writes the default timeslice value of a given process
  3491. * into the user-space timespec buffer. A value of '0' means infinity.
  3492. *
  3493. * Return: On success, 0 and the timeslice is in @interval. Otherwise,
  3494. * an error code.
  3495. */
  3496. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  3497. struct timespec __user *, interval)
  3498. {
  3499. struct task_struct *p;
  3500. unsigned int time_slice;
  3501. unsigned long flags;
  3502. struct rq *rq;
  3503. int retval;
  3504. struct timespec t;
  3505. if (pid < 0)
  3506. return -EINVAL;
  3507. retval = -ESRCH;
  3508. rcu_read_lock();
  3509. p = find_process_by_pid(pid);
  3510. if (!p)
  3511. goto out_unlock;
  3512. retval = security_task_getscheduler(p);
  3513. if (retval)
  3514. goto out_unlock;
  3515. rq = task_rq_lock(p, &flags);
  3516. time_slice = p->sched_class->get_rr_interval(rq, p);
  3517. task_rq_unlock(rq, p, &flags);
  3518. rcu_read_unlock();
  3519. jiffies_to_timespec(time_slice, &t);
  3520. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  3521. return retval;
  3522. out_unlock:
  3523. rcu_read_unlock();
  3524. return retval;
  3525. }
  3526. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  3527. void sched_show_task(struct task_struct *p)
  3528. {
  3529. unsigned long free = 0;
  3530. int ppid;
  3531. unsigned state;
  3532. state = p->state ? __ffs(p->state) + 1 : 0;
  3533. printk(KERN_INFO "%-15.15s %c", p->comm,
  3534. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  3535. #if BITS_PER_LONG == 32
  3536. if (state == TASK_RUNNING)
  3537. printk(KERN_CONT " running ");
  3538. else
  3539. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  3540. #else
  3541. if (state == TASK_RUNNING)
  3542. printk(KERN_CONT " running task ");
  3543. else
  3544. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  3545. #endif
  3546. #ifdef CONFIG_DEBUG_STACK_USAGE
  3547. free = stack_not_used(p);
  3548. #endif
  3549. rcu_read_lock();
  3550. ppid = task_pid_nr(rcu_dereference(p->real_parent));
  3551. rcu_read_unlock();
  3552. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  3553. task_pid_nr(p), ppid,
  3554. (unsigned long)task_thread_info(p)->flags);
  3555. print_worker_info(KERN_INFO, p);
  3556. show_stack(p, NULL);
  3557. }
  3558. void show_state_filter(unsigned long state_filter)
  3559. {
  3560. struct task_struct *g, *p;
  3561. #if BITS_PER_LONG == 32
  3562. printk(KERN_INFO
  3563. " task PC stack pid father\n");
  3564. #else
  3565. printk(KERN_INFO
  3566. " task PC stack pid father\n");
  3567. #endif
  3568. rcu_read_lock();
  3569. do_each_thread(g, p) {
  3570. /*
  3571. * reset the NMI-timeout, listing all files on a slow
  3572. * console might take a lot of time:
  3573. */
  3574. touch_nmi_watchdog();
  3575. if (!state_filter || (p->state & state_filter))
  3576. sched_show_task(p);
  3577. } while_each_thread(g, p);
  3578. touch_all_softlockup_watchdogs();
  3579. #ifdef CONFIG_SCHED_DEBUG
  3580. sysrq_sched_debug_show();
  3581. #endif
  3582. rcu_read_unlock();
  3583. /*
  3584. * Only show locks if all tasks are dumped:
  3585. */
  3586. if (!state_filter)
  3587. debug_show_all_locks();
  3588. }
  3589. void init_idle_bootup_task(struct task_struct *idle)
  3590. {
  3591. idle->sched_class = &idle_sched_class;
  3592. }
  3593. /**
  3594. * init_idle - set up an idle thread for a given CPU
  3595. * @idle: task in question
  3596. * @cpu: cpu the idle task belongs to
  3597. *
  3598. * NOTE: this function does not set the idle thread's NEED_RESCHED
  3599. * flag, to make booting more robust.
  3600. */
  3601. void init_idle(struct task_struct *idle, int cpu)
  3602. {
  3603. struct rq *rq = cpu_rq(cpu);
  3604. unsigned long flags;
  3605. raw_spin_lock_irqsave(&rq->lock, flags);
  3606. __sched_fork(idle);
  3607. idle->state = TASK_RUNNING;
  3608. idle->se.exec_start = sched_clock();
  3609. do_set_cpus_allowed(idle, cpumask_of(cpu));
  3610. /*
  3611. * We're having a chicken and egg problem, even though we are
  3612. * holding rq->lock, the cpu isn't yet set to this cpu so the
  3613. * lockdep check in task_group() will fail.
  3614. *
  3615. * Similar case to sched_fork(). / Alternatively we could
  3616. * use task_rq_lock() here and obtain the other rq->lock.
  3617. *
  3618. * Silence PROVE_RCU
  3619. */
  3620. rcu_read_lock();
  3621. __set_task_cpu(idle, cpu);
  3622. rcu_read_unlock();
  3623. rq->curr = rq->idle = idle;
  3624. #if defined(CONFIG_SMP)
  3625. idle->on_cpu = 1;
  3626. #endif
  3627. raw_spin_unlock_irqrestore(&rq->lock, flags);
  3628. /* Set the preempt count _outside_ the spinlocks! */
  3629. init_idle_preempt_count(idle, cpu);
  3630. /*
  3631. * The idle tasks have their own, simple scheduling class:
  3632. */
  3633. idle->sched_class = &idle_sched_class;
  3634. ftrace_graph_init_idle_task(idle, cpu);
  3635. vtime_init_idle(idle, cpu);
  3636. #if defined(CONFIG_SMP)
  3637. sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
  3638. #endif
  3639. }
  3640. #ifdef CONFIG_SMP
  3641. void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
  3642. {
  3643. if (p->sched_class && p->sched_class->set_cpus_allowed)
  3644. p->sched_class->set_cpus_allowed(p, new_mask);
  3645. cpumask_copy(&p->cpus_allowed, new_mask);
  3646. p->nr_cpus_allowed = cpumask_weight(new_mask);
  3647. }
  3648. /*
  3649. * This is how migration works:
  3650. *
  3651. * 1) we invoke migration_cpu_stop() on the target CPU using
  3652. * stop_one_cpu().
  3653. * 2) stopper starts to run (implicitly forcing the migrated thread
  3654. * off the CPU)
  3655. * 3) it checks whether the migrated task is still in the wrong runqueue.
  3656. * 4) if it's in the wrong runqueue then the migration thread removes
  3657. * it and puts it into the right queue.
  3658. * 5) stopper completes and stop_one_cpu() returns and the migration
  3659. * is done.
  3660. */
  3661. /*
  3662. * Change a given task's CPU affinity. Migrate the thread to a
  3663. * proper CPU and schedule it away if the CPU it's executing on
  3664. * is removed from the allowed bitmask.
  3665. *
  3666. * NOTE: the caller must have a valid reference to the task, the
  3667. * task must not exit() & deallocate itself prematurely. The
  3668. * call is not atomic; no spinlocks may be held.
  3669. */
  3670. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  3671. {
  3672. unsigned long flags;
  3673. struct rq *rq;
  3674. unsigned int dest_cpu;
  3675. int ret = 0;
  3676. rq = task_rq_lock(p, &flags);
  3677. if (cpumask_equal(&p->cpus_allowed, new_mask))
  3678. goto out;
  3679. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  3680. ret = -EINVAL;
  3681. goto out;
  3682. }
  3683. do_set_cpus_allowed(p, new_mask);
  3684. /* Can the task run on the task's current CPU? If so, we're done */
  3685. if (cpumask_test_cpu(task_cpu(p), new_mask))
  3686. goto out;
  3687. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  3688. if (p->on_rq) {
  3689. struct migration_arg arg = { p, dest_cpu };
  3690. /* Need help from migration thread: drop lock and wait. */
  3691. task_rq_unlock(rq, p, &flags);
  3692. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  3693. tlb_migrate_finish(p->mm);
  3694. return 0;
  3695. }
  3696. out:
  3697. task_rq_unlock(rq, p, &flags);
  3698. return ret;
  3699. }
  3700. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  3701. /*
  3702. * Move (not current) task off this cpu, onto dest cpu. We're doing
  3703. * this because either it can't run here any more (set_cpus_allowed()
  3704. * away from this CPU, or CPU going down), or because we're
  3705. * attempting to rebalance this task on exec (sched_exec).
  3706. *
  3707. * So we race with normal scheduler movements, but that's OK, as long
  3708. * as the task is no longer on this CPU.
  3709. *
  3710. * Returns non-zero if task was successfully migrated.
  3711. */
  3712. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  3713. {
  3714. struct rq *rq_dest, *rq_src;
  3715. int ret = 0;
  3716. if (unlikely(!cpu_active(dest_cpu)))
  3717. return ret;
  3718. rq_src = cpu_rq(src_cpu);
  3719. rq_dest = cpu_rq(dest_cpu);
  3720. raw_spin_lock(&p->pi_lock);
  3721. double_rq_lock(rq_src, rq_dest);
  3722. /* Already moved. */
  3723. if (task_cpu(p) != src_cpu)
  3724. goto done;
  3725. /* Affinity changed (again). */
  3726. if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  3727. goto fail;
  3728. /*
  3729. * If we're not on a rq, the next wake-up will ensure we're
  3730. * placed properly.
  3731. */
  3732. if (p->on_rq) {
  3733. dequeue_task(rq_src, p, 0);
  3734. set_task_cpu(p, dest_cpu);
  3735. enqueue_task(rq_dest, p, 0);
  3736. check_preempt_curr(rq_dest, p, 0);
  3737. }
  3738. done:
  3739. ret = 1;
  3740. fail:
  3741. double_rq_unlock(rq_src, rq_dest);
  3742. raw_spin_unlock(&p->pi_lock);
  3743. return ret;
  3744. }
  3745. /*
  3746. * migration_cpu_stop - this will be executed by a highprio stopper thread
  3747. * and performs thread migration by bumping thread off CPU then
  3748. * 'pushing' onto another runqueue.
  3749. */
  3750. static int migration_cpu_stop(void *data)
  3751. {
  3752. struct migration_arg *arg = data;
  3753. /*
  3754. * The original target cpu might have gone down and we might
  3755. * be on another cpu but it doesn't matter.
  3756. */
  3757. local_irq_disable();
  3758. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  3759. local_irq_enable();
  3760. return 0;
  3761. }
  3762. #ifdef CONFIG_HOTPLUG_CPU
  3763. /*
  3764. * Ensures that the idle task is using init_mm right before its cpu goes
  3765. * offline.
  3766. */
  3767. void idle_task_exit(void)
  3768. {
  3769. struct mm_struct *mm = current->active_mm;
  3770. BUG_ON(cpu_online(smp_processor_id()));
  3771. if (mm != &init_mm)
  3772. switch_mm(mm, &init_mm, current);
  3773. mmdrop(mm);
  3774. }
  3775. /*
  3776. * Since this CPU is going 'away' for a while, fold any nr_active delta
  3777. * we might have. Assumes we're called after migrate_tasks() so that the
  3778. * nr_active count is stable.
  3779. *
  3780. * Also see the comment "Global load-average calculations".
  3781. */
  3782. static void calc_load_migrate(struct rq *rq)
  3783. {
  3784. long delta = calc_load_fold_active(rq);
  3785. if (delta)
  3786. atomic_long_add(delta, &calc_load_tasks);
  3787. }
  3788. /*
  3789. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  3790. * try_to_wake_up()->select_task_rq().
  3791. *
  3792. * Called with rq->lock held even though we'er in stop_machine() and
  3793. * there's no concurrency possible, we hold the required locks anyway
  3794. * because of lock validation efforts.
  3795. */
  3796. static void migrate_tasks(unsigned int dead_cpu)
  3797. {
  3798. struct rq *rq = cpu_rq(dead_cpu);
  3799. struct task_struct *next, *stop = rq->stop;
  3800. int dest_cpu;
  3801. /*
  3802. * Fudge the rq selection such that the below task selection loop
  3803. * doesn't get stuck on the currently eligible stop task.
  3804. *
  3805. * We're currently inside stop_machine() and the rq is either stuck
  3806. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  3807. * either way we should never end up calling schedule() until we're
  3808. * done here.
  3809. */
  3810. rq->stop = NULL;
  3811. /*
  3812. * put_prev_task() and pick_next_task() sched
  3813. * class method both need to have an up-to-date
  3814. * value of rq->clock[_task]
  3815. */
  3816. update_rq_clock(rq);
  3817. for ( ; ; ) {
  3818. /*
  3819. * There's this thread running, bail when that's the only
  3820. * remaining thread.
  3821. */
  3822. if (rq->nr_running == 1)
  3823. break;
  3824. next = pick_next_task(rq);
  3825. BUG_ON(!next);
  3826. next->sched_class->put_prev_task(rq, next);
  3827. /* Find suitable destination for @next, with force if needed. */
  3828. dest_cpu = select_fallback_rq(dead_cpu, next);
  3829. raw_spin_unlock(&rq->lock);
  3830. __migrate_task(next, dead_cpu, dest_cpu);
  3831. raw_spin_lock(&rq->lock);
  3832. }
  3833. rq->stop = stop;
  3834. }
  3835. #endif /* CONFIG_HOTPLUG_CPU */
  3836. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  3837. static struct ctl_table sd_ctl_dir[] = {
  3838. {
  3839. .procname = "sched_domain",
  3840. .mode = 0555,
  3841. },
  3842. {}
  3843. };
  3844. static struct ctl_table sd_ctl_root[] = {
  3845. {
  3846. .procname = "kernel",
  3847. .mode = 0555,
  3848. .child = sd_ctl_dir,
  3849. },
  3850. {}
  3851. };
  3852. static struct ctl_table *sd_alloc_ctl_entry(int n)
  3853. {
  3854. struct ctl_table *entry =
  3855. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  3856. return entry;
  3857. }
  3858. static void sd_free_ctl_entry(struct ctl_table **tablep)
  3859. {
  3860. struct ctl_table *entry;
  3861. /*
  3862. * In the intermediate directories, both the child directory and
  3863. * procname are dynamically allocated and could fail but the mode
  3864. * will always be set. In the lowest directory the names are
  3865. * static strings and all have proc handlers.
  3866. */
  3867. for (entry = *tablep; entry->mode; entry++) {
  3868. if (entry->child)
  3869. sd_free_ctl_entry(&entry->child);
  3870. if (entry->proc_handler == NULL)
  3871. kfree(entry->procname);
  3872. }
  3873. kfree(*tablep);
  3874. *tablep = NULL;
  3875. }
  3876. static int min_load_idx = 0;
  3877. static int max_load_idx = CPU_LOAD_IDX_MAX-1;
  3878. static void
  3879. set_table_entry(struct ctl_table *entry,
  3880. const char *procname, void *data, int maxlen,
  3881. umode_t mode, proc_handler *proc_handler,
  3882. bool load_idx)
  3883. {
  3884. entry->procname = procname;
  3885. entry->data = data;
  3886. entry->maxlen = maxlen;
  3887. entry->mode = mode;
  3888. entry->proc_handler = proc_handler;
  3889. if (load_idx) {
  3890. entry->extra1 = &min_load_idx;
  3891. entry->extra2 = &max_load_idx;
  3892. }
  3893. }
  3894. static struct ctl_table *
  3895. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  3896. {
  3897. struct ctl_table *table = sd_alloc_ctl_entry(13);
  3898. if (table == NULL)
  3899. return NULL;
  3900. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  3901. sizeof(long), 0644, proc_doulongvec_minmax, false);
  3902. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  3903. sizeof(long), 0644, proc_doulongvec_minmax, false);
  3904. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  3905. sizeof(int), 0644, proc_dointvec_minmax, true);
  3906. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  3907. sizeof(int), 0644, proc_dointvec_minmax, true);
  3908. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  3909. sizeof(int), 0644, proc_dointvec_minmax, true);
  3910. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  3911. sizeof(int), 0644, proc_dointvec_minmax, true);
  3912. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  3913. sizeof(int), 0644, proc_dointvec_minmax, true);
  3914. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  3915. sizeof(int), 0644, proc_dointvec_minmax, false);
  3916. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  3917. sizeof(int), 0644, proc_dointvec_minmax, false);
  3918. set_table_entry(&table[9], "cache_nice_tries",
  3919. &sd->cache_nice_tries,
  3920. sizeof(int), 0644, proc_dointvec_minmax, false);
  3921. set_table_entry(&table[10], "flags", &sd->flags,
  3922. sizeof(int), 0644, proc_dointvec_minmax, false);
  3923. set_table_entry(&table[11], "name", sd->name,
  3924. CORENAME_MAX_SIZE, 0444, proc_dostring, false);
  3925. /* &table[12] is terminator */
  3926. return table;
  3927. }
  3928. static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  3929. {
  3930. struct ctl_table *entry, *table;
  3931. struct sched_domain *sd;
  3932. int domain_num = 0, i;
  3933. char buf[32];
  3934. for_each_domain(cpu, sd)
  3935. domain_num++;
  3936. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  3937. if (table == NULL)
  3938. return NULL;
  3939. i = 0;
  3940. for_each_domain(cpu, sd) {
  3941. snprintf(buf, 32, "domain%d", i);
  3942. entry->procname = kstrdup(buf, GFP_KERNEL);
  3943. entry->mode = 0555;
  3944. entry->child = sd_alloc_ctl_domain_table(sd);
  3945. entry++;
  3946. i++;
  3947. }
  3948. return table;
  3949. }
  3950. static struct ctl_table_header *sd_sysctl_header;
  3951. static void register_sched_domain_sysctl(void)
  3952. {
  3953. int i, cpu_num = num_possible_cpus();
  3954. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  3955. char buf[32];
  3956. WARN_ON(sd_ctl_dir[0].child);
  3957. sd_ctl_dir[0].child = entry;
  3958. if (entry == NULL)
  3959. return;
  3960. for_each_possible_cpu(i) {
  3961. snprintf(buf, 32, "cpu%d", i);
  3962. entry->procname = kstrdup(buf, GFP_KERNEL);
  3963. entry->mode = 0555;
  3964. entry->child = sd_alloc_ctl_cpu_table(i);
  3965. entry++;
  3966. }
  3967. WARN_ON(sd_sysctl_header);
  3968. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  3969. }
  3970. /* may be called multiple times per register */
  3971. static void unregister_sched_domain_sysctl(void)
  3972. {
  3973. if (sd_sysctl_header)
  3974. unregister_sysctl_table(sd_sysctl_header);
  3975. sd_sysctl_header = NULL;
  3976. if (sd_ctl_dir[0].child)
  3977. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  3978. }
  3979. #else
  3980. static void register_sched_domain_sysctl(void)
  3981. {
  3982. }
  3983. static void unregister_sched_domain_sysctl(void)
  3984. {
  3985. }
  3986. #endif
  3987. static void set_rq_online(struct rq *rq)
  3988. {
  3989. if (!rq->online) {
  3990. const struct sched_class *class;
  3991. cpumask_set_cpu(rq->cpu, rq->rd->online);
  3992. rq->online = 1;
  3993. for_each_class(class) {
  3994. if (class->rq_online)
  3995. class->rq_online(rq);
  3996. }
  3997. }
  3998. }
  3999. static void set_rq_offline(struct rq *rq)
  4000. {
  4001. if (rq->online) {
  4002. const struct sched_class *class;
  4003. for_each_class(class) {
  4004. if (class->rq_offline)
  4005. class->rq_offline(rq);
  4006. }
  4007. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  4008. rq->online = 0;
  4009. }
  4010. }
  4011. /*
  4012. * migration_call - callback that gets triggered when a CPU is added.
  4013. * Here we can start up the necessary migration thread for the new CPU.
  4014. */
  4015. static int
  4016. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4017. {
  4018. int cpu = (long)hcpu;
  4019. unsigned long flags;
  4020. struct rq *rq = cpu_rq(cpu);
  4021. switch (action & ~CPU_TASKS_FROZEN) {
  4022. case CPU_UP_PREPARE:
  4023. rq->calc_load_update = calc_load_update;
  4024. break;
  4025. case CPU_ONLINE:
  4026. /* Update our root-domain */
  4027. raw_spin_lock_irqsave(&rq->lock, flags);
  4028. if (rq->rd) {
  4029. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4030. set_rq_online(rq);
  4031. }
  4032. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4033. break;
  4034. #ifdef CONFIG_HOTPLUG_CPU
  4035. case CPU_DYING:
  4036. sched_ttwu_pending();
  4037. /* Update our root-domain */
  4038. raw_spin_lock_irqsave(&rq->lock, flags);
  4039. if (rq->rd) {
  4040. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4041. set_rq_offline(rq);
  4042. }
  4043. migrate_tasks(cpu);
  4044. BUG_ON(rq->nr_running != 1); /* the migration thread */
  4045. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4046. break;
  4047. case CPU_DEAD:
  4048. calc_load_migrate(rq);
  4049. break;
  4050. #endif
  4051. }
  4052. update_max_interval();
  4053. return NOTIFY_OK;
  4054. }
  4055. /*
  4056. * Register at high priority so that task migration (migrate_all_tasks)
  4057. * happens before everything else. This has to be lower priority than
  4058. * the notifier in the perf_event subsystem, though.
  4059. */
  4060. static struct notifier_block migration_notifier = {
  4061. .notifier_call = migration_call,
  4062. .priority = CPU_PRI_MIGRATION,
  4063. };
  4064. static int sched_cpu_active(struct notifier_block *nfb,
  4065. unsigned long action, void *hcpu)
  4066. {
  4067. switch (action & ~CPU_TASKS_FROZEN) {
  4068. case CPU_STARTING:
  4069. case CPU_DOWN_FAILED:
  4070. set_cpu_active((long)hcpu, true);
  4071. return NOTIFY_OK;
  4072. default:
  4073. return NOTIFY_DONE;
  4074. }
  4075. }
  4076. static int sched_cpu_inactive(struct notifier_block *nfb,
  4077. unsigned long action, void *hcpu)
  4078. {
  4079. switch (action & ~CPU_TASKS_FROZEN) {
  4080. case CPU_DOWN_PREPARE:
  4081. set_cpu_active((long)hcpu, false);
  4082. return NOTIFY_OK;
  4083. default:
  4084. return NOTIFY_DONE;
  4085. }
  4086. }
  4087. static int __init migration_init(void)
  4088. {
  4089. void *cpu = (void *)(long)smp_processor_id();
  4090. int err;
  4091. /* Initialize migration for the boot CPU */
  4092. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4093. BUG_ON(err == NOTIFY_BAD);
  4094. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4095. register_cpu_notifier(&migration_notifier);
  4096. /* Register cpu active notifiers */
  4097. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  4098. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  4099. return 0;
  4100. }
  4101. early_initcall(migration_init);
  4102. #endif
  4103. #ifdef CONFIG_SMP
  4104. static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
  4105. #ifdef CONFIG_SCHED_DEBUG
  4106. static __read_mostly int sched_debug_enabled;
  4107. static int __init sched_debug_setup(char *str)
  4108. {
  4109. sched_debug_enabled = 1;
  4110. return 0;
  4111. }
  4112. early_param("sched_debug", sched_debug_setup);
  4113. static inline bool sched_debug(void)
  4114. {
  4115. return sched_debug_enabled;
  4116. }
  4117. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  4118. struct cpumask *groupmask)
  4119. {
  4120. struct sched_group *group = sd->groups;
  4121. char str[256];
  4122. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  4123. cpumask_clear(groupmask);
  4124. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  4125. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4126. printk("does not load-balance\n");
  4127. if (sd->parent)
  4128. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4129. " has parent");
  4130. return -1;
  4131. }
  4132. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  4133. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  4134. printk(KERN_ERR "ERROR: domain->span does not contain "
  4135. "CPU%d\n", cpu);
  4136. }
  4137. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  4138. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4139. " CPU%d\n", cpu);
  4140. }
  4141. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  4142. do {
  4143. if (!group) {
  4144. printk("\n");
  4145. printk(KERN_ERR "ERROR: group is NULL\n");
  4146. break;
  4147. }
  4148. /*
  4149. * Even though we initialize ->power to something semi-sane,
  4150. * we leave power_orig unset. This allows us to detect if
  4151. * domain iteration is still funny without causing /0 traps.
  4152. */
  4153. if (!group->sgp->power_orig) {
  4154. printk(KERN_CONT "\n");
  4155. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4156. "set\n");
  4157. break;
  4158. }
  4159. if (!cpumask_weight(sched_group_cpus(group))) {
  4160. printk(KERN_CONT "\n");
  4161. printk(KERN_ERR "ERROR: empty group\n");
  4162. break;
  4163. }
  4164. if (!(sd->flags & SD_OVERLAP) &&
  4165. cpumask_intersects(groupmask, sched_group_cpus(group))) {
  4166. printk(KERN_CONT "\n");
  4167. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4168. break;
  4169. }
  4170. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  4171. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  4172. printk(KERN_CONT " %s", str);
  4173. if (group->sgp->power != SCHED_POWER_SCALE) {
  4174. printk(KERN_CONT " (cpu_power = %d)",
  4175. group->sgp->power);
  4176. }
  4177. group = group->next;
  4178. } while (group != sd->groups);
  4179. printk(KERN_CONT "\n");
  4180. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  4181. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  4182. if (sd->parent &&
  4183. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  4184. printk(KERN_ERR "ERROR: parent span is not a superset "
  4185. "of domain->span\n");
  4186. return 0;
  4187. }
  4188. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4189. {
  4190. int level = 0;
  4191. if (!sched_debug_enabled)
  4192. return;
  4193. if (!sd) {
  4194. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4195. return;
  4196. }
  4197. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4198. for (;;) {
  4199. if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
  4200. break;
  4201. level++;
  4202. sd = sd->parent;
  4203. if (!sd)
  4204. break;
  4205. }
  4206. }
  4207. #else /* !CONFIG_SCHED_DEBUG */
  4208. # define sched_domain_debug(sd, cpu) do { } while (0)
  4209. static inline bool sched_debug(void)
  4210. {
  4211. return false;
  4212. }
  4213. #endif /* CONFIG_SCHED_DEBUG */
  4214. static int sd_degenerate(struct sched_domain *sd)
  4215. {
  4216. if (cpumask_weight(sched_domain_span(sd)) == 1)
  4217. return 1;
  4218. /* Following flags need at least 2 groups */
  4219. if (sd->flags & (SD_LOAD_BALANCE |
  4220. SD_BALANCE_NEWIDLE |
  4221. SD_BALANCE_FORK |
  4222. SD_BALANCE_EXEC |
  4223. SD_SHARE_CPUPOWER |
  4224. SD_SHARE_PKG_RESOURCES)) {
  4225. if (sd->groups != sd->groups->next)
  4226. return 0;
  4227. }
  4228. /* Following flags don't use groups */
  4229. if (sd->flags & (SD_WAKE_AFFINE))
  4230. return 0;
  4231. return 1;
  4232. }
  4233. static int
  4234. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4235. {
  4236. unsigned long cflags = sd->flags, pflags = parent->flags;
  4237. if (sd_degenerate(parent))
  4238. return 1;
  4239. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  4240. return 0;
  4241. /* Flags needing groups don't count if only 1 group in parent */
  4242. if (parent->groups == parent->groups->next) {
  4243. pflags &= ~(SD_LOAD_BALANCE |
  4244. SD_BALANCE_NEWIDLE |
  4245. SD_BALANCE_FORK |
  4246. SD_BALANCE_EXEC |
  4247. SD_SHARE_CPUPOWER |
  4248. SD_SHARE_PKG_RESOURCES |
  4249. SD_PREFER_SIBLING);
  4250. if (nr_node_ids == 1)
  4251. pflags &= ~SD_SERIALIZE;
  4252. }
  4253. if (~cflags & pflags)
  4254. return 0;
  4255. return 1;
  4256. }
  4257. static void free_rootdomain(struct rcu_head *rcu)
  4258. {
  4259. struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
  4260. cpupri_cleanup(&rd->cpupri);
  4261. free_cpumask_var(rd->rto_mask);
  4262. free_cpumask_var(rd->online);
  4263. free_cpumask_var(rd->span);
  4264. kfree(rd);
  4265. }
  4266. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  4267. {
  4268. struct root_domain *old_rd = NULL;
  4269. unsigned long flags;
  4270. raw_spin_lock_irqsave(&rq->lock, flags);
  4271. if (rq->rd) {
  4272. old_rd = rq->rd;
  4273. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  4274. set_rq_offline(rq);
  4275. cpumask_clear_cpu(rq->cpu, old_rd->span);
  4276. /*
  4277. * If we dont want to free the old_rt yet then
  4278. * set old_rd to NULL to skip the freeing later
  4279. * in this function:
  4280. */
  4281. if (!atomic_dec_and_test(&old_rd->refcount))
  4282. old_rd = NULL;
  4283. }
  4284. atomic_inc(&rd->refcount);
  4285. rq->rd = rd;
  4286. cpumask_set_cpu(rq->cpu, rd->span);
  4287. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  4288. set_rq_online(rq);
  4289. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4290. if (old_rd)
  4291. call_rcu_sched(&old_rd->rcu, free_rootdomain);
  4292. }
  4293. static int init_rootdomain(struct root_domain *rd)
  4294. {
  4295. memset(rd, 0, sizeof(*rd));
  4296. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  4297. goto out;
  4298. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  4299. goto free_span;
  4300. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  4301. goto free_online;
  4302. if (cpupri_init(&rd->cpupri) != 0)
  4303. goto free_rto_mask;
  4304. return 0;
  4305. free_rto_mask:
  4306. free_cpumask_var(rd->rto_mask);
  4307. free_online:
  4308. free_cpumask_var(rd->online);
  4309. free_span:
  4310. free_cpumask_var(rd->span);
  4311. out:
  4312. return -ENOMEM;
  4313. }
  4314. /*
  4315. * By default the system creates a single root-domain with all cpus as
  4316. * members (mimicking the global state we have today).
  4317. */
  4318. struct root_domain def_root_domain;
  4319. static void init_defrootdomain(void)
  4320. {
  4321. init_rootdomain(&def_root_domain);
  4322. atomic_set(&def_root_domain.refcount, 1);
  4323. }
  4324. static struct root_domain *alloc_rootdomain(void)
  4325. {
  4326. struct root_domain *rd;
  4327. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  4328. if (!rd)
  4329. return NULL;
  4330. if (init_rootdomain(rd) != 0) {
  4331. kfree(rd);
  4332. return NULL;
  4333. }
  4334. return rd;
  4335. }
  4336. static void free_sched_groups(struct sched_group *sg, int free_sgp)
  4337. {
  4338. struct sched_group *tmp, *first;
  4339. if (!sg)
  4340. return;
  4341. first = sg;
  4342. do {
  4343. tmp = sg->next;
  4344. if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
  4345. kfree(sg->sgp);
  4346. kfree(sg);
  4347. sg = tmp;
  4348. } while (sg != first);
  4349. }
  4350. static void free_sched_domain(struct rcu_head *rcu)
  4351. {
  4352. struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
  4353. /*
  4354. * If its an overlapping domain it has private groups, iterate and
  4355. * nuke them all.
  4356. */
  4357. if (sd->flags & SD_OVERLAP) {
  4358. free_sched_groups(sd->groups, 1);
  4359. } else if (atomic_dec_and_test(&sd->groups->ref)) {
  4360. kfree(sd->groups->sgp);
  4361. kfree(sd->groups);
  4362. }
  4363. kfree(sd);
  4364. }
  4365. static void destroy_sched_domain(struct sched_domain *sd, int cpu)
  4366. {
  4367. call_rcu(&sd->rcu, free_sched_domain);
  4368. }
  4369. static void destroy_sched_domains(struct sched_domain *sd, int cpu)
  4370. {
  4371. for (; sd; sd = sd->parent)
  4372. destroy_sched_domain(sd, cpu);
  4373. }
  4374. /*
  4375. * Keep a special pointer to the highest sched_domain that has
  4376. * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
  4377. * allows us to avoid some pointer chasing select_idle_sibling().
  4378. *
  4379. * Also keep a unique ID per domain (we use the first cpu number in
  4380. * the cpumask of the domain), this allows us to quickly tell if
  4381. * two cpus are in the same cache domain, see cpus_share_cache().
  4382. */
  4383. DEFINE_PER_CPU(struct sched_domain *, sd_llc);
  4384. DEFINE_PER_CPU(int, sd_llc_size);
  4385. DEFINE_PER_CPU(int, sd_llc_id);
  4386. static void update_top_cache_domain(int cpu)
  4387. {
  4388. struct sched_domain *sd;
  4389. int id = cpu;
  4390. int size = 1;
  4391. sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
  4392. if (sd) {
  4393. id = cpumask_first(sched_domain_span(sd));
  4394. size = cpumask_weight(sched_domain_span(sd));
  4395. }
  4396. rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
  4397. per_cpu(sd_llc_size, cpu) = size;
  4398. per_cpu(sd_llc_id, cpu) = id;
  4399. }
  4400. /*
  4401. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4402. * hold the hotplug lock.
  4403. */
  4404. static void
  4405. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  4406. {
  4407. struct rq *rq = cpu_rq(cpu);
  4408. struct sched_domain *tmp;
  4409. /* Remove the sched domains which do not contribute to scheduling. */
  4410. for (tmp = sd; tmp; ) {
  4411. struct sched_domain *parent = tmp->parent;
  4412. if (!parent)
  4413. break;
  4414. if (sd_parent_degenerate(tmp, parent)) {
  4415. tmp->parent = parent->parent;
  4416. if (parent->parent)
  4417. parent->parent->child = tmp;
  4418. /*
  4419. * Transfer SD_PREFER_SIBLING down in case of a
  4420. * degenerate parent; the spans match for this
  4421. * so the property transfers.
  4422. */
  4423. if (parent->flags & SD_PREFER_SIBLING)
  4424. tmp->flags |= SD_PREFER_SIBLING;
  4425. destroy_sched_domain(parent, cpu);
  4426. } else
  4427. tmp = tmp->parent;
  4428. }
  4429. if (sd && sd_degenerate(sd)) {
  4430. tmp = sd;
  4431. sd = sd->parent;
  4432. destroy_sched_domain(tmp, cpu);
  4433. if (sd)
  4434. sd->child = NULL;
  4435. }
  4436. sched_domain_debug(sd, cpu);
  4437. rq_attach_root(rq, rd);
  4438. tmp = rq->sd;
  4439. rcu_assign_pointer(rq->sd, sd);
  4440. destroy_sched_domains(tmp, cpu);
  4441. update_top_cache_domain(cpu);
  4442. }
  4443. /* cpus with isolated domains */
  4444. static cpumask_var_t cpu_isolated_map;
  4445. /* Setup the mask of cpus configured for isolated domains */
  4446. static int __init isolated_cpu_setup(char *str)
  4447. {
  4448. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  4449. cpulist_parse(str, cpu_isolated_map);
  4450. return 1;
  4451. }
  4452. __setup("isolcpus=", isolated_cpu_setup);
  4453. static const struct cpumask *cpu_cpu_mask(int cpu)
  4454. {
  4455. return cpumask_of_node(cpu_to_node(cpu));
  4456. }
  4457. struct sd_data {
  4458. struct sched_domain **__percpu sd;
  4459. struct sched_group **__percpu sg;
  4460. struct sched_group_power **__percpu sgp;
  4461. };
  4462. struct s_data {
  4463. struct sched_domain ** __percpu sd;
  4464. struct root_domain *rd;
  4465. };
  4466. enum s_alloc {
  4467. sa_rootdomain,
  4468. sa_sd,
  4469. sa_sd_storage,
  4470. sa_none,
  4471. };
  4472. struct sched_domain_topology_level;
  4473. typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
  4474. typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
  4475. #define SDTL_OVERLAP 0x01
  4476. struct sched_domain_topology_level {
  4477. sched_domain_init_f init;
  4478. sched_domain_mask_f mask;
  4479. int flags;
  4480. int numa_level;
  4481. struct sd_data data;
  4482. };
  4483. /*
  4484. * Build an iteration mask that can exclude certain CPUs from the upwards
  4485. * domain traversal.
  4486. *
  4487. * Asymmetric node setups can result in situations where the domain tree is of
  4488. * unequal depth, make sure to skip domains that already cover the entire
  4489. * range.
  4490. *
  4491. * In that case build_sched_domains() will have terminated the iteration early
  4492. * and our sibling sd spans will be empty. Domains should always include the
  4493. * cpu they're built on, so check that.
  4494. *
  4495. */
  4496. static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
  4497. {
  4498. const struct cpumask *span = sched_domain_span(sd);
  4499. struct sd_data *sdd = sd->private;
  4500. struct sched_domain *sibling;
  4501. int i;
  4502. for_each_cpu(i, span) {
  4503. sibling = *per_cpu_ptr(sdd->sd, i);
  4504. if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
  4505. continue;
  4506. cpumask_set_cpu(i, sched_group_mask(sg));
  4507. }
  4508. }
  4509. /*
  4510. * Return the canonical balance cpu for this group, this is the first cpu
  4511. * of this group that's also in the iteration mask.
  4512. */
  4513. int group_balance_cpu(struct sched_group *sg)
  4514. {
  4515. return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
  4516. }
  4517. static int
  4518. build_overlap_sched_groups(struct sched_domain *sd, int cpu)
  4519. {
  4520. struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
  4521. const struct cpumask *span = sched_domain_span(sd);
  4522. struct cpumask *covered = sched_domains_tmpmask;
  4523. struct sd_data *sdd = sd->private;
  4524. struct sched_domain *child;
  4525. int i;
  4526. cpumask_clear(covered);
  4527. for_each_cpu(i, span) {
  4528. struct cpumask *sg_span;
  4529. if (cpumask_test_cpu(i, covered))
  4530. continue;
  4531. child = *per_cpu_ptr(sdd->sd, i);
  4532. /* See the comment near build_group_mask(). */
  4533. if (!cpumask_test_cpu(i, sched_domain_span(child)))
  4534. continue;
  4535. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  4536. GFP_KERNEL, cpu_to_node(cpu));
  4537. if (!sg)
  4538. goto fail;
  4539. sg_span = sched_group_cpus(sg);
  4540. if (child->child) {
  4541. child = child->child;
  4542. cpumask_copy(sg_span, sched_domain_span(child));
  4543. } else
  4544. cpumask_set_cpu(i, sg_span);
  4545. cpumask_or(covered, covered, sg_span);
  4546. sg->sgp = *per_cpu_ptr(sdd->sgp, i);
  4547. if (atomic_inc_return(&sg->sgp->ref) == 1)
  4548. build_group_mask(sd, sg);
  4549. /*
  4550. * Initialize sgp->power such that even if we mess up the
  4551. * domains and no possible iteration will get us here, we won't
  4552. * die on a /0 trap.
  4553. */
  4554. sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
  4555. /*
  4556. * Make sure the first group of this domain contains the
  4557. * canonical balance cpu. Otherwise the sched_domain iteration
  4558. * breaks. See update_sg_lb_stats().
  4559. */
  4560. if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
  4561. group_balance_cpu(sg) == cpu)
  4562. groups = sg;
  4563. if (!first)
  4564. first = sg;
  4565. if (last)
  4566. last->next = sg;
  4567. last = sg;
  4568. last->next = first;
  4569. }
  4570. sd->groups = groups;
  4571. return 0;
  4572. fail:
  4573. free_sched_groups(first, 0);
  4574. return -ENOMEM;
  4575. }
  4576. static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
  4577. {
  4578. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
  4579. struct sched_domain *child = sd->child;
  4580. if (child)
  4581. cpu = cpumask_first(sched_domain_span(child));
  4582. if (sg) {
  4583. *sg = *per_cpu_ptr(sdd->sg, cpu);
  4584. (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
  4585. atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
  4586. }
  4587. return cpu;
  4588. }
  4589. /*
  4590. * build_sched_groups will build a circular linked list of the groups
  4591. * covered by the given span, and will set each group's ->cpumask correctly,
  4592. * and ->cpu_power to 0.
  4593. *
  4594. * Assumes the sched_domain tree is fully constructed
  4595. */
  4596. static int
  4597. build_sched_groups(struct sched_domain *sd, int cpu)
  4598. {
  4599. struct sched_group *first = NULL, *last = NULL;
  4600. struct sd_data *sdd = sd->private;
  4601. const struct cpumask *span = sched_domain_span(sd);
  4602. struct cpumask *covered;
  4603. int i;
  4604. get_group(cpu, sdd, &sd->groups);
  4605. atomic_inc(&sd->groups->ref);
  4606. if (cpu != cpumask_first(span))
  4607. return 0;
  4608. lockdep_assert_held(&sched_domains_mutex);
  4609. covered = sched_domains_tmpmask;
  4610. cpumask_clear(covered);
  4611. for_each_cpu(i, span) {
  4612. struct sched_group *sg;
  4613. int group, j;
  4614. if (cpumask_test_cpu(i, covered))
  4615. continue;
  4616. group = get_group(i, sdd, &sg);
  4617. cpumask_clear(sched_group_cpus(sg));
  4618. sg->sgp->power = 0;
  4619. cpumask_setall(sched_group_mask(sg));
  4620. for_each_cpu(j, span) {
  4621. if (get_group(j, sdd, NULL) != group)
  4622. continue;
  4623. cpumask_set_cpu(j, covered);
  4624. cpumask_set_cpu(j, sched_group_cpus(sg));
  4625. }
  4626. if (!first)
  4627. first = sg;
  4628. if (last)
  4629. last->next = sg;
  4630. last = sg;
  4631. }
  4632. last->next = first;
  4633. return 0;
  4634. }
  4635. /*
  4636. * Initialize sched groups cpu_power.
  4637. *
  4638. * cpu_power indicates the capacity of sched group, which is used while
  4639. * distributing the load between different sched groups in a sched domain.
  4640. * Typically cpu_power for all the groups in a sched domain will be same unless
  4641. * there are asymmetries in the topology. If there are asymmetries, group
  4642. * having more cpu_power will pickup more load compared to the group having
  4643. * less cpu_power.
  4644. */
  4645. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  4646. {
  4647. struct sched_group *sg = sd->groups;
  4648. WARN_ON(!sg);
  4649. do {
  4650. sg->group_weight = cpumask_weight(sched_group_cpus(sg));
  4651. sg = sg->next;
  4652. } while (sg != sd->groups);
  4653. if (cpu != group_balance_cpu(sg))
  4654. return;
  4655. update_group_power(sd, cpu);
  4656. atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
  4657. }
  4658. int __weak arch_sd_sibling_asym_packing(void)
  4659. {
  4660. return 0*SD_ASYM_PACKING;
  4661. }
  4662. /*
  4663. * Initializers for schedule domains
  4664. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  4665. */
  4666. #ifdef CONFIG_SCHED_DEBUG
  4667. # define SD_INIT_NAME(sd, type) sd->name = #type
  4668. #else
  4669. # define SD_INIT_NAME(sd, type) do { } while (0)
  4670. #endif
  4671. #define SD_INIT_FUNC(type) \
  4672. static noinline struct sched_domain * \
  4673. sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
  4674. { \
  4675. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
  4676. *sd = SD_##type##_INIT; \
  4677. SD_INIT_NAME(sd, type); \
  4678. sd->private = &tl->data; \
  4679. return sd; \
  4680. }
  4681. SD_INIT_FUNC(CPU)
  4682. #ifdef CONFIG_SCHED_SMT
  4683. SD_INIT_FUNC(SIBLING)
  4684. #endif
  4685. #ifdef CONFIG_SCHED_MC
  4686. SD_INIT_FUNC(MC)
  4687. #endif
  4688. #ifdef CONFIG_SCHED_BOOK
  4689. SD_INIT_FUNC(BOOK)
  4690. #endif
  4691. static int default_relax_domain_level = -1;
  4692. int sched_domain_level_max;
  4693. static int __init setup_relax_domain_level(char *str)
  4694. {
  4695. if (kstrtoint(str, 0, &default_relax_domain_level))
  4696. pr_warn("Unable to set relax_domain_level\n");
  4697. return 1;
  4698. }
  4699. __setup("relax_domain_level=", setup_relax_domain_level);
  4700. static void set_domain_attribute(struct sched_domain *sd,
  4701. struct sched_domain_attr *attr)
  4702. {
  4703. int request;
  4704. if (!attr || attr->relax_domain_level < 0) {
  4705. if (default_relax_domain_level < 0)
  4706. return;
  4707. else
  4708. request = default_relax_domain_level;
  4709. } else
  4710. request = attr->relax_domain_level;
  4711. if (request < sd->level) {
  4712. /* turn off idle balance on this domain */
  4713. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  4714. } else {
  4715. /* turn on idle balance on this domain */
  4716. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  4717. }
  4718. }
  4719. static void __sdt_free(const struct cpumask *cpu_map);
  4720. static int __sdt_alloc(const struct cpumask *cpu_map);
  4721. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  4722. const struct cpumask *cpu_map)
  4723. {
  4724. switch (what) {
  4725. case sa_rootdomain:
  4726. if (!atomic_read(&d->rd->refcount))
  4727. free_rootdomain(&d->rd->rcu); /* fall through */
  4728. case sa_sd:
  4729. free_percpu(d->sd); /* fall through */
  4730. case sa_sd_storage:
  4731. __sdt_free(cpu_map); /* fall through */
  4732. case sa_none:
  4733. break;
  4734. }
  4735. }
  4736. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  4737. const struct cpumask *cpu_map)
  4738. {
  4739. memset(d, 0, sizeof(*d));
  4740. if (__sdt_alloc(cpu_map))
  4741. return sa_sd_storage;
  4742. d->sd = alloc_percpu(struct sched_domain *);
  4743. if (!d->sd)
  4744. return sa_sd_storage;
  4745. d->rd = alloc_rootdomain();
  4746. if (!d->rd)
  4747. return sa_sd;
  4748. return sa_rootdomain;
  4749. }
  4750. /*
  4751. * NULL the sd_data elements we've used to build the sched_domain and
  4752. * sched_group structure so that the subsequent __free_domain_allocs()
  4753. * will not free the data we're using.
  4754. */
  4755. static void claim_allocations(int cpu, struct sched_domain *sd)
  4756. {
  4757. struct sd_data *sdd = sd->private;
  4758. WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
  4759. *per_cpu_ptr(sdd->sd, cpu) = NULL;
  4760. if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
  4761. *per_cpu_ptr(sdd->sg, cpu) = NULL;
  4762. if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
  4763. *per_cpu_ptr(sdd->sgp, cpu) = NULL;
  4764. }
  4765. #ifdef CONFIG_SCHED_SMT
  4766. static const struct cpumask *cpu_smt_mask(int cpu)
  4767. {
  4768. return topology_thread_cpumask(cpu);
  4769. }
  4770. #endif
  4771. /*
  4772. * Topology list, bottom-up.
  4773. */
  4774. static struct sched_domain_topology_level default_topology[] = {
  4775. #ifdef CONFIG_SCHED_SMT
  4776. { sd_init_SIBLING, cpu_smt_mask, },
  4777. #endif
  4778. #ifdef CONFIG_SCHED_MC
  4779. { sd_init_MC, cpu_coregroup_mask, },
  4780. #endif
  4781. #ifdef CONFIG_SCHED_BOOK
  4782. { sd_init_BOOK, cpu_book_mask, },
  4783. #endif
  4784. { sd_init_CPU, cpu_cpu_mask, },
  4785. { NULL, },
  4786. };
  4787. static struct sched_domain_topology_level *sched_domain_topology = default_topology;
  4788. #define for_each_sd_topology(tl) \
  4789. for (tl = sched_domain_topology; tl->init; tl++)
  4790. #ifdef CONFIG_NUMA
  4791. static int sched_domains_numa_levels;
  4792. static int *sched_domains_numa_distance;
  4793. static struct cpumask ***sched_domains_numa_masks;
  4794. static int sched_domains_curr_level;
  4795. static inline int sd_local_flags(int level)
  4796. {
  4797. if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
  4798. return 0;
  4799. return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
  4800. }
  4801. static struct sched_domain *
  4802. sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
  4803. {
  4804. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
  4805. int level = tl->numa_level;
  4806. int sd_weight = cpumask_weight(
  4807. sched_domains_numa_masks[level][cpu_to_node(cpu)]);
  4808. *sd = (struct sched_domain){
  4809. .min_interval = sd_weight,
  4810. .max_interval = 2*sd_weight,
  4811. .busy_factor = 32,
  4812. .imbalance_pct = 125,
  4813. .cache_nice_tries = 2,
  4814. .busy_idx = 3,
  4815. .idle_idx = 2,
  4816. .newidle_idx = 0,
  4817. .wake_idx = 0,
  4818. .forkexec_idx = 0,
  4819. .flags = 1*SD_LOAD_BALANCE
  4820. | 1*SD_BALANCE_NEWIDLE
  4821. | 0*SD_BALANCE_EXEC
  4822. | 0*SD_BALANCE_FORK
  4823. | 0*SD_BALANCE_WAKE
  4824. | 0*SD_WAKE_AFFINE
  4825. | 0*SD_SHARE_CPUPOWER
  4826. | 0*SD_SHARE_PKG_RESOURCES
  4827. | 1*SD_SERIALIZE
  4828. | 0*SD_PREFER_SIBLING
  4829. | sd_local_flags(level)
  4830. ,
  4831. .last_balance = jiffies,
  4832. .balance_interval = sd_weight,
  4833. };
  4834. SD_INIT_NAME(sd, NUMA);
  4835. sd->private = &tl->data;
  4836. /*
  4837. * Ugly hack to pass state to sd_numa_mask()...
  4838. */
  4839. sched_domains_curr_level = tl->numa_level;
  4840. return sd;
  4841. }
  4842. static const struct cpumask *sd_numa_mask(int cpu)
  4843. {
  4844. return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
  4845. }
  4846. static void sched_numa_warn(const char *str)
  4847. {
  4848. static int done = false;
  4849. int i,j;
  4850. if (done)
  4851. return;
  4852. done = true;
  4853. printk(KERN_WARNING "ERROR: %s\n\n", str);
  4854. for (i = 0; i < nr_node_ids; i++) {
  4855. printk(KERN_WARNING " ");
  4856. for (j = 0; j < nr_node_ids; j++)
  4857. printk(KERN_CONT "%02d ", node_distance(i,j));
  4858. printk(KERN_CONT "\n");
  4859. }
  4860. printk(KERN_WARNING "\n");
  4861. }
  4862. static bool find_numa_distance(int distance)
  4863. {
  4864. int i;
  4865. if (distance == node_distance(0, 0))
  4866. return true;
  4867. for (i = 0; i < sched_domains_numa_levels; i++) {
  4868. if (sched_domains_numa_distance[i] == distance)
  4869. return true;
  4870. }
  4871. return false;
  4872. }
  4873. static void sched_init_numa(void)
  4874. {
  4875. int next_distance, curr_distance = node_distance(0, 0);
  4876. struct sched_domain_topology_level *tl;
  4877. int level = 0;
  4878. int i, j, k;
  4879. sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
  4880. if (!sched_domains_numa_distance)
  4881. return;
  4882. /*
  4883. * O(nr_nodes^2) deduplicating selection sort -- in order to find the
  4884. * unique distances in the node_distance() table.
  4885. *
  4886. * Assumes node_distance(0,j) includes all distances in
  4887. * node_distance(i,j) in order to avoid cubic time.
  4888. */
  4889. next_distance = curr_distance;
  4890. for (i = 0; i < nr_node_ids; i++) {
  4891. for (j = 0; j < nr_node_ids; j++) {
  4892. for (k = 0; k < nr_node_ids; k++) {
  4893. int distance = node_distance(i, k);
  4894. if (distance > curr_distance &&
  4895. (distance < next_distance ||
  4896. next_distance == curr_distance))
  4897. next_distance = distance;
  4898. /*
  4899. * While not a strong assumption it would be nice to know
  4900. * about cases where if node A is connected to B, B is not
  4901. * equally connected to A.
  4902. */
  4903. if (sched_debug() && node_distance(k, i) != distance)
  4904. sched_numa_warn("Node-distance not symmetric");
  4905. if (sched_debug() && i && !find_numa_distance(distance))
  4906. sched_numa_warn("Node-0 not representative");
  4907. }
  4908. if (next_distance != curr_distance) {
  4909. sched_domains_numa_distance[level++] = next_distance;
  4910. sched_domains_numa_levels = level;
  4911. curr_distance = next_distance;
  4912. } else break;
  4913. }
  4914. /*
  4915. * In case of sched_debug() we verify the above assumption.
  4916. */
  4917. if (!sched_debug())
  4918. break;
  4919. }
  4920. /*
  4921. * 'level' contains the number of unique distances, excluding the
  4922. * identity distance node_distance(i,i).
  4923. *
  4924. * The sched_domains_numa_distance[] array includes the actual distance
  4925. * numbers.
  4926. */
  4927. /*
  4928. * Here, we should temporarily reset sched_domains_numa_levels to 0.
  4929. * If it fails to allocate memory for array sched_domains_numa_masks[][],
  4930. * the array will contain less then 'level' members. This could be
  4931. * dangerous when we use it to iterate array sched_domains_numa_masks[][]
  4932. * in other functions.
  4933. *
  4934. * We reset it to 'level' at the end of this function.
  4935. */
  4936. sched_domains_numa_levels = 0;
  4937. sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
  4938. if (!sched_domains_numa_masks)
  4939. return;
  4940. /*
  4941. * Now for each level, construct a mask per node which contains all
  4942. * cpus of nodes that are that many hops away from us.
  4943. */
  4944. for (i = 0; i < level; i++) {
  4945. sched_domains_numa_masks[i] =
  4946. kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
  4947. if (!sched_domains_numa_masks[i])
  4948. return;
  4949. for (j = 0; j < nr_node_ids; j++) {
  4950. struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
  4951. if (!mask)
  4952. return;
  4953. sched_domains_numa_masks[i][j] = mask;
  4954. for (k = 0; k < nr_node_ids; k++) {
  4955. if (node_distance(j, k) > sched_domains_numa_distance[i])
  4956. continue;
  4957. cpumask_or(mask, mask, cpumask_of_node(k));
  4958. }
  4959. }
  4960. }
  4961. tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
  4962. sizeof(struct sched_domain_topology_level), GFP_KERNEL);
  4963. if (!tl)
  4964. return;
  4965. /*
  4966. * Copy the default topology bits..
  4967. */
  4968. for (i = 0; default_topology[i].init; i++)
  4969. tl[i] = default_topology[i];
  4970. /*
  4971. * .. and append 'j' levels of NUMA goodness.
  4972. */
  4973. for (j = 0; j < level; i++, j++) {
  4974. tl[i] = (struct sched_domain_topology_level){
  4975. .init = sd_numa_init,
  4976. .mask = sd_numa_mask,
  4977. .flags = SDTL_OVERLAP,
  4978. .numa_level = j,
  4979. };
  4980. }
  4981. sched_domain_topology = tl;
  4982. sched_domains_numa_levels = level;
  4983. }
  4984. static void sched_domains_numa_masks_set(int cpu)
  4985. {
  4986. int i, j;
  4987. int node = cpu_to_node(cpu);
  4988. for (i = 0; i < sched_domains_numa_levels; i++) {
  4989. for (j = 0; j < nr_node_ids; j++) {
  4990. if (node_distance(j, node) <= sched_domains_numa_distance[i])
  4991. cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
  4992. }
  4993. }
  4994. }
  4995. static void sched_domains_numa_masks_clear(int cpu)
  4996. {
  4997. int i, j;
  4998. for (i = 0; i < sched_domains_numa_levels; i++) {
  4999. for (j = 0; j < nr_node_ids; j++)
  5000. cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
  5001. }
  5002. }
  5003. /*
  5004. * Update sched_domains_numa_masks[level][node] array when new cpus
  5005. * are onlined.
  5006. */
  5007. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  5008. unsigned long action,
  5009. void *hcpu)
  5010. {
  5011. int cpu = (long)hcpu;
  5012. switch (action & ~CPU_TASKS_FROZEN) {
  5013. case CPU_ONLINE:
  5014. sched_domains_numa_masks_set(cpu);
  5015. break;
  5016. case CPU_DEAD:
  5017. sched_domains_numa_masks_clear(cpu);
  5018. break;
  5019. default:
  5020. return NOTIFY_DONE;
  5021. }
  5022. return NOTIFY_OK;
  5023. }
  5024. #else
  5025. static inline void sched_init_numa(void)
  5026. {
  5027. }
  5028. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  5029. unsigned long action,
  5030. void *hcpu)
  5031. {
  5032. return 0;
  5033. }
  5034. #endif /* CONFIG_NUMA */
  5035. static int __sdt_alloc(const struct cpumask *cpu_map)
  5036. {
  5037. struct sched_domain_topology_level *tl;
  5038. int j;
  5039. for_each_sd_topology(tl) {
  5040. struct sd_data *sdd = &tl->data;
  5041. sdd->sd = alloc_percpu(struct sched_domain *);
  5042. if (!sdd->sd)
  5043. return -ENOMEM;
  5044. sdd->sg = alloc_percpu(struct sched_group *);
  5045. if (!sdd->sg)
  5046. return -ENOMEM;
  5047. sdd->sgp = alloc_percpu(struct sched_group_power *);
  5048. if (!sdd->sgp)
  5049. return -ENOMEM;
  5050. for_each_cpu(j, cpu_map) {
  5051. struct sched_domain *sd;
  5052. struct sched_group *sg;
  5053. struct sched_group_power *sgp;
  5054. sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
  5055. GFP_KERNEL, cpu_to_node(j));
  5056. if (!sd)
  5057. return -ENOMEM;
  5058. *per_cpu_ptr(sdd->sd, j) = sd;
  5059. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5060. GFP_KERNEL, cpu_to_node(j));
  5061. if (!sg)
  5062. return -ENOMEM;
  5063. sg->next = sg;
  5064. *per_cpu_ptr(sdd->sg, j) = sg;
  5065. sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
  5066. GFP_KERNEL, cpu_to_node(j));
  5067. if (!sgp)
  5068. return -ENOMEM;
  5069. *per_cpu_ptr(sdd->sgp, j) = sgp;
  5070. }
  5071. }
  5072. return 0;
  5073. }
  5074. static void __sdt_free(const struct cpumask *cpu_map)
  5075. {
  5076. struct sched_domain_topology_level *tl;
  5077. int j;
  5078. for_each_sd_topology(tl) {
  5079. struct sd_data *sdd = &tl->data;
  5080. for_each_cpu(j, cpu_map) {
  5081. struct sched_domain *sd;
  5082. if (sdd->sd) {
  5083. sd = *per_cpu_ptr(sdd->sd, j);
  5084. if (sd && (sd->flags & SD_OVERLAP))
  5085. free_sched_groups(sd->groups, 0);
  5086. kfree(*per_cpu_ptr(sdd->sd, j));
  5087. }
  5088. if (sdd->sg)
  5089. kfree(*per_cpu_ptr(sdd->sg, j));
  5090. if (sdd->sgp)
  5091. kfree(*per_cpu_ptr(sdd->sgp, j));
  5092. }
  5093. free_percpu(sdd->sd);
  5094. sdd->sd = NULL;
  5095. free_percpu(sdd->sg);
  5096. sdd->sg = NULL;
  5097. free_percpu(sdd->sgp);
  5098. sdd->sgp = NULL;
  5099. }
  5100. }
  5101. struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
  5102. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5103. struct sched_domain *child, int cpu)
  5104. {
  5105. struct sched_domain *sd = tl->init(tl, cpu);
  5106. if (!sd)
  5107. return child;
  5108. cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
  5109. if (child) {
  5110. sd->level = child->level + 1;
  5111. sched_domain_level_max = max(sched_domain_level_max, sd->level);
  5112. child->parent = sd;
  5113. sd->child = child;
  5114. }
  5115. set_domain_attribute(sd, attr);
  5116. return sd;
  5117. }
  5118. /*
  5119. * Build sched domains for a given set of cpus and attach the sched domains
  5120. * to the individual cpus
  5121. */
  5122. static int build_sched_domains(const struct cpumask *cpu_map,
  5123. struct sched_domain_attr *attr)
  5124. {
  5125. enum s_alloc alloc_state;
  5126. struct sched_domain *sd;
  5127. struct s_data d;
  5128. int i, ret = -ENOMEM;
  5129. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  5130. if (alloc_state != sa_rootdomain)
  5131. goto error;
  5132. /* Set up domains for cpus specified by the cpu_map. */
  5133. for_each_cpu(i, cpu_map) {
  5134. struct sched_domain_topology_level *tl;
  5135. sd = NULL;
  5136. for_each_sd_topology(tl) {
  5137. sd = build_sched_domain(tl, cpu_map, attr, sd, i);
  5138. if (tl == sched_domain_topology)
  5139. *per_cpu_ptr(d.sd, i) = sd;
  5140. if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
  5141. sd->flags |= SD_OVERLAP;
  5142. if (cpumask_equal(cpu_map, sched_domain_span(sd)))
  5143. break;
  5144. }
  5145. }
  5146. /* Build the groups for the domains */
  5147. for_each_cpu(i, cpu_map) {
  5148. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5149. sd->span_weight = cpumask_weight(sched_domain_span(sd));
  5150. if (sd->flags & SD_OVERLAP) {
  5151. if (build_overlap_sched_groups(sd, i))
  5152. goto error;
  5153. } else {
  5154. if (build_sched_groups(sd, i))
  5155. goto error;
  5156. }
  5157. }
  5158. }
  5159. /* Calculate CPU power for physical packages and nodes */
  5160. for (i = nr_cpumask_bits-1; i >= 0; i--) {
  5161. if (!cpumask_test_cpu(i, cpu_map))
  5162. continue;
  5163. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5164. claim_allocations(i, sd);
  5165. init_sched_groups_power(i, sd);
  5166. }
  5167. }
  5168. /* Attach the domains */
  5169. rcu_read_lock();
  5170. for_each_cpu(i, cpu_map) {
  5171. sd = *per_cpu_ptr(d.sd, i);
  5172. cpu_attach_domain(sd, d.rd, i);
  5173. }
  5174. rcu_read_unlock();
  5175. ret = 0;
  5176. error:
  5177. __free_domain_allocs(&d, alloc_state, cpu_map);
  5178. return ret;
  5179. }
  5180. static cpumask_var_t *doms_cur; /* current sched domains */
  5181. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5182. static struct sched_domain_attr *dattr_cur;
  5183. /* attribues of custom domains in 'doms_cur' */
  5184. /*
  5185. * Special case: If a kmalloc of a doms_cur partition (array of
  5186. * cpumask) fails, then fallback to a single sched domain,
  5187. * as determined by the single cpumask fallback_doms.
  5188. */
  5189. static cpumask_var_t fallback_doms;
  5190. /*
  5191. * arch_update_cpu_topology lets virtualized architectures update the
  5192. * cpu core maps. It is supposed to return 1 if the topology changed
  5193. * or 0 if it stayed the same.
  5194. */
  5195. int __attribute__((weak)) arch_update_cpu_topology(void)
  5196. {
  5197. return 0;
  5198. }
  5199. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  5200. {
  5201. int i;
  5202. cpumask_var_t *doms;
  5203. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  5204. if (!doms)
  5205. return NULL;
  5206. for (i = 0; i < ndoms; i++) {
  5207. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  5208. free_sched_domains(doms, i);
  5209. return NULL;
  5210. }
  5211. }
  5212. return doms;
  5213. }
  5214. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  5215. {
  5216. unsigned int i;
  5217. for (i = 0; i < ndoms; i++)
  5218. free_cpumask_var(doms[i]);
  5219. kfree(doms);
  5220. }
  5221. /*
  5222. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5223. * For now this just excludes isolated cpus, but could be used to
  5224. * exclude other special cases in the future.
  5225. */
  5226. static int init_sched_domains(const struct cpumask *cpu_map)
  5227. {
  5228. int err;
  5229. arch_update_cpu_topology();
  5230. ndoms_cur = 1;
  5231. doms_cur = alloc_sched_domains(ndoms_cur);
  5232. if (!doms_cur)
  5233. doms_cur = &fallback_doms;
  5234. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  5235. err = build_sched_domains(doms_cur[0], NULL);
  5236. register_sched_domain_sysctl();
  5237. return err;
  5238. }
  5239. /*
  5240. * Detach sched domains from a group of cpus specified in cpu_map
  5241. * These cpus will now be attached to the NULL domain
  5242. */
  5243. static void detach_destroy_domains(const struct cpumask *cpu_map)
  5244. {
  5245. int i;
  5246. rcu_read_lock();
  5247. for_each_cpu(i, cpu_map)
  5248. cpu_attach_domain(NULL, &def_root_domain, i);
  5249. rcu_read_unlock();
  5250. }
  5251. /* handle null as "default" */
  5252. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  5253. struct sched_domain_attr *new, int idx_new)
  5254. {
  5255. struct sched_domain_attr tmp;
  5256. /* fast path */
  5257. if (!new && !cur)
  5258. return 1;
  5259. tmp = SD_ATTR_INIT;
  5260. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  5261. new ? (new + idx_new) : &tmp,
  5262. sizeof(struct sched_domain_attr));
  5263. }
  5264. /*
  5265. * Partition sched domains as specified by the 'ndoms_new'
  5266. * cpumasks in the array doms_new[] of cpumasks. This compares
  5267. * doms_new[] to the current sched domain partitioning, doms_cur[].
  5268. * It destroys each deleted domain and builds each new domain.
  5269. *
  5270. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  5271. * The masks don't intersect (don't overlap.) We should setup one
  5272. * sched domain for each mask. CPUs not in any of the cpumasks will
  5273. * not be load balanced. If the same cpumask appears both in the
  5274. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  5275. * it as it is.
  5276. *
  5277. * The passed in 'doms_new' should be allocated using
  5278. * alloc_sched_domains. This routine takes ownership of it and will
  5279. * free_sched_domains it when done with it. If the caller failed the
  5280. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  5281. * and partition_sched_domains() will fallback to the single partition
  5282. * 'fallback_doms', it also forces the domains to be rebuilt.
  5283. *
  5284. * If doms_new == NULL it will be replaced with cpu_online_mask.
  5285. * ndoms_new == 0 is a special case for destroying existing domains,
  5286. * and it will not create the default domain.
  5287. *
  5288. * Call with hotplug lock held
  5289. */
  5290. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  5291. struct sched_domain_attr *dattr_new)
  5292. {
  5293. int i, j, n;
  5294. int new_topology;
  5295. mutex_lock(&sched_domains_mutex);
  5296. /* always unregister in case we don't destroy any domains */
  5297. unregister_sched_domain_sysctl();
  5298. /* Let architecture update cpu core mappings. */
  5299. new_topology = arch_update_cpu_topology();
  5300. n = doms_new ? ndoms_new : 0;
  5301. /* Destroy deleted domains */
  5302. for (i = 0; i < ndoms_cur; i++) {
  5303. for (j = 0; j < n && !new_topology; j++) {
  5304. if (cpumask_equal(doms_cur[i], doms_new[j])
  5305. && dattrs_equal(dattr_cur, i, dattr_new, j))
  5306. goto match1;
  5307. }
  5308. /* no match - a current sched domain not in new doms_new[] */
  5309. detach_destroy_domains(doms_cur[i]);
  5310. match1:
  5311. ;
  5312. }
  5313. n = ndoms_cur;
  5314. if (doms_new == NULL) {
  5315. n = 0;
  5316. doms_new = &fallback_doms;
  5317. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  5318. WARN_ON_ONCE(dattr_new);
  5319. }
  5320. /* Build new domains */
  5321. for (i = 0; i < ndoms_new; i++) {
  5322. for (j = 0; j < n && !new_topology; j++) {
  5323. if (cpumask_equal(doms_new[i], doms_cur[j])
  5324. && dattrs_equal(dattr_new, i, dattr_cur, j))
  5325. goto match2;
  5326. }
  5327. /* no match - add a new doms_new */
  5328. build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
  5329. match2:
  5330. ;
  5331. }
  5332. /* Remember the new sched domains */
  5333. if (doms_cur != &fallback_doms)
  5334. free_sched_domains(doms_cur, ndoms_cur);
  5335. kfree(dattr_cur); /* kfree(NULL) is safe */
  5336. doms_cur = doms_new;
  5337. dattr_cur = dattr_new;
  5338. ndoms_cur = ndoms_new;
  5339. register_sched_domain_sysctl();
  5340. mutex_unlock(&sched_domains_mutex);
  5341. }
  5342. static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
  5343. /*
  5344. * Update cpusets according to cpu_active mask. If cpusets are
  5345. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  5346. * around partition_sched_domains().
  5347. *
  5348. * If we come here as part of a suspend/resume, don't touch cpusets because we
  5349. * want to restore it back to its original state upon resume anyway.
  5350. */
  5351. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  5352. void *hcpu)
  5353. {
  5354. switch (action) {
  5355. case CPU_ONLINE_FROZEN:
  5356. case CPU_DOWN_FAILED_FROZEN:
  5357. /*
  5358. * num_cpus_frozen tracks how many CPUs are involved in suspend
  5359. * resume sequence. As long as this is not the last online
  5360. * operation in the resume sequence, just build a single sched
  5361. * domain, ignoring cpusets.
  5362. */
  5363. num_cpus_frozen--;
  5364. if (likely(num_cpus_frozen)) {
  5365. partition_sched_domains(1, NULL, NULL);
  5366. break;
  5367. }
  5368. /*
  5369. * This is the last CPU online operation. So fall through and
  5370. * restore the original sched domains by considering the
  5371. * cpuset configurations.
  5372. */
  5373. case CPU_ONLINE:
  5374. case CPU_DOWN_FAILED:
  5375. cpuset_update_active_cpus(true);
  5376. break;
  5377. default:
  5378. return NOTIFY_DONE;
  5379. }
  5380. return NOTIFY_OK;
  5381. }
  5382. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  5383. void *hcpu)
  5384. {
  5385. switch (action) {
  5386. case CPU_DOWN_PREPARE:
  5387. cpuset_update_active_cpus(false);
  5388. break;
  5389. case CPU_DOWN_PREPARE_FROZEN:
  5390. num_cpus_frozen++;
  5391. partition_sched_domains(1, NULL, NULL);
  5392. break;
  5393. default:
  5394. return NOTIFY_DONE;
  5395. }
  5396. return NOTIFY_OK;
  5397. }
  5398. void __init sched_init_smp(void)
  5399. {
  5400. cpumask_var_t non_isolated_cpus;
  5401. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  5402. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  5403. sched_init_numa();
  5404. get_online_cpus();
  5405. mutex_lock(&sched_domains_mutex);
  5406. init_sched_domains(cpu_active_mask);
  5407. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  5408. if (cpumask_empty(non_isolated_cpus))
  5409. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  5410. mutex_unlock(&sched_domains_mutex);
  5411. put_online_cpus();
  5412. hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
  5413. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  5414. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  5415. init_hrtick();
  5416. /* Move init over to a non-isolated CPU */
  5417. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  5418. BUG();
  5419. sched_init_granularity();
  5420. free_cpumask_var(non_isolated_cpus);
  5421. init_sched_rt_class();
  5422. }
  5423. #else
  5424. void __init sched_init_smp(void)
  5425. {
  5426. sched_init_granularity();
  5427. }
  5428. #endif /* CONFIG_SMP */
  5429. const_debug unsigned int sysctl_timer_migration = 1;
  5430. int in_sched_functions(unsigned long addr)
  5431. {
  5432. return in_lock_functions(addr) ||
  5433. (addr >= (unsigned long)__sched_text_start
  5434. && addr < (unsigned long)__sched_text_end);
  5435. }
  5436. #ifdef CONFIG_CGROUP_SCHED
  5437. /*
  5438. * Default task group.
  5439. * Every task in system belongs to this group at bootup.
  5440. */
  5441. struct task_group root_task_group;
  5442. LIST_HEAD(task_groups);
  5443. #endif
  5444. DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
  5445. void __init sched_init(void)
  5446. {
  5447. int i, j;
  5448. unsigned long alloc_size = 0, ptr;
  5449. #ifdef CONFIG_FAIR_GROUP_SCHED
  5450. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  5451. #endif
  5452. #ifdef CONFIG_RT_GROUP_SCHED
  5453. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  5454. #endif
  5455. #ifdef CONFIG_CPUMASK_OFFSTACK
  5456. alloc_size += num_possible_cpus() * cpumask_size();
  5457. #endif
  5458. if (alloc_size) {
  5459. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  5460. #ifdef CONFIG_FAIR_GROUP_SCHED
  5461. root_task_group.se = (struct sched_entity **)ptr;
  5462. ptr += nr_cpu_ids * sizeof(void **);
  5463. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  5464. ptr += nr_cpu_ids * sizeof(void **);
  5465. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5466. #ifdef CONFIG_RT_GROUP_SCHED
  5467. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  5468. ptr += nr_cpu_ids * sizeof(void **);
  5469. root_task_group.rt_rq = (struct rt_rq **)ptr;
  5470. ptr += nr_cpu_ids * sizeof(void **);
  5471. #endif /* CONFIG_RT_GROUP_SCHED */
  5472. #ifdef CONFIG_CPUMASK_OFFSTACK
  5473. for_each_possible_cpu(i) {
  5474. per_cpu(load_balance_mask, i) = (void *)ptr;
  5475. ptr += cpumask_size();
  5476. }
  5477. #endif /* CONFIG_CPUMASK_OFFSTACK */
  5478. }
  5479. #ifdef CONFIG_SMP
  5480. init_defrootdomain();
  5481. #endif
  5482. init_rt_bandwidth(&def_rt_bandwidth,
  5483. global_rt_period(), global_rt_runtime());
  5484. #ifdef CONFIG_RT_GROUP_SCHED
  5485. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  5486. global_rt_period(), global_rt_runtime());
  5487. #endif /* CONFIG_RT_GROUP_SCHED */
  5488. #ifdef CONFIG_CGROUP_SCHED
  5489. list_add(&root_task_group.list, &task_groups);
  5490. INIT_LIST_HEAD(&root_task_group.children);
  5491. INIT_LIST_HEAD(&root_task_group.siblings);
  5492. autogroup_init(&init_task);
  5493. #endif /* CONFIG_CGROUP_SCHED */
  5494. for_each_possible_cpu(i) {
  5495. struct rq *rq;
  5496. rq = cpu_rq(i);
  5497. raw_spin_lock_init(&rq->lock);
  5498. rq->nr_running = 0;
  5499. rq->calc_load_active = 0;
  5500. rq->calc_load_update = jiffies + LOAD_FREQ;
  5501. init_cfs_rq(&rq->cfs);
  5502. init_rt_rq(&rq->rt, rq);
  5503. #ifdef CONFIG_FAIR_GROUP_SCHED
  5504. root_task_group.shares = ROOT_TASK_GROUP_LOAD;
  5505. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5506. /*
  5507. * How much cpu bandwidth does root_task_group get?
  5508. *
  5509. * In case of task-groups formed thr' the cgroup filesystem, it
  5510. * gets 100% of the cpu resources in the system. This overall
  5511. * system cpu resource is divided among the tasks of
  5512. * root_task_group and its child task-groups in a fair manner,
  5513. * based on each entity's (task or task-group's) weight
  5514. * (se->load.weight).
  5515. *
  5516. * In other words, if root_task_group has 10 tasks of weight
  5517. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  5518. * then A0's share of the cpu resource is:
  5519. *
  5520. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  5521. *
  5522. * We achieve this by letting root_task_group's tasks sit
  5523. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  5524. */
  5525. init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
  5526. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  5527. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5528. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  5529. #ifdef CONFIG_RT_GROUP_SCHED
  5530. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  5531. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  5532. #endif
  5533. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5534. rq->cpu_load[j] = 0;
  5535. rq->last_load_update_tick = jiffies;
  5536. #ifdef CONFIG_SMP
  5537. rq->sd = NULL;
  5538. rq->rd = NULL;
  5539. rq->cpu_power = SCHED_POWER_SCALE;
  5540. rq->post_schedule = 0;
  5541. rq->active_balance = 0;
  5542. rq->next_balance = jiffies;
  5543. rq->push_cpu = 0;
  5544. rq->cpu = i;
  5545. rq->online = 0;
  5546. rq->idle_stamp = 0;
  5547. rq->avg_idle = 2*sysctl_sched_migration_cost;
  5548. rq->max_idle_balance_cost = sysctl_sched_migration_cost;
  5549. INIT_LIST_HEAD(&rq->cfs_tasks);
  5550. rq_attach_root(rq, &def_root_domain);
  5551. #ifdef CONFIG_NO_HZ_COMMON
  5552. rq->nohz_flags = 0;
  5553. #endif
  5554. #ifdef CONFIG_NO_HZ_FULL
  5555. rq->last_sched_tick = 0;
  5556. #endif
  5557. #endif
  5558. init_rq_hrtick(rq);
  5559. atomic_set(&rq->nr_iowait, 0);
  5560. }
  5561. set_load_weight(&init_task);
  5562. #ifdef CONFIG_PREEMPT_NOTIFIERS
  5563. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  5564. #endif
  5565. #ifdef CONFIG_RT_MUTEXES
  5566. plist_head_init(&init_task.pi_waiters);
  5567. #endif
  5568. /*
  5569. * The boot idle thread does lazy MMU switching as well:
  5570. */
  5571. atomic_inc(&init_mm.mm_count);
  5572. enter_lazy_tlb(&init_mm, current);
  5573. /*
  5574. * Make us the idle thread. Technically, schedule() should not be
  5575. * called from this thread, however somewhere below it might be,
  5576. * but because we are the idle thread, we just pick up running again
  5577. * when this runqueue becomes "idle".
  5578. */
  5579. init_idle(current, smp_processor_id());
  5580. calc_load_update = jiffies + LOAD_FREQ;
  5581. /*
  5582. * During early bootup we pretend to be a normal task:
  5583. */
  5584. current->sched_class = &fair_sched_class;
  5585. #ifdef CONFIG_SMP
  5586. zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
  5587. /* May be allocated at isolcpus cmdline parse time */
  5588. if (cpu_isolated_map == NULL)
  5589. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  5590. idle_thread_set_boot_cpu();
  5591. #endif
  5592. init_sched_fair_class();
  5593. scheduler_running = 1;
  5594. }
  5595. #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
  5596. static inline int preempt_count_equals(int preempt_offset)
  5597. {
  5598. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  5599. return (nested == preempt_offset);
  5600. }
  5601. void __might_sleep(const char *file, int line, int preempt_offset)
  5602. {
  5603. static unsigned long prev_jiffy; /* ratelimiting */
  5604. rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
  5605. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  5606. system_state != SYSTEM_RUNNING || oops_in_progress)
  5607. return;
  5608. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5609. return;
  5610. prev_jiffy = jiffies;
  5611. printk(KERN_ERR
  5612. "BUG: sleeping function called from invalid context at %s:%d\n",
  5613. file, line);
  5614. printk(KERN_ERR
  5615. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  5616. in_atomic(), irqs_disabled(),
  5617. current->pid, current->comm);
  5618. debug_show_held_locks(current);
  5619. if (irqs_disabled())
  5620. print_irqtrace_events(current);
  5621. dump_stack();
  5622. }
  5623. EXPORT_SYMBOL(__might_sleep);
  5624. #endif
  5625. #ifdef CONFIG_MAGIC_SYSRQ
  5626. static void normalize_task(struct rq *rq, struct task_struct *p)
  5627. {
  5628. const struct sched_class *prev_class = p->sched_class;
  5629. int old_prio = p->prio;
  5630. int on_rq;
  5631. on_rq = p->on_rq;
  5632. if (on_rq)
  5633. dequeue_task(rq, p, 0);
  5634. __setscheduler(rq, p, SCHED_NORMAL, 0);
  5635. if (on_rq) {
  5636. enqueue_task(rq, p, 0);
  5637. resched_task(rq->curr);
  5638. }
  5639. check_class_changed(rq, p, prev_class, old_prio);
  5640. }
  5641. void normalize_rt_tasks(void)
  5642. {
  5643. struct task_struct *g, *p;
  5644. unsigned long flags;
  5645. struct rq *rq;
  5646. read_lock_irqsave(&tasklist_lock, flags);
  5647. do_each_thread(g, p) {
  5648. /*
  5649. * Only normalize user tasks:
  5650. */
  5651. if (!p->mm)
  5652. continue;
  5653. p->se.exec_start = 0;
  5654. #ifdef CONFIG_SCHEDSTATS
  5655. p->se.statistics.wait_start = 0;
  5656. p->se.statistics.sleep_start = 0;
  5657. p->se.statistics.block_start = 0;
  5658. #endif
  5659. if (!rt_task(p)) {
  5660. /*
  5661. * Renice negative nice level userspace
  5662. * tasks back to 0:
  5663. */
  5664. if (TASK_NICE(p) < 0 && p->mm)
  5665. set_user_nice(p, 0);
  5666. continue;
  5667. }
  5668. raw_spin_lock(&p->pi_lock);
  5669. rq = __task_rq_lock(p);
  5670. normalize_task(rq, p);
  5671. __task_rq_unlock(rq);
  5672. raw_spin_unlock(&p->pi_lock);
  5673. } while_each_thread(g, p);
  5674. read_unlock_irqrestore(&tasklist_lock, flags);
  5675. }
  5676. #endif /* CONFIG_MAGIC_SYSRQ */
  5677. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  5678. /*
  5679. * These functions are only useful for the IA64 MCA handling, or kdb.
  5680. *
  5681. * They can only be called when the whole system has been
  5682. * stopped - every CPU needs to be quiescent, and no scheduling
  5683. * activity can take place. Using them for anything else would
  5684. * be a serious bug, and as a result, they aren't even visible
  5685. * under any other configuration.
  5686. */
  5687. /**
  5688. * curr_task - return the current task for a given cpu.
  5689. * @cpu: the processor in question.
  5690. *
  5691. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5692. *
  5693. * Return: The current task for @cpu.
  5694. */
  5695. struct task_struct *curr_task(int cpu)
  5696. {
  5697. return cpu_curr(cpu);
  5698. }
  5699. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  5700. #ifdef CONFIG_IA64
  5701. /**
  5702. * set_curr_task - set the current task for a given cpu.
  5703. * @cpu: the processor in question.
  5704. * @p: the task pointer to set.
  5705. *
  5706. * Description: This function must only be used when non-maskable interrupts
  5707. * are serviced on a separate stack. It allows the architecture to switch the
  5708. * notion of the current task on a cpu in a non-blocking manner. This function
  5709. * must be called with all CPU's synchronized, and interrupts disabled, the
  5710. * and caller must save the original value of the current task (see
  5711. * curr_task() above) and restore that value before reenabling interrupts and
  5712. * re-starting the system.
  5713. *
  5714. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5715. */
  5716. void set_curr_task(int cpu, struct task_struct *p)
  5717. {
  5718. cpu_curr(cpu) = p;
  5719. }
  5720. #endif
  5721. #ifdef CONFIG_CGROUP_SCHED
  5722. /* task_group_lock serializes the addition/removal of task groups */
  5723. static DEFINE_SPINLOCK(task_group_lock);
  5724. static void free_sched_group(struct task_group *tg)
  5725. {
  5726. free_fair_sched_group(tg);
  5727. free_rt_sched_group(tg);
  5728. autogroup_free(tg);
  5729. kfree(tg);
  5730. }
  5731. /* allocate runqueue etc for a new task group */
  5732. struct task_group *sched_create_group(struct task_group *parent)
  5733. {
  5734. struct task_group *tg;
  5735. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  5736. if (!tg)
  5737. return ERR_PTR(-ENOMEM);
  5738. if (!alloc_fair_sched_group(tg, parent))
  5739. goto err;
  5740. if (!alloc_rt_sched_group(tg, parent))
  5741. goto err;
  5742. return tg;
  5743. err:
  5744. free_sched_group(tg);
  5745. return ERR_PTR(-ENOMEM);
  5746. }
  5747. void sched_online_group(struct task_group *tg, struct task_group *parent)
  5748. {
  5749. unsigned long flags;
  5750. spin_lock_irqsave(&task_group_lock, flags);
  5751. list_add_rcu(&tg->list, &task_groups);
  5752. WARN_ON(!parent); /* root should already exist */
  5753. tg->parent = parent;
  5754. INIT_LIST_HEAD(&tg->children);
  5755. list_add_rcu(&tg->siblings, &parent->children);
  5756. spin_unlock_irqrestore(&task_group_lock, flags);
  5757. }
  5758. /* rcu callback to free various structures associated with a task group */
  5759. static void free_sched_group_rcu(struct rcu_head *rhp)
  5760. {
  5761. /* now it should be safe to free those cfs_rqs */
  5762. free_sched_group(container_of(rhp, struct task_group, rcu));
  5763. }
  5764. /* Destroy runqueue etc associated with a task group */
  5765. void sched_destroy_group(struct task_group *tg)
  5766. {
  5767. /* wait for possible concurrent references to cfs_rqs complete */
  5768. call_rcu(&tg->rcu, free_sched_group_rcu);
  5769. }
  5770. void sched_offline_group(struct task_group *tg)
  5771. {
  5772. unsigned long flags;
  5773. int i;
  5774. /* end participation in shares distribution */
  5775. for_each_possible_cpu(i)
  5776. unregister_fair_sched_group(tg, i);
  5777. spin_lock_irqsave(&task_group_lock, flags);
  5778. list_del_rcu(&tg->list);
  5779. list_del_rcu(&tg->siblings);
  5780. spin_unlock_irqrestore(&task_group_lock, flags);
  5781. }
  5782. /* change task's runqueue when it moves between groups.
  5783. * The caller of this function should have put the task in its new group
  5784. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  5785. * reflect its new group.
  5786. */
  5787. void sched_move_task(struct task_struct *tsk)
  5788. {
  5789. struct task_group *tg;
  5790. int on_rq, running;
  5791. unsigned long flags;
  5792. struct rq *rq;
  5793. rq = task_rq_lock(tsk, &flags);
  5794. running = task_current(rq, tsk);
  5795. on_rq = tsk->on_rq;
  5796. if (on_rq)
  5797. dequeue_task(rq, tsk, 0);
  5798. if (unlikely(running))
  5799. tsk->sched_class->put_prev_task(rq, tsk);
  5800. tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
  5801. lockdep_is_held(&tsk->sighand->siglock)),
  5802. struct task_group, css);
  5803. tg = autogroup_task_group(tsk, tg);
  5804. tsk->sched_task_group = tg;
  5805. #ifdef CONFIG_FAIR_GROUP_SCHED
  5806. if (tsk->sched_class->task_move_group)
  5807. tsk->sched_class->task_move_group(tsk, on_rq);
  5808. else
  5809. #endif
  5810. set_task_rq(tsk, task_cpu(tsk));
  5811. if (unlikely(running))
  5812. tsk->sched_class->set_curr_task(rq);
  5813. if (on_rq)
  5814. enqueue_task(rq, tsk, 0);
  5815. task_rq_unlock(rq, tsk, &flags);
  5816. }
  5817. #endif /* CONFIG_CGROUP_SCHED */
  5818. #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
  5819. static unsigned long to_ratio(u64 period, u64 runtime)
  5820. {
  5821. if (runtime == RUNTIME_INF)
  5822. return 1ULL << 20;
  5823. return div64_u64(runtime << 20, period);
  5824. }
  5825. #endif
  5826. #ifdef CONFIG_RT_GROUP_SCHED
  5827. /*
  5828. * Ensure that the real time constraints are schedulable.
  5829. */
  5830. static DEFINE_MUTEX(rt_constraints_mutex);
  5831. /* Must be called with tasklist_lock held */
  5832. static inline int tg_has_rt_tasks(struct task_group *tg)
  5833. {
  5834. struct task_struct *g, *p;
  5835. do_each_thread(g, p) {
  5836. if (rt_task(p) && task_rq(p)->rt.tg == tg)
  5837. return 1;
  5838. } while_each_thread(g, p);
  5839. return 0;
  5840. }
  5841. struct rt_schedulable_data {
  5842. struct task_group *tg;
  5843. u64 rt_period;
  5844. u64 rt_runtime;
  5845. };
  5846. static int tg_rt_schedulable(struct task_group *tg, void *data)
  5847. {
  5848. struct rt_schedulable_data *d = data;
  5849. struct task_group *child;
  5850. unsigned long total, sum = 0;
  5851. u64 period, runtime;
  5852. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  5853. runtime = tg->rt_bandwidth.rt_runtime;
  5854. if (tg == d->tg) {
  5855. period = d->rt_period;
  5856. runtime = d->rt_runtime;
  5857. }
  5858. /*
  5859. * Cannot have more runtime than the period.
  5860. */
  5861. if (runtime > period && runtime != RUNTIME_INF)
  5862. return -EINVAL;
  5863. /*
  5864. * Ensure we don't starve existing RT tasks.
  5865. */
  5866. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  5867. return -EBUSY;
  5868. total = to_ratio(period, runtime);
  5869. /*
  5870. * Nobody can have more than the global setting allows.
  5871. */
  5872. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  5873. return -EINVAL;
  5874. /*
  5875. * The sum of our children's runtime should not exceed our own.
  5876. */
  5877. list_for_each_entry_rcu(child, &tg->children, siblings) {
  5878. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  5879. runtime = child->rt_bandwidth.rt_runtime;
  5880. if (child == d->tg) {
  5881. period = d->rt_period;
  5882. runtime = d->rt_runtime;
  5883. }
  5884. sum += to_ratio(period, runtime);
  5885. }
  5886. if (sum > total)
  5887. return -EINVAL;
  5888. return 0;
  5889. }
  5890. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  5891. {
  5892. int ret;
  5893. struct rt_schedulable_data data = {
  5894. .tg = tg,
  5895. .rt_period = period,
  5896. .rt_runtime = runtime,
  5897. };
  5898. rcu_read_lock();
  5899. ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
  5900. rcu_read_unlock();
  5901. return ret;
  5902. }
  5903. static int tg_set_rt_bandwidth(struct task_group *tg,
  5904. u64 rt_period, u64 rt_runtime)
  5905. {
  5906. int i, err = 0;
  5907. mutex_lock(&rt_constraints_mutex);
  5908. read_lock(&tasklist_lock);
  5909. err = __rt_schedulable(tg, rt_period, rt_runtime);
  5910. if (err)
  5911. goto unlock;
  5912. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  5913. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  5914. tg->rt_bandwidth.rt_runtime = rt_runtime;
  5915. for_each_possible_cpu(i) {
  5916. struct rt_rq *rt_rq = tg->rt_rq[i];
  5917. raw_spin_lock(&rt_rq->rt_runtime_lock);
  5918. rt_rq->rt_runtime = rt_runtime;
  5919. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  5920. }
  5921. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  5922. unlock:
  5923. read_unlock(&tasklist_lock);
  5924. mutex_unlock(&rt_constraints_mutex);
  5925. return err;
  5926. }
  5927. static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  5928. {
  5929. u64 rt_runtime, rt_period;
  5930. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  5931. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  5932. if (rt_runtime_us < 0)
  5933. rt_runtime = RUNTIME_INF;
  5934. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  5935. }
  5936. static long sched_group_rt_runtime(struct task_group *tg)
  5937. {
  5938. u64 rt_runtime_us;
  5939. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  5940. return -1;
  5941. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  5942. do_div(rt_runtime_us, NSEC_PER_USEC);
  5943. return rt_runtime_us;
  5944. }
  5945. static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  5946. {
  5947. u64 rt_runtime, rt_period;
  5948. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  5949. rt_runtime = tg->rt_bandwidth.rt_runtime;
  5950. if (rt_period == 0)
  5951. return -EINVAL;
  5952. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  5953. }
  5954. static long sched_group_rt_period(struct task_group *tg)
  5955. {
  5956. u64 rt_period_us;
  5957. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  5958. do_div(rt_period_us, NSEC_PER_USEC);
  5959. return rt_period_us;
  5960. }
  5961. static int sched_rt_global_constraints(void)
  5962. {
  5963. u64 runtime, period;
  5964. int ret = 0;
  5965. if (sysctl_sched_rt_period <= 0)
  5966. return -EINVAL;
  5967. runtime = global_rt_runtime();
  5968. period = global_rt_period();
  5969. /*
  5970. * Sanity check on the sysctl variables.
  5971. */
  5972. if (runtime > period && runtime != RUNTIME_INF)
  5973. return -EINVAL;
  5974. mutex_lock(&rt_constraints_mutex);
  5975. read_lock(&tasklist_lock);
  5976. ret = __rt_schedulable(NULL, 0, 0);
  5977. read_unlock(&tasklist_lock);
  5978. mutex_unlock(&rt_constraints_mutex);
  5979. return ret;
  5980. }
  5981. static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  5982. {
  5983. /* Don't accept realtime tasks when there is no way for them to run */
  5984. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  5985. return 0;
  5986. return 1;
  5987. }
  5988. #else /* !CONFIG_RT_GROUP_SCHED */
  5989. static int sched_rt_global_constraints(void)
  5990. {
  5991. unsigned long flags;
  5992. int i;
  5993. if (sysctl_sched_rt_period <= 0)
  5994. return -EINVAL;
  5995. /*
  5996. * There's always some RT tasks in the root group
  5997. * -- migration, kstopmachine etc..
  5998. */
  5999. if (sysctl_sched_rt_runtime == 0)
  6000. return -EBUSY;
  6001. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  6002. for_each_possible_cpu(i) {
  6003. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  6004. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6005. rt_rq->rt_runtime = global_rt_runtime();
  6006. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6007. }
  6008. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  6009. return 0;
  6010. }
  6011. #endif /* CONFIG_RT_GROUP_SCHED */
  6012. int sched_rr_handler(struct ctl_table *table, int write,
  6013. void __user *buffer, size_t *lenp,
  6014. loff_t *ppos)
  6015. {
  6016. int ret;
  6017. static DEFINE_MUTEX(mutex);
  6018. mutex_lock(&mutex);
  6019. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6020. /* make sure that internally we keep jiffies */
  6021. /* also, writing zero resets timeslice to default */
  6022. if (!ret && write) {
  6023. sched_rr_timeslice = sched_rr_timeslice <= 0 ?
  6024. RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
  6025. }
  6026. mutex_unlock(&mutex);
  6027. return ret;
  6028. }
  6029. int sched_rt_handler(struct ctl_table *table, int write,
  6030. void __user *buffer, size_t *lenp,
  6031. loff_t *ppos)
  6032. {
  6033. int ret;
  6034. int old_period, old_runtime;
  6035. static DEFINE_MUTEX(mutex);
  6036. mutex_lock(&mutex);
  6037. old_period = sysctl_sched_rt_period;
  6038. old_runtime = sysctl_sched_rt_runtime;
  6039. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6040. if (!ret && write) {
  6041. ret = sched_rt_global_constraints();
  6042. if (ret) {
  6043. sysctl_sched_rt_period = old_period;
  6044. sysctl_sched_rt_runtime = old_runtime;
  6045. } else {
  6046. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  6047. def_rt_bandwidth.rt_period =
  6048. ns_to_ktime(global_rt_period());
  6049. }
  6050. }
  6051. mutex_unlock(&mutex);
  6052. return ret;
  6053. }
  6054. #ifdef CONFIG_CGROUP_SCHED
  6055. static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
  6056. {
  6057. return css ? container_of(css, struct task_group, css) : NULL;
  6058. }
  6059. static struct cgroup_subsys_state *
  6060. cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
  6061. {
  6062. struct task_group *parent = css_tg(parent_css);
  6063. struct task_group *tg;
  6064. if (!parent) {
  6065. /* This is early initialization for the top cgroup */
  6066. return &root_task_group.css;
  6067. }
  6068. tg = sched_create_group(parent);
  6069. if (IS_ERR(tg))
  6070. return ERR_PTR(-ENOMEM);
  6071. return &tg->css;
  6072. }
  6073. static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
  6074. {
  6075. struct task_group *tg = css_tg(css);
  6076. struct task_group *parent = css_tg(css_parent(css));
  6077. if (parent)
  6078. sched_online_group(tg, parent);
  6079. return 0;
  6080. }
  6081. static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
  6082. {
  6083. struct task_group *tg = css_tg(css);
  6084. sched_destroy_group(tg);
  6085. }
  6086. static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
  6087. {
  6088. struct task_group *tg = css_tg(css);
  6089. sched_offline_group(tg);
  6090. }
  6091. static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
  6092. struct cgroup_taskset *tset)
  6093. {
  6094. struct task_struct *task;
  6095. cgroup_taskset_for_each(task, css, tset) {
  6096. #ifdef CONFIG_RT_GROUP_SCHED
  6097. if (!sched_rt_can_attach(css_tg(css), task))
  6098. return -EINVAL;
  6099. #else
  6100. /* We don't support RT-tasks being in separate groups */
  6101. if (task->sched_class != &fair_sched_class)
  6102. return -EINVAL;
  6103. #endif
  6104. }
  6105. return 0;
  6106. }
  6107. static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
  6108. struct cgroup_taskset *tset)
  6109. {
  6110. struct task_struct *task;
  6111. cgroup_taskset_for_each(task, css, tset)
  6112. sched_move_task(task);
  6113. }
  6114. static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
  6115. struct cgroup_subsys_state *old_css,
  6116. struct task_struct *task)
  6117. {
  6118. /*
  6119. * cgroup_exit() is called in the copy_process() failure path.
  6120. * Ignore this case since the task hasn't ran yet, this avoids
  6121. * trying to poke a half freed task state from generic code.
  6122. */
  6123. if (!(task->flags & PF_EXITING))
  6124. return;
  6125. sched_move_task(task);
  6126. }
  6127. #ifdef CONFIG_FAIR_GROUP_SCHED
  6128. static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
  6129. struct cftype *cftype, u64 shareval)
  6130. {
  6131. return sched_group_set_shares(css_tg(css), scale_load(shareval));
  6132. }
  6133. static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
  6134. struct cftype *cft)
  6135. {
  6136. struct task_group *tg = css_tg(css);
  6137. return (u64) scale_load_down(tg->shares);
  6138. }
  6139. #ifdef CONFIG_CFS_BANDWIDTH
  6140. static DEFINE_MUTEX(cfs_constraints_mutex);
  6141. const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
  6142. const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
  6143. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
  6144. static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
  6145. {
  6146. int i, ret = 0, runtime_enabled, runtime_was_enabled;
  6147. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6148. if (tg == &root_task_group)
  6149. return -EINVAL;
  6150. /*
  6151. * Ensure we have at some amount of bandwidth every period. This is
  6152. * to prevent reaching a state of large arrears when throttled via
  6153. * entity_tick() resulting in prolonged exit starvation.
  6154. */
  6155. if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
  6156. return -EINVAL;
  6157. /*
  6158. * Likewise, bound things on the otherside by preventing insane quota
  6159. * periods. This also allows us to normalize in computing quota
  6160. * feasibility.
  6161. */
  6162. if (period > max_cfs_quota_period)
  6163. return -EINVAL;
  6164. mutex_lock(&cfs_constraints_mutex);
  6165. ret = __cfs_schedulable(tg, period, quota);
  6166. if (ret)
  6167. goto out_unlock;
  6168. runtime_enabled = quota != RUNTIME_INF;
  6169. runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
  6170. account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
  6171. raw_spin_lock_irq(&cfs_b->lock);
  6172. cfs_b->period = ns_to_ktime(period);
  6173. cfs_b->quota = quota;
  6174. __refill_cfs_bandwidth_runtime(cfs_b);
  6175. /* restart the period timer (if active) to handle new period expiry */
  6176. if (runtime_enabled && cfs_b->timer_active) {
  6177. /* force a reprogram */
  6178. cfs_b->timer_active = 0;
  6179. __start_cfs_bandwidth(cfs_b);
  6180. }
  6181. raw_spin_unlock_irq(&cfs_b->lock);
  6182. for_each_possible_cpu(i) {
  6183. struct cfs_rq *cfs_rq = tg->cfs_rq[i];
  6184. struct rq *rq = cfs_rq->rq;
  6185. raw_spin_lock_irq(&rq->lock);
  6186. cfs_rq->runtime_enabled = runtime_enabled;
  6187. cfs_rq->runtime_remaining = 0;
  6188. if (cfs_rq->throttled)
  6189. unthrottle_cfs_rq(cfs_rq);
  6190. raw_spin_unlock_irq(&rq->lock);
  6191. }
  6192. out_unlock:
  6193. mutex_unlock(&cfs_constraints_mutex);
  6194. return ret;
  6195. }
  6196. int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
  6197. {
  6198. u64 quota, period;
  6199. period = ktime_to_ns(tg->cfs_bandwidth.period);
  6200. if (cfs_quota_us < 0)
  6201. quota = RUNTIME_INF;
  6202. else
  6203. quota = (u64)cfs_quota_us * NSEC_PER_USEC;
  6204. return tg_set_cfs_bandwidth(tg, period, quota);
  6205. }
  6206. long tg_get_cfs_quota(struct task_group *tg)
  6207. {
  6208. u64 quota_us;
  6209. if (tg->cfs_bandwidth.quota == RUNTIME_INF)
  6210. return -1;
  6211. quota_us = tg->cfs_bandwidth.quota;
  6212. do_div(quota_us, NSEC_PER_USEC);
  6213. return quota_us;
  6214. }
  6215. int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
  6216. {
  6217. u64 quota, period;
  6218. period = (u64)cfs_period_us * NSEC_PER_USEC;
  6219. quota = tg->cfs_bandwidth.quota;
  6220. return tg_set_cfs_bandwidth(tg, period, quota);
  6221. }
  6222. long tg_get_cfs_period(struct task_group *tg)
  6223. {
  6224. u64 cfs_period_us;
  6225. cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
  6226. do_div(cfs_period_us, NSEC_PER_USEC);
  6227. return cfs_period_us;
  6228. }
  6229. static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
  6230. struct cftype *cft)
  6231. {
  6232. return tg_get_cfs_quota(css_tg(css));
  6233. }
  6234. static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
  6235. struct cftype *cftype, s64 cfs_quota_us)
  6236. {
  6237. return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
  6238. }
  6239. static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
  6240. struct cftype *cft)
  6241. {
  6242. return tg_get_cfs_period(css_tg(css));
  6243. }
  6244. static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
  6245. struct cftype *cftype, u64 cfs_period_us)
  6246. {
  6247. return tg_set_cfs_period(css_tg(css), cfs_period_us);
  6248. }
  6249. struct cfs_schedulable_data {
  6250. struct task_group *tg;
  6251. u64 period, quota;
  6252. };
  6253. /*
  6254. * normalize group quota/period to be quota/max_period
  6255. * note: units are usecs
  6256. */
  6257. static u64 normalize_cfs_quota(struct task_group *tg,
  6258. struct cfs_schedulable_data *d)
  6259. {
  6260. u64 quota, period;
  6261. if (tg == d->tg) {
  6262. period = d->period;
  6263. quota = d->quota;
  6264. } else {
  6265. period = tg_get_cfs_period(tg);
  6266. quota = tg_get_cfs_quota(tg);
  6267. }
  6268. /* note: these should typically be equivalent */
  6269. if (quota == RUNTIME_INF || quota == -1)
  6270. return RUNTIME_INF;
  6271. return to_ratio(period, quota);
  6272. }
  6273. static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
  6274. {
  6275. struct cfs_schedulable_data *d = data;
  6276. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6277. s64 quota = 0, parent_quota = -1;
  6278. if (!tg->parent) {
  6279. quota = RUNTIME_INF;
  6280. } else {
  6281. struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
  6282. quota = normalize_cfs_quota(tg, d);
  6283. parent_quota = parent_b->hierarchal_quota;
  6284. /*
  6285. * ensure max(child_quota) <= parent_quota, inherit when no
  6286. * limit is set
  6287. */
  6288. if (quota == RUNTIME_INF)
  6289. quota = parent_quota;
  6290. else if (parent_quota != RUNTIME_INF && quota > parent_quota)
  6291. return -EINVAL;
  6292. }
  6293. cfs_b->hierarchal_quota = quota;
  6294. return 0;
  6295. }
  6296. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
  6297. {
  6298. int ret;
  6299. struct cfs_schedulable_data data = {
  6300. .tg = tg,
  6301. .period = period,
  6302. .quota = quota,
  6303. };
  6304. if (quota != RUNTIME_INF) {
  6305. do_div(data.period, NSEC_PER_USEC);
  6306. do_div(data.quota, NSEC_PER_USEC);
  6307. }
  6308. rcu_read_lock();
  6309. ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
  6310. rcu_read_unlock();
  6311. return ret;
  6312. }
  6313. static int cpu_stats_show(struct cgroup_subsys_state *css, struct cftype *cft,
  6314. struct cgroup_map_cb *cb)
  6315. {
  6316. struct task_group *tg = css_tg(css);
  6317. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6318. cb->fill(cb, "nr_periods", cfs_b->nr_periods);
  6319. cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
  6320. cb->fill(cb, "throttled_time", cfs_b->throttled_time);
  6321. return 0;
  6322. }
  6323. #endif /* CONFIG_CFS_BANDWIDTH */
  6324. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6325. #ifdef CONFIG_RT_GROUP_SCHED
  6326. static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
  6327. struct cftype *cft, s64 val)
  6328. {
  6329. return sched_group_set_rt_runtime(css_tg(css), val);
  6330. }
  6331. static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
  6332. struct cftype *cft)
  6333. {
  6334. return sched_group_rt_runtime(css_tg(css));
  6335. }
  6336. static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
  6337. struct cftype *cftype, u64 rt_period_us)
  6338. {
  6339. return sched_group_set_rt_period(css_tg(css), rt_period_us);
  6340. }
  6341. static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
  6342. struct cftype *cft)
  6343. {
  6344. return sched_group_rt_period(css_tg(css));
  6345. }
  6346. #endif /* CONFIG_RT_GROUP_SCHED */
  6347. static struct cftype cpu_files[] = {
  6348. #ifdef CONFIG_FAIR_GROUP_SCHED
  6349. {
  6350. .name = "shares",
  6351. .read_u64 = cpu_shares_read_u64,
  6352. .write_u64 = cpu_shares_write_u64,
  6353. },
  6354. #endif
  6355. #ifdef CONFIG_CFS_BANDWIDTH
  6356. {
  6357. .name = "cfs_quota_us",
  6358. .read_s64 = cpu_cfs_quota_read_s64,
  6359. .write_s64 = cpu_cfs_quota_write_s64,
  6360. },
  6361. {
  6362. .name = "cfs_period_us",
  6363. .read_u64 = cpu_cfs_period_read_u64,
  6364. .write_u64 = cpu_cfs_period_write_u64,
  6365. },
  6366. {
  6367. .name = "stat",
  6368. .read_map = cpu_stats_show,
  6369. },
  6370. #endif
  6371. #ifdef CONFIG_RT_GROUP_SCHED
  6372. {
  6373. .name = "rt_runtime_us",
  6374. .read_s64 = cpu_rt_runtime_read,
  6375. .write_s64 = cpu_rt_runtime_write,
  6376. },
  6377. {
  6378. .name = "rt_period_us",
  6379. .read_u64 = cpu_rt_period_read_uint,
  6380. .write_u64 = cpu_rt_period_write_uint,
  6381. },
  6382. #endif
  6383. { } /* terminate */
  6384. };
  6385. struct cgroup_subsys cpu_cgroup_subsys = {
  6386. .name = "cpu",
  6387. .css_alloc = cpu_cgroup_css_alloc,
  6388. .css_free = cpu_cgroup_css_free,
  6389. .css_online = cpu_cgroup_css_online,
  6390. .css_offline = cpu_cgroup_css_offline,
  6391. .can_attach = cpu_cgroup_can_attach,
  6392. .attach = cpu_cgroup_attach,
  6393. .exit = cpu_cgroup_exit,
  6394. .subsys_id = cpu_cgroup_subsys_id,
  6395. .base_cftypes = cpu_files,
  6396. .early_init = 1,
  6397. };
  6398. #endif /* CONFIG_CGROUP_SCHED */
  6399. void dump_cpu_task(int cpu)
  6400. {
  6401. pr_info("Task dump for CPU %d:\n", cpu);
  6402. sched_show_task(cpu_curr(cpu));
  6403. }