security.c 29 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172
  1. /*
  2. * Security plug functions
  3. *
  4. * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
  5. * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
  6. * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. */
  13. #include <linux/capability.h>
  14. #include <linux/module.h>
  15. #include <linux/init.h>
  16. #include <linux/kernel.h>
  17. #include <linux/security.h>
  18. /* Boot-time LSM user choice */
  19. static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1];
  20. /* things that live in capability.c */
  21. extern struct security_operations default_security_ops;
  22. extern void security_fixup_ops(struct security_operations *ops);
  23. struct security_operations *security_ops; /* Initialized to NULL */
  24. /* amount of vm to protect from userspace access */
  25. unsigned long mmap_min_addr = CONFIG_SECURITY_DEFAULT_MMAP_MIN_ADDR;
  26. static inline int verify(struct security_operations *ops)
  27. {
  28. /* verify the security_operations structure exists */
  29. if (!ops)
  30. return -EINVAL;
  31. security_fixup_ops(ops);
  32. return 0;
  33. }
  34. static void __init do_security_initcalls(void)
  35. {
  36. initcall_t *call;
  37. call = __security_initcall_start;
  38. while (call < __security_initcall_end) {
  39. (*call) ();
  40. call++;
  41. }
  42. }
  43. /**
  44. * security_init - initializes the security framework
  45. *
  46. * This should be called early in the kernel initialization sequence.
  47. */
  48. int __init security_init(void)
  49. {
  50. printk(KERN_INFO "Security Framework initialized\n");
  51. security_fixup_ops(&default_security_ops);
  52. security_ops = &default_security_ops;
  53. do_security_initcalls();
  54. return 0;
  55. }
  56. /* Save user chosen LSM */
  57. static int __init choose_lsm(char *str)
  58. {
  59. strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
  60. return 1;
  61. }
  62. __setup("security=", choose_lsm);
  63. /**
  64. * security_module_enable - Load given security module on boot ?
  65. * @ops: a pointer to the struct security_operations that is to be checked.
  66. *
  67. * Each LSM must pass this method before registering its own operations
  68. * to avoid security registration races. This method may also be used
  69. * to check if your LSM is currently loaded during kernel initialization.
  70. *
  71. * Return true if:
  72. * -The passed LSM is the one chosen by user at boot time,
  73. * -or user didn't specify a specific LSM and we're the first to ask
  74. * for registration permission,
  75. * -or the passed LSM is currently loaded.
  76. * Otherwise, return false.
  77. */
  78. int __init security_module_enable(struct security_operations *ops)
  79. {
  80. if (!*chosen_lsm)
  81. strncpy(chosen_lsm, ops->name, SECURITY_NAME_MAX);
  82. else if (strncmp(ops->name, chosen_lsm, SECURITY_NAME_MAX))
  83. return 0;
  84. return 1;
  85. }
  86. /**
  87. * register_security - registers a security framework with the kernel
  88. * @ops: a pointer to the struct security_options that is to be registered
  89. *
  90. * This function allows a security module to register itself with the
  91. * kernel security subsystem. Some rudimentary checking is done on the @ops
  92. * value passed to this function. You'll need to check first if your LSM
  93. * is allowed to register its @ops by calling security_module_enable(@ops).
  94. *
  95. * If there is already a security module registered with the kernel,
  96. * an error will be returned. Otherwise %0 is returned on success.
  97. */
  98. int register_security(struct security_operations *ops)
  99. {
  100. if (verify(ops)) {
  101. printk(KERN_DEBUG "%s could not verify "
  102. "security_operations structure.\n", __func__);
  103. return -EINVAL;
  104. }
  105. if (security_ops != &default_security_ops)
  106. return -EAGAIN;
  107. security_ops = ops;
  108. return 0;
  109. }
  110. /* Security operations */
  111. int security_ptrace_may_access(struct task_struct *child, unsigned int mode)
  112. {
  113. return security_ops->ptrace_may_access(child, mode);
  114. }
  115. int security_ptrace_traceme(struct task_struct *parent)
  116. {
  117. return security_ops->ptrace_traceme(parent);
  118. }
  119. int security_capget(struct task_struct *target,
  120. kernel_cap_t *effective,
  121. kernel_cap_t *inheritable,
  122. kernel_cap_t *permitted)
  123. {
  124. return security_ops->capget(target, effective, inheritable, permitted);
  125. }
  126. int security_capset_check(const kernel_cap_t *effective,
  127. const kernel_cap_t *inheritable,
  128. const kernel_cap_t *permitted)
  129. {
  130. return security_ops->capset_check(effective, inheritable, permitted);
  131. }
  132. void security_capset_set(const kernel_cap_t *effective,
  133. const kernel_cap_t *inheritable,
  134. const kernel_cap_t *permitted)
  135. {
  136. security_ops->capset_set(effective, inheritable, permitted);
  137. }
  138. int security_capable(struct task_struct *tsk, int cap)
  139. {
  140. return security_ops->capable(tsk, cap, SECURITY_CAP_AUDIT);
  141. }
  142. int security_capable_noaudit(struct task_struct *tsk, int cap)
  143. {
  144. return security_ops->capable(tsk, cap, SECURITY_CAP_NOAUDIT);
  145. }
  146. int security_acct(struct file *file)
  147. {
  148. return security_ops->acct(file);
  149. }
  150. int security_sysctl(struct ctl_table *table, int op)
  151. {
  152. return security_ops->sysctl(table, op);
  153. }
  154. int security_quotactl(int cmds, int type, int id, struct super_block *sb)
  155. {
  156. return security_ops->quotactl(cmds, type, id, sb);
  157. }
  158. int security_quota_on(struct dentry *dentry)
  159. {
  160. return security_ops->quota_on(dentry);
  161. }
  162. int security_syslog(int type)
  163. {
  164. return security_ops->syslog(type);
  165. }
  166. int security_settime(struct timespec *ts, struct timezone *tz)
  167. {
  168. return security_ops->settime(ts, tz);
  169. }
  170. int security_vm_enough_memory(long pages)
  171. {
  172. WARN_ON(current->mm == NULL);
  173. return security_ops->vm_enough_memory(current->mm, pages);
  174. }
  175. int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
  176. {
  177. WARN_ON(mm == NULL);
  178. return security_ops->vm_enough_memory(mm, pages);
  179. }
  180. int security_vm_enough_memory_kern(long pages)
  181. {
  182. /* If current->mm is a kernel thread then we will pass NULL,
  183. for this specific case that is fine */
  184. return security_ops->vm_enough_memory(current->mm, pages);
  185. }
  186. int security_bprm_alloc(struct linux_binprm *bprm)
  187. {
  188. return security_ops->bprm_alloc_security(bprm);
  189. }
  190. void security_bprm_free(struct linux_binprm *bprm)
  191. {
  192. security_ops->bprm_free_security(bprm);
  193. }
  194. void security_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
  195. {
  196. security_ops->bprm_apply_creds(bprm, unsafe);
  197. }
  198. void security_bprm_post_apply_creds(struct linux_binprm *bprm)
  199. {
  200. security_ops->bprm_post_apply_creds(bprm);
  201. }
  202. int security_bprm_set(struct linux_binprm *bprm)
  203. {
  204. return security_ops->bprm_set_security(bprm);
  205. }
  206. int security_bprm_check(struct linux_binprm *bprm)
  207. {
  208. return security_ops->bprm_check_security(bprm);
  209. }
  210. int security_bprm_secureexec(struct linux_binprm *bprm)
  211. {
  212. return security_ops->bprm_secureexec(bprm);
  213. }
  214. int security_sb_alloc(struct super_block *sb)
  215. {
  216. return security_ops->sb_alloc_security(sb);
  217. }
  218. void security_sb_free(struct super_block *sb)
  219. {
  220. security_ops->sb_free_security(sb);
  221. }
  222. int security_sb_copy_data(char *orig, char *copy)
  223. {
  224. return security_ops->sb_copy_data(orig, copy);
  225. }
  226. EXPORT_SYMBOL(security_sb_copy_data);
  227. int security_sb_kern_mount(struct super_block *sb, void *data)
  228. {
  229. return security_ops->sb_kern_mount(sb, data);
  230. }
  231. int security_sb_show_options(struct seq_file *m, struct super_block *sb)
  232. {
  233. return security_ops->sb_show_options(m, sb);
  234. }
  235. int security_sb_statfs(struct dentry *dentry)
  236. {
  237. return security_ops->sb_statfs(dentry);
  238. }
  239. int security_sb_mount(char *dev_name, struct path *path,
  240. char *type, unsigned long flags, void *data)
  241. {
  242. return security_ops->sb_mount(dev_name, path, type, flags, data);
  243. }
  244. int security_sb_check_sb(struct vfsmount *mnt, struct path *path)
  245. {
  246. return security_ops->sb_check_sb(mnt, path);
  247. }
  248. int security_sb_umount(struct vfsmount *mnt, int flags)
  249. {
  250. return security_ops->sb_umount(mnt, flags);
  251. }
  252. void security_sb_umount_close(struct vfsmount *mnt)
  253. {
  254. security_ops->sb_umount_close(mnt);
  255. }
  256. void security_sb_umount_busy(struct vfsmount *mnt)
  257. {
  258. security_ops->sb_umount_busy(mnt);
  259. }
  260. void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data)
  261. {
  262. security_ops->sb_post_remount(mnt, flags, data);
  263. }
  264. void security_sb_post_addmount(struct vfsmount *mnt, struct path *mountpoint)
  265. {
  266. security_ops->sb_post_addmount(mnt, mountpoint);
  267. }
  268. int security_sb_pivotroot(struct path *old_path, struct path *new_path)
  269. {
  270. return security_ops->sb_pivotroot(old_path, new_path);
  271. }
  272. void security_sb_post_pivotroot(struct path *old_path, struct path *new_path)
  273. {
  274. security_ops->sb_post_pivotroot(old_path, new_path);
  275. }
  276. int security_sb_set_mnt_opts(struct super_block *sb,
  277. struct security_mnt_opts *opts)
  278. {
  279. return security_ops->sb_set_mnt_opts(sb, opts);
  280. }
  281. EXPORT_SYMBOL(security_sb_set_mnt_opts);
  282. void security_sb_clone_mnt_opts(const struct super_block *oldsb,
  283. struct super_block *newsb)
  284. {
  285. security_ops->sb_clone_mnt_opts(oldsb, newsb);
  286. }
  287. EXPORT_SYMBOL(security_sb_clone_mnt_opts);
  288. int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
  289. {
  290. return security_ops->sb_parse_opts_str(options, opts);
  291. }
  292. EXPORT_SYMBOL(security_sb_parse_opts_str);
  293. int security_inode_alloc(struct inode *inode)
  294. {
  295. inode->i_security = NULL;
  296. return security_ops->inode_alloc_security(inode);
  297. }
  298. void security_inode_free(struct inode *inode)
  299. {
  300. security_ops->inode_free_security(inode);
  301. }
  302. int security_inode_init_security(struct inode *inode, struct inode *dir,
  303. char **name, void **value, size_t *len)
  304. {
  305. if (unlikely(IS_PRIVATE(inode)))
  306. return -EOPNOTSUPP;
  307. return security_ops->inode_init_security(inode, dir, name, value, len);
  308. }
  309. EXPORT_SYMBOL(security_inode_init_security);
  310. int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
  311. {
  312. if (unlikely(IS_PRIVATE(dir)))
  313. return 0;
  314. return security_ops->inode_create(dir, dentry, mode);
  315. }
  316. int security_inode_link(struct dentry *old_dentry, struct inode *dir,
  317. struct dentry *new_dentry)
  318. {
  319. if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
  320. return 0;
  321. return security_ops->inode_link(old_dentry, dir, new_dentry);
  322. }
  323. int security_inode_unlink(struct inode *dir, struct dentry *dentry)
  324. {
  325. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  326. return 0;
  327. return security_ops->inode_unlink(dir, dentry);
  328. }
  329. int security_inode_symlink(struct inode *dir, struct dentry *dentry,
  330. const char *old_name)
  331. {
  332. if (unlikely(IS_PRIVATE(dir)))
  333. return 0;
  334. return security_ops->inode_symlink(dir, dentry, old_name);
  335. }
  336. int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
  337. {
  338. if (unlikely(IS_PRIVATE(dir)))
  339. return 0;
  340. return security_ops->inode_mkdir(dir, dentry, mode);
  341. }
  342. int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
  343. {
  344. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  345. return 0;
  346. return security_ops->inode_rmdir(dir, dentry);
  347. }
  348. int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
  349. {
  350. if (unlikely(IS_PRIVATE(dir)))
  351. return 0;
  352. return security_ops->inode_mknod(dir, dentry, mode, dev);
  353. }
  354. int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
  355. struct inode *new_dir, struct dentry *new_dentry)
  356. {
  357. if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
  358. (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
  359. return 0;
  360. return security_ops->inode_rename(old_dir, old_dentry,
  361. new_dir, new_dentry);
  362. }
  363. int security_inode_readlink(struct dentry *dentry)
  364. {
  365. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  366. return 0;
  367. return security_ops->inode_readlink(dentry);
  368. }
  369. int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
  370. {
  371. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  372. return 0;
  373. return security_ops->inode_follow_link(dentry, nd);
  374. }
  375. int security_inode_permission(struct inode *inode, int mask)
  376. {
  377. if (unlikely(IS_PRIVATE(inode)))
  378. return 0;
  379. return security_ops->inode_permission(inode, mask);
  380. }
  381. int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
  382. {
  383. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  384. return 0;
  385. return security_ops->inode_setattr(dentry, attr);
  386. }
  387. EXPORT_SYMBOL_GPL(security_inode_setattr);
  388. int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
  389. {
  390. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  391. return 0;
  392. return security_ops->inode_getattr(mnt, dentry);
  393. }
  394. void security_inode_delete(struct inode *inode)
  395. {
  396. if (unlikely(IS_PRIVATE(inode)))
  397. return;
  398. security_ops->inode_delete(inode);
  399. }
  400. int security_inode_setxattr(struct dentry *dentry, const char *name,
  401. const void *value, size_t size, int flags)
  402. {
  403. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  404. return 0;
  405. return security_ops->inode_setxattr(dentry, name, value, size, flags);
  406. }
  407. void security_inode_post_setxattr(struct dentry *dentry, const char *name,
  408. const void *value, size_t size, int flags)
  409. {
  410. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  411. return;
  412. security_ops->inode_post_setxattr(dentry, name, value, size, flags);
  413. }
  414. int security_inode_getxattr(struct dentry *dentry, const char *name)
  415. {
  416. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  417. return 0;
  418. return security_ops->inode_getxattr(dentry, name);
  419. }
  420. int security_inode_listxattr(struct dentry *dentry)
  421. {
  422. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  423. return 0;
  424. return security_ops->inode_listxattr(dentry);
  425. }
  426. int security_inode_removexattr(struct dentry *dentry, const char *name)
  427. {
  428. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  429. return 0;
  430. return security_ops->inode_removexattr(dentry, name);
  431. }
  432. int security_inode_need_killpriv(struct dentry *dentry)
  433. {
  434. return security_ops->inode_need_killpriv(dentry);
  435. }
  436. int security_inode_killpriv(struct dentry *dentry)
  437. {
  438. return security_ops->inode_killpriv(dentry);
  439. }
  440. int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
  441. {
  442. if (unlikely(IS_PRIVATE(inode)))
  443. return 0;
  444. return security_ops->inode_getsecurity(inode, name, buffer, alloc);
  445. }
  446. int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
  447. {
  448. if (unlikely(IS_PRIVATE(inode)))
  449. return 0;
  450. return security_ops->inode_setsecurity(inode, name, value, size, flags);
  451. }
  452. int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
  453. {
  454. if (unlikely(IS_PRIVATE(inode)))
  455. return 0;
  456. return security_ops->inode_listsecurity(inode, buffer, buffer_size);
  457. }
  458. void security_inode_getsecid(const struct inode *inode, u32 *secid)
  459. {
  460. security_ops->inode_getsecid(inode, secid);
  461. }
  462. int security_file_permission(struct file *file, int mask)
  463. {
  464. return security_ops->file_permission(file, mask);
  465. }
  466. int security_file_alloc(struct file *file)
  467. {
  468. return security_ops->file_alloc_security(file);
  469. }
  470. void security_file_free(struct file *file)
  471. {
  472. security_ops->file_free_security(file);
  473. }
  474. int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  475. {
  476. return security_ops->file_ioctl(file, cmd, arg);
  477. }
  478. int security_file_mmap(struct file *file, unsigned long reqprot,
  479. unsigned long prot, unsigned long flags,
  480. unsigned long addr, unsigned long addr_only)
  481. {
  482. return security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
  483. }
  484. int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
  485. unsigned long prot)
  486. {
  487. return security_ops->file_mprotect(vma, reqprot, prot);
  488. }
  489. int security_file_lock(struct file *file, unsigned int cmd)
  490. {
  491. return security_ops->file_lock(file, cmd);
  492. }
  493. int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
  494. {
  495. return security_ops->file_fcntl(file, cmd, arg);
  496. }
  497. int security_file_set_fowner(struct file *file)
  498. {
  499. return security_ops->file_set_fowner(file);
  500. }
  501. int security_file_send_sigiotask(struct task_struct *tsk,
  502. struct fown_struct *fown, int sig)
  503. {
  504. return security_ops->file_send_sigiotask(tsk, fown, sig);
  505. }
  506. int security_file_receive(struct file *file)
  507. {
  508. return security_ops->file_receive(file);
  509. }
  510. int security_dentry_open(struct file *file, const struct cred *cred)
  511. {
  512. return security_ops->dentry_open(file, cred);
  513. }
  514. int security_task_create(unsigned long clone_flags)
  515. {
  516. return security_ops->task_create(clone_flags);
  517. }
  518. int security_cred_alloc(struct cred *cred)
  519. {
  520. return security_ops->cred_alloc_security(cred);
  521. }
  522. void security_cred_free(struct cred *cred)
  523. {
  524. security_ops->cred_free(cred);
  525. }
  526. int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
  527. {
  528. return security_ops->task_setuid(id0, id1, id2, flags);
  529. }
  530. int security_task_post_setuid(uid_t old_ruid, uid_t old_euid,
  531. uid_t old_suid, int flags)
  532. {
  533. return security_ops->task_post_setuid(old_ruid, old_euid, old_suid, flags);
  534. }
  535. int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
  536. {
  537. return security_ops->task_setgid(id0, id1, id2, flags);
  538. }
  539. int security_task_setpgid(struct task_struct *p, pid_t pgid)
  540. {
  541. return security_ops->task_setpgid(p, pgid);
  542. }
  543. int security_task_getpgid(struct task_struct *p)
  544. {
  545. return security_ops->task_getpgid(p);
  546. }
  547. int security_task_getsid(struct task_struct *p)
  548. {
  549. return security_ops->task_getsid(p);
  550. }
  551. void security_task_getsecid(struct task_struct *p, u32 *secid)
  552. {
  553. security_ops->task_getsecid(p, secid);
  554. }
  555. EXPORT_SYMBOL(security_task_getsecid);
  556. int security_task_setgroups(struct group_info *group_info)
  557. {
  558. return security_ops->task_setgroups(group_info);
  559. }
  560. int security_task_setnice(struct task_struct *p, int nice)
  561. {
  562. return security_ops->task_setnice(p, nice);
  563. }
  564. int security_task_setioprio(struct task_struct *p, int ioprio)
  565. {
  566. return security_ops->task_setioprio(p, ioprio);
  567. }
  568. int security_task_getioprio(struct task_struct *p)
  569. {
  570. return security_ops->task_getioprio(p);
  571. }
  572. int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
  573. {
  574. return security_ops->task_setrlimit(resource, new_rlim);
  575. }
  576. int security_task_setscheduler(struct task_struct *p,
  577. int policy, struct sched_param *lp)
  578. {
  579. return security_ops->task_setscheduler(p, policy, lp);
  580. }
  581. int security_task_getscheduler(struct task_struct *p)
  582. {
  583. return security_ops->task_getscheduler(p);
  584. }
  585. int security_task_movememory(struct task_struct *p)
  586. {
  587. return security_ops->task_movememory(p);
  588. }
  589. int security_task_kill(struct task_struct *p, struct siginfo *info,
  590. int sig, u32 secid)
  591. {
  592. return security_ops->task_kill(p, info, sig, secid);
  593. }
  594. int security_task_wait(struct task_struct *p)
  595. {
  596. return security_ops->task_wait(p);
  597. }
  598. int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
  599. unsigned long arg4, unsigned long arg5, long *rc_p)
  600. {
  601. return security_ops->task_prctl(option, arg2, arg3, arg4, arg5, rc_p);
  602. }
  603. void security_task_reparent_to_init(struct task_struct *p)
  604. {
  605. security_ops->task_reparent_to_init(p);
  606. }
  607. void security_task_to_inode(struct task_struct *p, struct inode *inode)
  608. {
  609. security_ops->task_to_inode(p, inode);
  610. }
  611. int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
  612. {
  613. return security_ops->ipc_permission(ipcp, flag);
  614. }
  615. void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
  616. {
  617. security_ops->ipc_getsecid(ipcp, secid);
  618. }
  619. int security_msg_msg_alloc(struct msg_msg *msg)
  620. {
  621. return security_ops->msg_msg_alloc_security(msg);
  622. }
  623. void security_msg_msg_free(struct msg_msg *msg)
  624. {
  625. security_ops->msg_msg_free_security(msg);
  626. }
  627. int security_msg_queue_alloc(struct msg_queue *msq)
  628. {
  629. return security_ops->msg_queue_alloc_security(msq);
  630. }
  631. void security_msg_queue_free(struct msg_queue *msq)
  632. {
  633. security_ops->msg_queue_free_security(msq);
  634. }
  635. int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
  636. {
  637. return security_ops->msg_queue_associate(msq, msqflg);
  638. }
  639. int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
  640. {
  641. return security_ops->msg_queue_msgctl(msq, cmd);
  642. }
  643. int security_msg_queue_msgsnd(struct msg_queue *msq,
  644. struct msg_msg *msg, int msqflg)
  645. {
  646. return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
  647. }
  648. int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
  649. struct task_struct *target, long type, int mode)
  650. {
  651. return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
  652. }
  653. int security_shm_alloc(struct shmid_kernel *shp)
  654. {
  655. return security_ops->shm_alloc_security(shp);
  656. }
  657. void security_shm_free(struct shmid_kernel *shp)
  658. {
  659. security_ops->shm_free_security(shp);
  660. }
  661. int security_shm_associate(struct shmid_kernel *shp, int shmflg)
  662. {
  663. return security_ops->shm_associate(shp, shmflg);
  664. }
  665. int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
  666. {
  667. return security_ops->shm_shmctl(shp, cmd);
  668. }
  669. int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
  670. {
  671. return security_ops->shm_shmat(shp, shmaddr, shmflg);
  672. }
  673. int security_sem_alloc(struct sem_array *sma)
  674. {
  675. return security_ops->sem_alloc_security(sma);
  676. }
  677. void security_sem_free(struct sem_array *sma)
  678. {
  679. security_ops->sem_free_security(sma);
  680. }
  681. int security_sem_associate(struct sem_array *sma, int semflg)
  682. {
  683. return security_ops->sem_associate(sma, semflg);
  684. }
  685. int security_sem_semctl(struct sem_array *sma, int cmd)
  686. {
  687. return security_ops->sem_semctl(sma, cmd);
  688. }
  689. int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
  690. unsigned nsops, int alter)
  691. {
  692. return security_ops->sem_semop(sma, sops, nsops, alter);
  693. }
  694. void security_d_instantiate(struct dentry *dentry, struct inode *inode)
  695. {
  696. if (unlikely(inode && IS_PRIVATE(inode)))
  697. return;
  698. security_ops->d_instantiate(dentry, inode);
  699. }
  700. EXPORT_SYMBOL(security_d_instantiate);
  701. int security_getprocattr(struct task_struct *p, char *name, char **value)
  702. {
  703. return security_ops->getprocattr(p, name, value);
  704. }
  705. int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
  706. {
  707. return security_ops->setprocattr(p, name, value, size);
  708. }
  709. int security_netlink_send(struct sock *sk, struct sk_buff *skb)
  710. {
  711. return security_ops->netlink_send(sk, skb);
  712. }
  713. int security_netlink_recv(struct sk_buff *skb, int cap)
  714. {
  715. return security_ops->netlink_recv(skb, cap);
  716. }
  717. EXPORT_SYMBOL(security_netlink_recv);
  718. int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
  719. {
  720. return security_ops->secid_to_secctx(secid, secdata, seclen);
  721. }
  722. EXPORT_SYMBOL(security_secid_to_secctx);
  723. int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
  724. {
  725. return security_ops->secctx_to_secid(secdata, seclen, secid);
  726. }
  727. EXPORT_SYMBOL(security_secctx_to_secid);
  728. void security_release_secctx(char *secdata, u32 seclen)
  729. {
  730. security_ops->release_secctx(secdata, seclen);
  731. }
  732. EXPORT_SYMBOL(security_release_secctx);
  733. #ifdef CONFIG_SECURITY_NETWORK
  734. int security_unix_stream_connect(struct socket *sock, struct socket *other,
  735. struct sock *newsk)
  736. {
  737. return security_ops->unix_stream_connect(sock, other, newsk);
  738. }
  739. EXPORT_SYMBOL(security_unix_stream_connect);
  740. int security_unix_may_send(struct socket *sock, struct socket *other)
  741. {
  742. return security_ops->unix_may_send(sock, other);
  743. }
  744. EXPORT_SYMBOL(security_unix_may_send);
  745. int security_socket_create(int family, int type, int protocol, int kern)
  746. {
  747. return security_ops->socket_create(family, type, protocol, kern);
  748. }
  749. int security_socket_post_create(struct socket *sock, int family,
  750. int type, int protocol, int kern)
  751. {
  752. return security_ops->socket_post_create(sock, family, type,
  753. protocol, kern);
  754. }
  755. int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
  756. {
  757. return security_ops->socket_bind(sock, address, addrlen);
  758. }
  759. int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
  760. {
  761. return security_ops->socket_connect(sock, address, addrlen);
  762. }
  763. int security_socket_listen(struct socket *sock, int backlog)
  764. {
  765. return security_ops->socket_listen(sock, backlog);
  766. }
  767. int security_socket_accept(struct socket *sock, struct socket *newsock)
  768. {
  769. return security_ops->socket_accept(sock, newsock);
  770. }
  771. void security_socket_post_accept(struct socket *sock, struct socket *newsock)
  772. {
  773. security_ops->socket_post_accept(sock, newsock);
  774. }
  775. int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
  776. {
  777. return security_ops->socket_sendmsg(sock, msg, size);
  778. }
  779. int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
  780. int size, int flags)
  781. {
  782. return security_ops->socket_recvmsg(sock, msg, size, flags);
  783. }
  784. int security_socket_getsockname(struct socket *sock)
  785. {
  786. return security_ops->socket_getsockname(sock);
  787. }
  788. int security_socket_getpeername(struct socket *sock)
  789. {
  790. return security_ops->socket_getpeername(sock);
  791. }
  792. int security_socket_getsockopt(struct socket *sock, int level, int optname)
  793. {
  794. return security_ops->socket_getsockopt(sock, level, optname);
  795. }
  796. int security_socket_setsockopt(struct socket *sock, int level, int optname)
  797. {
  798. return security_ops->socket_setsockopt(sock, level, optname);
  799. }
  800. int security_socket_shutdown(struct socket *sock, int how)
  801. {
  802. return security_ops->socket_shutdown(sock, how);
  803. }
  804. int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
  805. {
  806. return security_ops->socket_sock_rcv_skb(sk, skb);
  807. }
  808. EXPORT_SYMBOL(security_sock_rcv_skb);
  809. int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
  810. int __user *optlen, unsigned len)
  811. {
  812. return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
  813. }
  814. int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
  815. {
  816. return security_ops->socket_getpeersec_dgram(sock, skb, secid);
  817. }
  818. EXPORT_SYMBOL(security_socket_getpeersec_dgram);
  819. int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
  820. {
  821. return security_ops->sk_alloc_security(sk, family, priority);
  822. }
  823. void security_sk_free(struct sock *sk)
  824. {
  825. security_ops->sk_free_security(sk);
  826. }
  827. void security_sk_clone(const struct sock *sk, struct sock *newsk)
  828. {
  829. security_ops->sk_clone_security(sk, newsk);
  830. }
  831. void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
  832. {
  833. security_ops->sk_getsecid(sk, &fl->secid);
  834. }
  835. EXPORT_SYMBOL(security_sk_classify_flow);
  836. void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
  837. {
  838. security_ops->req_classify_flow(req, fl);
  839. }
  840. EXPORT_SYMBOL(security_req_classify_flow);
  841. void security_sock_graft(struct sock *sk, struct socket *parent)
  842. {
  843. security_ops->sock_graft(sk, parent);
  844. }
  845. EXPORT_SYMBOL(security_sock_graft);
  846. int security_inet_conn_request(struct sock *sk,
  847. struct sk_buff *skb, struct request_sock *req)
  848. {
  849. return security_ops->inet_conn_request(sk, skb, req);
  850. }
  851. EXPORT_SYMBOL(security_inet_conn_request);
  852. void security_inet_csk_clone(struct sock *newsk,
  853. const struct request_sock *req)
  854. {
  855. security_ops->inet_csk_clone(newsk, req);
  856. }
  857. void security_inet_conn_established(struct sock *sk,
  858. struct sk_buff *skb)
  859. {
  860. security_ops->inet_conn_established(sk, skb);
  861. }
  862. #endif /* CONFIG_SECURITY_NETWORK */
  863. #ifdef CONFIG_SECURITY_NETWORK_XFRM
  864. int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
  865. {
  866. return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
  867. }
  868. EXPORT_SYMBOL(security_xfrm_policy_alloc);
  869. int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
  870. struct xfrm_sec_ctx **new_ctxp)
  871. {
  872. return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
  873. }
  874. void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
  875. {
  876. security_ops->xfrm_policy_free_security(ctx);
  877. }
  878. EXPORT_SYMBOL(security_xfrm_policy_free);
  879. int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
  880. {
  881. return security_ops->xfrm_policy_delete_security(ctx);
  882. }
  883. int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
  884. {
  885. return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
  886. }
  887. EXPORT_SYMBOL(security_xfrm_state_alloc);
  888. int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
  889. struct xfrm_sec_ctx *polsec, u32 secid)
  890. {
  891. if (!polsec)
  892. return 0;
  893. /*
  894. * We want the context to be taken from secid which is usually
  895. * from the sock.
  896. */
  897. return security_ops->xfrm_state_alloc_security(x, NULL, secid);
  898. }
  899. int security_xfrm_state_delete(struct xfrm_state *x)
  900. {
  901. return security_ops->xfrm_state_delete_security(x);
  902. }
  903. EXPORT_SYMBOL(security_xfrm_state_delete);
  904. void security_xfrm_state_free(struct xfrm_state *x)
  905. {
  906. security_ops->xfrm_state_free_security(x);
  907. }
  908. int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
  909. {
  910. return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
  911. }
  912. int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
  913. struct xfrm_policy *xp, struct flowi *fl)
  914. {
  915. return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
  916. }
  917. int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
  918. {
  919. return security_ops->xfrm_decode_session(skb, secid, 1);
  920. }
  921. void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
  922. {
  923. int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
  924. BUG_ON(rc);
  925. }
  926. EXPORT_SYMBOL(security_skb_classify_flow);
  927. #endif /* CONFIG_SECURITY_NETWORK_XFRM */
  928. #ifdef CONFIG_KEYS
  929. int security_key_alloc(struct key *key, struct task_struct *tsk, unsigned long flags)
  930. {
  931. return security_ops->key_alloc(key, tsk, flags);
  932. }
  933. void security_key_free(struct key *key)
  934. {
  935. security_ops->key_free(key);
  936. }
  937. int security_key_permission(key_ref_t key_ref,
  938. struct task_struct *context, key_perm_t perm)
  939. {
  940. return security_ops->key_permission(key_ref, context, perm);
  941. }
  942. int security_key_getsecurity(struct key *key, char **_buffer)
  943. {
  944. return security_ops->key_getsecurity(key, _buffer);
  945. }
  946. #endif /* CONFIG_KEYS */
  947. #ifdef CONFIG_AUDIT
  948. int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
  949. {
  950. return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
  951. }
  952. int security_audit_rule_known(struct audit_krule *krule)
  953. {
  954. return security_ops->audit_rule_known(krule);
  955. }
  956. void security_audit_rule_free(void *lsmrule)
  957. {
  958. security_ops->audit_rule_free(lsmrule);
  959. }
  960. int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
  961. struct audit_context *actx)
  962. {
  963. return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
  964. }
  965. #endif /* CONFIG_AUDIT */