tkip.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349
  1. /*
  2. * Copyright 2002-2004, Instant802 Networks, Inc.
  3. * Copyright 2005, Devicescape Software, Inc.
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License version 2 as
  7. * published by the Free Software Foundation.
  8. */
  9. #include <linux/kernel.h>
  10. #include <linux/types.h>
  11. #include <linux/netdevice.h>
  12. #include <net/mac80211.h>
  13. #include "ieee80211_key.h"
  14. #include "tkip.h"
  15. #include "wep.h"
  16. /* TKIP key mixing functions */
  17. #define PHASE1_LOOP_COUNT 8
  18. /* 2-byte by 2-byte subset of the full AES S-box table; second part of this
  19. * table is identical to first part but byte-swapped */
  20. static const u16 tkip_sbox[256] =
  21. {
  22. 0xC6A5, 0xF884, 0xEE99, 0xF68D, 0xFF0D, 0xD6BD, 0xDEB1, 0x9154,
  23. 0x6050, 0x0203, 0xCEA9, 0x567D, 0xE719, 0xB562, 0x4DE6, 0xEC9A,
  24. 0x8F45, 0x1F9D, 0x8940, 0xFA87, 0xEF15, 0xB2EB, 0x8EC9, 0xFB0B,
  25. 0x41EC, 0xB367, 0x5FFD, 0x45EA, 0x23BF, 0x53F7, 0xE496, 0x9B5B,
  26. 0x75C2, 0xE11C, 0x3DAE, 0x4C6A, 0x6C5A, 0x7E41, 0xF502, 0x834F,
  27. 0x685C, 0x51F4, 0xD134, 0xF908, 0xE293, 0xAB73, 0x6253, 0x2A3F,
  28. 0x080C, 0x9552, 0x4665, 0x9D5E, 0x3028, 0x37A1, 0x0A0F, 0x2FB5,
  29. 0x0E09, 0x2436, 0x1B9B, 0xDF3D, 0xCD26, 0x4E69, 0x7FCD, 0xEA9F,
  30. 0x121B, 0x1D9E, 0x5874, 0x342E, 0x362D, 0xDCB2, 0xB4EE, 0x5BFB,
  31. 0xA4F6, 0x764D, 0xB761, 0x7DCE, 0x527B, 0xDD3E, 0x5E71, 0x1397,
  32. 0xA6F5, 0xB968, 0x0000, 0xC12C, 0x4060, 0xE31F, 0x79C8, 0xB6ED,
  33. 0xD4BE, 0x8D46, 0x67D9, 0x724B, 0x94DE, 0x98D4, 0xB0E8, 0x854A,
  34. 0xBB6B, 0xC52A, 0x4FE5, 0xED16, 0x86C5, 0x9AD7, 0x6655, 0x1194,
  35. 0x8ACF, 0xE910, 0x0406, 0xFE81, 0xA0F0, 0x7844, 0x25BA, 0x4BE3,
  36. 0xA2F3, 0x5DFE, 0x80C0, 0x058A, 0x3FAD, 0x21BC, 0x7048, 0xF104,
  37. 0x63DF, 0x77C1, 0xAF75, 0x4263, 0x2030, 0xE51A, 0xFD0E, 0xBF6D,
  38. 0x814C, 0x1814, 0x2635, 0xC32F, 0xBEE1, 0x35A2, 0x88CC, 0x2E39,
  39. 0x9357, 0x55F2, 0xFC82, 0x7A47, 0xC8AC, 0xBAE7, 0x322B, 0xE695,
  40. 0xC0A0, 0x1998, 0x9ED1, 0xA37F, 0x4466, 0x547E, 0x3BAB, 0x0B83,
  41. 0x8CCA, 0xC729, 0x6BD3, 0x283C, 0xA779, 0xBCE2, 0x161D, 0xAD76,
  42. 0xDB3B, 0x6456, 0x744E, 0x141E, 0x92DB, 0x0C0A, 0x486C, 0xB8E4,
  43. 0x9F5D, 0xBD6E, 0x43EF, 0xC4A6, 0x39A8, 0x31A4, 0xD337, 0xF28B,
  44. 0xD532, 0x8B43, 0x6E59, 0xDAB7, 0x018C, 0xB164, 0x9CD2, 0x49E0,
  45. 0xD8B4, 0xACFA, 0xF307, 0xCF25, 0xCAAF, 0xF48E, 0x47E9, 0x1018,
  46. 0x6FD5, 0xF088, 0x4A6F, 0x5C72, 0x3824, 0x57F1, 0x73C7, 0x9751,
  47. 0xCB23, 0xA17C, 0xE89C, 0x3E21, 0x96DD, 0x61DC, 0x0D86, 0x0F85,
  48. 0xE090, 0x7C42, 0x71C4, 0xCCAA, 0x90D8, 0x0605, 0xF701, 0x1C12,
  49. 0xC2A3, 0x6A5F, 0xAEF9, 0x69D0, 0x1791, 0x9958, 0x3A27, 0x27B9,
  50. 0xD938, 0xEB13, 0x2BB3, 0x2233, 0xD2BB, 0xA970, 0x0789, 0x33A7,
  51. 0x2DB6, 0x3C22, 0x1592, 0xC920, 0x8749, 0xAAFF, 0x5078, 0xA57A,
  52. 0x038F, 0x59F8, 0x0980, 0x1A17, 0x65DA, 0xD731, 0x84C6, 0xD0B8,
  53. 0x82C3, 0x29B0, 0x5A77, 0x1E11, 0x7BCB, 0xA8FC, 0x6DD6, 0x2C3A,
  54. };
  55. static inline u16 Mk16(u8 x, u8 y)
  56. {
  57. return ((u16) x << 8) | (u16) y;
  58. }
  59. static inline u8 Hi8(u16 v)
  60. {
  61. return v >> 8;
  62. }
  63. static inline u8 Lo8(u16 v)
  64. {
  65. return v & 0xff;
  66. }
  67. static inline u16 Hi16(u32 v)
  68. {
  69. return v >> 16;
  70. }
  71. static inline u16 Lo16(u32 v)
  72. {
  73. return v & 0xffff;
  74. }
  75. static inline u16 RotR1(u16 v)
  76. {
  77. return (v >> 1) | ((v & 0x0001) << 15);
  78. }
  79. static inline u16 tkip_S(u16 val)
  80. {
  81. u16 a = tkip_sbox[Hi8(val)];
  82. return tkip_sbox[Lo8(val)] ^ Hi8(a) ^ (Lo8(a) << 8);
  83. }
  84. /* P1K := Phase1(TA, TK, TSC)
  85. * TA = transmitter address (48 bits)
  86. * TK = dot11DefaultKeyValue or dot11KeyMappingValue (128 bits)
  87. * TSC = TKIP sequence counter (48 bits, only 32 msb bits used)
  88. * P1K: 80 bits
  89. */
  90. static void tkip_mixing_phase1(const u8 *ta, const u8 *tk, u32 tsc_IV32,
  91. u16 *p1k)
  92. {
  93. int i, j;
  94. p1k[0] = Lo16(tsc_IV32);
  95. p1k[1] = Hi16(tsc_IV32);
  96. p1k[2] = Mk16(ta[1], ta[0]);
  97. p1k[3] = Mk16(ta[3], ta[2]);
  98. p1k[4] = Mk16(ta[5], ta[4]);
  99. for (i = 0; i < PHASE1_LOOP_COUNT; i++) {
  100. j = 2 * (i & 1);
  101. p1k[0] += tkip_S(p1k[4] ^ Mk16(tk[ 1 + j], tk[ 0 + j]));
  102. p1k[1] += tkip_S(p1k[0] ^ Mk16(tk[ 5 + j], tk[ 4 + j]));
  103. p1k[2] += tkip_S(p1k[1] ^ Mk16(tk[ 9 + j], tk[ 8 + j]));
  104. p1k[3] += tkip_S(p1k[2] ^ Mk16(tk[13 + j], tk[12 + j]));
  105. p1k[4] += tkip_S(p1k[3] ^ Mk16(tk[ 1 + j], tk[ 0 + j])) + i;
  106. }
  107. }
  108. static void tkip_mixing_phase2(const u16 *p1k, const u8 *tk, u16 tsc_IV16,
  109. u8 *rc4key)
  110. {
  111. u16 ppk[6];
  112. int i;
  113. ppk[0] = p1k[0];
  114. ppk[1] = p1k[1];
  115. ppk[2] = p1k[2];
  116. ppk[3] = p1k[3];
  117. ppk[4] = p1k[4];
  118. ppk[5] = p1k[4] + tsc_IV16;
  119. ppk[0] += tkip_S(ppk[5] ^ Mk16(tk[ 1], tk[ 0]));
  120. ppk[1] += tkip_S(ppk[0] ^ Mk16(tk[ 3], tk[ 2]));
  121. ppk[2] += tkip_S(ppk[1] ^ Mk16(tk[ 5], tk[ 4]));
  122. ppk[3] += tkip_S(ppk[2] ^ Mk16(tk[ 7], tk[ 6]));
  123. ppk[4] += tkip_S(ppk[3] ^ Mk16(tk[ 9], tk[ 8]));
  124. ppk[5] += tkip_S(ppk[4] ^ Mk16(tk[11], tk[10]));
  125. ppk[0] += RotR1(ppk[5] ^ Mk16(tk[13], tk[12]));
  126. ppk[1] += RotR1(ppk[0] ^ Mk16(tk[15], tk[14]));
  127. ppk[2] += RotR1(ppk[1]);
  128. ppk[3] += RotR1(ppk[2]);
  129. ppk[4] += RotR1(ppk[3]);
  130. ppk[5] += RotR1(ppk[4]);
  131. rc4key[0] = Hi8(tsc_IV16);
  132. rc4key[1] = (Hi8(tsc_IV16) | 0x20) & 0x7f;
  133. rc4key[2] = Lo8(tsc_IV16);
  134. rc4key[3] = Lo8((ppk[5] ^ Mk16(tk[1], tk[0])) >> 1);
  135. for (i = 0; i < 6; i++) {
  136. rc4key[4 + 2 * i] = Lo8(ppk[i]);
  137. rc4key[5 + 2 * i] = Hi8(ppk[i]);
  138. }
  139. }
  140. /* Add TKIP IV and Ext. IV at @pos. @iv0, @iv1, and @iv2 are the first octets
  141. * of the IV. Returns pointer to the octet following IVs (i.e., beginning of
  142. * the packet payload). */
  143. u8 * ieee80211_tkip_add_iv(u8 *pos, struct ieee80211_key *key,
  144. u8 iv0, u8 iv1, u8 iv2)
  145. {
  146. *pos++ = iv0;
  147. *pos++ = iv1;
  148. *pos++ = iv2;
  149. *pos++ = (key->conf.keyidx << 6) | (1 << 5) /* Ext IV */;
  150. *pos++ = key->u.tkip.iv32 & 0xff;
  151. *pos++ = (key->u.tkip.iv32 >> 8) & 0xff;
  152. *pos++ = (key->u.tkip.iv32 >> 16) & 0xff;
  153. *pos++ = (key->u.tkip.iv32 >> 24) & 0xff;
  154. return pos;
  155. }
  156. void ieee80211_tkip_gen_phase1key(struct ieee80211_key *key, u8 *ta,
  157. u16 *phase1key)
  158. {
  159. tkip_mixing_phase1(ta, &key->conf.key[ALG_TKIP_TEMP_ENCR_KEY],
  160. key->u.tkip.iv32, phase1key);
  161. }
  162. void ieee80211_tkip_gen_rc4key(struct ieee80211_key *key, u8 *ta,
  163. u8 *rc4key)
  164. {
  165. /* Calculate per-packet key */
  166. if (key->u.tkip.iv16 == 0 || !key->u.tkip.tx_initialized) {
  167. /* IV16 wrapped around - perform TKIP phase 1 */
  168. tkip_mixing_phase1(ta, &key->conf.key[ALG_TKIP_TEMP_ENCR_KEY],
  169. key->u.tkip.iv32, key->u.tkip.p1k);
  170. key->u.tkip.tx_initialized = 1;
  171. }
  172. tkip_mixing_phase2(key->u.tkip.p1k,
  173. &key->conf.key[ALG_TKIP_TEMP_ENCR_KEY],
  174. key->u.tkip.iv16, rc4key);
  175. }
  176. /* Encrypt packet payload with TKIP using @key. @pos is a pointer to the
  177. * beginning of the buffer containing payload. This payload must include
  178. * headroom of eight octets for IV and Ext. IV and taildroom of four octets
  179. * for ICV. @payload_len is the length of payload (_not_ including extra
  180. * headroom and tailroom). @ta is the transmitter addresses. */
  181. void ieee80211_tkip_encrypt_data(struct crypto_blkcipher *tfm,
  182. struct ieee80211_key *key,
  183. u8 *pos, size_t payload_len, u8 *ta)
  184. {
  185. u8 rc4key[16];
  186. ieee80211_tkip_gen_rc4key(key, ta, rc4key);
  187. pos = ieee80211_tkip_add_iv(pos, key, rc4key[0], rc4key[1], rc4key[2]);
  188. ieee80211_wep_encrypt_data(tfm, rc4key, 16, pos, payload_len);
  189. }
  190. /* Decrypt packet payload with TKIP using @key. @pos is a pointer to the
  191. * beginning of the buffer containing IEEE 802.11 header payload, i.e.,
  192. * including IV, Ext. IV, real data, Michael MIC, ICV. @payload_len is the
  193. * length of payload, including IV, Ext. IV, MIC, ICV. */
  194. int ieee80211_tkip_decrypt_data(struct crypto_blkcipher *tfm,
  195. struct ieee80211_key *key,
  196. u8 *payload, size_t payload_len, u8 *ta,
  197. int only_iv, int queue,
  198. u32 *out_iv32, u16 *out_iv16)
  199. {
  200. u32 iv32;
  201. u32 iv16;
  202. u8 rc4key[16], keyid, *pos = payload;
  203. int res;
  204. if (payload_len < 12)
  205. return -1;
  206. iv16 = (pos[0] << 8) | pos[2];
  207. keyid = pos[3];
  208. iv32 = pos[4] | (pos[5] << 8) | (pos[6] << 16) | (pos[7] << 24);
  209. pos += 8;
  210. #ifdef CONFIG_TKIP_DEBUG
  211. {
  212. int i;
  213. printk(KERN_DEBUG "TKIP decrypt: data(len=%zd)", payload_len);
  214. for (i = 0; i < payload_len; i++)
  215. printk(" %02x", payload[i]);
  216. printk("\n");
  217. printk(KERN_DEBUG "TKIP decrypt: iv16=%04x iv32=%08x\n",
  218. iv16, iv32);
  219. }
  220. #endif /* CONFIG_TKIP_DEBUG */
  221. if (!(keyid & (1 << 5)))
  222. return TKIP_DECRYPT_NO_EXT_IV;
  223. if ((keyid >> 6) != key->conf.keyidx)
  224. return TKIP_DECRYPT_INVALID_KEYIDX;
  225. if (key->u.tkip.rx_initialized[queue] &&
  226. (iv32 < key->u.tkip.iv32_rx[queue] ||
  227. (iv32 == key->u.tkip.iv32_rx[queue] &&
  228. iv16 <= key->u.tkip.iv16_rx[queue]))) {
  229. #ifdef CONFIG_TKIP_DEBUG
  230. DECLARE_MAC_BUF(mac);
  231. printk(KERN_DEBUG "TKIP replay detected for RX frame from "
  232. "%s (RX IV (%04x,%02x) <= prev. IV (%04x,%02x)\n",
  233. print_mac(mac, ta),
  234. iv32, iv16, key->u.tkip.iv32_rx[queue],
  235. key->u.tkip.iv16_rx[queue]);
  236. #endif /* CONFIG_TKIP_DEBUG */
  237. return TKIP_DECRYPT_REPLAY;
  238. }
  239. if (only_iv) {
  240. res = TKIP_DECRYPT_OK;
  241. key->u.tkip.rx_initialized[queue] = 1;
  242. goto done;
  243. }
  244. if (!key->u.tkip.rx_initialized[queue] ||
  245. key->u.tkip.iv32_rx[queue] != iv32) {
  246. key->u.tkip.rx_initialized[queue] = 1;
  247. /* IV16 wrapped around - perform TKIP phase 1 */
  248. tkip_mixing_phase1(ta, &key->conf.key[ALG_TKIP_TEMP_ENCR_KEY],
  249. iv32, key->u.tkip.p1k_rx[queue]);
  250. #ifdef CONFIG_TKIP_DEBUG
  251. {
  252. int i;
  253. DECLARE_MAC_BUF(mac);
  254. printk(KERN_DEBUG "TKIP decrypt: Phase1 TA=%s"
  255. " TK=", print_mac(mac, ta));
  256. for (i = 0; i < 16; i++)
  257. printk("%02x ",
  258. key->conf.key[
  259. ALG_TKIP_TEMP_ENCR_KEY + i]);
  260. printk("\n");
  261. printk(KERN_DEBUG "TKIP decrypt: P1K=");
  262. for (i = 0; i < 5; i++)
  263. printk("%04x ", key->u.tkip.p1k_rx[queue][i]);
  264. printk("\n");
  265. }
  266. #endif /* CONFIG_TKIP_DEBUG */
  267. }
  268. tkip_mixing_phase2(key->u.tkip.p1k_rx[queue],
  269. &key->conf.key[ALG_TKIP_TEMP_ENCR_KEY],
  270. iv16, rc4key);
  271. #ifdef CONFIG_TKIP_DEBUG
  272. {
  273. int i;
  274. printk(KERN_DEBUG "TKIP decrypt: Phase2 rc4key=");
  275. for (i = 0; i < 16; i++)
  276. printk("%02x ", rc4key[i]);
  277. printk("\n");
  278. }
  279. #endif /* CONFIG_TKIP_DEBUG */
  280. res = ieee80211_wep_decrypt_data(tfm, rc4key, 16, pos, payload_len - 12);
  281. done:
  282. if (res == TKIP_DECRYPT_OK) {
  283. /*
  284. * Record previously received IV, will be copied into the
  285. * key information after MIC verification. It is possible
  286. * that we don't catch replays of fragments but that's ok
  287. * because the Michael MIC verication will then fail.
  288. */
  289. *out_iv32 = iv32;
  290. *out_iv16 = iv16;
  291. }
  292. return res;
  293. }