xfs_inode.c 136 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include "xfs_fs.h"
  20. #include "xfs_types.h"
  21. #include "xfs_bit.h"
  22. #include "xfs_log.h"
  23. #include "xfs_inum.h"
  24. #include "xfs_imap.h"
  25. #include "xfs_trans.h"
  26. #include "xfs_trans_priv.h"
  27. #include "xfs_sb.h"
  28. #include "xfs_ag.h"
  29. #include "xfs_dir2.h"
  30. #include "xfs_dmapi.h"
  31. #include "xfs_mount.h"
  32. #include "xfs_bmap_btree.h"
  33. #include "xfs_alloc_btree.h"
  34. #include "xfs_ialloc_btree.h"
  35. #include "xfs_dir2_sf.h"
  36. #include "xfs_attr_sf.h"
  37. #include "xfs_dinode.h"
  38. #include "xfs_inode.h"
  39. #include "xfs_buf_item.h"
  40. #include "xfs_inode_item.h"
  41. #include "xfs_btree.h"
  42. #include "xfs_alloc.h"
  43. #include "xfs_ialloc.h"
  44. #include "xfs_bmap.h"
  45. #include "xfs_rw.h"
  46. #include "xfs_error.h"
  47. #include "xfs_utils.h"
  48. #include "xfs_dir2_trace.h"
  49. #include "xfs_quota.h"
  50. #include "xfs_mac.h"
  51. #include "xfs_acl.h"
  52. kmem_zone_t *xfs_ifork_zone;
  53. kmem_zone_t *xfs_inode_zone;
  54. kmem_zone_t *xfs_chashlist_zone;
  55. /*
  56. * Used in xfs_itruncate(). This is the maximum number of extents
  57. * freed from a file in a single transaction.
  58. */
  59. #define XFS_ITRUNC_MAX_EXTENTS 2
  60. STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
  61. STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
  62. STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
  63. STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
  64. #ifdef DEBUG
  65. /*
  66. * Make sure that the extents in the given memory buffer
  67. * are valid.
  68. */
  69. STATIC void
  70. xfs_validate_extents(
  71. xfs_ifork_t *ifp,
  72. int nrecs,
  73. int disk,
  74. xfs_exntfmt_t fmt)
  75. {
  76. xfs_bmbt_rec_t *ep;
  77. xfs_bmbt_irec_t irec;
  78. xfs_bmbt_rec_t rec;
  79. int i;
  80. for (i = 0; i < nrecs; i++) {
  81. ep = xfs_iext_get_ext(ifp, i);
  82. rec.l0 = get_unaligned((__uint64_t*)&ep->l0);
  83. rec.l1 = get_unaligned((__uint64_t*)&ep->l1);
  84. if (disk)
  85. xfs_bmbt_disk_get_all(&rec, &irec);
  86. else
  87. xfs_bmbt_get_all(&rec, &irec);
  88. if (fmt == XFS_EXTFMT_NOSTATE)
  89. ASSERT(irec.br_state == XFS_EXT_NORM);
  90. }
  91. }
  92. #else /* DEBUG */
  93. #define xfs_validate_extents(ifp, nrecs, disk, fmt)
  94. #endif /* DEBUG */
  95. /*
  96. * Check that none of the inode's in the buffer have a next
  97. * unlinked field of 0.
  98. */
  99. #if defined(DEBUG)
  100. void
  101. xfs_inobp_check(
  102. xfs_mount_t *mp,
  103. xfs_buf_t *bp)
  104. {
  105. int i;
  106. int j;
  107. xfs_dinode_t *dip;
  108. j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
  109. for (i = 0; i < j; i++) {
  110. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  111. i * mp->m_sb.sb_inodesize);
  112. if (!dip->di_next_unlinked) {
  113. xfs_fs_cmn_err(CE_ALERT, mp,
  114. "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
  115. bp);
  116. ASSERT(dip->di_next_unlinked);
  117. }
  118. }
  119. }
  120. #endif
  121. /*
  122. * This routine is called to map an inode number within a file
  123. * system to the buffer containing the on-disk version of the
  124. * inode. It returns a pointer to the buffer containing the
  125. * on-disk inode in the bpp parameter, and in the dip parameter
  126. * it returns a pointer to the on-disk inode within that buffer.
  127. *
  128. * If a non-zero error is returned, then the contents of bpp and
  129. * dipp are undefined.
  130. *
  131. * Use xfs_imap() to determine the size and location of the
  132. * buffer to read from disk.
  133. */
  134. STATIC int
  135. xfs_inotobp(
  136. xfs_mount_t *mp,
  137. xfs_trans_t *tp,
  138. xfs_ino_t ino,
  139. xfs_dinode_t **dipp,
  140. xfs_buf_t **bpp,
  141. int *offset)
  142. {
  143. int di_ok;
  144. xfs_imap_t imap;
  145. xfs_buf_t *bp;
  146. int error;
  147. xfs_dinode_t *dip;
  148. /*
  149. * Call the space management code to find the location of the
  150. * inode on disk.
  151. */
  152. imap.im_blkno = 0;
  153. error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
  154. if (error != 0) {
  155. cmn_err(CE_WARN,
  156. "xfs_inotobp: xfs_imap() returned an "
  157. "error %d on %s. Returning error.", error, mp->m_fsname);
  158. return error;
  159. }
  160. /*
  161. * If the inode number maps to a block outside the bounds of the
  162. * file system then return NULL rather than calling read_buf
  163. * and panicing when we get an error from the driver.
  164. */
  165. if ((imap.im_blkno + imap.im_len) >
  166. XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
  167. cmn_err(CE_WARN,
  168. "xfs_inotobp: inode number (%llu + %d) maps to a block outside the bounds "
  169. "of the file system %s. Returning EINVAL.",
  170. (unsigned long long)imap.im_blkno,
  171. imap.im_len, mp->m_fsname);
  172. return XFS_ERROR(EINVAL);
  173. }
  174. /*
  175. * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
  176. * default to just a read_buf() call.
  177. */
  178. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
  179. (int)imap.im_len, XFS_BUF_LOCK, &bp);
  180. if (error) {
  181. cmn_err(CE_WARN,
  182. "xfs_inotobp: xfs_trans_read_buf() returned an "
  183. "error %d on %s. Returning error.", error, mp->m_fsname);
  184. return error;
  185. }
  186. dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0);
  187. di_ok =
  188. INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
  189. XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
  190. if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
  191. XFS_RANDOM_ITOBP_INOTOBP))) {
  192. XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip);
  193. xfs_trans_brelse(tp, bp);
  194. cmn_err(CE_WARN,
  195. "xfs_inotobp: XFS_TEST_ERROR() returned an "
  196. "error on %s. Returning EFSCORRUPTED.", mp->m_fsname);
  197. return XFS_ERROR(EFSCORRUPTED);
  198. }
  199. xfs_inobp_check(mp, bp);
  200. /*
  201. * Set *dipp to point to the on-disk inode in the buffer.
  202. */
  203. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
  204. *bpp = bp;
  205. *offset = imap.im_boffset;
  206. return 0;
  207. }
  208. /*
  209. * This routine is called to map an inode to the buffer containing
  210. * the on-disk version of the inode. It returns a pointer to the
  211. * buffer containing the on-disk inode in the bpp parameter, and in
  212. * the dip parameter it returns a pointer to the on-disk inode within
  213. * that buffer.
  214. *
  215. * If a non-zero error is returned, then the contents of bpp and
  216. * dipp are undefined.
  217. *
  218. * If the inode is new and has not yet been initialized, use xfs_imap()
  219. * to determine the size and location of the buffer to read from disk.
  220. * If the inode has already been mapped to its buffer and read in once,
  221. * then use the mapping information stored in the inode rather than
  222. * calling xfs_imap(). This allows us to avoid the overhead of looking
  223. * at the inode btree for small block file systems (see xfs_dilocate()).
  224. * We can tell whether the inode has been mapped in before by comparing
  225. * its disk block address to 0. Only uninitialized inodes will have
  226. * 0 for the disk block address.
  227. */
  228. int
  229. xfs_itobp(
  230. xfs_mount_t *mp,
  231. xfs_trans_t *tp,
  232. xfs_inode_t *ip,
  233. xfs_dinode_t **dipp,
  234. xfs_buf_t **bpp,
  235. xfs_daddr_t bno,
  236. uint imap_flags)
  237. {
  238. xfs_imap_t imap;
  239. xfs_buf_t *bp;
  240. int error;
  241. int i;
  242. int ni;
  243. if (ip->i_blkno == (xfs_daddr_t)0) {
  244. /*
  245. * Call the space management code to find the location of the
  246. * inode on disk.
  247. */
  248. imap.im_blkno = bno;
  249. if ((error = xfs_imap(mp, tp, ip->i_ino, &imap,
  250. XFS_IMAP_LOOKUP | imap_flags)))
  251. return error;
  252. /*
  253. * If the inode number maps to a block outside the bounds
  254. * of the file system then return NULL rather than calling
  255. * read_buf and panicing when we get an error from the
  256. * driver.
  257. */
  258. if ((imap.im_blkno + imap.im_len) >
  259. XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
  260. #ifdef DEBUG
  261. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
  262. "(imap.im_blkno (0x%llx) "
  263. "+ imap.im_len (0x%llx)) > "
  264. " XFS_FSB_TO_BB(mp, "
  265. "mp->m_sb.sb_dblocks) (0x%llx)",
  266. (unsigned long long) imap.im_blkno,
  267. (unsigned long long) imap.im_len,
  268. XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
  269. #endif /* DEBUG */
  270. return XFS_ERROR(EINVAL);
  271. }
  272. /*
  273. * Fill in the fields in the inode that will be used to
  274. * map the inode to its buffer from now on.
  275. */
  276. ip->i_blkno = imap.im_blkno;
  277. ip->i_len = imap.im_len;
  278. ip->i_boffset = imap.im_boffset;
  279. } else {
  280. /*
  281. * We've already mapped the inode once, so just use the
  282. * mapping that we saved the first time.
  283. */
  284. imap.im_blkno = ip->i_blkno;
  285. imap.im_len = ip->i_len;
  286. imap.im_boffset = ip->i_boffset;
  287. }
  288. ASSERT(bno == 0 || bno == imap.im_blkno);
  289. /*
  290. * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
  291. * default to just a read_buf() call.
  292. */
  293. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
  294. (int)imap.im_len, XFS_BUF_LOCK, &bp);
  295. if (error) {
  296. #ifdef DEBUG
  297. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
  298. "xfs_trans_read_buf() returned error %d, "
  299. "imap.im_blkno 0x%llx, imap.im_len 0x%llx",
  300. error, (unsigned long long) imap.im_blkno,
  301. (unsigned long long) imap.im_len);
  302. #endif /* DEBUG */
  303. return error;
  304. }
  305. /*
  306. * Validate the magic number and version of every inode in the buffer
  307. * (if DEBUG kernel) or the first inode in the buffer, otherwise.
  308. * No validation is done here in userspace (xfs_repair).
  309. */
  310. #if !defined(__KERNEL__)
  311. ni = 0;
  312. #elif defined(DEBUG)
  313. ni = BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog;
  314. #else /* usual case */
  315. ni = 1;
  316. #endif
  317. for (i = 0; i < ni; i++) {
  318. int di_ok;
  319. xfs_dinode_t *dip;
  320. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  321. (i << mp->m_sb.sb_inodelog));
  322. di_ok = INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
  323. XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
  324. if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
  325. XFS_ERRTAG_ITOBP_INOTOBP,
  326. XFS_RANDOM_ITOBP_INOTOBP))) {
  327. if (imap_flags & XFS_IMAP_BULKSTAT) {
  328. xfs_trans_brelse(tp, bp);
  329. return XFS_ERROR(EINVAL);
  330. }
  331. #ifdef DEBUG
  332. cmn_err(CE_ALERT,
  333. "Device %s - bad inode magic/vsn "
  334. "daddr %lld #%d (magic=%x)",
  335. XFS_BUFTARG_NAME(mp->m_ddev_targp),
  336. (unsigned long long)imap.im_blkno, i,
  337. INT_GET(dip->di_core.di_magic, ARCH_CONVERT));
  338. #endif
  339. XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH,
  340. mp, dip);
  341. xfs_trans_brelse(tp, bp);
  342. return XFS_ERROR(EFSCORRUPTED);
  343. }
  344. }
  345. xfs_inobp_check(mp, bp);
  346. /*
  347. * Mark the buffer as an inode buffer now that it looks good
  348. */
  349. XFS_BUF_SET_VTYPE(bp, B_FS_INO);
  350. /*
  351. * Set *dipp to point to the on-disk inode in the buffer.
  352. */
  353. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
  354. *bpp = bp;
  355. return 0;
  356. }
  357. /*
  358. * Move inode type and inode format specific information from the
  359. * on-disk inode to the in-core inode. For fifos, devs, and sockets
  360. * this means set if_rdev to the proper value. For files, directories,
  361. * and symlinks this means to bring in the in-line data or extent
  362. * pointers. For a file in B-tree format, only the root is immediately
  363. * brought in-core. The rest will be in-lined in if_extents when it
  364. * is first referenced (see xfs_iread_extents()).
  365. */
  366. STATIC int
  367. xfs_iformat(
  368. xfs_inode_t *ip,
  369. xfs_dinode_t *dip)
  370. {
  371. xfs_attr_shortform_t *atp;
  372. int size;
  373. int error;
  374. xfs_fsize_t di_size;
  375. ip->i_df.if_ext_max =
  376. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  377. error = 0;
  378. if (unlikely(
  379. INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) +
  380. INT_GET(dip->di_core.di_anextents, ARCH_CONVERT) >
  381. INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT))) {
  382. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  383. "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
  384. (unsigned long long)ip->i_ino,
  385. (int)(INT_GET(dip->di_core.di_nextents, ARCH_CONVERT)
  386. + INT_GET(dip->di_core.di_anextents, ARCH_CONVERT)),
  387. (unsigned long long)
  388. INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT));
  389. XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
  390. ip->i_mount, dip);
  391. return XFS_ERROR(EFSCORRUPTED);
  392. }
  393. if (unlikely(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT) > ip->i_mount->m_sb.sb_inodesize)) {
  394. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  395. "corrupt dinode %Lu, forkoff = 0x%x.",
  396. (unsigned long long)ip->i_ino,
  397. (int)(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT)));
  398. XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
  399. ip->i_mount, dip);
  400. return XFS_ERROR(EFSCORRUPTED);
  401. }
  402. switch (ip->i_d.di_mode & S_IFMT) {
  403. case S_IFIFO:
  404. case S_IFCHR:
  405. case S_IFBLK:
  406. case S_IFSOCK:
  407. if (unlikely(INT_GET(dip->di_core.di_format, ARCH_CONVERT) != XFS_DINODE_FMT_DEV)) {
  408. XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
  409. ip->i_mount, dip);
  410. return XFS_ERROR(EFSCORRUPTED);
  411. }
  412. ip->i_d.di_size = 0;
  413. ip->i_df.if_u2.if_rdev = INT_GET(dip->di_u.di_dev, ARCH_CONVERT);
  414. break;
  415. case S_IFREG:
  416. case S_IFLNK:
  417. case S_IFDIR:
  418. switch (INT_GET(dip->di_core.di_format, ARCH_CONVERT)) {
  419. case XFS_DINODE_FMT_LOCAL:
  420. /*
  421. * no local regular files yet
  422. */
  423. if (unlikely((INT_GET(dip->di_core.di_mode, ARCH_CONVERT) & S_IFMT) == S_IFREG)) {
  424. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  425. "corrupt inode %Lu "
  426. "(local format for regular file).",
  427. (unsigned long long) ip->i_ino);
  428. XFS_CORRUPTION_ERROR("xfs_iformat(4)",
  429. XFS_ERRLEVEL_LOW,
  430. ip->i_mount, dip);
  431. return XFS_ERROR(EFSCORRUPTED);
  432. }
  433. di_size = INT_GET(dip->di_core.di_size, ARCH_CONVERT);
  434. if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
  435. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  436. "corrupt inode %Lu "
  437. "(bad size %Ld for local inode).",
  438. (unsigned long long) ip->i_ino,
  439. (long long) di_size);
  440. XFS_CORRUPTION_ERROR("xfs_iformat(5)",
  441. XFS_ERRLEVEL_LOW,
  442. ip->i_mount, dip);
  443. return XFS_ERROR(EFSCORRUPTED);
  444. }
  445. size = (int)di_size;
  446. error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
  447. break;
  448. case XFS_DINODE_FMT_EXTENTS:
  449. error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
  450. break;
  451. case XFS_DINODE_FMT_BTREE:
  452. error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
  453. break;
  454. default:
  455. XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
  456. ip->i_mount);
  457. return XFS_ERROR(EFSCORRUPTED);
  458. }
  459. break;
  460. default:
  461. XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
  462. return XFS_ERROR(EFSCORRUPTED);
  463. }
  464. if (error) {
  465. return error;
  466. }
  467. if (!XFS_DFORK_Q(dip))
  468. return 0;
  469. ASSERT(ip->i_afp == NULL);
  470. ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
  471. ip->i_afp->if_ext_max =
  472. XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  473. switch (INT_GET(dip->di_core.di_aformat, ARCH_CONVERT)) {
  474. case XFS_DINODE_FMT_LOCAL:
  475. atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
  476. size = be16_to_cpu(atp->hdr.totsize);
  477. error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
  478. break;
  479. case XFS_DINODE_FMT_EXTENTS:
  480. error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
  481. break;
  482. case XFS_DINODE_FMT_BTREE:
  483. error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
  484. break;
  485. default:
  486. error = XFS_ERROR(EFSCORRUPTED);
  487. break;
  488. }
  489. if (error) {
  490. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  491. ip->i_afp = NULL;
  492. xfs_idestroy_fork(ip, XFS_DATA_FORK);
  493. }
  494. return error;
  495. }
  496. /*
  497. * The file is in-lined in the on-disk inode.
  498. * If it fits into if_inline_data, then copy
  499. * it there, otherwise allocate a buffer for it
  500. * and copy the data there. Either way, set
  501. * if_data to point at the data.
  502. * If we allocate a buffer for the data, make
  503. * sure that its size is a multiple of 4 and
  504. * record the real size in i_real_bytes.
  505. */
  506. STATIC int
  507. xfs_iformat_local(
  508. xfs_inode_t *ip,
  509. xfs_dinode_t *dip,
  510. int whichfork,
  511. int size)
  512. {
  513. xfs_ifork_t *ifp;
  514. int real_size;
  515. /*
  516. * If the size is unreasonable, then something
  517. * is wrong and we just bail out rather than crash in
  518. * kmem_alloc() or memcpy() below.
  519. */
  520. if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  521. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  522. "corrupt inode %Lu "
  523. "(bad size %d for local fork, size = %d).",
  524. (unsigned long long) ip->i_ino, size,
  525. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
  526. XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
  527. ip->i_mount, dip);
  528. return XFS_ERROR(EFSCORRUPTED);
  529. }
  530. ifp = XFS_IFORK_PTR(ip, whichfork);
  531. real_size = 0;
  532. if (size == 0)
  533. ifp->if_u1.if_data = NULL;
  534. else if (size <= sizeof(ifp->if_u2.if_inline_data))
  535. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  536. else {
  537. real_size = roundup(size, 4);
  538. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  539. }
  540. ifp->if_bytes = size;
  541. ifp->if_real_bytes = real_size;
  542. if (size)
  543. memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
  544. ifp->if_flags &= ~XFS_IFEXTENTS;
  545. ifp->if_flags |= XFS_IFINLINE;
  546. return 0;
  547. }
  548. /*
  549. * The file consists of a set of extents all
  550. * of which fit into the on-disk inode.
  551. * If there are few enough extents to fit into
  552. * the if_inline_ext, then copy them there.
  553. * Otherwise allocate a buffer for them and copy
  554. * them into it. Either way, set if_extents
  555. * to point at the extents.
  556. */
  557. STATIC int
  558. xfs_iformat_extents(
  559. xfs_inode_t *ip,
  560. xfs_dinode_t *dip,
  561. int whichfork)
  562. {
  563. xfs_bmbt_rec_t *ep, *dp;
  564. xfs_ifork_t *ifp;
  565. int nex;
  566. int size;
  567. int i;
  568. ifp = XFS_IFORK_PTR(ip, whichfork);
  569. nex = XFS_DFORK_NEXTENTS(dip, whichfork);
  570. size = nex * (uint)sizeof(xfs_bmbt_rec_t);
  571. /*
  572. * If the number of extents is unreasonable, then something
  573. * is wrong and we just bail out rather than crash in
  574. * kmem_alloc() or memcpy() below.
  575. */
  576. if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  577. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  578. "corrupt inode %Lu ((a)extents = %d).",
  579. (unsigned long long) ip->i_ino, nex);
  580. XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
  581. ip->i_mount, dip);
  582. return XFS_ERROR(EFSCORRUPTED);
  583. }
  584. ifp->if_real_bytes = 0;
  585. if (nex == 0)
  586. ifp->if_u1.if_extents = NULL;
  587. else if (nex <= XFS_INLINE_EXTS)
  588. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  589. else
  590. xfs_iext_add(ifp, 0, nex);
  591. ifp->if_bytes = size;
  592. if (size) {
  593. dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
  594. xfs_validate_extents(ifp, nex, 1, XFS_EXTFMT_INODE(ip));
  595. for (i = 0; i < nex; i++, dp++) {
  596. ep = xfs_iext_get_ext(ifp, i);
  597. ep->l0 = INT_GET(get_unaligned((__uint64_t*)&dp->l0),
  598. ARCH_CONVERT);
  599. ep->l1 = INT_GET(get_unaligned((__uint64_t*)&dp->l1),
  600. ARCH_CONVERT);
  601. }
  602. xfs_bmap_trace_exlist("xfs_iformat_extents", ip, nex,
  603. whichfork);
  604. if (whichfork != XFS_DATA_FORK ||
  605. XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
  606. if (unlikely(xfs_check_nostate_extents(
  607. ifp, 0, nex))) {
  608. XFS_ERROR_REPORT("xfs_iformat_extents(2)",
  609. XFS_ERRLEVEL_LOW,
  610. ip->i_mount);
  611. return XFS_ERROR(EFSCORRUPTED);
  612. }
  613. }
  614. ifp->if_flags |= XFS_IFEXTENTS;
  615. return 0;
  616. }
  617. /*
  618. * The file has too many extents to fit into
  619. * the inode, so they are in B-tree format.
  620. * Allocate a buffer for the root of the B-tree
  621. * and copy the root into it. The i_extents
  622. * field will remain NULL until all of the
  623. * extents are read in (when they are needed).
  624. */
  625. STATIC int
  626. xfs_iformat_btree(
  627. xfs_inode_t *ip,
  628. xfs_dinode_t *dip,
  629. int whichfork)
  630. {
  631. xfs_bmdr_block_t *dfp;
  632. xfs_ifork_t *ifp;
  633. /* REFERENCED */
  634. int nrecs;
  635. int size;
  636. ifp = XFS_IFORK_PTR(ip, whichfork);
  637. dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
  638. size = XFS_BMAP_BROOT_SPACE(dfp);
  639. nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
  640. /*
  641. * blow out if -- fork has less extents than can fit in
  642. * fork (fork shouldn't be a btree format), root btree
  643. * block has more records than can fit into the fork,
  644. * or the number of extents is greater than the number of
  645. * blocks.
  646. */
  647. if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
  648. || XFS_BMDR_SPACE_CALC(nrecs) >
  649. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
  650. || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
  651. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  652. "corrupt inode %Lu (btree).",
  653. (unsigned long long) ip->i_ino);
  654. XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
  655. ip->i_mount);
  656. return XFS_ERROR(EFSCORRUPTED);
  657. }
  658. ifp->if_broot_bytes = size;
  659. ifp->if_broot = kmem_alloc(size, KM_SLEEP);
  660. ASSERT(ifp->if_broot != NULL);
  661. /*
  662. * Copy and convert from the on-disk structure
  663. * to the in-memory structure.
  664. */
  665. xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
  666. ifp->if_broot, size);
  667. ifp->if_flags &= ~XFS_IFEXTENTS;
  668. ifp->if_flags |= XFS_IFBROOT;
  669. return 0;
  670. }
  671. /*
  672. * xfs_xlate_dinode_core - translate an xfs_inode_core_t between ondisk
  673. * and native format
  674. *
  675. * buf = on-disk representation
  676. * dip = native representation
  677. * dir = direction - +ve -> disk to native
  678. * -ve -> native to disk
  679. */
  680. void
  681. xfs_xlate_dinode_core(
  682. xfs_caddr_t buf,
  683. xfs_dinode_core_t *dip,
  684. int dir)
  685. {
  686. xfs_dinode_core_t *buf_core = (xfs_dinode_core_t *)buf;
  687. xfs_dinode_core_t *mem_core = (xfs_dinode_core_t *)dip;
  688. xfs_arch_t arch = ARCH_CONVERT;
  689. ASSERT(dir);
  690. INT_XLATE(buf_core->di_magic, mem_core->di_magic, dir, arch);
  691. INT_XLATE(buf_core->di_mode, mem_core->di_mode, dir, arch);
  692. INT_XLATE(buf_core->di_version, mem_core->di_version, dir, arch);
  693. INT_XLATE(buf_core->di_format, mem_core->di_format, dir, arch);
  694. INT_XLATE(buf_core->di_onlink, mem_core->di_onlink, dir, arch);
  695. INT_XLATE(buf_core->di_uid, mem_core->di_uid, dir, arch);
  696. INT_XLATE(buf_core->di_gid, mem_core->di_gid, dir, arch);
  697. INT_XLATE(buf_core->di_nlink, mem_core->di_nlink, dir, arch);
  698. INT_XLATE(buf_core->di_projid, mem_core->di_projid, dir, arch);
  699. if (dir > 0) {
  700. memcpy(mem_core->di_pad, buf_core->di_pad,
  701. sizeof(buf_core->di_pad));
  702. } else {
  703. memcpy(buf_core->di_pad, mem_core->di_pad,
  704. sizeof(buf_core->di_pad));
  705. }
  706. INT_XLATE(buf_core->di_flushiter, mem_core->di_flushiter, dir, arch);
  707. INT_XLATE(buf_core->di_atime.t_sec, mem_core->di_atime.t_sec,
  708. dir, arch);
  709. INT_XLATE(buf_core->di_atime.t_nsec, mem_core->di_atime.t_nsec,
  710. dir, arch);
  711. INT_XLATE(buf_core->di_mtime.t_sec, mem_core->di_mtime.t_sec,
  712. dir, arch);
  713. INT_XLATE(buf_core->di_mtime.t_nsec, mem_core->di_mtime.t_nsec,
  714. dir, arch);
  715. INT_XLATE(buf_core->di_ctime.t_sec, mem_core->di_ctime.t_sec,
  716. dir, arch);
  717. INT_XLATE(buf_core->di_ctime.t_nsec, mem_core->di_ctime.t_nsec,
  718. dir, arch);
  719. INT_XLATE(buf_core->di_size, mem_core->di_size, dir, arch);
  720. INT_XLATE(buf_core->di_nblocks, mem_core->di_nblocks, dir, arch);
  721. INT_XLATE(buf_core->di_extsize, mem_core->di_extsize, dir, arch);
  722. INT_XLATE(buf_core->di_nextents, mem_core->di_nextents, dir, arch);
  723. INT_XLATE(buf_core->di_anextents, mem_core->di_anextents, dir, arch);
  724. INT_XLATE(buf_core->di_forkoff, mem_core->di_forkoff, dir, arch);
  725. INT_XLATE(buf_core->di_aformat, mem_core->di_aformat, dir, arch);
  726. INT_XLATE(buf_core->di_dmevmask, mem_core->di_dmevmask, dir, arch);
  727. INT_XLATE(buf_core->di_dmstate, mem_core->di_dmstate, dir, arch);
  728. INT_XLATE(buf_core->di_flags, mem_core->di_flags, dir, arch);
  729. INT_XLATE(buf_core->di_gen, mem_core->di_gen, dir, arch);
  730. }
  731. STATIC uint
  732. _xfs_dic2xflags(
  733. __uint16_t di_flags)
  734. {
  735. uint flags = 0;
  736. if (di_flags & XFS_DIFLAG_ANY) {
  737. if (di_flags & XFS_DIFLAG_REALTIME)
  738. flags |= XFS_XFLAG_REALTIME;
  739. if (di_flags & XFS_DIFLAG_PREALLOC)
  740. flags |= XFS_XFLAG_PREALLOC;
  741. if (di_flags & XFS_DIFLAG_IMMUTABLE)
  742. flags |= XFS_XFLAG_IMMUTABLE;
  743. if (di_flags & XFS_DIFLAG_APPEND)
  744. flags |= XFS_XFLAG_APPEND;
  745. if (di_flags & XFS_DIFLAG_SYNC)
  746. flags |= XFS_XFLAG_SYNC;
  747. if (di_flags & XFS_DIFLAG_NOATIME)
  748. flags |= XFS_XFLAG_NOATIME;
  749. if (di_flags & XFS_DIFLAG_NODUMP)
  750. flags |= XFS_XFLAG_NODUMP;
  751. if (di_flags & XFS_DIFLAG_RTINHERIT)
  752. flags |= XFS_XFLAG_RTINHERIT;
  753. if (di_flags & XFS_DIFLAG_PROJINHERIT)
  754. flags |= XFS_XFLAG_PROJINHERIT;
  755. if (di_flags & XFS_DIFLAG_NOSYMLINKS)
  756. flags |= XFS_XFLAG_NOSYMLINKS;
  757. if (di_flags & XFS_DIFLAG_EXTSIZE)
  758. flags |= XFS_XFLAG_EXTSIZE;
  759. if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
  760. flags |= XFS_XFLAG_EXTSZINHERIT;
  761. if (di_flags & XFS_DIFLAG_NODEFRAG)
  762. flags |= XFS_XFLAG_NODEFRAG;
  763. }
  764. return flags;
  765. }
  766. uint
  767. xfs_ip2xflags(
  768. xfs_inode_t *ip)
  769. {
  770. xfs_dinode_core_t *dic = &ip->i_d;
  771. return _xfs_dic2xflags(dic->di_flags) |
  772. (XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0);
  773. }
  774. uint
  775. xfs_dic2xflags(
  776. xfs_dinode_core_t *dic)
  777. {
  778. return _xfs_dic2xflags(INT_GET(dic->di_flags, ARCH_CONVERT)) |
  779. (XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0);
  780. }
  781. /*
  782. * Given a mount structure and an inode number, return a pointer
  783. * to a newly allocated in-core inode corresponding to the given
  784. * inode number.
  785. *
  786. * Initialize the inode's attributes and extent pointers if it
  787. * already has them (it will not if the inode has no links).
  788. */
  789. int
  790. xfs_iread(
  791. xfs_mount_t *mp,
  792. xfs_trans_t *tp,
  793. xfs_ino_t ino,
  794. xfs_inode_t **ipp,
  795. xfs_daddr_t bno,
  796. uint imap_flags)
  797. {
  798. xfs_buf_t *bp;
  799. xfs_dinode_t *dip;
  800. xfs_inode_t *ip;
  801. int error;
  802. ASSERT(xfs_inode_zone != NULL);
  803. ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
  804. ip->i_ino = ino;
  805. ip->i_mount = mp;
  806. /*
  807. * Get pointer's to the on-disk inode and the buffer containing it.
  808. * If the inode number refers to a block outside the file system
  809. * then xfs_itobp() will return NULL. In this case we should
  810. * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
  811. * know that this is a new incore inode.
  812. */
  813. error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, imap_flags);
  814. if (error) {
  815. kmem_zone_free(xfs_inode_zone, ip);
  816. return error;
  817. }
  818. /*
  819. * Initialize inode's trace buffers.
  820. * Do this before xfs_iformat in case it adds entries.
  821. */
  822. #ifdef XFS_BMAP_TRACE
  823. ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
  824. #endif
  825. #ifdef XFS_BMBT_TRACE
  826. ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
  827. #endif
  828. #ifdef XFS_RW_TRACE
  829. ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
  830. #endif
  831. #ifdef XFS_ILOCK_TRACE
  832. ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
  833. #endif
  834. #ifdef XFS_DIR2_TRACE
  835. ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
  836. #endif
  837. /*
  838. * If we got something that isn't an inode it means someone
  839. * (nfs or dmi) has a stale handle.
  840. */
  841. if (INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC) {
  842. kmem_zone_free(xfs_inode_zone, ip);
  843. xfs_trans_brelse(tp, bp);
  844. #ifdef DEBUG
  845. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
  846. "dip->di_core.di_magic (0x%x) != "
  847. "XFS_DINODE_MAGIC (0x%x)",
  848. INT_GET(dip->di_core.di_magic, ARCH_CONVERT),
  849. XFS_DINODE_MAGIC);
  850. #endif /* DEBUG */
  851. return XFS_ERROR(EINVAL);
  852. }
  853. /*
  854. * If the on-disk inode is already linked to a directory
  855. * entry, copy all of the inode into the in-core inode.
  856. * xfs_iformat() handles copying in the inode format
  857. * specific information.
  858. * Otherwise, just get the truly permanent information.
  859. */
  860. if (dip->di_core.di_mode) {
  861. xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core,
  862. &(ip->i_d), 1);
  863. error = xfs_iformat(ip, dip);
  864. if (error) {
  865. kmem_zone_free(xfs_inode_zone, ip);
  866. xfs_trans_brelse(tp, bp);
  867. #ifdef DEBUG
  868. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
  869. "xfs_iformat() returned error %d",
  870. error);
  871. #endif /* DEBUG */
  872. return error;
  873. }
  874. } else {
  875. ip->i_d.di_magic = INT_GET(dip->di_core.di_magic, ARCH_CONVERT);
  876. ip->i_d.di_version = INT_GET(dip->di_core.di_version, ARCH_CONVERT);
  877. ip->i_d.di_gen = INT_GET(dip->di_core.di_gen, ARCH_CONVERT);
  878. ip->i_d.di_flushiter = INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT);
  879. /*
  880. * Make sure to pull in the mode here as well in
  881. * case the inode is released without being used.
  882. * This ensures that xfs_inactive() will see that
  883. * the inode is already free and not try to mess
  884. * with the uninitialized part of it.
  885. */
  886. ip->i_d.di_mode = 0;
  887. /*
  888. * Initialize the per-fork minima and maxima for a new
  889. * inode here. xfs_iformat will do it for old inodes.
  890. */
  891. ip->i_df.if_ext_max =
  892. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  893. }
  894. INIT_LIST_HEAD(&ip->i_reclaim);
  895. /*
  896. * The inode format changed when we moved the link count and
  897. * made it 32 bits long. If this is an old format inode,
  898. * convert it in memory to look like a new one. If it gets
  899. * flushed to disk we will convert back before flushing or
  900. * logging it. We zero out the new projid field and the old link
  901. * count field. We'll handle clearing the pad field (the remains
  902. * of the old uuid field) when we actually convert the inode to
  903. * the new format. We don't change the version number so that we
  904. * can distinguish this from a real new format inode.
  905. */
  906. if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
  907. ip->i_d.di_nlink = ip->i_d.di_onlink;
  908. ip->i_d.di_onlink = 0;
  909. ip->i_d.di_projid = 0;
  910. }
  911. ip->i_delayed_blks = 0;
  912. /*
  913. * Mark the buffer containing the inode as something to keep
  914. * around for a while. This helps to keep recently accessed
  915. * meta-data in-core longer.
  916. */
  917. XFS_BUF_SET_REF(bp, XFS_INO_REF);
  918. /*
  919. * Use xfs_trans_brelse() to release the buffer containing the
  920. * on-disk inode, because it was acquired with xfs_trans_read_buf()
  921. * in xfs_itobp() above. If tp is NULL, this is just a normal
  922. * brelse(). If we're within a transaction, then xfs_trans_brelse()
  923. * will only release the buffer if it is not dirty within the
  924. * transaction. It will be OK to release the buffer in this case,
  925. * because inodes on disk are never destroyed and we will be
  926. * locking the new in-core inode before putting it in the hash
  927. * table where other processes can find it. Thus we don't have
  928. * to worry about the inode being changed just because we released
  929. * the buffer.
  930. */
  931. xfs_trans_brelse(tp, bp);
  932. *ipp = ip;
  933. return 0;
  934. }
  935. /*
  936. * Read in extents from a btree-format inode.
  937. * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
  938. */
  939. int
  940. xfs_iread_extents(
  941. xfs_trans_t *tp,
  942. xfs_inode_t *ip,
  943. int whichfork)
  944. {
  945. int error;
  946. xfs_ifork_t *ifp;
  947. xfs_extnum_t nextents;
  948. size_t size;
  949. if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
  950. XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
  951. ip->i_mount);
  952. return XFS_ERROR(EFSCORRUPTED);
  953. }
  954. nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
  955. size = nextents * sizeof(xfs_bmbt_rec_t);
  956. ifp = XFS_IFORK_PTR(ip, whichfork);
  957. /*
  958. * We know that the size is valid (it's checked in iformat_btree)
  959. */
  960. ifp->if_lastex = NULLEXTNUM;
  961. ifp->if_bytes = ifp->if_real_bytes = 0;
  962. ifp->if_flags |= XFS_IFEXTENTS;
  963. xfs_iext_add(ifp, 0, nextents);
  964. error = xfs_bmap_read_extents(tp, ip, whichfork);
  965. if (error) {
  966. xfs_iext_destroy(ifp);
  967. ifp->if_flags &= ~XFS_IFEXTENTS;
  968. return error;
  969. }
  970. xfs_validate_extents(ifp, nextents, 0, XFS_EXTFMT_INODE(ip));
  971. return 0;
  972. }
  973. /*
  974. * Allocate an inode on disk and return a copy of its in-core version.
  975. * The in-core inode is locked exclusively. Set mode, nlink, and rdev
  976. * appropriately within the inode. The uid and gid for the inode are
  977. * set according to the contents of the given cred structure.
  978. *
  979. * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
  980. * has a free inode available, call xfs_iget()
  981. * to obtain the in-core version of the allocated inode. Finally,
  982. * fill in the inode and log its initial contents. In this case,
  983. * ialloc_context would be set to NULL and call_again set to false.
  984. *
  985. * If xfs_dialloc() does not have an available inode,
  986. * it will replenish its supply by doing an allocation. Since we can
  987. * only do one allocation within a transaction without deadlocks, we
  988. * must commit the current transaction before returning the inode itself.
  989. * In this case, therefore, we will set call_again to true and return.
  990. * The caller should then commit the current transaction, start a new
  991. * transaction, and call xfs_ialloc() again to actually get the inode.
  992. *
  993. * To ensure that some other process does not grab the inode that
  994. * was allocated during the first call to xfs_ialloc(), this routine
  995. * also returns the [locked] bp pointing to the head of the freelist
  996. * as ialloc_context. The caller should hold this buffer across
  997. * the commit and pass it back into this routine on the second call.
  998. */
  999. int
  1000. xfs_ialloc(
  1001. xfs_trans_t *tp,
  1002. xfs_inode_t *pip,
  1003. mode_t mode,
  1004. xfs_nlink_t nlink,
  1005. xfs_dev_t rdev,
  1006. cred_t *cr,
  1007. xfs_prid_t prid,
  1008. int okalloc,
  1009. xfs_buf_t **ialloc_context,
  1010. boolean_t *call_again,
  1011. xfs_inode_t **ipp)
  1012. {
  1013. xfs_ino_t ino;
  1014. xfs_inode_t *ip;
  1015. bhv_vnode_t *vp;
  1016. uint flags;
  1017. int error;
  1018. /*
  1019. * Call the space management code to pick
  1020. * the on-disk inode to be allocated.
  1021. */
  1022. error = xfs_dialloc(tp, pip->i_ino, mode, okalloc,
  1023. ialloc_context, call_again, &ino);
  1024. if (error != 0) {
  1025. return error;
  1026. }
  1027. if (*call_again || ino == NULLFSINO) {
  1028. *ipp = NULL;
  1029. return 0;
  1030. }
  1031. ASSERT(*ialloc_context == NULL);
  1032. /*
  1033. * Get the in-core inode with the lock held exclusively.
  1034. * This is because we're setting fields here we need
  1035. * to prevent others from looking at until we're done.
  1036. */
  1037. error = xfs_trans_iget(tp->t_mountp, tp, ino,
  1038. XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
  1039. if (error != 0) {
  1040. return error;
  1041. }
  1042. ASSERT(ip != NULL);
  1043. vp = XFS_ITOV(ip);
  1044. ip->i_d.di_mode = (__uint16_t)mode;
  1045. ip->i_d.di_onlink = 0;
  1046. ip->i_d.di_nlink = nlink;
  1047. ASSERT(ip->i_d.di_nlink == nlink);
  1048. ip->i_d.di_uid = current_fsuid(cr);
  1049. ip->i_d.di_gid = current_fsgid(cr);
  1050. ip->i_d.di_projid = prid;
  1051. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  1052. /*
  1053. * If the superblock version is up to where we support new format
  1054. * inodes and this is currently an old format inode, then change
  1055. * the inode version number now. This way we only do the conversion
  1056. * here rather than here and in the flush/logging code.
  1057. */
  1058. if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) &&
  1059. ip->i_d.di_version == XFS_DINODE_VERSION_1) {
  1060. ip->i_d.di_version = XFS_DINODE_VERSION_2;
  1061. /*
  1062. * We've already zeroed the old link count, the projid field,
  1063. * and the pad field.
  1064. */
  1065. }
  1066. /*
  1067. * Project ids won't be stored on disk if we are using a version 1 inode.
  1068. */
  1069. if ( (prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
  1070. xfs_bump_ino_vers2(tp, ip);
  1071. if (XFS_INHERIT_GID(pip, vp->v_vfsp)) {
  1072. ip->i_d.di_gid = pip->i_d.di_gid;
  1073. if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
  1074. ip->i_d.di_mode |= S_ISGID;
  1075. }
  1076. }
  1077. /*
  1078. * If the group ID of the new file does not match the effective group
  1079. * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
  1080. * (and only if the irix_sgid_inherit compatibility variable is set).
  1081. */
  1082. if ((irix_sgid_inherit) &&
  1083. (ip->i_d.di_mode & S_ISGID) &&
  1084. (!in_group_p((gid_t)ip->i_d.di_gid))) {
  1085. ip->i_d.di_mode &= ~S_ISGID;
  1086. }
  1087. ip->i_d.di_size = 0;
  1088. ip->i_d.di_nextents = 0;
  1089. ASSERT(ip->i_d.di_nblocks == 0);
  1090. xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
  1091. /*
  1092. * di_gen will have been taken care of in xfs_iread.
  1093. */
  1094. ip->i_d.di_extsize = 0;
  1095. ip->i_d.di_dmevmask = 0;
  1096. ip->i_d.di_dmstate = 0;
  1097. ip->i_d.di_flags = 0;
  1098. flags = XFS_ILOG_CORE;
  1099. switch (mode & S_IFMT) {
  1100. case S_IFIFO:
  1101. case S_IFCHR:
  1102. case S_IFBLK:
  1103. case S_IFSOCK:
  1104. ip->i_d.di_format = XFS_DINODE_FMT_DEV;
  1105. ip->i_df.if_u2.if_rdev = rdev;
  1106. ip->i_df.if_flags = 0;
  1107. flags |= XFS_ILOG_DEV;
  1108. break;
  1109. case S_IFREG:
  1110. case S_IFDIR:
  1111. if (unlikely(pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
  1112. uint di_flags = 0;
  1113. if ((mode & S_IFMT) == S_IFDIR) {
  1114. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  1115. di_flags |= XFS_DIFLAG_RTINHERIT;
  1116. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1117. di_flags |= XFS_DIFLAG_EXTSZINHERIT;
  1118. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1119. }
  1120. } else if ((mode & S_IFMT) == S_IFREG) {
  1121. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) {
  1122. di_flags |= XFS_DIFLAG_REALTIME;
  1123. ip->i_iocore.io_flags |= XFS_IOCORE_RT;
  1124. }
  1125. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1126. di_flags |= XFS_DIFLAG_EXTSIZE;
  1127. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1128. }
  1129. }
  1130. if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
  1131. xfs_inherit_noatime)
  1132. di_flags |= XFS_DIFLAG_NOATIME;
  1133. if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
  1134. xfs_inherit_nodump)
  1135. di_flags |= XFS_DIFLAG_NODUMP;
  1136. if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
  1137. xfs_inherit_sync)
  1138. di_flags |= XFS_DIFLAG_SYNC;
  1139. if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
  1140. xfs_inherit_nosymlinks)
  1141. di_flags |= XFS_DIFLAG_NOSYMLINKS;
  1142. if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
  1143. di_flags |= XFS_DIFLAG_PROJINHERIT;
  1144. if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
  1145. xfs_inherit_nodefrag)
  1146. di_flags |= XFS_DIFLAG_NODEFRAG;
  1147. ip->i_d.di_flags |= di_flags;
  1148. }
  1149. /* FALLTHROUGH */
  1150. case S_IFLNK:
  1151. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  1152. ip->i_df.if_flags = XFS_IFEXTENTS;
  1153. ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
  1154. ip->i_df.if_u1.if_extents = NULL;
  1155. break;
  1156. default:
  1157. ASSERT(0);
  1158. }
  1159. /*
  1160. * Attribute fork settings for new inode.
  1161. */
  1162. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  1163. ip->i_d.di_anextents = 0;
  1164. /*
  1165. * Log the new values stuffed into the inode.
  1166. */
  1167. xfs_trans_log_inode(tp, ip, flags);
  1168. /* now that we have an i_mode we can setup inode ops and unlock */
  1169. bhv_vfs_init_vnode(XFS_MTOVFS(tp->t_mountp), vp, XFS_ITOBHV(ip), 1);
  1170. *ipp = ip;
  1171. return 0;
  1172. }
  1173. /*
  1174. * Check to make sure that there are no blocks allocated to the
  1175. * file beyond the size of the file. We don't check this for
  1176. * files with fixed size extents or real time extents, but we
  1177. * at least do it for regular files.
  1178. */
  1179. #ifdef DEBUG
  1180. void
  1181. xfs_isize_check(
  1182. xfs_mount_t *mp,
  1183. xfs_inode_t *ip,
  1184. xfs_fsize_t isize)
  1185. {
  1186. xfs_fileoff_t map_first;
  1187. int nimaps;
  1188. xfs_bmbt_irec_t imaps[2];
  1189. if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
  1190. return;
  1191. if (ip->i_d.di_flags & (XFS_DIFLAG_REALTIME | XFS_DIFLAG_EXTSIZE))
  1192. return;
  1193. nimaps = 2;
  1194. map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
  1195. /*
  1196. * The filesystem could be shutting down, so bmapi may return
  1197. * an error.
  1198. */
  1199. if (xfs_bmapi(NULL, ip, map_first,
  1200. (XFS_B_TO_FSB(mp,
  1201. (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
  1202. map_first),
  1203. XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
  1204. NULL, NULL))
  1205. return;
  1206. ASSERT(nimaps == 1);
  1207. ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
  1208. }
  1209. #endif /* DEBUG */
  1210. /*
  1211. * Calculate the last possible buffered byte in a file. This must
  1212. * include data that was buffered beyond the EOF by the write code.
  1213. * This also needs to deal with overflowing the xfs_fsize_t type
  1214. * which can happen for sizes near the limit.
  1215. *
  1216. * We also need to take into account any blocks beyond the EOF. It
  1217. * may be the case that they were buffered by a write which failed.
  1218. * In that case the pages will still be in memory, but the inode size
  1219. * will never have been updated.
  1220. */
  1221. xfs_fsize_t
  1222. xfs_file_last_byte(
  1223. xfs_inode_t *ip)
  1224. {
  1225. xfs_mount_t *mp;
  1226. xfs_fsize_t last_byte;
  1227. xfs_fileoff_t last_block;
  1228. xfs_fileoff_t size_last_block;
  1229. int error;
  1230. ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS));
  1231. mp = ip->i_mount;
  1232. /*
  1233. * Only check for blocks beyond the EOF if the extents have
  1234. * been read in. This eliminates the need for the inode lock,
  1235. * and it also saves us from looking when it really isn't
  1236. * necessary.
  1237. */
  1238. if (ip->i_df.if_flags & XFS_IFEXTENTS) {
  1239. error = xfs_bmap_last_offset(NULL, ip, &last_block,
  1240. XFS_DATA_FORK);
  1241. if (error) {
  1242. last_block = 0;
  1243. }
  1244. } else {
  1245. last_block = 0;
  1246. }
  1247. size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_d.di_size);
  1248. last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
  1249. last_byte = XFS_FSB_TO_B(mp, last_block);
  1250. if (last_byte < 0) {
  1251. return XFS_MAXIOFFSET(mp);
  1252. }
  1253. last_byte += (1 << mp->m_writeio_log);
  1254. if (last_byte < 0) {
  1255. return XFS_MAXIOFFSET(mp);
  1256. }
  1257. return last_byte;
  1258. }
  1259. #if defined(XFS_RW_TRACE)
  1260. STATIC void
  1261. xfs_itrunc_trace(
  1262. int tag,
  1263. xfs_inode_t *ip,
  1264. int flag,
  1265. xfs_fsize_t new_size,
  1266. xfs_off_t toss_start,
  1267. xfs_off_t toss_finish)
  1268. {
  1269. if (ip->i_rwtrace == NULL) {
  1270. return;
  1271. }
  1272. ktrace_enter(ip->i_rwtrace,
  1273. (void*)((long)tag),
  1274. (void*)ip,
  1275. (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
  1276. (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
  1277. (void*)((long)flag),
  1278. (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
  1279. (void*)(unsigned long)(new_size & 0xffffffff),
  1280. (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
  1281. (void*)(unsigned long)(toss_start & 0xffffffff),
  1282. (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
  1283. (void*)(unsigned long)(toss_finish & 0xffffffff),
  1284. (void*)(unsigned long)current_cpu(),
  1285. (void*)(unsigned long)current_pid(),
  1286. (void*)NULL,
  1287. (void*)NULL,
  1288. (void*)NULL);
  1289. }
  1290. #else
  1291. #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
  1292. #endif
  1293. /*
  1294. * Start the truncation of the file to new_size. The new size
  1295. * must be smaller than the current size. This routine will
  1296. * clear the buffer and page caches of file data in the removed
  1297. * range, and xfs_itruncate_finish() will remove the underlying
  1298. * disk blocks.
  1299. *
  1300. * The inode must have its I/O lock locked EXCLUSIVELY, and it
  1301. * must NOT have the inode lock held at all. This is because we're
  1302. * calling into the buffer/page cache code and we can't hold the
  1303. * inode lock when we do so.
  1304. *
  1305. * We need to wait for any direct I/Os in flight to complete before we
  1306. * proceed with the truncate. This is needed to prevent the extents
  1307. * being read or written by the direct I/Os from being removed while the
  1308. * I/O is in flight as there is no other method of synchronising
  1309. * direct I/O with the truncate operation. Also, because we hold
  1310. * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
  1311. * started until the truncate completes and drops the lock. Essentially,
  1312. * the vn_iowait() call forms an I/O barrier that provides strict ordering
  1313. * between direct I/Os and the truncate operation.
  1314. *
  1315. * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
  1316. * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
  1317. * in the case that the caller is locking things out of order and
  1318. * may not be able to call xfs_itruncate_finish() with the inode lock
  1319. * held without dropping the I/O lock. If the caller must drop the
  1320. * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
  1321. * must be called again with all the same restrictions as the initial
  1322. * call.
  1323. */
  1324. void
  1325. xfs_itruncate_start(
  1326. xfs_inode_t *ip,
  1327. uint flags,
  1328. xfs_fsize_t new_size)
  1329. {
  1330. xfs_fsize_t last_byte;
  1331. xfs_off_t toss_start;
  1332. xfs_mount_t *mp;
  1333. bhv_vnode_t *vp;
  1334. ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
  1335. ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size));
  1336. ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
  1337. (flags == XFS_ITRUNC_MAYBE));
  1338. mp = ip->i_mount;
  1339. vp = XFS_ITOV(ip);
  1340. vn_iowait(vp); /* wait for the completion of any pending DIOs */
  1341. /*
  1342. * Call toss_pages or flushinval_pages to get rid of pages
  1343. * overlapping the region being removed. We have to use
  1344. * the less efficient flushinval_pages in the case that the
  1345. * caller may not be able to finish the truncate without
  1346. * dropping the inode's I/O lock. Make sure
  1347. * to catch any pages brought in by buffers overlapping
  1348. * the EOF by searching out beyond the isize by our
  1349. * block size. We round new_size up to a block boundary
  1350. * so that we don't toss things on the same block as
  1351. * new_size but before it.
  1352. *
  1353. * Before calling toss_page or flushinval_pages, make sure to
  1354. * call remapf() over the same region if the file is mapped.
  1355. * This frees up mapped file references to the pages in the
  1356. * given range and for the flushinval_pages case it ensures
  1357. * that we get the latest mapped changes flushed out.
  1358. */
  1359. toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1360. toss_start = XFS_FSB_TO_B(mp, toss_start);
  1361. if (toss_start < 0) {
  1362. /*
  1363. * The place to start tossing is beyond our maximum
  1364. * file size, so there is no way that the data extended
  1365. * out there.
  1366. */
  1367. return;
  1368. }
  1369. last_byte = xfs_file_last_byte(ip);
  1370. xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
  1371. last_byte);
  1372. if (last_byte > toss_start) {
  1373. if (flags & XFS_ITRUNC_DEFINITE) {
  1374. bhv_vop_toss_pages(vp, toss_start, -1, FI_REMAPF_LOCKED);
  1375. } else {
  1376. bhv_vop_flushinval_pages(vp, toss_start, -1, FI_REMAPF_LOCKED);
  1377. }
  1378. }
  1379. #ifdef DEBUG
  1380. if (new_size == 0) {
  1381. ASSERT(VN_CACHED(vp) == 0);
  1382. }
  1383. #endif
  1384. }
  1385. /*
  1386. * Shrink the file to the given new_size. The new
  1387. * size must be smaller than the current size.
  1388. * This will free up the underlying blocks
  1389. * in the removed range after a call to xfs_itruncate_start()
  1390. * or xfs_atruncate_start().
  1391. *
  1392. * The transaction passed to this routine must have made
  1393. * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
  1394. * This routine may commit the given transaction and
  1395. * start new ones, so make sure everything involved in
  1396. * the transaction is tidy before calling here.
  1397. * Some transaction will be returned to the caller to be
  1398. * committed. The incoming transaction must already include
  1399. * the inode, and both inode locks must be held exclusively.
  1400. * The inode must also be "held" within the transaction. On
  1401. * return the inode will be "held" within the returned transaction.
  1402. * This routine does NOT require any disk space to be reserved
  1403. * for it within the transaction.
  1404. *
  1405. * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
  1406. * and it indicates the fork which is to be truncated. For the
  1407. * attribute fork we only support truncation to size 0.
  1408. *
  1409. * We use the sync parameter to indicate whether or not the first
  1410. * transaction we perform might have to be synchronous. For the attr fork,
  1411. * it needs to be so if the unlink of the inode is not yet known to be
  1412. * permanent in the log. This keeps us from freeing and reusing the
  1413. * blocks of the attribute fork before the unlink of the inode becomes
  1414. * permanent.
  1415. *
  1416. * For the data fork, we normally have to run synchronously if we're
  1417. * being called out of the inactive path or we're being called
  1418. * out of the create path where we're truncating an existing file.
  1419. * Either way, the truncate needs to be sync so blocks don't reappear
  1420. * in the file with altered data in case of a crash. wsync filesystems
  1421. * can run the first case async because anything that shrinks the inode
  1422. * has to run sync so by the time we're called here from inactive, the
  1423. * inode size is permanently set to 0.
  1424. *
  1425. * Calls from the truncate path always need to be sync unless we're
  1426. * in a wsync filesystem and the file has already been unlinked.
  1427. *
  1428. * The caller is responsible for correctly setting the sync parameter.
  1429. * It gets too hard for us to guess here which path we're being called
  1430. * out of just based on inode state.
  1431. */
  1432. int
  1433. xfs_itruncate_finish(
  1434. xfs_trans_t **tp,
  1435. xfs_inode_t *ip,
  1436. xfs_fsize_t new_size,
  1437. int fork,
  1438. int sync)
  1439. {
  1440. xfs_fsblock_t first_block;
  1441. xfs_fileoff_t first_unmap_block;
  1442. xfs_fileoff_t last_block;
  1443. xfs_filblks_t unmap_len=0;
  1444. xfs_mount_t *mp;
  1445. xfs_trans_t *ntp;
  1446. int done;
  1447. int committed;
  1448. xfs_bmap_free_t free_list;
  1449. int error;
  1450. ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
  1451. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
  1452. ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size));
  1453. ASSERT(*tp != NULL);
  1454. ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
  1455. ASSERT(ip->i_transp == *tp);
  1456. ASSERT(ip->i_itemp != NULL);
  1457. ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
  1458. ntp = *tp;
  1459. mp = (ntp)->t_mountp;
  1460. ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
  1461. /*
  1462. * We only support truncating the entire attribute fork.
  1463. */
  1464. if (fork == XFS_ATTR_FORK) {
  1465. new_size = 0LL;
  1466. }
  1467. first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1468. xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
  1469. /*
  1470. * The first thing we do is set the size to new_size permanently
  1471. * on disk. This way we don't have to worry about anyone ever
  1472. * being able to look at the data being freed even in the face
  1473. * of a crash. What we're getting around here is the case where
  1474. * we free a block, it is allocated to another file, it is written
  1475. * to, and then we crash. If the new data gets written to the
  1476. * file but the log buffers containing the free and reallocation
  1477. * don't, then we'd end up with garbage in the blocks being freed.
  1478. * As long as we make the new_size permanent before actually
  1479. * freeing any blocks it doesn't matter if they get writtten to.
  1480. *
  1481. * The callers must signal into us whether or not the size
  1482. * setting here must be synchronous. There are a few cases
  1483. * where it doesn't have to be synchronous. Those cases
  1484. * occur if the file is unlinked and we know the unlink is
  1485. * permanent or if the blocks being truncated are guaranteed
  1486. * to be beyond the inode eof (regardless of the link count)
  1487. * and the eof value is permanent. Both of these cases occur
  1488. * only on wsync-mounted filesystems. In those cases, we're
  1489. * guaranteed that no user will ever see the data in the blocks
  1490. * that are being truncated so the truncate can run async.
  1491. * In the free beyond eof case, the file may wind up with
  1492. * more blocks allocated to it than it needs if we crash
  1493. * and that won't get fixed until the next time the file
  1494. * is re-opened and closed but that's ok as that shouldn't
  1495. * be too many blocks.
  1496. *
  1497. * However, we can't just make all wsync xactions run async
  1498. * because there's one call out of the create path that needs
  1499. * to run sync where it's truncating an existing file to size
  1500. * 0 whose size is > 0.
  1501. *
  1502. * It's probably possible to come up with a test in this
  1503. * routine that would correctly distinguish all the above
  1504. * cases from the values of the function parameters and the
  1505. * inode state but for sanity's sake, I've decided to let the
  1506. * layers above just tell us. It's simpler to correctly figure
  1507. * out in the layer above exactly under what conditions we
  1508. * can run async and I think it's easier for others read and
  1509. * follow the logic in case something has to be changed.
  1510. * cscope is your friend -- rcc.
  1511. *
  1512. * The attribute fork is much simpler.
  1513. *
  1514. * For the attribute fork we allow the caller to tell us whether
  1515. * the unlink of the inode that led to this call is yet permanent
  1516. * in the on disk log. If it is not and we will be freeing extents
  1517. * in this inode then we make the first transaction synchronous
  1518. * to make sure that the unlink is permanent by the time we free
  1519. * the blocks.
  1520. */
  1521. if (fork == XFS_DATA_FORK) {
  1522. if (ip->i_d.di_nextents > 0) {
  1523. ip->i_d.di_size = new_size;
  1524. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1525. }
  1526. } else if (sync) {
  1527. ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
  1528. if (ip->i_d.di_anextents > 0)
  1529. xfs_trans_set_sync(ntp);
  1530. }
  1531. ASSERT(fork == XFS_DATA_FORK ||
  1532. (fork == XFS_ATTR_FORK &&
  1533. ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
  1534. (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
  1535. /*
  1536. * Since it is possible for space to become allocated beyond
  1537. * the end of the file (in a crash where the space is allocated
  1538. * but the inode size is not yet updated), simply remove any
  1539. * blocks which show up between the new EOF and the maximum
  1540. * possible file size. If the first block to be removed is
  1541. * beyond the maximum file size (ie it is the same as last_block),
  1542. * then there is nothing to do.
  1543. */
  1544. last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
  1545. ASSERT(first_unmap_block <= last_block);
  1546. done = 0;
  1547. if (last_block == first_unmap_block) {
  1548. done = 1;
  1549. } else {
  1550. unmap_len = last_block - first_unmap_block + 1;
  1551. }
  1552. while (!done) {
  1553. /*
  1554. * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
  1555. * will tell us whether it freed the entire range or
  1556. * not. If this is a synchronous mount (wsync),
  1557. * then we can tell bunmapi to keep all the
  1558. * transactions asynchronous since the unlink
  1559. * transaction that made this inode inactive has
  1560. * already hit the disk. There's no danger of
  1561. * the freed blocks being reused, there being a
  1562. * crash, and the reused blocks suddenly reappearing
  1563. * in this file with garbage in them once recovery
  1564. * runs.
  1565. */
  1566. XFS_BMAP_INIT(&free_list, &first_block);
  1567. error = XFS_BUNMAPI(mp, ntp, &ip->i_iocore,
  1568. first_unmap_block, unmap_len,
  1569. XFS_BMAPI_AFLAG(fork) |
  1570. (sync ? 0 : XFS_BMAPI_ASYNC),
  1571. XFS_ITRUNC_MAX_EXTENTS,
  1572. &first_block, &free_list,
  1573. NULL, &done);
  1574. if (error) {
  1575. /*
  1576. * If the bunmapi call encounters an error,
  1577. * return to the caller where the transaction
  1578. * can be properly aborted. We just need to
  1579. * make sure we're not holding any resources
  1580. * that we were not when we came in.
  1581. */
  1582. xfs_bmap_cancel(&free_list);
  1583. return error;
  1584. }
  1585. /*
  1586. * Duplicate the transaction that has the permanent
  1587. * reservation and commit the old transaction.
  1588. */
  1589. error = xfs_bmap_finish(tp, &free_list, first_block,
  1590. &committed);
  1591. ntp = *tp;
  1592. if (error) {
  1593. /*
  1594. * If the bmap finish call encounters an error,
  1595. * return to the caller where the transaction
  1596. * can be properly aborted. We just need to
  1597. * make sure we're not holding any resources
  1598. * that we were not when we came in.
  1599. *
  1600. * Aborting from this point might lose some
  1601. * blocks in the file system, but oh well.
  1602. */
  1603. xfs_bmap_cancel(&free_list);
  1604. if (committed) {
  1605. /*
  1606. * If the passed in transaction committed
  1607. * in xfs_bmap_finish(), then we want to
  1608. * add the inode to this one before returning.
  1609. * This keeps things simple for the higher
  1610. * level code, because it always knows that
  1611. * the inode is locked and held in the
  1612. * transaction that returns to it whether
  1613. * errors occur or not. We don't mark the
  1614. * inode dirty so that this transaction can
  1615. * be easily aborted if possible.
  1616. */
  1617. xfs_trans_ijoin(ntp, ip,
  1618. XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1619. xfs_trans_ihold(ntp, ip);
  1620. }
  1621. return error;
  1622. }
  1623. if (committed) {
  1624. /*
  1625. * The first xact was committed,
  1626. * so add the inode to the new one.
  1627. * Mark it dirty so it will be logged
  1628. * and moved forward in the log as
  1629. * part of every commit.
  1630. */
  1631. xfs_trans_ijoin(ntp, ip,
  1632. XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1633. xfs_trans_ihold(ntp, ip);
  1634. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1635. }
  1636. ntp = xfs_trans_dup(ntp);
  1637. (void) xfs_trans_commit(*tp, 0, NULL);
  1638. *tp = ntp;
  1639. error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0,
  1640. XFS_TRANS_PERM_LOG_RES,
  1641. XFS_ITRUNCATE_LOG_COUNT);
  1642. /*
  1643. * Add the inode being truncated to the next chained
  1644. * transaction.
  1645. */
  1646. xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1647. xfs_trans_ihold(ntp, ip);
  1648. if (error)
  1649. return (error);
  1650. }
  1651. /*
  1652. * Only update the size in the case of the data fork, but
  1653. * always re-log the inode so that our permanent transaction
  1654. * can keep on rolling it forward in the log.
  1655. */
  1656. if (fork == XFS_DATA_FORK) {
  1657. xfs_isize_check(mp, ip, new_size);
  1658. ip->i_d.di_size = new_size;
  1659. }
  1660. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1661. ASSERT((new_size != 0) ||
  1662. (fork == XFS_ATTR_FORK) ||
  1663. (ip->i_delayed_blks == 0));
  1664. ASSERT((new_size != 0) ||
  1665. (fork == XFS_ATTR_FORK) ||
  1666. (ip->i_d.di_nextents == 0));
  1667. xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
  1668. return 0;
  1669. }
  1670. /*
  1671. * xfs_igrow_start
  1672. *
  1673. * Do the first part of growing a file: zero any data in the last
  1674. * block that is beyond the old EOF. We need to do this before
  1675. * the inode is joined to the transaction to modify the i_size.
  1676. * That way we can drop the inode lock and call into the buffer
  1677. * cache to get the buffer mapping the EOF.
  1678. */
  1679. int
  1680. xfs_igrow_start(
  1681. xfs_inode_t *ip,
  1682. xfs_fsize_t new_size,
  1683. cred_t *credp)
  1684. {
  1685. int error;
  1686. ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
  1687. ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
  1688. ASSERT(new_size > ip->i_d.di_size);
  1689. /*
  1690. * Zero any pages that may have been created by
  1691. * xfs_write_file() beyond the end of the file
  1692. * and any blocks between the old and new file sizes.
  1693. */
  1694. error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size,
  1695. ip->i_d.di_size, new_size);
  1696. return error;
  1697. }
  1698. /*
  1699. * xfs_igrow_finish
  1700. *
  1701. * This routine is called to extend the size of a file.
  1702. * The inode must have both the iolock and the ilock locked
  1703. * for update and it must be a part of the current transaction.
  1704. * The xfs_igrow_start() function must have been called previously.
  1705. * If the change_flag is not zero, the inode change timestamp will
  1706. * be updated.
  1707. */
  1708. void
  1709. xfs_igrow_finish(
  1710. xfs_trans_t *tp,
  1711. xfs_inode_t *ip,
  1712. xfs_fsize_t new_size,
  1713. int change_flag)
  1714. {
  1715. ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
  1716. ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
  1717. ASSERT(ip->i_transp == tp);
  1718. ASSERT(new_size > ip->i_d.di_size);
  1719. /*
  1720. * Update the file size. Update the inode change timestamp
  1721. * if change_flag set.
  1722. */
  1723. ip->i_d.di_size = new_size;
  1724. if (change_flag)
  1725. xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
  1726. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  1727. }
  1728. /*
  1729. * This is called when the inode's link count goes to 0.
  1730. * We place the on-disk inode on a list in the AGI. It
  1731. * will be pulled from this list when the inode is freed.
  1732. */
  1733. int
  1734. xfs_iunlink(
  1735. xfs_trans_t *tp,
  1736. xfs_inode_t *ip)
  1737. {
  1738. xfs_mount_t *mp;
  1739. xfs_agi_t *agi;
  1740. xfs_dinode_t *dip;
  1741. xfs_buf_t *agibp;
  1742. xfs_buf_t *ibp;
  1743. xfs_agnumber_t agno;
  1744. xfs_daddr_t agdaddr;
  1745. xfs_agino_t agino;
  1746. short bucket_index;
  1747. int offset;
  1748. int error;
  1749. int agi_ok;
  1750. ASSERT(ip->i_d.di_nlink == 0);
  1751. ASSERT(ip->i_d.di_mode != 0);
  1752. ASSERT(ip->i_transp == tp);
  1753. mp = tp->t_mountp;
  1754. agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
  1755. agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
  1756. /*
  1757. * Get the agi buffer first. It ensures lock ordering
  1758. * on the list.
  1759. */
  1760. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
  1761. XFS_FSS_TO_BB(mp, 1), 0, &agibp);
  1762. if (error) {
  1763. return error;
  1764. }
  1765. /*
  1766. * Validate the magic number of the agi block.
  1767. */
  1768. agi = XFS_BUF_TO_AGI(agibp);
  1769. agi_ok =
  1770. be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
  1771. XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
  1772. if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
  1773. XFS_RANDOM_IUNLINK))) {
  1774. XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
  1775. xfs_trans_brelse(tp, agibp);
  1776. return XFS_ERROR(EFSCORRUPTED);
  1777. }
  1778. /*
  1779. * Get the index into the agi hash table for the
  1780. * list this inode will go on.
  1781. */
  1782. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1783. ASSERT(agino != 0);
  1784. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1785. ASSERT(agi->agi_unlinked[bucket_index]);
  1786. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
  1787. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
  1788. /*
  1789. * There is already another inode in the bucket we need
  1790. * to add ourselves to. Add us at the front of the list.
  1791. * Here we put the head pointer into our next pointer,
  1792. * and then we fall through to point the head at us.
  1793. */
  1794. error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
  1795. if (error) {
  1796. return error;
  1797. }
  1798. ASSERT(INT_GET(dip->di_next_unlinked, ARCH_CONVERT) == NULLAGINO);
  1799. ASSERT(dip->di_next_unlinked);
  1800. /* both on-disk, don't endian flip twice */
  1801. dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
  1802. offset = ip->i_boffset +
  1803. offsetof(xfs_dinode_t, di_next_unlinked);
  1804. xfs_trans_inode_buf(tp, ibp);
  1805. xfs_trans_log_buf(tp, ibp, offset,
  1806. (offset + sizeof(xfs_agino_t) - 1));
  1807. xfs_inobp_check(mp, ibp);
  1808. }
  1809. /*
  1810. * Point the bucket head pointer at the inode being inserted.
  1811. */
  1812. ASSERT(agino != 0);
  1813. agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
  1814. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1815. (sizeof(xfs_agino_t) * bucket_index);
  1816. xfs_trans_log_buf(tp, agibp, offset,
  1817. (offset + sizeof(xfs_agino_t) - 1));
  1818. return 0;
  1819. }
  1820. /*
  1821. * Pull the on-disk inode from the AGI unlinked list.
  1822. */
  1823. STATIC int
  1824. xfs_iunlink_remove(
  1825. xfs_trans_t *tp,
  1826. xfs_inode_t *ip)
  1827. {
  1828. xfs_ino_t next_ino;
  1829. xfs_mount_t *mp;
  1830. xfs_agi_t *agi;
  1831. xfs_dinode_t *dip;
  1832. xfs_buf_t *agibp;
  1833. xfs_buf_t *ibp;
  1834. xfs_agnumber_t agno;
  1835. xfs_daddr_t agdaddr;
  1836. xfs_agino_t agino;
  1837. xfs_agino_t next_agino;
  1838. xfs_buf_t *last_ibp;
  1839. xfs_dinode_t *last_dip = NULL;
  1840. short bucket_index;
  1841. int offset, last_offset = 0;
  1842. int error;
  1843. int agi_ok;
  1844. /*
  1845. * First pull the on-disk inode from the AGI unlinked list.
  1846. */
  1847. mp = tp->t_mountp;
  1848. agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
  1849. agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
  1850. /*
  1851. * Get the agi buffer first. It ensures lock ordering
  1852. * on the list.
  1853. */
  1854. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
  1855. XFS_FSS_TO_BB(mp, 1), 0, &agibp);
  1856. if (error) {
  1857. cmn_err(CE_WARN,
  1858. "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
  1859. error, mp->m_fsname);
  1860. return error;
  1861. }
  1862. /*
  1863. * Validate the magic number of the agi block.
  1864. */
  1865. agi = XFS_BUF_TO_AGI(agibp);
  1866. agi_ok =
  1867. be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
  1868. XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
  1869. if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
  1870. XFS_RANDOM_IUNLINK_REMOVE))) {
  1871. XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
  1872. mp, agi);
  1873. xfs_trans_brelse(tp, agibp);
  1874. cmn_err(CE_WARN,
  1875. "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
  1876. mp->m_fsname);
  1877. return XFS_ERROR(EFSCORRUPTED);
  1878. }
  1879. /*
  1880. * Get the index into the agi hash table for the
  1881. * list this inode will go on.
  1882. */
  1883. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1884. ASSERT(agino != 0);
  1885. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1886. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
  1887. ASSERT(agi->agi_unlinked[bucket_index]);
  1888. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
  1889. /*
  1890. * We're at the head of the list. Get the inode's
  1891. * on-disk buffer to see if there is anyone after us
  1892. * on the list. Only modify our next pointer if it
  1893. * is not already NULLAGINO. This saves us the overhead
  1894. * of dealing with the buffer when there is no need to
  1895. * change it.
  1896. */
  1897. error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
  1898. if (error) {
  1899. cmn_err(CE_WARN,
  1900. "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
  1901. error, mp->m_fsname);
  1902. return error;
  1903. }
  1904. next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
  1905. ASSERT(next_agino != 0);
  1906. if (next_agino != NULLAGINO) {
  1907. INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
  1908. offset = ip->i_boffset +
  1909. offsetof(xfs_dinode_t, di_next_unlinked);
  1910. xfs_trans_inode_buf(tp, ibp);
  1911. xfs_trans_log_buf(tp, ibp, offset,
  1912. (offset + sizeof(xfs_agino_t) - 1));
  1913. xfs_inobp_check(mp, ibp);
  1914. } else {
  1915. xfs_trans_brelse(tp, ibp);
  1916. }
  1917. /*
  1918. * Point the bucket head pointer at the next inode.
  1919. */
  1920. ASSERT(next_agino != 0);
  1921. ASSERT(next_agino != agino);
  1922. agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
  1923. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1924. (sizeof(xfs_agino_t) * bucket_index);
  1925. xfs_trans_log_buf(tp, agibp, offset,
  1926. (offset + sizeof(xfs_agino_t) - 1));
  1927. } else {
  1928. /*
  1929. * We need to search the list for the inode being freed.
  1930. */
  1931. next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
  1932. last_ibp = NULL;
  1933. while (next_agino != agino) {
  1934. /*
  1935. * If the last inode wasn't the one pointing to
  1936. * us, then release its buffer since we're not
  1937. * going to do anything with it.
  1938. */
  1939. if (last_ibp != NULL) {
  1940. xfs_trans_brelse(tp, last_ibp);
  1941. }
  1942. next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
  1943. error = xfs_inotobp(mp, tp, next_ino, &last_dip,
  1944. &last_ibp, &last_offset);
  1945. if (error) {
  1946. cmn_err(CE_WARN,
  1947. "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
  1948. error, mp->m_fsname);
  1949. return error;
  1950. }
  1951. next_agino = INT_GET(last_dip->di_next_unlinked, ARCH_CONVERT);
  1952. ASSERT(next_agino != NULLAGINO);
  1953. ASSERT(next_agino != 0);
  1954. }
  1955. /*
  1956. * Now last_ibp points to the buffer previous to us on
  1957. * the unlinked list. Pull us from the list.
  1958. */
  1959. error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
  1960. if (error) {
  1961. cmn_err(CE_WARN,
  1962. "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
  1963. error, mp->m_fsname);
  1964. return error;
  1965. }
  1966. next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
  1967. ASSERT(next_agino != 0);
  1968. ASSERT(next_agino != agino);
  1969. if (next_agino != NULLAGINO) {
  1970. INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
  1971. offset = ip->i_boffset +
  1972. offsetof(xfs_dinode_t, di_next_unlinked);
  1973. xfs_trans_inode_buf(tp, ibp);
  1974. xfs_trans_log_buf(tp, ibp, offset,
  1975. (offset + sizeof(xfs_agino_t) - 1));
  1976. xfs_inobp_check(mp, ibp);
  1977. } else {
  1978. xfs_trans_brelse(tp, ibp);
  1979. }
  1980. /*
  1981. * Point the previous inode on the list to the next inode.
  1982. */
  1983. INT_SET(last_dip->di_next_unlinked, ARCH_CONVERT, next_agino);
  1984. ASSERT(next_agino != 0);
  1985. offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
  1986. xfs_trans_inode_buf(tp, last_ibp);
  1987. xfs_trans_log_buf(tp, last_ibp, offset,
  1988. (offset + sizeof(xfs_agino_t) - 1));
  1989. xfs_inobp_check(mp, last_ibp);
  1990. }
  1991. return 0;
  1992. }
  1993. static __inline__ int xfs_inode_clean(xfs_inode_t *ip)
  1994. {
  1995. return (((ip->i_itemp == NULL) ||
  1996. !(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
  1997. (ip->i_update_core == 0));
  1998. }
  1999. STATIC void
  2000. xfs_ifree_cluster(
  2001. xfs_inode_t *free_ip,
  2002. xfs_trans_t *tp,
  2003. xfs_ino_t inum)
  2004. {
  2005. xfs_mount_t *mp = free_ip->i_mount;
  2006. int blks_per_cluster;
  2007. int nbufs;
  2008. int ninodes;
  2009. int i, j, found, pre_flushed;
  2010. xfs_daddr_t blkno;
  2011. xfs_buf_t *bp;
  2012. xfs_ihash_t *ih;
  2013. xfs_inode_t *ip, **ip_found;
  2014. xfs_inode_log_item_t *iip;
  2015. xfs_log_item_t *lip;
  2016. SPLDECL(s);
  2017. if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
  2018. blks_per_cluster = 1;
  2019. ninodes = mp->m_sb.sb_inopblock;
  2020. nbufs = XFS_IALLOC_BLOCKS(mp);
  2021. } else {
  2022. blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
  2023. mp->m_sb.sb_blocksize;
  2024. ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
  2025. nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
  2026. }
  2027. ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
  2028. for (j = 0; j < nbufs; j++, inum += ninodes) {
  2029. blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
  2030. XFS_INO_TO_AGBNO(mp, inum));
  2031. /*
  2032. * Look for each inode in memory and attempt to lock it,
  2033. * we can be racing with flush and tail pushing here.
  2034. * any inode we get the locks on, add to an array of
  2035. * inode items to process later.
  2036. *
  2037. * The get the buffer lock, we could beat a flush
  2038. * or tail pushing thread to the lock here, in which
  2039. * case they will go looking for the inode buffer
  2040. * and fail, we need some other form of interlock
  2041. * here.
  2042. */
  2043. found = 0;
  2044. for (i = 0; i < ninodes; i++) {
  2045. ih = XFS_IHASH(mp, inum + i);
  2046. read_lock(&ih->ih_lock);
  2047. for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) {
  2048. if (ip->i_ino == inum + i)
  2049. break;
  2050. }
  2051. /* Inode not in memory or we found it already,
  2052. * nothing to do
  2053. */
  2054. if (!ip || (ip->i_flags & XFS_ISTALE)) {
  2055. read_unlock(&ih->ih_lock);
  2056. continue;
  2057. }
  2058. if (xfs_inode_clean(ip)) {
  2059. read_unlock(&ih->ih_lock);
  2060. continue;
  2061. }
  2062. /* If we can get the locks then add it to the
  2063. * list, otherwise by the time we get the bp lock
  2064. * below it will already be attached to the
  2065. * inode buffer.
  2066. */
  2067. /* This inode will already be locked - by us, lets
  2068. * keep it that way.
  2069. */
  2070. if (ip == free_ip) {
  2071. if (xfs_iflock_nowait(ip)) {
  2072. ip->i_flags |= XFS_ISTALE;
  2073. if (xfs_inode_clean(ip)) {
  2074. xfs_ifunlock(ip);
  2075. } else {
  2076. ip_found[found++] = ip;
  2077. }
  2078. }
  2079. read_unlock(&ih->ih_lock);
  2080. continue;
  2081. }
  2082. if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
  2083. if (xfs_iflock_nowait(ip)) {
  2084. ip->i_flags |= XFS_ISTALE;
  2085. if (xfs_inode_clean(ip)) {
  2086. xfs_ifunlock(ip);
  2087. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2088. } else {
  2089. ip_found[found++] = ip;
  2090. }
  2091. } else {
  2092. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2093. }
  2094. }
  2095. read_unlock(&ih->ih_lock);
  2096. }
  2097. bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
  2098. mp->m_bsize * blks_per_cluster,
  2099. XFS_BUF_LOCK);
  2100. pre_flushed = 0;
  2101. lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
  2102. while (lip) {
  2103. if (lip->li_type == XFS_LI_INODE) {
  2104. iip = (xfs_inode_log_item_t *)lip;
  2105. ASSERT(iip->ili_logged == 1);
  2106. lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
  2107. AIL_LOCK(mp,s);
  2108. iip->ili_flush_lsn = iip->ili_item.li_lsn;
  2109. AIL_UNLOCK(mp, s);
  2110. iip->ili_inode->i_flags |= XFS_ISTALE;
  2111. pre_flushed++;
  2112. }
  2113. lip = lip->li_bio_list;
  2114. }
  2115. for (i = 0; i < found; i++) {
  2116. ip = ip_found[i];
  2117. iip = ip->i_itemp;
  2118. if (!iip) {
  2119. ip->i_update_core = 0;
  2120. xfs_ifunlock(ip);
  2121. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2122. continue;
  2123. }
  2124. iip->ili_last_fields = iip->ili_format.ilf_fields;
  2125. iip->ili_format.ilf_fields = 0;
  2126. iip->ili_logged = 1;
  2127. AIL_LOCK(mp,s);
  2128. iip->ili_flush_lsn = iip->ili_item.li_lsn;
  2129. AIL_UNLOCK(mp, s);
  2130. xfs_buf_attach_iodone(bp,
  2131. (void(*)(xfs_buf_t*,xfs_log_item_t*))
  2132. xfs_istale_done, (xfs_log_item_t *)iip);
  2133. if (ip != free_ip) {
  2134. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2135. }
  2136. }
  2137. if (found || pre_flushed)
  2138. xfs_trans_stale_inode_buf(tp, bp);
  2139. xfs_trans_binval(tp, bp);
  2140. }
  2141. kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
  2142. }
  2143. /*
  2144. * This is called to return an inode to the inode free list.
  2145. * The inode should already be truncated to 0 length and have
  2146. * no pages associated with it. This routine also assumes that
  2147. * the inode is already a part of the transaction.
  2148. *
  2149. * The on-disk copy of the inode will have been added to the list
  2150. * of unlinked inodes in the AGI. We need to remove the inode from
  2151. * that list atomically with respect to freeing it here.
  2152. */
  2153. int
  2154. xfs_ifree(
  2155. xfs_trans_t *tp,
  2156. xfs_inode_t *ip,
  2157. xfs_bmap_free_t *flist)
  2158. {
  2159. int error;
  2160. int delete;
  2161. xfs_ino_t first_ino;
  2162. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
  2163. ASSERT(ip->i_transp == tp);
  2164. ASSERT(ip->i_d.di_nlink == 0);
  2165. ASSERT(ip->i_d.di_nextents == 0);
  2166. ASSERT(ip->i_d.di_anextents == 0);
  2167. ASSERT((ip->i_d.di_size == 0) ||
  2168. ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
  2169. ASSERT(ip->i_d.di_nblocks == 0);
  2170. /*
  2171. * Pull the on-disk inode from the AGI unlinked list.
  2172. */
  2173. error = xfs_iunlink_remove(tp, ip);
  2174. if (error != 0) {
  2175. return error;
  2176. }
  2177. error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
  2178. if (error != 0) {
  2179. return error;
  2180. }
  2181. ip->i_d.di_mode = 0; /* mark incore inode as free */
  2182. ip->i_d.di_flags = 0;
  2183. ip->i_d.di_dmevmask = 0;
  2184. ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
  2185. ip->i_df.if_ext_max =
  2186. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  2187. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  2188. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  2189. /*
  2190. * Bump the generation count so no one will be confused
  2191. * by reincarnations of this inode.
  2192. */
  2193. ip->i_d.di_gen++;
  2194. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  2195. if (delete) {
  2196. xfs_ifree_cluster(ip, tp, first_ino);
  2197. }
  2198. return 0;
  2199. }
  2200. /*
  2201. * Reallocate the space for if_broot based on the number of records
  2202. * being added or deleted as indicated in rec_diff. Move the records
  2203. * and pointers in if_broot to fit the new size. When shrinking this
  2204. * will eliminate holes between the records and pointers created by
  2205. * the caller. When growing this will create holes to be filled in
  2206. * by the caller.
  2207. *
  2208. * The caller must not request to add more records than would fit in
  2209. * the on-disk inode root. If the if_broot is currently NULL, then
  2210. * if we adding records one will be allocated. The caller must also
  2211. * not request that the number of records go below zero, although
  2212. * it can go to zero.
  2213. *
  2214. * ip -- the inode whose if_broot area is changing
  2215. * ext_diff -- the change in the number of records, positive or negative,
  2216. * requested for the if_broot array.
  2217. */
  2218. void
  2219. xfs_iroot_realloc(
  2220. xfs_inode_t *ip,
  2221. int rec_diff,
  2222. int whichfork)
  2223. {
  2224. int cur_max;
  2225. xfs_ifork_t *ifp;
  2226. xfs_bmbt_block_t *new_broot;
  2227. int new_max;
  2228. size_t new_size;
  2229. char *np;
  2230. char *op;
  2231. /*
  2232. * Handle the degenerate case quietly.
  2233. */
  2234. if (rec_diff == 0) {
  2235. return;
  2236. }
  2237. ifp = XFS_IFORK_PTR(ip, whichfork);
  2238. if (rec_diff > 0) {
  2239. /*
  2240. * If there wasn't any memory allocated before, just
  2241. * allocate it now and get out.
  2242. */
  2243. if (ifp->if_broot_bytes == 0) {
  2244. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
  2245. ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
  2246. KM_SLEEP);
  2247. ifp->if_broot_bytes = (int)new_size;
  2248. return;
  2249. }
  2250. /*
  2251. * If there is already an existing if_broot, then we need
  2252. * to realloc() it and shift the pointers to their new
  2253. * location. The records don't change location because
  2254. * they are kept butted up against the btree block header.
  2255. */
  2256. cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
  2257. new_max = cur_max + rec_diff;
  2258. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  2259. ifp->if_broot = (xfs_bmbt_block_t *)
  2260. kmem_realloc(ifp->if_broot,
  2261. new_size,
  2262. (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
  2263. KM_SLEEP);
  2264. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
  2265. ifp->if_broot_bytes);
  2266. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
  2267. (int)new_size);
  2268. ifp->if_broot_bytes = (int)new_size;
  2269. ASSERT(ifp->if_broot_bytes <=
  2270. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  2271. memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
  2272. return;
  2273. }
  2274. /*
  2275. * rec_diff is less than 0. In this case, we are shrinking the
  2276. * if_broot buffer. It must already exist. If we go to zero
  2277. * records, just get rid of the root and clear the status bit.
  2278. */
  2279. ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
  2280. cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
  2281. new_max = cur_max + rec_diff;
  2282. ASSERT(new_max >= 0);
  2283. if (new_max > 0)
  2284. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  2285. else
  2286. new_size = 0;
  2287. if (new_size > 0) {
  2288. new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
  2289. /*
  2290. * First copy over the btree block header.
  2291. */
  2292. memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
  2293. } else {
  2294. new_broot = NULL;
  2295. ifp->if_flags &= ~XFS_IFBROOT;
  2296. }
  2297. /*
  2298. * Only copy the records and pointers if there are any.
  2299. */
  2300. if (new_max > 0) {
  2301. /*
  2302. * First copy the records.
  2303. */
  2304. op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
  2305. ifp->if_broot_bytes);
  2306. np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
  2307. (int)new_size);
  2308. memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
  2309. /*
  2310. * Then copy the pointers.
  2311. */
  2312. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
  2313. ifp->if_broot_bytes);
  2314. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
  2315. (int)new_size);
  2316. memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
  2317. }
  2318. kmem_free(ifp->if_broot, ifp->if_broot_bytes);
  2319. ifp->if_broot = new_broot;
  2320. ifp->if_broot_bytes = (int)new_size;
  2321. ASSERT(ifp->if_broot_bytes <=
  2322. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  2323. return;
  2324. }
  2325. /*
  2326. * This is called when the amount of space needed for if_data
  2327. * is increased or decreased. The change in size is indicated by
  2328. * the number of bytes that need to be added or deleted in the
  2329. * byte_diff parameter.
  2330. *
  2331. * If the amount of space needed has decreased below the size of the
  2332. * inline buffer, then switch to using the inline buffer. Otherwise,
  2333. * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
  2334. * to what is needed.
  2335. *
  2336. * ip -- the inode whose if_data area is changing
  2337. * byte_diff -- the change in the number of bytes, positive or negative,
  2338. * requested for the if_data array.
  2339. */
  2340. void
  2341. xfs_idata_realloc(
  2342. xfs_inode_t *ip,
  2343. int byte_diff,
  2344. int whichfork)
  2345. {
  2346. xfs_ifork_t *ifp;
  2347. int new_size;
  2348. int real_size;
  2349. if (byte_diff == 0) {
  2350. return;
  2351. }
  2352. ifp = XFS_IFORK_PTR(ip, whichfork);
  2353. new_size = (int)ifp->if_bytes + byte_diff;
  2354. ASSERT(new_size >= 0);
  2355. if (new_size == 0) {
  2356. if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2357. kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
  2358. }
  2359. ifp->if_u1.if_data = NULL;
  2360. real_size = 0;
  2361. } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
  2362. /*
  2363. * If the valid extents/data can fit in if_inline_ext/data,
  2364. * copy them from the malloc'd vector and free it.
  2365. */
  2366. if (ifp->if_u1.if_data == NULL) {
  2367. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2368. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2369. ASSERT(ifp->if_real_bytes != 0);
  2370. memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
  2371. new_size);
  2372. kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
  2373. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2374. }
  2375. real_size = 0;
  2376. } else {
  2377. /*
  2378. * Stuck with malloc/realloc.
  2379. * For inline data, the underlying buffer must be
  2380. * a multiple of 4 bytes in size so that it can be
  2381. * logged and stay on word boundaries. We enforce
  2382. * that here.
  2383. */
  2384. real_size = roundup(new_size, 4);
  2385. if (ifp->if_u1.if_data == NULL) {
  2386. ASSERT(ifp->if_real_bytes == 0);
  2387. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  2388. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2389. /*
  2390. * Only do the realloc if the underlying size
  2391. * is really changing.
  2392. */
  2393. if (ifp->if_real_bytes != real_size) {
  2394. ifp->if_u1.if_data =
  2395. kmem_realloc(ifp->if_u1.if_data,
  2396. real_size,
  2397. ifp->if_real_bytes,
  2398. KM_SLEEP);
  2399. }
  2400. } else {
  2401. ASSERT(ifp->if_real_bytes == 0);
  2402. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  2403. memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
  2404. ifp->if_bytes);
  2405. }
  2406. }
  2407. ifp->if_real_bytes = real_size;
  2408. ifp->if_bytes = new_size;
  2409. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2410. }
  2411. /*
  2412. * Map inode to disk block and offset.
  2413. *
  2414. * mp -- the mount point structure for the current file system
  2415. * tp -- the current transaction
  2416. * ino -- the inode number of the inode to be located
  2417. * imap -- this structure is filled in with the information necessary
  2418. * to retrieve the given inode from disk
  2419. * flags -- flags to pass to xfs_dilocate indicating whether or not
  2420. * lookups in the inode btree were OK or not
  2421. */
  2422. int
  2423. xfs_imap(
  2424. xfs_mount_t *mp,
  2425. xfs_trans_t *tp,
  2426. xfs_ino_t ino,
  2427. xfs_imap_t *imap,
  2428. uint flags)
  2429. {
  2430. xfs_fsblock_t fsbno;
  2431. int len;
  2432. int off;
  2433. int error;
  2434. fsbno = imap->im_blkno ?
  2435. XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
  2436. error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
  2437. if (error != 0) {
  2438. return error;
  2439. }
  2440. imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
  2441. imap->im_len = XFS_FSB_TO_BB(mp, len);
  2442. imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
  2443. imap->im_ioffset = (ushort)off;
  2444. imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
  2445. return 0;
  2446. }
  2447. void
  2448. xfs_idestroy_fork(
  2449. xfs_inode_t *ip,
  2450. int whichfork)
  2451. {
  2452. xfs_ifork_t *ifp;
  2453. ifp = XFS_IFORK_PTR(ip, whichfork);
  2454. if (ifp->if_broot != NULL) {
  2455. kmem_free(ifp->if_broot, ifp->if_broot_bytes);
  2456. ifp->if_broot = NULL;
  2457. }
  2458. /*
  2459. * If the format is local, then we can't have an extents
  2460. * array so just look for an inline data array. If we're
  2461. * not local then we may or may not have an extents list,
  2462. * so check and free it up if we do.
  2463. */
  2464. if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
  2465. if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
  2466. (ifp->if_u1.if_data != NULL)) {
  2467. ASSERT(ifp->if_real_bytes != 0);
  2468. kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
  2469. ifp->if_u1.if_data = NULL;
  2470. ifp->if_real_bytes = 0;
  2471. }
  2472. } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
  2473. ((ifp->if_flags & XFS_IFEXTIREC) ||
  2474. ((ifp->if_u1.if_extents != NULL) &&
  2475. (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
  2476. ASSERT(ifp->if_real_bytes != 0);
  2477. xfs_iext_destroy(ifp);
  2478. }
  2479. ASSERT(ifp->if_u1.if_extents == NULL ||
  2480. ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
  2481. ASSERT(ifp->if_real_bytes == 0);
  2482. if (whichfork == XFS_ATTR_FORK) {
  2483. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  2484. ip->i_afp = NULL;
  2485. }
  2486. }
  2487. /*
  2488. * This is called free all the memory associated with an inode.
  2489. * It must free the inode itself and any buffers allocated for
  2490. * if_extents/if_data and if_broot. It must also free the lock
  2491. * associated with the inode.
  2492. */
  2493. void
  2494. xfs_idestroy(
  2495. xfs_inode_t *ip)
  2496. {
  2497. switch (ip->i_d.di_mode & S_IFMT) {
  2498. case S_IFREG:
  2499. case S_IFDIR:
  2500. case S_IFLNK:
  2501. xfs_idestroy_fork(ip, XFS_DATA_FORK);
  2502. break;
  2503. }
  2504. if (ip->i_afp)
  2505. xfs_idestroy_fork(ip, XFS_ATTR_FORK);
  2506. mrfree(&ip->i_lock);
  2507. mrfree(&ip->i_iolock);
  2508. freesema(&ip->i_flock);
  2509. #ifdef XFS_BMAP_TRACE
  2510. ktrace_free(ip->i_xtrace);
  2511. #endif
  2512. #ifdef XFS_BMBT_TRACE
  2513. ktrace_free(ip->i_btrace);
  2514. #endif
  2515. #ifdef XFS_RW_TRACE
  2516. ktrace_free(ip->i_rwtrace);
  2517. #endif
  2518. #ifdef XFS_ILOCK_TRACE
  2519. ktrace_free(ip->i_lock_trace);
  2520. #endif
  2521. #ifdef XFS_DIR2_TRACE
  2522. ktrace_free(ip->i_dir_trace);
  2523. #endif
  2524. if (ip->i_itemp) {
  2525. /* XXXdpd should be able to assert this but shutdown
  2526. * is leaving the AIL behind. */
  2527. ASSERT(((ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL) == 0) ||
  2528. XFS_FORCED_SHUTDOWN(ip->i_mount));
  2529. xfs_inode_item_destroy(ip);
  2530. }
  2531. kmem_zone_free(xfs_inode_zone, ip);
  2532. }
  2533. /*
  2534. * Increment the pin count of the given buffer.
  2535. * This value is protected by ipinlock spinlock in the mount structure.
  2536. */
  2537. void
  2538. xfs_ipin(
  2539. xfs_inode_t *ip)
  2540. {
  2541. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
  2542. atomic_inc(&ip->i_pincount);
  2543. }
  2544. /*
  2545. * Decrement the pin count of the given inode, and wake up
  2546. * anyone in xfs_iwait_unpin() if the count goes to 0. The
  2547. * inode must have been previously pinned with a call to xfs_ipin().
  2548. */
  2549. void
  2550. xfs_iunpin(
  2551. xfs_inode_t *ip)
  2552. {
  2553. ASSERT(atomic_read(&ip->i_pincount) > 0);
  2554. if (atomic_dec_and_test(&ip->i_pincount)) {
  2555. /*
  2556. * If the inode is currently being reclaimed, the
  2557. * linux inode _and_ the xfs vnode may have been
  2558. * freed so we cannot reference either of them safely.
  2559. * Hence we should not try to do anything to them
  2560. * if the xfs inode is currently in the reclaim
  2561. * path.
  2562. *
  2563. * However, we still need to issue the unpin wakeup
  2564. * call as the inode reclaim may be blocked waiting for
  2565. * the inode to become unpinned.
  2566. */
  2567. if (!(ip->i_flags & (XFS_IRECLAIM|XFS_IRECLAIMABLE))) {
  2568. bhv_vnode_t *vp = XFS_ITOV_NULL(ip);
  2569. /* make sync come back and flush this inode */
  2570. if (vp) {
  2571. struct inode *inode = vn_to_inode(vp);
  2572. if (!(inode->i_state &
  2573. (I_NEW|I_FREEING|I_CLEAR)))
  2574. mark_inode_dirty_sync(inode);
  2575. }
  2576. }
  2577. wake_up(&ip->i_ipin_wait);
  2578. }
  2579. }
  2580. /*
  2581. * This is called to wait for the given inode to be unpinned.
  2582. * It will sleep until this happens. The caller must have the
  2583. * inode locked in at least shared mode so that the buffer cannot
  2584. * be subsequently pinned once someone is waiting for it to be
  2585. * unpinned.
  2586. */
  2587. STATIC void
  2588. xfs_iunpin_wait(
  2589. xfs_inode_t *ip)
  2590. {
  2591. xfs_inode_log_item_t *iip;
  2592. xfs_lsn_t lsn;
  2593. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS));
  2594. if (atomic_read(&ip->i_pincount) == 0) {
  2595. return;
  2596. }
  2597. iip = ip->i_itemp;
  2598. if (iip && iip->ili_last_lsn) {
  2599. lsn = iip->ili_last_lsn;
  2600. } else {
  2601. lsn = (xfs_lsn_t)0;
  2602. }
  2603. /*
  2604. * Give the log a push so we don't wait here too long.
  2605. */
  2606. xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE);
  2607. wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
  2608. }
  2609. /*
  2610. * xfs_iextents_copy()
  2611. *
  2612. * This is called to copy the REAL extents (as opposed to the delayed
  2613. * allocation extents) from the inode into the given buffer. It
  2614. * returns the number of bytes copied into the buffer.
  2615. *
  2616. * If there are no delayed allocation extents, then we can just
  2617. * memcpy() the extents into the buffer. Otherwise, we need to
  2618. * examine each extent in turn and skip those which are delayed.
  2619. */
  2620. int
  2621. xfs_iextents_copy(
  2622. xfs_inode_t *ip,
  2623. xfs_bmbt_rec_t *buffer,
  2624. int whichfork)
  2625. {
  2626. int copied;
  2627. xfs_bmbt_rec_t *dest_ep;
  2628. xfs_bmbt_rec_t *ep;
  2629. #ifdef XFS_BMAP_TRACE
  2630. static char fname[] = "xfs_iextents_copy";
  2631. #endif
  2632. int i;
  2633. xfs_ifork_t *ifp;
  2634. int nrecs;
  2635. xfs_fsblock_t start_block;
  2636. ifp = XFS_IFORK_PTR(ip, whichfork);
  2637. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
  2638. ASSERT(ifp->if_bytes > 0);
  2639. nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2640. xfs_bmap_trace_exlist(fname, ip, nrecs, whichfork);
  2641. ASSERT(nrecs > 0);
  2642. /*
  2643. * There are some delayed allocation extents in the
  2644. * inode, so copy the extents one at a time and skip
  2645. * the delayed ones. There must be at least one
  2646. * non-delayed extent.
  2647. */
  2648. dest_ep = buffer;
  2649. copied = 0;
  2650. for (i = 0; i < nrecs; i++) {
  2651. ep = xfs_iext_get_ext(ifp, i);
  2652. start_block = xfs_bmbt_get_startblock(ep);
  2653. if (ISNULLSTARTBLOCK(start_block)) {
  2654. /*
  2655. * It's a delayed allocation extent, so skip it.
  2656. */
  2657. continue;
  2658. }
  2659. /* Translate to on disk format */
  2660. put_unaligned(INT_GET(ep->l0, ARCH_CONVERT),
  2661. (__uint64_t*)&dest_ep->l0);
  2662. put_unaligned(INT_GET(ep->l1, ARCH_CONVERT),
  2663. (__uint64_t*)&dest_ep->l1);
  2664. dest_ep++;
  2665. copied++;
  2666. }
  2667. ASSERT(copied != 0);
  2668. xfs_validate_extents(ifp, copied, 1, XFS_EXTFMT_INODE(ip));
  2669. return (copied * (uint)sizeof(xfs_bmbt_rec_t));
  2670. }
  2671. /*
  2672. * Each of the following cases stores data into the same region
  2673. * of the on-disk inode, so only one of them can be valid at
  2674. * any given time. While it is possible to have conflicting formats
  2675. * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
  2676. * in EXTENTS format, this can only happen when the fork has
  2677. * changed formats after being modified but before being flushed.
  2678. * In these cases, the format always takes precedence, because the
  2679. * format indicates the current state of the fork.
  2680. */
  2681. /*ARGSUSED*/
  2682. STATIC int
  2683. xfs_iflush_fork(
  2684. xfs_inode_t *ip,
  2685. xfs_dinode_t *dip,
  2686. xfs_inode_log_item_t *iip,
  2687. int whichfork,
  2688. xfs_buf_t *bp)
  2689. {
  2690. char *cp;
  2691. xfs_ifork_t *ifp;
  2692. xfs_mount_t *mp;
  2693. #ifdef XFS_TRANS_DEBUG
  2694. int first;
  2695. #endif
  2696. static const short brootflag[2] =
  2697. { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
  2698. static const short dataflag[2] =
  2699. { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
  2700. static const short extflag[2] =
  2701. { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
  2702. if (iip == NULL)
  2703. return 0;
  2704. ifp = XFS_IFORK_PTR(ip, whichfork);
  2705. /*
  2706. * This can happen if we gave up in iformat in an error path,
  2707. * for the attribute fork.
  2708. */
  2709. if (ifp == NULL) {
  2710. ASSERT(whichfork == XFS_ATTR_FORK);
  2711. return 0;
  2712. }
  2713. cp = XFS_DFORK_PTR(dip, whichfork);
  2714. mp = ip->i_mount;
  2715. switch (XFS_IFORK_FORMAT(ip, whichfork)) {
  2716. case XFS_DINODE_FMT_LOCAL:
  2717. if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
  2718. (ifp->if_bytes > 0)) {
  2719. ASSERT(ifp->if_u1.if_data != NULL);
  2720. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2721. memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
  2722. }
  2723. break;
  2724. case XFS_DINODE_FMT_EXTENTS:
  2725. ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
  2726. !(iip->ili_format.ilf_fields & extflag[whichfork]));
  2727. ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
  2728. (ifp->if_bytes == 0));
  2729. ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
  2730. (ifp->if_bytes > 0));
  2731. if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
  2732. (ifp->if_bytes > 0)) {
  2733. ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
  2734. (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
  2735. whichfork);
  2736. }
  2737. break;
  2738. case XFS_DINODE_FMT_BTREE:
  2739. if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
  2740. (ifp->if_broot_bytes > 0)) {
  2741. ASSERT(ifp->if_broot != NULL);
  2742. ASSERT(ifp->if_broot_bytes <=
  2743. (XFS_IFORK_SIZE(ip, whichfork) +
  2744. XFS_BROOT_SIZE_ADJ));
  2745. xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
  2746. (xfs_bmdr_block_t *)cp,
  2747. XFS_DFORK_SIZE(dip, mp, whichfork));
  2748. }
  2749. break;
  2750. case XFS_DINODE_FMT_DEV:
  2751. if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
  2752. ASSERT(whichfork == XFS_DATA_FORK);
  2753. INT_SET(dip->di_u.di_dev, ARCH_CONVERT, ip->i_df.if_u2.if_rdev);
  2754. }
  2755. break;
  2756. case XFS_DINODE_FMT_UUID:
  2757. if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
  2758. ASSERT(whichfork == XFS_DATA_FORK);
  2759. memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
  2760. sizeof(uuid_t));
  2761. }
  2762. break;
  2763. default:
  2764. ASSERT(0);
  2765. break;
  2766. }
  2767. return 0;
  2768. }
  2769. /*
  2770. * xfs_iflush() will write a modified inode's changes out to the
  2771. * inode's on disk home. The caller must have the inode lock held
  2772. * in at least shared mode and the inode flush semaphore must be
  2773. * held as well. The inode lock will still be held upon return from
  2774. * the call and the caller is free to unlock it.
  2775. * The inode flush lock will be unlocked when the inode reaches the disk.
  2776. * The flags indicate how the inode's buffer should be written out.
  2777. */
  2778. int
  2779. xfs_iflush(
  2780. xfs_inode_t *ip,
  2781. uint flags)
  2782. {
  2783. xfs_inode_log_item_t *iip;
  2784. xfs_buf_t *bp;
  2785. xfs_dinode_t *dip;
  2786. xfs_mount_t *mp;
  2787. int error;
  2788. /* REFERENCED */
  2789. xfs_chash_t *ch;
  2790. xfs_inode_t *iq;
  2791. int clcount; /* count of inodes clustered */
  2792. int bufwasdelwri;
  2793. enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
  2794. SPLDECL(s);
  2795. XFS_STATS_INC(xs_iflush_count);
  2796. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
  2797. ASSERT(issemalocked(&(ip->i_flock)));
  2798. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  2799. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  2800. iip = ip->i_itemp;
  2801. mp = ip->i_mount;
  2802. /*
  2803. * If the inode isn't dirty, then just release the inode
  2804. * flush lock and do nothing.
  2805. */
  2806. if ((ip->i_update_core == 0) &&
  2807. ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
  2808. ASSERT((iip != NULL) ?
  2809. !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
  2810. xfs_ifunlock(ip);
  2811. return 0;
  2812. }
  2813. /*
  2814. * We can't flush the inode until it is unpinned, so
  2815. * wait for it. We know noone new can pin it, because
  2816. * we are holding the inode lock shared and you need
  2817. * to hold it exclusively to pin the inode.
  2818. */
  2819. xfs_iunpin_wait(ip);
  2820. /*
  2821. * This may have been unpinned because the filesystem is shutting
  2822. * down forcibly. If that's the case we must not write this inode
  2823. * to disk, because the log record didn't make it to disk!
  2824. */
  2825. if (XFS_FORCED_SHUTDOWN(mp)) {
  2826. ip->i_update_core = 0;
  2827. if (iip)
  2828. iip->ili_format.ilf_fields = 0;
  2829. xfs_ifunlock(ip);
  2830. return XFS_ERROR(EIO);
  2831. }
  2832. /*
  2833. * Get the buffer containing the on-disk inode.
  2834. */
  2835. error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0);
  2836. if (error) {
  2837. xfs_ifunlock(ip);
  2838. return error;
  2839. }
  2840. /*
  2841. * Decide how buffer will be flushed out. This is done before
  2842. * the call to xfs_iflush_int because this field is zeroed by it.
  2843. */
  2844. if (iip != NULL && iip->ili_format.ilf_fields != 0) {
  2845. /*
  2846. * Flush out the inode buffer according to the directions
  2847. * of the caller. In the cases where the caller has given
  2848. * us a choice choose the non-delwri case. This is because
  2849. * the inode is in the AIL and we need to get it out soon.
  2850. */
  2851. switch (flags) {
  2852. case XFS_IFLUSH_SYNC:
  2853. case XFS_IFLUSH_DELWRI_ELSE_SYNC:
  2854. flags = 0;
  2855. break;
  2856. case XFS_IFLUSH_ASYNC:
  2857. case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
  2858. flags = INT_ASYNC;
  2859. break;
  2860. case XFS_IFLUSH_DELWRI:
  2861. flags = INT_DELWRI;
  2862. break;
  2863. default:
  2864. ASSERT(0);
  2865. flags = 0;
  2866. break;
  2867. }
  2868. } else {
  2869. switch (flags) {
  2870. case XFS_IFLUSH_DELWRI_ELSE_SYNC:
  2871. case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
  2872. case XFS_IFLUSH_DELWRI:
  2873. flags = INT_DELWRI;
  2874. break;
  2875. case XFS_IFLUSH_ASYNC:
  2876. flags = INT_ASYNC;
  2877. break;
  2878. case XFS_IFLUSH_SYNC:
  2879. flags = 0;
  2880. break;
  2881. default:
  2882. ASSERT(0);
  2883. flags = 0;
  2884. break;
  2885. }
  2886. }
  2887. /*
  2888. * First flush out the inode that xfs_iflush was called with.
  2889. */
  2890. error = xfs_iflush_int(ip, bp);
  2891. if (error) {
  2892. goto corrupt_out;
  2893. }
  2894. /*
  2895. * inode clustering:
  2896. * see if other inodes can be gathered into this write
  2897. */
  2898. ip->i_chash->chl_buf = bp;
  2899. ch = XFS_CHASH(mp, ip->i_blkno);
  2900. s = mutex_spinlock(&ch->ch_lock);
  2901. clcount = 0;
  2902. for (iq = ip->i_cnext; iq != ip; iq = iq->i_cnext) {
  2903. /*
  2904. * Do an un-protected check to see if the inode is dirty and
  2905. * is a candidate for flushing. These checks will be repeated
  2906. * later after the appropriate locks are acquired.
  2907. */
  2908. iip = iq->i_itemp;
  2909. if ((iq->i_update_core == 0) &&
  2910. ((iip == NULL) ||
  2911. !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
  2912. xfs_ipincount(iq) == 0) {
  2913. continue;
  2914. }
  2915. /*
  2916. * Try to get locks. If any are unavailable,
  2917. * then this inode cannot be flushed and is skipped.
  2918. */
  2919. /* get inode locks (just i_lock) */
  2920. if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) {
  2921. /* get inode flush lock */
  2922. if (xfs_iflock_nowait(iq)) {
  2923. /* check if pinned */
  2924. if (xfs_ipincount(iq) == 0) {
  2925. /* arriving here means that
  2926. * this inode can be flushed.
  2927. * first re-check that it's
  2928. * dirty
  2929. */
  2930. iip = iq->i_itemp;
  2931. if ((iq->i_update_core != 0)||
  2932. ((iip != NULL) &&
  2933. (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
  2934. clcount++;
  2935. error = xfs_iflush_int(iq, bp);
  2936. if (error) {
  2937. xfs_iunlock(iq,
  2938. XFS_ILOCK_SHARED);
  2939. goto cluster_corrupt_out;
  2940. }
  2941. } else {
  2942. xfs_ifunlock(iq);
  2943. }
  2944. } else {
  2945. xfs_ifunlock(iq);
  2946. }
  2947. }
  2948. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2949. }
  2950. }
  2951. mutex_spinunlock(&ch->ch_lock, s);
  2952. if (clcount) {
  2953. XFS_STATS_INC(xs_icluster_flushcnt);
  2954. XFS_STATS_ADD(xs_icluster_flushinode, clcount);
  2955. }
  2956. /*
  2957. * If the buffer is pinned then push on the log so we won't
  2958. * get stuck waiting in the write for too long.
  2959. */
  2960. if (XFS_BUF_ISPINNED(bp)){
  2961. xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
  2962. }
  2963. if (flags & INT_DELWRI) {
  2964. xfs_bdwrite(mp, bp);
  2965. } else if (flags & INT_ASYNC) {
  2966. xfs_bawrite(mp, bp);
  2967. } else {
  2968. error = xfs_bwrite(mp, bp);
  2969. }
  2970. return error;
  2971. corrupt_out:
  2972. xfs_buf_relse(bp);
  2973. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  2974. xfs_iflush_abort(ip);
  2975. /*
  2976. * Unlocks the flush lock
  2977. */
  2978. return XFS_ERROR(EFSCORRUPTED);
  2979. cluster_corrupt_out:
  2980. /* Corruption detected in the clustering loop. Invalidate the
  2981. * inode buffer and shut down the filesystem.
  2982. */
  2983. mutex_spinunlock(&ch->ch_lock, s);
  2984. /*
  2985. * Clean up the buffer. If it was B_DELWRI, just release it --
  2986. * brelse can handle it with no problems. If not, shut down the
  2987. * filesystem before releasing the buffer.
  2988. */
  2989. if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) {
  2990. xfs_buf_relse(bp);
  2991. }
  2992. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  2993. if(!bufwasdelwri) {
  2994. /*
  2995. * Just like incore_relse: if we have b_iodone functions,
  2996. * mark the buffer as an error and call them. Otherwise
  2997. * mark it as stale and brelse.
  2998. */
  2999. if (XFS_BUF_IODONE_FUNC(bp)) {
  3000. XFS_BUF_CLR_BDSTRAT_FUNC(bp);
  3001. XFS_BUF_UNDONE(bp);
  3002. XFS_BUF_STALE(bp);
  3003. XFS_BUF_SHUT(bp);
  3004. XFS_BUF_ERROR(bp,EIO);
  3005. xfs_biodone(bp);
  3006. } else {
  3007. XFS_BUF_STALE(bp);
  3008. xfs_buf_relse(bp);
  3009. }
  3010. }
  3011. xfs_iflush_abort(iq);
  3012. /*
  3013. * Unlocks the flush lock
  3014. */
  3015. return XFS_ERROR(EFSCORRUPTED);
  3016. }
  3017. STATIC int
  3018. xfs_iflush_int(
  3019. xfs_inode_t *ip,
  3020. xfs_buf_t *bp)
  3021. {
  3022. xfs_inode_log_item_t *iip;
  3023. xfs_dinode_t *dip;
  3024. xfs_mount_t *mp;
  3025. #ifdef XFS_TRANS_DEBUG
  3026. int first;
  3027. #endif
  3028. SPLDECL(s);
  3029. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
  3030. ASSERT(issemalocked(&(ip->i_flock)));
  3031. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  3032. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  3033. iip = ip->i_itemp;
  3034. mp = ip->i_mount;
  3035. /*
  3036. * If the inode isn't dirty, then just release the inode
  3037. * flush lock and do nothing.
  3038. */
  3039. if ((ip->i_update_core == 0) &&
  3040. ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
  3041. xfs_ifunlock(ip);
  3042. return 0;
  3043. }
  3044. /* set *dip = inode's place in the buffer */
  3045. dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
  3046. /*
  3047. * Clear i_update_core before copying out the data.
  3048. * This is for coordination with our timestamp updates
  3049. * that don't hold the inode lock. They will always
  3050. * update the timestamps BEFORE setting i_update_core,
  3051. * so if we clear i_update_core after they set it we
  3052. * are guaranteed to see their updates to the timestamps.
  3053. * I believe that this depends on strongly ordered memory
  3054. * semantics, but we have that. We use the SYNCHRONIZE
  3055. * macro to make sure that the compiler does not reorder
  3056. * the i_update_core access below the data copy below.
  3057. */
  3058. ip->i_update_core = 0;
  3059. SYNCHRONIZE();
  3060. /*
  3061. * Make sure to get the latest atime from the Linux inode.
  3062. */
  3063. xfs_synchronize_atime(ip);
  3064. if (XFS_TEST_ERROR(INT_GET(dip->di_core.di_magic,ARCH_CONVERT) != XFS_DINODE_MAGIC,
  3065. mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
  3066. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3067. "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
  3068. ip->i_ino, (int) INT_GET(dip->di_core.di_magic, ARCH_CONVERT), dip);
  3069. goto corrupt_out;
  3070. }
  3071. if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
  3072. mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
  3073. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3074. "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
  3075. ip->i_ino, ip, ip->i_d.di_magic);
  3076. goto corrupt_out;
  3077. }
  3078. if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
  3079. if (XFS_TEST_ERROR(
  3080. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  3081. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
  3082. mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
  3083. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3084. "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
  3085. ip->i_ino, ip);
  3086. goto corrupt_out;
  3087. }
  3088. } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
  3089. if (XFS_TEST_ERROR(
  3090. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  3091. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
  3092. (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
  3093. mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
  3094. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3095. "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
  3096. ip->i_ino, ip);
  3097. goto corrupt_out;
  3098. }
  3099. }
  3100. if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
  3101. ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
  3102. XFS_RANDOM_IFLUSH_5)) {
  3103. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3104. "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
  3105. ip->i_ino,
  3106. ip->i_d.di_nextents + ip->i_d.di_anextents,
  3107. ip->i_d.di_nblocks,
  3108. ip);
  3109. goto corrupt_out;
  3110. }
  3111. if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
  3112. mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
  3113. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3114. "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
  3115. ip->i_ino, ip->i_d.di_forkoff, ip);
  3116. goto corrupt_out;
  3117. }
  3118. /*
  3119. * bump the flush iteration count, used to detect flushes which
  3120. * postdate a log record during recovery.
  3121. */
  3122. ip->i_d.di_flushiter++;
  3123. /*
  3124. * Copy the dirty parts of the inode into the on-disk
  3125. * inode. We always copy out the core of the inode,
  3126. * because if the inode is dirty at all the core must
  3127. * be.
  3128. */
  3129. xfs_xlate_dinode_core((xfs_caddr_t)&(dip->di_core), &(ip->i_d), -1);
  3130. /* Wrap, we never let the log put out DI_MAX_FLUSH */
  3131. if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
  3132. ip->i_d.di_flushiter = 0;
  3133. /*
  3134. * If this is really an old format inode and the superblock version
  3135. * has not been updated to support only new format inodes, then
  3136. * convert back to the old inode format. If the superblock version
  3137. * has been updated, then make the conversion permanent.
  3138. */
  3139. ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
  3140. XFS_SB_VERSION_HASNLINK(&mp->m_sb));
  3141. if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
  3142. if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
  3143. /*
  3144. * Convert it back.
  3145. */
  3146. ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
  3147. INT_SET(dip->di_core.di_onlink, ARCH_CONVERT, ip->i_d.di_nlink);
  3148. } else {
  3149. /*
  3150. * The superblock version has already been bumped,
  3151. * so just make the conversion to the new inode
  3152. * format permanent.
  3153. */
  3154. ip->i_d.di_version = XFS_DINODE_VERSION_2;
  3155. INT_SET(dip->di_core.di_version, ARCH_CONVERT, XFS_DINODE_VERSION_2);
  3156. ip->i_d.di_onlink = 0;
  3157. dip->di_core.di_onlink = 0;
  3158. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  3159. memset(&(dip->di_core.di_pad[0]), 0,
  3160. sizeof(dip->di_core.di_pad));
  3161. ASSERT(ip->i_d.di_projid == 0);
  3162. }
  3163. }
  3164. if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) {
  3165. goto corrupt_out;
  3166. }
  3167. if (XFS_IFORK_Q(ip)) {
  3168. /*
  3169. * The only error from xfs_iflush_fork is on the data fork.
  3170. */
  3171. (void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
  3172. }
  3173. xfs_inobp_check(mp, bp);
  3174. /*
  3175. * We've recorded everything logged in the inode, so we'd
  3176. * like to clear the ilf_fields bits so we don't log and
  3177. * flush things unnecessarily. However, we can't stop
  3178. * logging all this information until the data we've copied
  3179. * into the disk buffer is written to disk. If we did we might
  3180. * overwrite the copy of the inode in the log with all the
  3181. * data after re-logging only part of it, and in the face of
  3182. * a crash we wouldn't have all the data we need to recover.
  3183. *
  3184. * What we do is move the bits to the ili_last_fields field.
  3185. * When logging the inode, these bits are moved back to the
  3186. * ilf_fields field. In the xfs_iflush_done() routine we
  3187. * clear ili_last_fields, since we know that the information
  3188. * those bits represent is permanently on disk. As long as
  3189. * the flush completes before the inode is logged again, then
  3190. * both ilf_fields and ili_last_fields will be cleared.
  3191. *
  3192. * We can play with the ilf_fields bits here, because the inode
  3193. * lock must be held exclusively in order to set bits there
  3194. * and the flush lock protects the ili_last_fields bits.
  3195. * Set ili_logged so the flush done
  3196. * routine can tell whether or not to look in the AIL.
  3197. * Also, store the current LSN of the inode so that we can tell
  3198. * whether the item has moved in the AIL from xfs_iflush_done().
  3199. * In order to read the lsn we need the AIL lock, because
  3200. * it is a 64 bit value that cannot be read atomically.
  3201. */
  3202. if (iip != NULL && iip->ili_format.ilf_fields != 0) {
  3203. iip->ili_last_fields = iip->ili_format.ilf_fields;
  3204. iip->ili_format.ilf_fields = 0;
  3205. iip->ili_logged = 1;
  3206. ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */
  3207. AIL_LOCK(mp,s);
  3208. iip->ili_flush_lsn = iip->ili_item.li_lsn;
  3209. AIL_UNLOCK(mp, s);
  3210. /*
  3211. * Attach the function xfs_iflush_done to the inode's
  3212. * buffer. This will remove the inode from the AIL
  3213. * and unlock the inode's flush lock when the inode is
  3214. * completely written to disk.
  3215. */
  3216. xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
  3217. xfs_iflush_done, (xfs_log_item_t *)iip);
  3218. ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
  3219. ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
  3220. } else {
  3221. /*
  3222. * We're flushing an inode which is not in the AIL and has
  3223. * not been logged but has i_update_core set. For this
  3224. * case we can use a B_DELWRI flush and immediately drop
  3225. * the inode flush lock because we can avoid the whole
  3226. * AIL state thing. It's OK to drop the flush lock now,
  3227. * because we've already locked the buffer and to do anything
  3228. * you really need both.
  3229. */
  3230. if (iip != NULL) {
  3231. ASSERT(iip->ili_logged == 0);
  3232. ASSERT(iip->ili_last_fields == 0);
  3233. ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
  3234. }
  3235. xfs_ifunlock(ip);
  3236. }
  3237. return 0;
  3238. corrupt_out:
  3239. return XFS_ERROR(EFSCORRUPTED);
  3240. }
  3241. /*
  3242. * Flush all inactive inodes in mp.
  3243. */
  3244. void
  3245. xfs_iflush_all(
  3246. xfs_mount_t *mp)
  3247. {
  3248. xfs_inode_t *ip;
  3249. bhv_vnode_t *vp;
  3250. again:
  3251. XFS_MOUNT_ILOCK(mp);
  3252. ip = mp->m_inodes;
  3253. if (ip == NULL)
  3254. goto out;
  3255. do {
  3256. /* Make sure we skip markers inserted by sync */
  3257. if (ip->i_mount == NULL) {
  3258. ip = ip->i_mnext;
  3259. continue;
  3260. }
  3261. vp = XFS_ITOV_NULL(ip);
  3262. if (!vp) {
  3263. XFS_MOUNT_IUNLOCK(mp);
  3264. xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
  3265. goto again;
  3266. }
  3267. ASSERT(vn_count(vp) == 0);
  3268. ip = ip->i_mnext;
  3269. } while (ip != mp->m_inodes);
  3270. out:
  3271. XFS_MOUNT_IUNLOCK(mp);
  3272. }
  3273. /*
  3274. * xfs_iaccess: check accessibility of inode for mode.
  3275. */
  3276. int
  3277. xfs_iaccess(
  3278. xfs_inode_t *ip,
  3279. mode_t mode,
  3280. cred_t *cr)
  3281. {
  3282. int error;
  3283. mode_t orgmode = mode;
  3284. struct inode *inode = vn_to_inode(XFS_ITOV(ip));
  3285. if (mode & S_IWUSR) {
  3286. umode_t imode = inode->i_mode;
  3287. if (IS_RDONLY(inode) &&
  3288. (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode)))
  3289. return XFS_ERROR(EROFS);
  3290. if (IS_IMMUTABLE(inode))
  3291. return XFS_ERROR(EACCES);
  3292. }
  3293. /*
  3294. * If there's an Access Control List it's used instead of
  3295. * the mode bits.
  3296. */
  3297. if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1)
  3298. return error ? XFS_ERROR(error) : 0;
  3299. if (current_fsuid(cr) != ip->i_d.di_uid) {
  3300. mode >>= 3;
  3301. if (!in_group_p((gid_t)ip->i_d.di_gid))
  3302. mode >>= 3;
  3303. }
  3304. /*
  3305. * If the DACs are ok we don't need any capability check.
  3306. */
  3307. if ((ip->i_d.di_mode & mode) == mode)
  3308. return 0;
  3309. /*
  3310. * Read/write DACs are always overridable.
  3311. * Executable DACs are overridable if at least one exec bit is set.
  3312. */
  3313. if (!(orgmode & S_IXUSR) ||
  3314. (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
  3315. if (capable_cred(cr, CAP_DAC_OVERRIDE))
  3316. return 0;
  3317. if ((orgmode == S_IRUSR) ||
  3318. (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) {
  3319. if (capable_cred(cr, CAP_DAC_READ_SEARCH))
  3320. return 0;
  3321. #ifdef NOISE
  3322. cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode);
  3323. #endif /* NOISE */
  3324. return XFS_ERROR(EACCES);
  3325. }
  3326. return XFS_ERROR(EACCES);
  3327. }
  3328. /*
  3329. * xfs_iroundup: round up argument to next power of two
  3330. */
  3331. uint
  3332. xfs_iroundup(
  3333. uint v)
  3334. {
  3335. int i;
  3336. uint m;
  3337. if ((v & (v - 1)) == 0)
  3338. return v;
  3339. ASSERT((v & 0x80000000) == 0);
  3340. if ((v & (v + 1)) == 0)
  3341. return v + 1;
  3342. for (i = 0, m = 1; i < 31; i++, m <<= 1) {
  3343. if (v & m)
  3344. continue;
  3345. v |= m;
  3346. if ((v & (v + 1)) == 0)
  3347. return v + 1;
  3348. }
  3349. ASSERT(0);
  3350. return( 0 );
  3351. }
  3352. #ifdef XFS_ILOCK_TRACE
  3353. ktrace_t *xfs_ilock_trace_buf;
  3354. void
  3355. xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
  3356. {
  3357. ktrace_enter(ip->i_lock_trace,
  3358. (void *)ip,
  3359. (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
  3360. (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
  3361. (void *)ra, /* caller of ilock */
  3362. (void *)(unsigned long)current_cpu(),
  3363. (void *)(unsigned long)current_pid(),
  3364. NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
  3365. }
  3366. #endif
  3367. /*
  3368. * Return a pointer to the extent record at file index idx.
  3369. */
  3370. xfs_bmbt_rec_t *
  3371. xfs_iext_get_ext(
  3372. xfs_ifork_t *ifp, /* inode fork pointer */
  3373. xfs_extnum_t idx) /* index of target extent */
  3374. {
  3375. ASSERT(idx >= 0);
  3376. if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
  3377. return ifp->if_u1.if_ext_irec->er_extbuf;
  3378. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  3379. xfs_ext_irec_t *erp; /* irec pointer */
  3380. int erp_idx = 0; /* irec index */
  3381. xfs_extnum_t page_idx = idx; /* ext index in target list */
  3382. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  3383. return &erp->er_extbuf[page_idx];
  3384. } else if (ifp->if_bytes) {
  3385. return &ifp->if_u1.if_extents[idx];
  3386. } else {
  3387. return NULL;
  3388. }
  3389. }
  3390. /*
  3391. * Insert new item(s) into the extent records for incore inode
  3392. * fork 'ifp'. 'count' new items are inserted at index 'idx'.
  3393. */
  3394. void
  3395. xfs_iext_insert(
  3396. xfs_ifork_t *ifp, /* inode fork pointer */
  3397. xfs_extnum_t idx, /* starting index of new items */
  3398. xfs_extnum_t count, /* number of inserted items */
  3399. xfs_bmbt_irec_t *new) /* items to insert */
  3400. {
  3401. xfs_bmbt_rec_t *ep; /* extent record pointer */
  3402. xfs_extnum_t i; /* extent record index */
  3403. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  3404. xfs_iext_add(ifp, idx, count);
  3405. for (i = idx; i < idx + count; i++, new++) {
  3406. ep = xfs_iext_get_ext(ifp, i);
  3407. xfs_bmbt_set_all(ep, new);
  3408. }
  3409. }
  3410. /*
  3411. * This is called when the amount of space required for incore file
  3412. * extents needs to be increased. The ext_diff parameter stores the
  3413. * number of new extents being added and the idx parameter contains
  3414. * the extent index where the new extents will be added. If the new
  3415. * extents are being appended, then we just need to (re)allocate and
  3416. * initialize the space. Otherwise, if the new extents are being
  3417. * inserted into the middle of the existing entries, a bit more work
  3418. * is required to make room for the new extents to be inserted. The
  3419. * caller is responsible for filling in the new extent entries upon
  3420. * return.
  3421. */
  3422. void
  3423. xfs_iext_add(
  3424. xfs_ifork_t *ifp, /* inode fork pointer */
  3425. xfs_extnum_t idx, /* index to begin adding exts */
  3426. int ext_diff) /* number of extents to add */
  3427. {
  3428. int byte_diff; /* new bytes being added */
  3429. int new_size; /* size of extents after adding */
  3430. xfs_extnum_t nextents; /* number of extents in file */
  3431. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3432. ASSERT((idx >= 0) && (idx <= nextents));
  3433. byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
  3434. new_size = ifp->if_bytes + byte_diff;
  3435. /*
  3436. * If the new number of extents (nextents + ext_diff)
  3437. * fits inside the inode, then continue to use the inline
  3438. * extent buffer.
  3439. */
  3440. if (nextents + ext_diff <= XFS_INLINE_EXTS) {
  3441. if (idx < nextents) {
  3442. memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
  3443. &ifp->if_u2.if_inline_ext[idx],
  3444. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  3445. memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
  3446. }
  3447. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  3448. ifp->if_real_bytes = 0;
  3449. ifp->if_lastex = nextents + ext_diff;
  3450. }
  3451. /*
  3452. * Otherwise use a linear (direct) extent list.
  3453. * If the extents are currently inside the inode,
  3454. * xfs_iext_realloc_direct will switch us from
  3455. * inline to direct extent allocation mode.
  3456. */
  3457. else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
  3458. xfs_iext_realloc_direct(ifp, new_size);
  3459. if (idx < nextents) {
  3460. memmove(&ifp->if_u1.if_extents[idx + ext_diff],
  3461. &ifp->if_u1.if_extents[idx],
  3462. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  3463. memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
  3464. }
  3465. }
  3466. /* Indirection array */
  3467. else {
  3468. xfs_ext_irec_t *erp;
  3469. int erp_idx = 0;
  3470. int page_idx = idx;
  3471. ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
  3472. if (ifp->if_flags & XFS_IFEXTIREC) {
  3473. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
  3474. } else {
  3475. xfs_iext_irec_init(ifp);
  3476. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3477. erp = ifp->if_u1.if_ext_irec;
  3478. }
  3479. /* Extents fit in target extent page */
  3480. if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
  3481. if (page_idx < erp->er_extcount) {
  3482. memmove(&erp->er_extbuf[page_idx + ext_diff],
  3483. &erp->er_extbuf[page_idx],
  3484. (erp->er_extcount - page_idx) *
  3485. sizeof(xfs_bmbt_rec_t));
  3486. memset(&erp->er_extbuf[page_idx], 0, byte_diff);
  3487. }
  3488. erp->er_extcount += ext_diff;
  3489. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3490. }
  3491. /* Insert a new extent page */
  3492. else if (erp) {
  3493. xfs_iext_add_indirect_multi(ifp,
  3494. erp_idx, page_idx, ext_diff);
  3495. }
  3496. /*
  3497. * If extent(s) are being appended to the last page in
  3498. * the indirection array and the new extent(s) don't fit
  3499. * in the page, then erp is NULL and erp_idx is set to
  3500. * the next index needed in the indirection array.
  3501. */
  3502. else {
  3503. int count = ext_diff;
  3504. while (count) {
  3505. erp = xfs_iext_irec_new(ifp, erp_idx);
  3506. erp->er_extcount = count;
  3507. count -= MIN(count, (int)XFS_LINEAR_EXTS);
  3508. if (count) {
  3509. erp_idx++;
  3510. }
  3511. }
  3512. }
  3513. }
  3514. ifp->if_bytes = new_size;
  3515. }
  3516. /*
  3517. * This is called when incore extents are being added to the indirection
  3518. * array and the new extents do not fit in the target extent list. The
  3519. * erp_idx parameter contains the irec index for the target extent list
  3520. * in the indirection array, and the idx parameter contains the extent
  3521. * index within the list. The number of extents being added is stored
  3522. * in the count parameter.
  3523. *
  3524. * |-------| |-------|
  3525. * | | | | idx - number of extents before idx
  3526. * | idx | | count |
  3527. * | | | | count - number of extents being inserted at idx
  3528. * |-------| |-------|
  3529. * | count | | nex2 | nex2 - number of extents after idx + count
  3530. * |-------| |-------|
  3531. */
  3532. void
  3533. xfs_iext_add_indirect_multi(
  3534. xfs_ifork_t *ifp, /* inode fork pointer */
  3535. int erp_idx, /* target extent irec index */
  3536. xfs_extnum_t idx, /* index within target list */
  3537. int count) /* new extents being added */
  3538. {
  3539. int byte_diff; /* new bytes being added */
  3540. xfs_ext_irec_t *erp; /* pointer to irec entry */
  3541. xfs_extnum_t ext_diff; /* number of extents to add */
  3542. xfs_extnum_t ext_cnt; /* new extents still needed */
  3543. xfs_extnum_t nex2; /* extents after idx + count */
  3544. xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
  3545. int nlists; /* number of irec's (lists) */
  3546. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3547. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3548. nex2 = erp->er_extcount - idx;
  3549. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3550. /*
  3551. * Save second part of target extent list
  3552. * (all extents past */
  3553. if (nex2) {
  3554. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  3555. nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_SLEEP);
  3556. memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
  3557. erp->er_extcount -= nex2;
  3558. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
  3559. memset(&erp->er_extbuf[idx], 0, byte_diff);
  3560. }
  3561. /*
  3562. * Add the new extents to the end of the target
  3563. * list, then allocate new irec record(s) and
  3564. * extent buffer(s) as needed to store the rest
  3565. * of the new extents.
  3566. */
  3567. ext_cnt = count;
  3568. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
  3569. if (ext_diff) {
  3570. erp->er_extcount += ext_diff;
  3571. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3572. ext_cnt -= ext_diff;
  3573. }
  3574. while (ext_cnt) {
  3575. erp_idx++;
  3576. erp = xfs_iext_irec_new(ifp, erp_idx);
  3577. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
  3578. erp->er_extcount = ext_diff;
  3579. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3580. ext_cnt -= ext_diff;
  3581. }
  3582. /* Add nex2 extents back to indirection array */
  3583. if (nex2) {
  3584. xfs_extnum_t ext_avail;
  3585. int i;
  3586. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  3587. ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
  3588. i = 0;
  3589. /*
  3590. * If nex2 extents fit in the current page, append
  3591. * nex2_ep after the new extents.
  3592. */
  3593. if (nex2 <= ext_avail) {
  3594. i = erp->er_extcount;
  3595. }
  3596. /*
  3597. * Otherwise, check if space is available in the
  3598. * next page.
  3599. */
  3600. else if ((erp_idx < nlists - 1) &&
  3601. (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
  3602. ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
  3603. erp_idx++;
  3604. erp++;
  3605. /* Create a hole for nex2 extents */
  3606. memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
  3607. erp->er_extcount * sizeof(xfs_bmbt_rec_t));
  3608. }
  3609. /*
  3610. * Final choice, create a new extent page for
  3611. * nex2 extents.
  3612. */
  3613. else {
  3614. erp_idx++;
  3615. erp = xfs_iext_irec_new(ifp, erp_idx);
  3616. }
  3617. memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
  3618. kmem_free(nex2_ep, byte_diff);
  3619. erp->er_extcount += nex2;
  3620. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
  3621. }
  3622. }
  3623. /*
  3624. * This is called when the amount of space required for incore file
  3625. * extents needs to be decreased. The ext_diff parameter stores the
  3626. * number of extents to be removed and the idx parameter contains
  3627. * the extent index where the extents will be removed from.
  3628. *
  3629. * If the amount of space needed has decreased below the linear
  3630. * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
  3631. * extent array. Otherwise, use kmem_realloc() to adjust the
  3632. * size to what is needed.
  3633. */
  3634. void
  3635. xfs_iext_remove(
  3636. xfs_ifork_t *ifp, /* inode fork pointer */
  3637. xfs_extnum_t idx, /* index to begin removing exts */
  3638. int ext_diff) /* number of extents to remove */
  3639. {
  3640. xfs_extnum_t nextents; /* number of extents in file */
  3641. int new_size; /* size of extents after removal */
  3642. ASSERT(ext_diff > 0);
  3643. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3644. new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
  3645. if (new_size == 0) {
  3646. xfs_iext_destroy(ifp);
  3647. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  3648. xfs_iext_remove_indirect(ifp, idx, ext_diff);
  3649. } else if (ifp->if_real_bytes) {
  3650. xfs_iext_remove_direct(ifp, idx, ext_diff);
  3651. } else {
  3652. xfs_iext_remove_inline(ifp, idx, ext_diff);
  3653. }
  3654. ifp->if_bytes = new_size;
  3655. }
  3656. /*
  3657. * This removes ext_diff extents from the inline buffer, beginning
  3658. * at extent index idx.
  3659. */
  3660. void
  3661. xfs_iext_remove_inline(
  3662. xfs_ifork_t *ifp, /* inode fork pointer */
  3663. xfs_extnum_t idx, /* index to begin removing exts */
  3664. int ext_diff) /* number of extents to remove */
  3665. {
  3666. int nextents; /* number of extents in file */
  3667. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3668. ASSERT(idx < XFS_INLINE_EXTS);
  3669. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3670. ASSERT(((nextents - ext_diff) > 0) &&
  3671. (nextents - ext_diff) < XFS_INLINE_EXTS);
  3672. if (idx + ext_diff < nextents) {
  3673. memmove(&ifp->if_u2.if_inline_ext[idx],
  3674. &ifp->if_u2.if_inline_ext[idx + ext_diff],
  3675. (nextents - (idx + ext_diff)) *
  3676. sizeof(xfs_bmbt_rec_t));
  3677. memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
  3678. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3679. } else {
  3680. memset(&ifp->if_u2.if_inline_ext[idx], 0,
  3681. ext_diff * sizeof(xfs_bmbt_rec_t));
  3682. }
  3683. }
  3684. /*
  3685. * This removes ext_diff extents from a linear (direct) extent list,
  3686. * beginning at extent index idx. If the extents are being removed
  3687. * from the end of the list (ie. truncate) then we just need to re-
  3688. * allocate the list to remove the extra space. Otherwise, if the
  3689. * extents are being removed from the middle of the existing extent
  3690. * entries, then we first need to move the extent records beginning
  3691. * at idx + ext_diff up in the list to overwrite the records being
  3692. * removed, then remove the extra space via kmem_realloc.
  3693. */
  3694. void
  3695. xfs_iext_remove_direct(
  3696. xfs_ifork_t *ifp, /* inode fork pointer */
  3697. xfs_extnum_t idx, /* index to begin removing exts */
  3698. int ext_diff) /* number of extents to remove */
  3699. {
  3700. xfs_extnum_t nextents; /* number of extents in file */
  3701. int new_size; /* size of extents after removal */
  3702. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3703. new_size = ifp->if_bytes -
  3704. (ext_diff * sizeof(xfs_bmbt_rec_t));
  3705. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3706. if (new_size == 0) {
  3707. xfs_iext_destroy(ifp);
  3708. return;
  3709. }
  3710. /* Move extents up in the list (if needed) */
  3711. if (idx + ext_diff < nextents) {
  3712. memmove(&ifp->if_u1.if_extents[idx],
  3713. &ifp->if_u1.if_extents[idx + ext_diff],
  3714. (nextents - (idx + ext_diff)) *
  3715. sizeof(xfs_bmbt_rec_t));
  3716. }
  3717. memset(&ifp->if_u1.if_extents[nextents - ext_diff],
  3718. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3719. /*
  3720. * Reallocate the direct extent list. If the extents
  3721. * will fit inside the inode then xfs_iext_realloc_direct
  3722. * will switch from direct to inline extent allocation
  3723. * mode for us.
  3724. */
  3725. xfs_iext_realloc_direct(ifp, new_size);
  3726. ifp->if_bytes = new_size;
  3727. }
  3728. /*
  3729. * This is called when incore extents are being removed from the
  3730. * indirection array and the extents being removed span multiple extent
  3731. * buffers. The idx parameter contains the file extent index where we
  3732. * want to begin removing extents, and the count parameter contains
  3733. * how many extents need to be removed.
  3734. *
  3735. * |-------| |-------|
  3736. * | nex1 | | | nex1 - number of extents before idx
  3737. * |-------| | count |
  3738. * | | | | count - number of extents being removed at idx
  3739. * | count | |-------|
  3740. * | | | nex2 | nex2 - number of extents after idx + count
  3741. * |-------| |-------|
  3742. */
  3743. void
  3744. xfs_iext_remove_indirect(
  3745. xfs_ifork_t *ifp, /* inode fork pointer */
  3746. xfs_extnum_t idx, /* index to begin removing extents */
  3747. int count) /* number of extents to remove */
  3748. {
  3749. xfs_ext_irec_t *erp; /* indirection array pointer */
  3750. int erp_idx = 0; /* indirection array index */
  3751. xfs_extnum_t ext_cnt; /* extents left to remove */
  3752. xfs_extnum_t ext_diff; /* extents to remove in current list */
  3753. xfs_extnum_t nex1; /* number of extents before idx */
  3754. xfs_extnum_t nex2; /* extents after idx + count */
  3755. int nlists; /* entries in indirection array */
  3756. int page_idx = idx; /* index in target extent list */
  3757. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3758. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  3759. ASSERT(erp != NULL);
  3760. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3761. nex1 = page_idx;
  3762. ext_cnt = count;
  3763. while (ext_cnt) {
  3764. nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
  3765. ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
  3766. /*
  3767. * Check for deletion of entire list;
  3768. * xfs_iext_irec_remove() updates extent offsets.
  3769. */
  3770. if (ext_diff == erp->er_extcount) {
  3771. xfs_iext_irec_remove(ifp, erp_idx);
  3772. ext_cnt -= ext_diff;
  3773. nex1 = 0;
  3774. if (ext_cnt) {
  3775. ASSERT(erp_idx < ifp->if_real_bytes /
  3776. XFS_IEXT_BUFSZ);
  3777. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3778. nex1 = 0;
  3779. continue;
  3780. } else {
  3781. break;
  3782. }
  3783. }
  3784. /* Move extents up (if needed) */
  3785. if (nex2) {
  3786. memmove(&erp->er_extbuf[nex1],
  3787. &erp->er_extbuf[nex1 + ext_diff],
  3788. nex2 * sizeof(xfs_bmbt_rec_t));
  3789. }
  3790. /* Zero out rest of page */
  3791. memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
  3792. ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
  3793. /* Update remaining counters */
  3794. erp->er_extcount -= ext_diff;
  3795. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
  3796. ext_cnt -= ext_diff;
  3797. nex1 = 0;
  3798. erp_idx++;
  3799. erp++;
  3800. }
  3801. ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
  3802. xfs_iext_irec_compact(ifp);
  3803. }
  3804. /*
  3805. * Create, destroy, or resize a linear (direct) block of extents.
  3806. */
  3807. void
  3808. xfs_iext_realloc_direct(
  3809. xfs_ifork_t *ifp, /* inode fork pointer */
  3810. int new_size) /* new size of extents */
  3811. {
  3812. int rnew_size; /* real new size of extents */
  3813. rnew_size = new_size;
  3814. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
  3815. ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
  3816. (new_size != ifp->if_real_bytes)));
  3817. /* Free extent records */
  3818. if (new_size == 0) {
  3819. xfs_iext_destroy(ifp);
  3820. }
  3821. /* Resize direct extent list and zero any new bytes */
  3822. else if (ifp->if_real_bytes) {
  3823. /* Check if extents will fit inside the inode */
  3824. if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
  3825. xfs_iext_direct_to_inline(ifp, new_size /
  3826. (uint)sizeof(xfs_bmbt_rec_t));
  3827. ifp->if_bytes = new_size;
  3828. return;
  3829. }
  3830. if ((new_size & (new_size - 1)) != 0) {
  3831. rnew_size = xfs_iroundup(new_size);
  3832. }
  3833. if (rnew_size != ifp->if_real_bytes) {
  3834. ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
  3835. kmem_realloc(ifp->if_u1.if_extents,
  3836. rnew_size,
  3837. ifp->if_real_bytes,
  3838. KM_SLEEP);
  3839. }
  3840. if (rnew_size > ifp->if_real_bytes) {
  3841. memset(&ifp->if_u1.if_extents[ifp->if_bytes /
  3842. (uint)sizeof(xfs_bmbt_rec_t)], 0,
  3843. rnew_size - ifp->if_real_bytes);
  3844. }
  3845. }
  3846. /*
  3847. * Switch from the inline extent buffer to a direct
  3848. * extent list. Be sure to include the inline extent
  3849. * bytes in new_size.
  3850. */
  3851. else {
  3852. new_size += ifp->if_bytes;
  3853. if ((new_size & (new_size - 1)) != 0) {
  3854. rnew_size = xfs_iroundup(new_size);
  3855. }
  3856. xfs_iext_inline_to_direct(ifp, rnew_size);
  3857. }
  3858. ifp->if_real_bytes = rnew_size;
  3859. ifp->if_bytes = new_size;
  3860. }
  3861. /*
  3862. * Switch from linear (direct) extent records to inline buffer.
  3863. */
  3864. void
  3865. xfs_iext_direct_to_inline(
  3866. xfs_ifork_t *ifp, /* inode fork pointer */
  3867. xfs_extnum_t nextents) /* number of extents in file */
  3868. {
  3869. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  3870. ASSERT(nextents <= XFS_INLINE_EXTS);
  3871. /*
  3872. * The inline buffer was zeroed when we switched
  3873. * from inline to direct extent allocation mode,
  3874. * so we don't need to clear it here.
  3875. */
  3876. memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
  3877. nextents * sizeof(xfs_bmbt_rec_t));
  3878. kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
  3879. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  3880. ifp->if_real_bytes = 0;
  3881. }
  3882. /*
  3883. * Switch from inline buffer to linear (direct) extent records.
  3884. * new_size should already be rounded up to the next power of 2
  3885. * by the caller (when appropriate), so use new_size as it is.
  3886. * However, since new_size may be rounded up, we can't update
  3887. * if_bytes here. It is the caller's responsibility to update
  3888. * if_bytes upon return.
  3889. */
  3890. void
  3891. xfs_iext_inline_to_direct(
  3892. xfs_ifork_t *ifp, /* inode fork pointer */
  3893. int new_size) /* number of extents in file */
  3894. {
  3895. ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
  3896. kmem_alloc(new_size, KM_SLEEP);
  3897. memset(ifp->if_u1.if_extents, 0, new_size);
  3898. if (ifp->if_bytes) {
  3899. memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
  3900. ifp->if_bytes);
  3901. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3902. sizeof(xfs_bmbt_rec_t));
  3903. }
  3904. ifp->if_real_bytes = new_size;
  3905. }
  3906. /*
  3907. * Resize an extent indirection array to new_size bytes.
  3908. */
  3909. void
  3910. xfs_iext_realloc_indirect(
  3911. xfs_ifork_t *ifp, /* inode fork pointer */
  3912. int new_size) /* new indirection array size */
  3913. {
  3914. int nlists; /* number of irec's (ex lists) */
  3915. int size; /* current indirection array size */
  3916. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3917. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3918. size = nlists * sizeof(xfs_ext_irec_t);
  3919. ASSERT(ifp->if_real_bytes);
  3920. ASSERT((new_size >= 0) && (new_size != size));
  3921. if (new_size == 0) {
  3922. xfs_iext_destroy(ifp);
  3923. } else {
  3924. ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
  3925. kmem_realloc(ifp->if_u1.if_ext_irec,
  3926. new_size, size, KM_SLEEP);
  3927. }
  3928. }
  3929. /*
  3930. * Switch from indirection array to linear (direct) extent allocations.
  3931. */
  3932. void
  3933. xfs_iext_indirect_to_direct(
  3934. xfs_ifork_t *ifp) /* inode fork pointer */
  3935. {
  3936. xfs_bmbt_rec_t *ep; /* extent record pointer */
  3937. xfs_extnum_t nextents; /* number of extents in file */
  3938. int size; /* size of file extents */
  3939. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3940. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3941. ASSERT(nextents <= XFS_LINEAR_EXTS);
  3942. size = nextents * sizeof(xfs_bmbt_rec_t);
  3943. xfs_iext_irec_compact_full(ifp);
  3944. ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
  3945. ep = ifp->if_u1.if_ext_irec->er_extbuf;
  3946. kmem_free(ifp->if_u1.if_ext_irec, sizeof(xfs_ext_irec_t));
  3947. ifp->if_flags &= ~XFS_IFEXTIREC;
  3948. ifp->if_u1.if_extents = ep;
  3949. ifp->if_bytes = size;
  3950. if (nextents < XFS_LINEAR_EXTS) {
  3951. xfs_iext_realloc_direct(ifp, size);
  3952. }
  3953. }
  3954. /*
  3955. * Free incore file extents.
  3956. */
  3957. void
  3958. xfs_iext_destroy(
  3959. xfs_ifork_t *ifp) /* inode fork pointer */
  3960. {
  3961. if (ifp->if_flags & XFS_IFEXTIREC) {
  3962. int erp_idx;
  3963. int nlists;
  3964. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3965. for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
  3966. xfs_iext_irec_remove(ifp, erp_idx);
  3967. }
  3968. ifp->if_flags &= ~XFS_IFEXTIREC;
  3969. } else if (ifp->if_real_bytes) {
  3970. kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
  3971. } else if (ifp->if_bytes) {
  3972. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3973. sizeof(xfs_bmbt_rec_t));
  3974. }
  3975. ifp->if_u1.if_extents = NULL;
  3976. ifp->if_real_bytes = 0;
  3977. ifp->if_bytes = 0;
  3978. }
  3979. /*
  3980. * Return a pointer to the extent record for file system block bno.
  3981. */
  3982. xfs_bmbt_rec_t * /* pointer to found extent record */
  3983. xfs_iext_bno_to_ext(
  3984. xfs_ifork_t *ifp, /* inode fork pointer */
  3985. xfs_fileoff_t bno, /* block number to search for */
  3986. xfs_extnum_t *idxp) /* index of target extent */
  3987. {
  3988. xfs_bmbt_rec_t *base; /* pointer to first extent */
  3989. xfs_filblks_t blockcount = 0; /* number of blocks in extent */
  3990. xfs_bmbt_rec_t *ep = NULL; /* pointer to target extent */
  3991. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  3992. int high; /* upper boundary in search */
  3993. xfs_extnum_t idx = 0; /* index of target extent */
  3994. int low; /* lower boundary in search */
  3995. xfs_extnum_t nextents; /* number of file extents */
  3996. xfs_fileoff_t startoff = 0; /* start offset of extent */
  3997. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3998. if (nextents == 0) {
  3999. *idxp = 0;
  4000. return NULL;
  4001. }
  4002. low = 0;
  4003. if (ifp->if_flags & XFS_IFEXTIREC) {
  4004. /* Find target extent list */
  4005. int erp_idx = 0;
  4006. erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
  4007. base = erp->er_extbuf;
  4008. high = erp->er_extcount - 1;
  4009. } else {
  4010. base = ifp->if_u1.if_extents;
  4011. high = nextents - 1;
  4012. }
  4013. /* Binary search extent records */
  4014. while (low <= high) {
  4015. idx = (low + high) >> 1;
  4016. ep = base + idx;
  4017. startoff = xfs_bmbt_get_startoff(ep);
  4018. blockcount = xfs_bmbt_get_blockcount(ep);
  4019. if (bno < startoff) {
  4020. high = idx - 1;
  4021. } else if (bno >= startoff + blockcount) {
  4022. low = idx + 1;
  4023. } else {
  4024. /* Convert back to file-based extent index */
  4025. if (ifp->if_flags & XFS_IFEXTIREC) {
  4026. idx += erp->er_extoff;
  4027. }
  4028. *idxp = idx;
  4029. return ep;
  4030. }
  4031. }
  4032. /* Convert back to file-based extent index */
  4033. if (ifp->if_flags & XFS_IFEXTIREC) {
  4034. idx += erp->er_extoff;
  4035. }
  4036. if (bno >= startoff + blockcount) {
  4037. if (++idx == nextents) {
  4038. ep = NULL;
  4039. } else {
  4040. ep = xfs_iext_get_ext(ifp, idx);
  4041. }
  4042. }
  4043. *idxp = idx;
  4044. return ep;
  4045. }
  4046. /*
  4047. * Return a pointer to the indirection array entry containing the
  4048. * extent record for filesystem block bno. Store the index of the
  4049. * target irec in *erp_idxp.
  4050. */
  4051. xfs_ext_irec_t * /* pointer to found extent record */
  4052. xfs_iext_bno_to_irec(
  4053. xfs_ifork_t *ifp, /* inode fork pointer */
  4054. xfs_fileoff_t bno, /* block number to search for */
  4055. int *erp_idxp) /* irec index of target ext list */
  4056. {
  4057. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  4058. xfs_ext_irec_t *erp_next; /* next indirection array entry */
  4059. int erp_idx; /* indirection array index */
  4060. int nlists; /* number of extent irec's (lists) */
  4061. int high; /* binary search upper limit */
  4062. int low; /* binary search lower limit */
  4063. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4064. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4065. erp_idx = 0;
  4066. low = 0;
  4067. high = nlists - 1;
  4068. while (low <= high) {
  4069. erp_idx = (low + high) >> 1;
  4070. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4071. erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
  4072. if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
  4073. high = erp_idx - 1;
  4074. } else if (erp_next && bno >=
  4075. xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
  4076. low = erp_idx + 1;
  4077. } else {
  4078. break;
  4079. }
  4080. }
  4081. *erp_idxp = erp_idx;
  4082. return erp;
  4083. }
  4084. /*
  4085. * Return a pointer to the indirection array entry containing the
  4086. * extent record at file extent index *idxp. Store the index of the
  4087. * target irec in *erp_idxp and store the page index of the target
  4088. * extent record in *idxp.
  4089. */
  4090. xfs_ext_irec_t *
  4091. xfs_iext_idx_to_irec(
  4092. xfs_ifork_t *ifp, /* inode fork pointer */
  4093. xfs_extnum_t *idxp, /* extent index (file -> page) */
  4094. int *erp_idxp, /* pointer to target irec */
  4095. int realloc) /* new bytes were just added */
  4096. {
  4097. xfs_ext_irec_t *prev; /* pointer to previous irec */
  4098. xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
  4099. int erp_idx; /* indirection array index */
  4100. int nlists; /* number of irec's (ex lists) */
  4101. int high; /* binary search upper limit */
  4102. int low; /* binary search lower limit */
  4103. xfs_extnum_t page_idx = *idxp; /* extent index in target list */
  4104. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4105. ASSERT(page_idx >= 0 && page_idx <=
  4106. ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
  4107. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4108. erp_idx = 0;
  4109. low = 0;
  4110. high = nlists - 1;
  4111. /* Binary search extent irec's */
  4112. while (low <= high) {
  4113. erp_idx = (low + high) >> 1;
  4114. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4115. prev = erp_idx > 0 ? erp - 1 : NULL;
  4116. if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
  4117. realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
  4118. high = erp_idx - 1;
  4119. } else if (page_idx > erp->er_extoff + erp->er_extcount ||
  4120. (page_idx == erp->er_extoff + erp->er_extcount &&
  4121. !realloc)) {
  4122. low = erp_idx + 1;
  4123. } else if (page_idx == erp->er_extoff + erp->er_extcount &&
  4124. erp->er_extcount == XFS_LINEAR_EXTS) {
  4125. ASSERT(realloc);
  4126. page_idx = 0;
  4127. erp_idx++;
  4128. erp = erp_idx < nlists ? erp + 1 : NULL;
  4129. break;
  4130. } else {
  4131. page_idx -= erp->er_extoff;
  4132. break;
  4133. }
  4134. }
  4135. *idxp = page_idx;
  4136. *erp_idxp = erp_idx;
  4137. return(erp);
  4138. }
  4139. /*
  4140. * Allocate and initialize an indirection array once the space needed
  4141. * for incore extents increases above XFS_IEXT_BUFSZ.
  4142. */
  4143. void
  4144. xfs_iext_irec_init(
  4145. xfs_ifork_t *ifp) /* inode fork pointer */
  4146. {
  4147. xfs_ext_irec_t *erp; /* indirection array pointer */
  4148. xfs_extnum_t nextents; /* number of extents in file */
  4149. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  4150. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  4151. ASSERT(nextents <= XFS_LINEAR_EXTS);
  4152. erp = (xfs_ext_irec_t *)
  4153. kmem_alloc(sizeof(xfs_ext_irec_t), KM_SLEEP);
  4154. if (nextents == 0) {
  4155. ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
  4156. kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
  4157. } else if (!ifp->if_real_bytes) {
  4158. xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
  4159. } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
  4160. xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
  4161. }
  4162. erp->er_extbuf = ifp->if_u1.if_extents;
  4163. erp->er_extcount = nextents;
  4164. erp->er_extoff = 0;
  4165. ifp->if_flags |= XFS_IFEXTIREC;
  4166. ifp->if_real_bytes = XFS_IEXT_BUFSZ;
  4167. ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
  4168. ifp->if_u1.if_ext_irec = erp;
  4169. return;
  4170. }
  4171. /*
  4172. * Allocate and initialize a new entry in the indirection array.
  4173. */
  4174. xfs_ext_irec_t *
  4175. xfs_iext_irec_new(
  4176. xfs_ifork_t *ifp, /* inode fork pointer */
  4177. int erp_idx) /* index for new irec */
  4178. {
  4179. xfs_ext_irec_t *erp; /* indirection array pointer */
  4180. int i; /* loop counter */
  4181. int nlists; /* number of irec's (ex lists) */
  4182. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4183. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4184. /* Resize indirection array */
  4185. xfs_iext_realloc_indirect(ifp, ++nlists *
  4186. sizeof(xfs_ext_irec_t));
  4187. /*
  4188. * Move records down in the array so the
  4189. * new page can use erp_idx.
  4190. */
  4191. erp = ifp->if_u1.if_ext_irec;
  4192. for (i = nlists - 1; i > erp_idx; i--) {
  4193. memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
  4194. }
  4195. ASSERT(i == erp_idx);
  4196. /* Initialize new extent record */
  4197. erp = ifp->if_u1.if_ext_irec;
  4198. erp[erp_idx].er_extbuf = (xfs_bmbt_rec_t *)
  4199. kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
  4200. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  4201. memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
  4202. erp[erp_idx].er_extcount = 0;
  4203. erp[erp_idx].er_extoff = erp_idx > 0 ?
  4204. erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
  4205. return (&erp[erp_idx]);
  4206. }
  4207. /*
  4208. * Remove a record from the indirection array.
  4209. */
  4210. void
  4211. xfs_iext_irec_remove(
  4212. xfs_ifork_t *ifp, /* inode fork pointer */
  4213. int erp_idx) /* irec index to remove */
  4214. {
  4215. xfs_ext_irec_t *erp; /* indirection array pointer */
  4216. int i; /* loop counter */
  4217. int nlists; /* number of irec's (ex lists) */
  4218. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4219. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4220. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4221. if (erp->er_extbuf) {
  4222. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
  4223. -erp->er_extcount);
  4224. kmem_free(erp->er_extbuf, XFS_IEXT_BUFSZ);
  4225. }
  4226. /* Compact extent records */
  4227. erp = ifp->if_u1.if_ext_irec;
  4228. for (i = erp_idx; i < nlists - 1; i++) {
  4229. memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
  4230. }
  4231. /*
  4232. * Manually free the last extent record from the indirection
  4233. * array. A call to xfs_iext_realloc_indirect() with a size
  4234. * of zero would result in a call to xfs_iext_destroy() which
  4235. * would in turn call this function again, creating a nasty
  4236. * infinite loop.
  4237. */
  4238. if (--nlists) {
  4239. xfs_iext_realloc_indirect(ifp,
  4240. nlists * sizeof(xfs_ext_irec_t));
  4241. } else {
  4242. kmem_free(ifp->if_u1.if_ext_irec,
  4243. sizeof(xfs_ext_irec_t));
  4244. }
  4245. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  4246. }
  4247. /*
  4248. * This is called to clean up large amounts of unused memory allocated
  4249. * by the indirection array. Before compacting anything though, verify
  4250. * that the indirection array is still needed and switch back to the
  4251. * linear extent list (or even the inline buffer) if possible. The
  4252. * compaction policy is as follows:
  4253. *
  4254. * Full Compaction: Extents fit into a single page (or inline buffer)
  4255. * Full Compaction: Extents occupy less than 10% of allocated space
  4256. * Partial Compaction: Extents occupy > 10% and < 50% of allocated space
  4257. * No Compaction: Extents occupy at least 50% of allocated space
  4258. */
  4259. void
  4260. xfs_iext_irec_compact(
  4261. xfs_ifork_t *ifp) /* inode fork pointer */
  4262. {
  4263. xfs_extnum_t nextents; /* number of extents in file */
  4264. int nlists; /* number of irec's (ex lists) */
  4265. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4266. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4267. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  4268. if (nextents == 0) {
  4269. xfs_iext_destroy(ifp);
  4270. } else if (nextents <= XFS_INLINE_EXTS) {
  4271. xfs_iext_indirect_to_direct(ifp);
  4272. xfs_iext_direct_to_inline(ifp, nextents);
  4273. } else if (nextents <= XFS_LINEAR_EXTS) {
  4274. xfs_iext_indirect_to_direct(ifp);
  4275. } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 3) {
  4276. xfs_iext_irec_compact_full(ifp);
  4277. } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
  4278. xfs_iext_irec_compact_pages(ifp);
  4279. }
  4280. }
  4281. /*
  4282. * Combine extents from neighboring extent pages.
  4283. */
  4284. void
  4285. xfs_iext_irec_compact_pages(
  4286. xfs_ifork_t *ifp) /* inode fork pointer */
  4287. {
  4288. xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
  4289. int erp_idx = 0; /* indirection array index */
  4290. int nlists; /* number of irec's (ex lists) */
  4291. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4292. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4293. while (erp_idx < nlists - 1) {
  4294. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4295. erp_next = erp + 1;
  4296. if (erp_next->er_extcount <=
  4297. (XFS_LINEAR_EXTS - erp->er_extcount)) {
  4298. memmove(&erp->er_extbuf[erp->er_extcount],
  4299. erp_next->er_extbuf, erp_next->er_extcount *
  4300. sizeof(xfs_bmbt_rec_t));
  4301. erp->er_extcount += erp_next->er_extcount;
  4302. /*
  4303. * Free page before removing extent record
  4304. * so er_extoffs don't get modified in
  4305. * xfs_iext_irec_remove.
  4306. */
  4307. kmem_free(erp_next->er_extbuf, XFS_IEXT_BUFSZ);
  4308. erp_next->er_extbuf = NULL;
  4309. xfs_iext_irec_remove(ifp, erp_idx + 1);
  4310. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4311. } else {
  4312. erp_idx++;
  4313. }
  4314. }
  4315. }
  4316. /*
  4317. * Fully compact the extent records managed by the indirection array.
  4318. */
  4319. void
  4320. xfs_iext_irec_compact_full(
  4321. xfs_ifork_t *ifp) /* inode fork pointer */
  4322. {
  4323. xfs_bmbt_rec_t *ep, *ep_next; /* extent record pointers */
  4324. xfs_ext_irec_t *erp, *erp_next; /* extent irec pointers */
  4325. int erp_idx = 0; /* extent irec index */
  4326. int ext_avail; /* empty entries in ex list */
  4327. int ext_diff; /* number of exts to add */
  4328. int nlists; /* number of irec's (ex lists) */
  4329. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4330. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4331. erp = ifp->if_u1.if_ext_irec;
  4332. ep = &erp->er_extbuf[erp->er_extcount];
  4333. erp_next = erp + 1;
  4334. ep_next = erp_next->er_extbuf;
  4335. while (erp_idx < nlists - 1) {
  4336. ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
  4337. ext_diff = MIN(ext_avail, erp_next->er_extcount);
  4338. memcpy(ep, ep_next, ext_diff * sizeof(xfs_bmbt_rec_t));
  4339. erp->er_extcount += ext_diff;
  4340. erp_next->er_extcount -= ext_diff;
  4341. /* Remove next page */
  4342. if (erp_next->er_extcount == 0) {
  4343. /*
  4344. * Free page before removing extent record
  4345. * so er_extoffs don't get modified in
  4346. * xfs_iext_irec_remove.
  4347. */
  4348. kmem_free(erp_next->er_extbuf,
  4349. erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
  4350. erp_next->er_extbuf = NULL;
  4351. xfs_iext_irec_remove(ifp, erp_idx + 1);
  4352. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4353. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4354. /* Update next page */
  4355. } else {
  4356. /* Move rest of page up to become next new page */
  4357. memmove(erp_next->er_extbuf, ep_next,
  4358. erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
  4359. ep_next = erp_next->er_extbuf;
  4360. memset(&ep_next[erp_next->er_extcount], 0,
  4361. (XFS_LINEAR_EXTS - erp_next->er_extcount) *
  4362. sizeof(xfs_bmbt_rec_t));
  4363. }
  4364. if (erp->er_extcount == XFS_LINEAR_EXTS) {
  4365. erp_idx++;
  4366. if (erp_idx < nlists)
  4367. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4368. else
  4369. break;
  4370. }
  4371. ep = &erp->er_extbuf[erp->er_extcount];
  4372. erp_next = erp + 1;
  4373. ep_next = erp_next->er_extbuf;
  4374. }
  4375. }
  4376. /*
  4377. * This is called to update the er_extoff field in the indirection
  4378. * array when extents have been added or removed from one of the
  4379. * extent lists. erp_idx contains the irec index to begin updating
  4380. * at and ext_diff contains the number of extents that were added
  4381. * or removed.
  4382. */
  4383. void
  4384. xfs_iext_irec_update_extoffs(
  4385. xfs_ifork_t *ifp, /* inode fork pointer */
  4386. int erp_idx, /* irec index to update */
  4387. int ext_diff) /* number of new extents */
  4388. {
  4389. int i; /* loop counter */
  4390. int nlists; /* number of irec's (ex lists */
  4391. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4392. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4393. for (i = erp_idx; i < nlists; i++) {
  4394. ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
  4395. }
  4396. }