compaction.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728
  1. /*
  2. * linux/mm/compaction.c
  3. *
  4. * Memory compaction for the reduction of external fragmentation. Note that
  5. * this heavily depends upon page migration to do all the real heavy
  6. * lifting
  7. *
  8. * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
  9. */
  10. #include <linux/swap.h>
  11. #include <linux/migrate.h>
  12. #include <linux/compaction.h>
  13. #include <linux/mm_inline.h>
  14. #include <linux/backing-dev.h>
  15. #include <linux/sysctl.h>
  16. #include <linux/sysfs.h>
  17. #include "internal.h"
  18. #define CREATE_TRACE_POINTS
  19. #include <trace/events/compaction.h>
  20. /*
  21. * compact_control is used to track pages being migrated and the free pages
  22. * they are being migrated to during memory compaction. The free_pfn starts
  23. * at the end of a zone and migrate_pfn begins at the start. Movable pages
  24. * are moved to the end of a zone during a compaction run and the run
  25. * completes when free_pfn <= migrate_pfn
  26. */
  27. struct compact_control {
  28. struct list_head freepages; /* List of free pages to migrate to */
  29. struct list_head migratepages; /* List of pages being migrated */
  30. unsigned long nr_freepages; /* Number of isolated free pages */
  31. unsigned long nr_migratepages; /* Number of pages to migrate */
  32. unsigned long free_pfn; /* isolate_freepages search base */
  33. unsigned long migrate_pfn; /* isolate_migratepages search base */
  34. bool sync; /* Synchronous migration */
  35. /* Account for isolated anon and file pages */
  36. unsigned long nr_anon;
  37. unsigned long nr_file;
  38. unsigned int order; /* order a direct compactor needs */
  39. int migratetype; /* MOVABLE, RECLAIMABLE etc */
  40. struct zone *zone;
  41. };
  42. static unsigned long release_freepages(struct list_head *freelist)
  43. {
  44. struct page *page, *next;
  45. unsigned long count = 0;
  46. list_for_each_entry_safe(page, next, freelist, lru) {
  47. list_del(&page->lru);
  48. __free_page(page);
  49. count++;
  50. }
  51. return count;
  52. }
  53. /* Isolate free pages onto a private freelist. Must hold zone->lock */
  54. static unsigned long isolate_freepages_block(struct zone *zone,
  55. unsigned long blockpfn,
  56. struct list_head *freelist)
  57. {
  58. unsigned long zone_end_pfn, end_pfn;
  59. int nr_scanned = 0, total_isolated = 0;
  60. struct page *cursor;
  61. /* Get the last PFN we should scan for free pages at */
  62. zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages;
  63. end_pfn = min(blockpfn + pageblock_nr_pages, zone_end_pfn);
  64. /* Find the first usable PFN in the block to initialse page cursor */
  65. for (; blockpfn < end_pfn; blockpfn++) {
  66. if (pfn_valid_within(blockpfn))
  67. break;
  68. }
  69. cursor = pfn_to_page(blockpfn);
  70. /* Isolate free pages. This assumes the block is valid */
  71. for (; blockpfn < end_pfn; blockpfn++, cursor++) {
  72. int isolated, i;
  73. struct page *page = cursor;
  74. if (!pfn_valid_within(blockpfn))
  75. continue;
  76. nr_scanned++;
  77. if (!PageBuddy(page))
  78. continue;
  79. /* Found a free page, break it into order-0 pages */
  80. isolated = split_free_page(page);
  81. total_isolated += isolated;
  82. for (i = 0; i < isolated; i++) {
  83. list_add(&page->lru, freelist);
  84. page++;
  85. }
  86. /* If a page was split, advance to the end of it */
  87. if (isolated) {
  88. blockpfn += isolated - 1;
  89. cursor += isolated - 1;
  90. }
  91. }
  92. trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
  93. return total_isolated;
  94. }
  95. /* Returns true if the page is within a block suitable for migration to */
  96. static bool suitable_migration_target(struct page *page)
  97. {
  98. int migratetype = get_pageblock_migratetype(page);
  99. /* Don't interfere with memory hot-remove or the min_free_kbytes blocks */
  100. if (migratetype == MIGRATE_ISOLATE || migratetype == MIGRATE_RESERVE)
  101. return false;
  102. /* If the page is a large free page, then allow migration */
  103. if (PageBuddy(page) && page_order(page) >= pageblock_order)
  104. return true;
  105. /* If the block is MIGRATE_MOVABLE, allow migration */
  106. if (migratetype == MIGRATE_MOVABLE)
  107. return true;
  108. /* Otherwise skip the block */
  109. return false;
  110. }
  111. /*
  112. * Based on information in the current compact_control, find blocks
  113. * suitable for isolating free pages from and then isolate them.
  114. */
  115. static void isolate_freepages(struct zone *zone,
  116. struct compact_control *cc)
  117. {
  118. struct page *page;
  119. unsigned long high_pfn, low_pfn, pfn;
  120. unsigned long flags;
  121. int nr_freepages = cc->nr_freepages;
  122. struct list_head *freelist = &cc->freepages;
  123. /*
  124. * Initialise the free scanner. The starting point is where we last
  125. * scanned from (or the end of the zone if starting). The low point
  126. * is the end of the pageblock the migration scanner is using.
  127. */
  128. pfn = cc->free_pfn;
  129. low_pfn = cc->migrate_pfn + pageblock_nr_pages;
  130. /*
  131. * Take care that if the migration scanner is at the end of the zone
  132. * that the free scanner does not accidentally move to the next zone
  133. * in the next isolation cycle.
  134. */
  135. high_pfn = min(low_pfn, pfn);
  136. /*
  137. * Isolate free pages until enough are available to migrate the
  138. * pages on cc->migratepages. We stop searching if the migrate
  139. * and free page scanners meet or enough free pages are isolated.
  140. */
  141. for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages;
  142. pfn -= pageblock_nr_pages) {
  143. unsigned long isolated;
  144. if (!pfn_valid(pfn))
  145. continue;
  146. /*
  147. * Check for overlapping nodes/zones. It's possible on some
  148. * configurations to have a setup like
  149. * node0 node1 node0
  150. * i.e. it's possible that all pages within a zones range of
  151. * pages do not belong to a single zone.
  152. */
  153. page = pfn_to_page(pfn);
  154. if (page_zone(page) != zone)
  155. continue;
  156. /* Check the block is suitable for migration */
  157. if (!suitable_migration_target(page))
  158. continue;
  159. /*
  160. * Found a block suitable for isolating free pages from. Now
  161. * we disabled interrupts, double check things are ok and
  162. * isolate the pages. This is to minimise the time IRQs
  163. * are disabled
  164. */
  165. isolated = 0;
  166. spin_lock_irqsave(&zone->lock, flags);
  167. if (suitable_migration_target(page)) {
  168. isolated = isolate_freepages_block(zone, pfn, freelist);
  169. nr_freepages += isolated;
  170. }
  171. spin_unlock_irqrestore(&zone->lock, flags);
  172. /*
  173. * Record the highest PFN we isolated pages from. When next
  174. * looking for free pages, the search will restart here as
  175. * page migration may have returned some pages to the allocator
  176. */
  177. if (isolated)
  178. high_pfn = max(high_pfn, pfn);
  179. }
  180. /* split_free_page does not map the pages */
  181. list_for_each_entry(page, freelist, lru) {
  182. arch_alloc_page(page, 0);
  183. kernel_map_pages(page, 1, 1);
  184. }
  185. cc->free_pfn = high_pfn;
  186. cc->nr_freepages = nr_freepages;
  187. }
  188. /* Update the number of anon and file isolated pages in the zone */
  189. static void acct_isolated(struct zone *zone, struct compact_control *cc)
  190. {
  191. struct page *page;
  192. unsigned int count[NR_LRU_LISTS] = { 0, };
  193. list_for_each_entry(page, &cc->migratepages, lru) {
  194. int lru = page_lru_base_type(page);
  195. count[lru]++;
  196. }
  197. cc->nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
  198. cc->nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
  199. __mod_zone_page_state(zone, NR_ISOLATED_ANON, cc->nr_anon);
  200. __mod_zone_page_state(zone, NR_ISOLATED_FILE, cc->nr_file);
  201. }
  202. /* Similar to reclaim, but different enough that they don't share logic */
  203. static bool too_many_isolated(struct zone *zone)
  204. {
  205. unsigned long active, inactive, isolated;
  206. inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
  207. zone_page_state(zone, NR_INACTIVE_ANON);
  208. active = zone_page_state(zone, NR_ACTIVE_FILE) +
  209. zone_page_state(zone, NR_ACTIVE_ANON);
  210. isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
  211. zone_page_state(zone, NR_ISOLATED_ANON);
  212. return isolated > (inactive + active) / 2;
  213. }
  214. /*
  215. * Isolate all pages that can be migrated from the block pointed to by
  216. * the migrate scanner within compact_control.
  217. */
  218. static unsigned long isolate_migratepages(struct zone *zone,
  219. struct compact_control *cc)
  220. {
  221. unsigned long low_pfn, end_pfn;
  222. unsigned long last_pageblock_nr = 0, pageblock_nr;
  223. unsigned long nr_scanned = 0, nr_isolated = 0;
  224. struct list_head *migratelist = &cc->migratepages;
  225. /* Do not scan outside zone boundaries */
  226. low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);
  227. /* Only scan within a pageblock boundary */
  228. end_pfn = ALIGN(low_pfn + pageblock_nr_pages, pageblock_nr_pages);
  229. /* Do not cross the free scanner or scan within a memory hole */
  230. if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
  231. cc->migrate_pfn = end_pfn;
  232. return 0;
  233. }
  234. /*
  235. * Ensure that there are not too many pages isolated from the LRU
  236. * list by either parallel reclaimers or compaction. If there are,
  237. * delay for some time until fewer pages are isolated
  238. */
  239. while (unlikely(too_many_isolated(zone))) {
  240. congestion_wait(BLK_RW_ASYNC, HZ/10);
  241. if (fatal_signal_pending(current))
  242. return 0;
  243. }
  244. /* Time to isolate some pages for migration */
  245. cond_resched();
  246. spin_lock_irq(&zone->lru_lock);
  247. for (; low_pfn < end_pfn; low_pfn++) {
  248. struct page *page;
  249. bool locked = true;
  250. /* give a chance to irqs before checking need_resched() */
  251. if (!((low_pfn+1) % SWAP_CLUSTER_MAX)) {
  252. spin_unlock_irq(&zone->lru_lock);
  253. locked = false;
  254. }
  255. if (need_resched() || spin_is_contended(&zone->lru_lock)) {
  256. if (locked)
  257. spin_unlock_irq(&zone->lru_lock);
  258. cond_resched();
  259. spin_lock_irq(&zone->lru_lock);
  260. if (fatal_signal_pending(current))
  261. break;
  262. } else if (!locked)
  263. spin_lock_irq(&zone->lru_lock);
  264. if (!pfn_valid_within(low_pfn))
  265. continue;
  266. nr_scanned++;
  267. /* Get the page and skip if free */
  268. page = pfn_to_page(low_pfn);
  269. if (PageBuddy(page))
  270. continue;
  271. /*
  272. * For async migration, also only scan in MOVABLE blocks. Async
  273. * migration is optimistic to see if the minimum amount of work
  274. * satisfies the allocation
  275. */
  276. pageblock_nr = low_pfn >> pageblock_order;
  277. if (!cc->sync && last_pageblock_nr != pageblock_nr &&
  278. get_pageblock_migratetype(page) != MIGRATE_MOVABLE) {
  279. low_pfn += pageblock_nr_pages;
  280. low_pfn = ALIGN(low_pfn, pageblock_nr_pages) - 1;
  281. last_pageblock_nr = pageblock_nr;
  282. continue;
  283. }
  284. if (!PageLRU(page))
  285. continue;
  286. /*
  287. * PageLRU is set, and lru_lock excludes isolation,
  288. * splitting and collapsing (collapsing has already
  289. * happened if PageLRU is set).
  290. */
  291. if (PageTransHuge(page)) {
  292. low_pfn += (1 << compound_order(page)) - 1;
  293. continue;
  294. }
  295. /* Try isolate the page */
  296. if (__isolate_lru_page(page, ISOLATE_BOTH, 0) != 0)
  297. continue;
  298. VM_BUG_ON(PageTransCompound(page));
  299. /* Successfully isolated */
  300. del_page_from_lru_list(zone, page, page_lru(page));
  301. list_add(&page->lru, migratelist);
  302. cc->nr_migratepages++;
  303. nr_isolated++;
  304. /* Avoid isolating too much */
  305. if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
  306. break;
  307. }
  308. acct_isolated(zone, cc);
  309. spin_unlock_irq(&zone->lru_lock);
  310. cc->migrate_pfn = low_pfn;
  311. trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);
  312. return cc->nr_migratepages;
  313. }
  314. /*
  315. * This is a migrate-callback that "allocates" freepages by taking pages
  316. * from the isolated freelists in the block we are migrating to.
  317. */
  318. static struct page *compaction_alloc(struct page *migratepage,
  319. unsigned long data,
  320. int **result)
  321. {
  322. struct compact_control *cc = (struct compact_control *)data;
  323. struct page *freepage;
  324. /* Isolate free pages if necessary */
  325. if (list_empty(&cc->freepages)) {
  326. isolate_freepages(cc->zone, cc);
  327. if (list_empty(&cc->freepages))
  328. return NULL;
  329. }
  330. freepage = list_entry(cc->freepages.next, struct page, lru);
  331. list_del(&freepage->lru);
  332. cc->nr_freepages--;
  333. return freepage;
  334. }
  335. /*
  336. * We cannot control nr_migratepages and nr_freepages fully when migration is
  337. * running as migrate_pages() has no knowledge of compact_control. When
  338. * migration is complete, we count the number of pages on the lists by hand.
  339. */
  340. static void update_nr_listpages(struct compact_control *cc)
  341. {
  342. int nr_migratepages = 0;
  343. int nr_freepages = 0;
  344. struct page *page;
  345. list_for_each_entry(page, &cc->migratepages, lru)
  346. nr_migratepages++;
  347. list_for_each_entry(page, &cc->freepages, lru)
  348. nr_freepages++;
  349. cc->nr_migratepages = nr_migratepages;
  350. cc->nr_freepages = nr_freepages;
  351. }
  352. static int compact_finished(struct zone *zone,
  353. struct compact_control *cc)
  354. {
  355. unsigned int order;
  356. unsigned long watermark;
  357. if (fatal_signal_pending(current))
  358. return COMPACT_PARTIAL;
  359. /* Compaction run completes if the migrate and free scanner meet */
  360. if (cc->free_pfn <= cc->migrate_pfn)
  361. return COMPACT_COMPLETE;
  362. /*
  363. * order == -1 is expected when compacting via
  364. * /proc/sys/vm/compact_memory
  365. */
  366. if (cc->order == -1)
  367. return COMPACT_CONTINUE;
  368. /* Compaction run is not finished if the watermark is not met */
  369. watermark = low_wmark_pages(zone);
  370. watermark += (1 << cc->order);
  371. if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
  372. return COMPACT_CONTINUE;
  373. /* Direct compactor: Is a suitable page free? */
  374. for (order = cc->order; order < MAX_ORDER; order++) {
  375. /* Job done if page is free of the right migratetype */
  376. if (!list_empty(&zone->free_area[order].free_list[cc->migratetype]))
  377. return COMPACT_PARTIAL;
  378. /* Job done if allocation would set block type */
  379. if (order >= pageblock_order && zone->free_area[order].nr_free)
  380. return COMPACT_PARTIAL;
  381. }
  382. return COMPACT_CONTINUE;
  383. }
  384. /*
  385. * compaction_suitable: Is this suitable to run compaction on this zone now?
  386. * Returns
  387. * COMPACT_SKIPPED - If there are too few free pages for compaction
  388. * COMPACT_PARTIAL - If the allocation would succeed without compaction
  389. * COMPACT_CONTINUE - If compaction should run now
  390. */
  391. unsigned long compaction_suitable(struct zone *zone, int order)
  392. {
  393. int fragindex;
  394. unsigned long watermark;
  395. /*
  396. * order == -1 is expected when compacting via
  397. * /proc/sys/vm/compact_memory
  398. */
  399. if (order == -1)
  400. return COMPACT_CONTINUE;
  401. /*
  402. * Watermarks for order-0 must be met for compaction. Note the 2UL.
  403. * This is because during migration, copies of pages need to be
  404. * allocated and for a short time, the footprint is higher
  405. */
  406. watermark = low_wmark_pages(zone) + (2UL << order);
  407. if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
  408. return COMPACT_SKIPPED;
  409. /*
  410. * fragmentation index determines if allocation failures are due to
  411. * low memory or external fragmentation
  412. *
  413. * index of -1000 implies allocations might succeed depending on
  414. * watermarks
  415. * index towards 0 implies failure is due to lack of memory
  416. * index towards 1000 implies failure is due to fragmentation
  417. *
  418. * Only compact if a failure would be due to fragmentation.
  419. */
  420. fragindex = fragmentation_index(zone, order);
  421. if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
  422. return COMPACT_SKIPPED;
  423. if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
  424. 0, 0))
  425. return COMPACT_PARTIAL;
  426. return COMPACT_CONTINUE;
  427. }
  428. static int compact_zone(struct zone *zone, struct compact_control *cc)
  429. {
  430. int ret;
  431. ret = compaction_suitable(zone, cc->order);
  432. switch (ret) {
  433. case COMPACT_PARTIAL:
  434. case COMPACT_SKIPPED:
  435. /* Compaction is likely to fail */
  436. return ret;
  437. case COMPACT_CONTINUE:
  438. /* Fall through to compaction */
  439. ;
  440. }
  441. /* Setup to move all movable pages to the end of the zone */
  442. cc->migrate_pfn = zone->zone_start_pfn;
  443. cc->free_pfn = cc->migrate_pfn + zone->spanned_pages;
  444. cc->free_pfn &= ~(pageblock_nr_pages-1);
  445. migrate_prep_local();
  446. while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
  447. unsigned long nr_migrate, nr_remaining;
  448. int err;
  449. if (!isolate_migratepages(zone, cc))
  450. continue;
  451. nr_migrate = cc->nr_migratepages;
  452. err = migrate_pages(&cc->migratepages, compaction_alloc,
  453. (unsigned long)cc, false,
  454. cc->sync);
  455. update_nr_listpages(cc);
  456. nr_remaining = cc->nr_migratepages;
  457. count_vm_event(COMPACTBLOCKS);
  458. count_vm_events(COMPACTPAGES, nr_migrate - nr_remaining);
  459. if (nr_remaining)
  460. count_vm_events(COMPACTPAGEFAILED, nr_remaining);
  461. trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
  462. nr_remaining);
  463. /* Release LRU pages not migrated */
  464. if (err) {
  465. putback_lru_pages(&cc->migratepages);
  466. cc->nr_migratepages = 0;
  467. }
  468. }
  469. /* Release free pages and check accounting */
  470. cc->nr_freepages -= release_freepages(&cc->freepages);
  471. VM_BUG_ON(cc->nr_freepages != 0);
  472. return ret;
  473. }
  474. unsigned long compact_zone_order(struct zone *zone,
  475. int order, gfp_t gfp_mask,
  476. bool sync)
  477. {
  478. struct compact_control cc = {
  479. .nr_freepages = 0,
  480. .nr_migratepages = 0,
  481. .order = order,
  482. .migratetype = allocflags_to_migratetype(gfp_mask),
  483. .zone = zone,
  484. .sync = sync,
  485. };
  486. INIT_LIST_HEAD(&cc.freepages);
  487. INIT_LIST_HEAD(&cc.migratepages);
  488. return compact_zone(zone, &cc);
  489. }
  490. int sysctl_extfrag_threshold = 500;
  491. /**
  492. * try_to_compact_pages - Direct compact to satisfy a high-order allocation
  493. * @zonelist: The zonelist used for the current allocation
  494. * @order: The order of the current allocation
  495. * @gfp_mask: The GFP mask of the current allocation
  496. * @nodemask: The allowed nodes to allocate from
  497. * @sync: Whether migration is synchronous or not
  498. *
  499. * This is the main entry point for direct page compaction.
  500. */
  501. unsigned long try_to_compact_pages(struct zonelist *zonelist,
  502. int order, gfp_t gfp_mask, nodemask_t *nodemask,
  503. bool sync)
  504. {
  505. enum zone_type high_zoneidx = gfp_zone(gfp_mask);
  506. int may_enter_fs = gfp_mask & __GFP_FS;
  507. int may_perform_io = gfp_mask & __GFP_IO;
  508. struct zoneref *z;
  509. struct zone *zone;
  510. int rc = COMPACT_SKIPPED;
  511. /*
  512. * Check whether it is worth even starting compaction. The order check is
  513. * made because an assumption is made that the page allocator can satisfy
  514. * the "cheaper" orders without taking special steps
  515. */
  516. if (!order || !may_enter_fs || !may_perform_io)
  517. return rc;
  518. count_vm_event(COMPACTSTALL);
  519. /* Compact each zone in the list */
  520. for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
  521. nodemask) {
  522. int status;
  523. status = compact_zone_order(zone, order, gfp_mask, sync);
  524. rc = max(status, rc);
  525. /* If a normal allocation would succeed, stop compacting */
  526. if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
  527. break;
  528. }
  529. return rc;
  530. }
  531. /* Compact all zones within a node */
  532. static int compact_node(int nid)
  533. {
  534. int zoneid;
  535. pg_data_t *pgdat;
  536. struct zone *zone;
  537. if (nid < 0 || nid >= nr_node_ids || !node_online(nid))
  538. return -EINVAL;
  539. pgdat = NODE_DATA(nid);
  540. /* Flush pending updates to the LRU lists */
  541. lru_add_drain_all();
  542. for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
  543. struct compact_control cc = {
  544. .nr_freepages = 0,
  545. .nr_migratepages = 0,
  546. .order = -1,
  547. };
  548. zone = &pgdat->node_zones[zoneid];
  549. if (!populated_zone(zone))
  550. continue;
  551. cc.zone = zone;
  552. INIT_LIST_HEAD(&cc.freepages);
  553. INIT_LIST_HEAD(&cc.migratepages);
  554. compact_zone(zone, &cc);
  555. VM_BUG_ON(!list_empty(&cc.freepages));
  556. VM_BUG_ON(!list_empty(&cc.migratepages));
  557. }
  558. return 0;
  559. }
  560. /* Compact all nodes in the system */
  561. static int compact_nodes(void)
  562. {
  563. int nid;
  564. for_each_online_node(nid)
  565. compact_node(nid);
  566. return COMPACT_COMPLETE;
  567. }
  568. /* The written value is actually unused, all memory is compacted */
  569. int sysctl_compact_memory;
  570. /* This is the entry point for compacting all nodes via /proc/sys/vm */
  571. int sysctl_compaction_handler(struct ctl_table *table, int write,
  572. void __user *buffer, size_t *length, loff_t *ppos)
  573. {
  574. if (write)
  575. return compact_nodes();
  576. return 0;
  577. }
  578. int sysctl_extfrag_handler(struct ctl_table *table, int write,
  579. void __user *buffer, size_t *length, loff_t *ppos)
  580. {
  581. proc_dointvec_minmax(table, write, buffer, length, ppos);
  582. return 0;
  583. }
  584. #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
  585. ssize_t sysfs_compact_node(struct sys_device *dev,
  586. struct sysdev_attribute *attr,
  587. const char *buf, size_t count)
  588. {
  589. compact_node(dev->id);
  590. return count;
  591. }
  592. static SYSDEV_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
  593. int compaction_register_node(struct node *node)
  594. {
  595. return sysdev_create_file(&node->sysdev, &attr_compact);
  596. }
  597. void compaction_unregister_node(struct node *node)
  598. {
  599. return sysdev_remove_file(&node->sysdev, &attr_compact);
  600. }
  601. #endif /* CONFIG_SYSFS && CONFIG_NUMA */