af_key.c 101 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832
  1. /*
  2. * net/key/af_key.c An implementation of PF_KEYv2 sockets.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public License
  6. * as published by the Free Software Foundation; either version
  7. * 2 of the License, or (at your option) any later version.
  8. *
  9. * Authors: Maxim Giryaev <gem@asplinux.ru>
  10. * David S. Miller <davem@redhat.com>
  11. * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
  12. * Kunihiro Ishiguro <kunihiro@ipinfusion.com>
  13. * Kazunori MIYAZAWA / USAGI Project <miyazawa@linux-ipv6.org>
  14. * Derek Atkins <derek@ihtfp.com>
  15. */
  16. #include <linux/capability.h>
  17. #include <linux/module.h>
  18. #include <linux/kernel.h>
  19. #include <linux/socket.h>
  20. #include <linux/pfkeyv2.h>
  21. #include <linux/ipsec.h>
  22. #include <linux/skbuff.h>
  23. #include <linux/rtnetlink.h>
  24. #include <linux/in.h>
  25. #include <linux/in6.h>
  26. #include <linux/proc_fs.h>
  27. #include <linux/init.h>
  28. #include <net/net_namespace.h>
  29. #include <net/xfrm.h>
  30. #include <net/sock.h>
  31. #define _X2KEY(x) ((x) == XFRM_INF ? 0 : (x))
  32. #define _KEY2X(x) ((x) == 0 ? XFRM_INF : (x))
  33. /* List of all pfkey sockets. */
  34. static HLIST_HEAD(pfkey_table);
  35. static DECLARE_WAIT_QUEUE_HEAD(pfkey_table_wait);
  36. static DEFINE_RWLOCK(pfkey_table_lock);
  37. static atomic_t pfkey_table_users = ATOMIC_INIT(0);
  38. static atomic_t pfkey_socks_nr = ATOMIC_INIT(0);
  39. struct pfkey_sock {
  40. /* struct sock must be the first member of struct pfkey_sock */
  41. struct sock sk;
  42. int registered;
  43. int promisc;
  44. };
  45. static inline struct pfkey_sock *pfkey_sk(struct sock *sk)
  46. {
  47. return (struct pfkey_sock *)sk;
  48. }
  49. static void pfkey_sock_destruct(struct sock *sk)
  50. {
  51. skb_queue_purge(&sk->sk_receive_queue);
  52. if (!sock_flag(sk, SOCK_DEAD)) {
  53. printk("Attempt to release alive pfkey socket: %p\n", sk);
  54. return;
  55. }
  56. BUG_TRAP(!atomic_read(&sk->sk_rmem_alloc));
  57. BUG_TRAP(!atomic_read(&sk->sk_wmem_alloc));
  58. atomic_dec(&pfkey_socks_nr);
  59. }
  60. static void pfkey_table_grab(void)
  61. {
  62. write_lock_bh(&pfkey_table_lock);
  63. if (atomic_read(&pfkey_table_users)) {
  64. DECLARE_WAITQUEUE(wait, current);
  65. add_wait_queue_exclusive(&pfkey_table_wait, &wait);
  66. for(;;) {
  67. set_current_state(TASK_UNINTERRUPTIBLE);
  68. if (atomic_read(&pfkey_table_users) == 0)
  69. break;
  70. write_unlock_bh(&pfkey_table_lock);
  71. schedule();
  72. write_lock_bh(&pfkey_table_lock);
  73. }
  74. __set_current_state(TASK_RUNNING);
  75. remove_wait_queue(&pfkey_table_wait, &wait);
  76. }
  77. }
  78. static __inline__ void pfkey_table_ungrab(void)
  79. {
  80. write_unlock_bh(&pfkey_table_lock);
  81. wake_up(&pfkey_table_wait);
  82. }
  83. static __inline__ void pfkey_lock_table(void)
  84. {
  85. /* read_lock() synchronizes us to pfkey_table_grab */
  86. read_lock(&pfkey_table_lock);
  87. atomic_inc(&pfkey_table_users);
  88. read_unlock(&pfkey_table_lock);
  89. }
  90. static __inline__ void pfkey_unlock_table(void)
  91. {
  92. if (atomic_dec_and_test(&pfkey_table_users))
  93. wake_up(&pfkey_table_wait);
  94. }
  95. static const struct proto_ops pfkey_ops;
  96. static void pfkey_insert(struct sock *sk)
  97. {
  98. pfkey_table_grab();
  99. sk_add_node(sk, &pfkey_table);
  100. pfkey_table_ungrab();
  101. }
  102. static void pfkey_remove(struct sock *sk)
  103. {
  104. pfkey_table_grab();
  105. sk_del_node_init(sk);
  106. pfkey_table_ungrab();
  107. }
  108. static struct proto key_proto = {
  109. .name = "KEY",
  110. .owner = THIS_MODULE,
  111. .obj_size = sizeof(struct pfkey_sock),
  112. };
  113. static int pfkey_create(struct net *net, struct socket *sock, int protocol)
  114. {
  115. struct sock *sk;
  116. int err;
  117. if (net != &init_net)
  118. return -EAFNOSUPPORT;
  119. if (!capable(CAP_NET_ADMIN))
  120. return -EPERM;
  121. if (sock->type != SOCK_RAW)
  122. return -ESOCKTNOSUPPORT;
  123. if (protocol != PF_KEY_V2)
  124. return -EPROTONOSUPPORT;
  125. err = -ENOMEM;
  126. sk = sk_alloc(net, PF_KEY, GFP_KERNEL, &key_proto, 1);
  127. if (sk == NULL)
  128. goto out;
  129. sock->ops = &pfkey_ops;
  130. sock_init_data(sock, sk);
  131. sk->sk_family = PF_KEY;
  132. sk->sk_destruct = pfkey_sock_destruct;
  133. atomic_inc(&pfkey_socks_nr);
  134. pfkey_insert(sk);
  135. return 0;
  136. out:
  137. return err;
  138. }
  139. static int pfkey_release(struct socket *sock)
  140. {
  141. struct sock *sk = sock->sk;
  142. if (!sk)
  143. return 0;
  144. pfkey_remove(sk);
  145. sock_orphan(sk);
  146. sock->sk = NULL;
  147. skb_queue_purge(&sk->sk_write_queue);
  148. sock_put(sk);
  149. return 0;
  150. }
  151. static int pfkey_broadcast_one(struct sk_buff *skb, struct sk_buff **skb2,
  152. gfp_t allocation, struct sock *sk)
  153. {
  154. int err = -ENOBUFS;
  155. sock_hold(sk);
  156. if (*skb2 == NULL) {
  157. if (atomic_read(&skb->users) != 1) {
  158. *skb2 = skb_clone(skb, allocation);
  159. } else {
  160. *skb2 = skb;
  161. atomic_inc(&skb->users);
  162. }
  163. }
  164. if (*skb2 != NULL) {
  165. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) {
  166. skb_orphan(*skb2);
  167. skb_set_owner_r(*skb2, sk);
  168. skb_queue_tail(&sk->sk_receive_queue, *skb2);
  169. sk->sk_data_ready(sk, (*skb2)->len);
  170. *skb2 = NULL;
  171. err = 0;
  172. }
  173. }
  174. sock_put(sk);
  175. return err;
  176. }
  177. /* Send SKB to all pfkey sockets matching selected criteria. */
  178. #define BROADCAST_ALL 0
  179. #define BROADCAST_ONE 1
  180. #define BROADCAST_REGISTERED 2
  181. #define BROADCAST_PROMISC_ONLY 4
  182. static int pfkey_broadcast(struct sk_buff *skb, gfp_t allocation,
  183. int broadcast_flags, struct sock *one_sk)
  184. {
  185. struct sock *sk;
  186. struct hlist_node *node;
  187. struct sk_buff *skb2 = NULL;
  188. int err = -ESRCH;
  189. /* XXX Do we need something like netlink_overrun? I think
  190. * XXX PF_KEY socket apps will not mind current behavior.
  191. */
  192. if (!skb)
  193. return -ENOMEM;
  194. pfkey_lock_table();
  195. sk_for_each(sk, node, &pfkey_table) {
  196. struct pfkey_sock *pfk = pfkey_sk(sk);
  197. int err2;
  198. /* Yes, it means that if you are meant to receive this
  199. * pfkey message you receive it twice as promiscuous
  200. * socket.
  201. */
  202. if (pfk->promisc)
  203. pfkey_broadcast_one(skb, &skb2, allocation, sk);
  204. /* the exact target will be processed later */
  205. if (sk == one_sk)
  206. continue;
  207. if (broadcast_flags != BROADCAST_ALL) {
  208. if (broadcast_flags & BROADCAST_PROMISC_ONLY)
  209. continue;
  210. if ((broadcast_flags & BROADCAST_REGISTERED) &&
  211. !pfk->registered)
  212. continue;
  213. if (broadcast_flags & BROADCAST_ONE)
  214. continue;
  215. }
  216. err2 = pfkey_broadcast_one(skb, &skb2, allocation, sk);
  217. /* Error is cleare after succecful sending to at least one
  218. * registered KM */
  219. if ((broadcast_flags & BROADCAST_REGISTERED) && err)
  220. err = err2;
  221. }
  222. pfkey_unlock_table();
  223. if (one_sk != NULL)
  224. err = pfkey_broadcast_one(skb, &skb2, allocation, one_sk);
  225. if (skb2)
  226. kfree_skb(skb2);
  227. kfree_skb(skb);
  228. return err;
  229. }
  230. static inline void pfkey_hdr_dup(struct sadb_msg *new, struct sadb_msg *orig)
  231. {
  232. *new = *orig;
  233. }
  234. static int pfkey_error(struct sadb_msg *orig, int err, struct sock *sk)
  235. {
  236. struct sk_buff *skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_KERNEL);
  237. struct sadb_msg *hdr;
  238. if (!skb)
  239. return -ENOBUFS;
  240. /* Woe be to the platform trying to support PFKEY yet
  241. * having normal errnos outside the 1-255 range, inclusive.
  242. */
  243. err = -err;
  244. if (err == ERESTARTSYS ||
  245. err == ERESTARTNOHAND ||
  246. err == ERESTARTNOINTR)
  247. err = EINTR;
  248. if (err >= 512)
  249. err = EINVAL;
  250. BUG_ON(err <= 0 || err >= 256);
  251. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  252. pfkey_hdr_dup(hdr, orig);
  253. hdr->sadb_msg_errno = (uint8_t) err;
  254. hdr->sadb_msg_len = (sizeof(struct sadb_msg) /
  255. sizeof(uint64_t));
  256. pfkey_broadcast(skb, GFP_KERNEL, BROADCAST_ONE, sk);
  257. return 0;
  258. }
  259. static u8 sadb_ext_min_len[] = {
  260. [SADB_EXT_RESERVED] = (u8) 0,
  261. [SADB_EXT_SA] = (u8) sizeof(struct sadb_sa),
  262. [SADB_EXT_LIFETIME_CURRENT] = (u8) sizeof(struct sadb_lifetime),
  263. [SADB_EXT_LIFETIME_HARD] = (u8) sizeof(struct sadb_lifetime),
  264. [SADB_EXT_LIFETIME_SOFT] = (u8) sizeof(struct sadb_lifetime),
  265. [SADB_EXT_ADDRESS_SRC] = (u8) sizeof(struct sadb_address),
  266. [SADB_EXT_ADDRESS_DST] = (u8) sizeof(struct sadb_address),
  267. [SADB_EXT_ADDRESS_PROXY] = (u8) sizeof(struct sadb_address),
  268. [SADB_EXT_KEY_AUTH] = (u8) sizeof(struct sadb_key),
  269. [SADB_EXT_KEY_ENCRYPT] = (u8) sizeof(struct sadb_key),
  270. [SADB_EXT_IDENTITY_SRC] = (u8) sizeof(struct sadb_ident),
  271. [SADB_EXT_IDENTITY_DST] = (u8) sizeof(struct sadb_ident),
  272. [SADB_EXT_SENSITIVITY] = (u8) sizeof(struct sadb_sens),
  273. [SADB_EXT_PROPOSAL] = (u8) sizeof(struct sadb_prop),
  274. [SADB_EXT_SUPPORTED_AUTH] = (u8) sizeof(struct sadb_supported),
  275. [SADB_EXT_SUPPORTED_ENCRYPT] = (u8) sizeof(struct sadb_supported),
  276. [SADB_EXT_SPIRANGE] = (u8) sizeof(struct sadb_spirange),
  277. [SADB_X_EXT_KMPRIVATE] = (u8) sizeof(struct sadb_x_kmprivate),
  278. [SADB_X_EXT_POLICY] = (u8) sizeof(struct sadb_x_policy),
  279. [SADB_X_EXT_SA2] = (u8) sizeof(struct sadb_x_sa2),
  280. [SADB_X_EXT_NAT_T_TYPE] = (u8) sizeof(struct sadb_x_nat_t_type),
  281. [SADB_X_EXT_NAT_T_SPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  282. [SADB_X_EXT_NAT_T_DPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  283. [SADB_X_EXT_NAT_T_OA] = (u8) sizeof(struct sadb_address),
  284. [SADB_X_EXT_SEC_CTX] = (u8) sizeof(struct sadb_x_sec_ctx),
  285. };
  286. /* Verify sadb_address_{len,prefixlen} against sa_family. */
  287. static int verify_address_len(void *p)
  288. {
  289. struct sadb_address *sp = p;
  290. struct sockaddr *addr = (struct sockaddr *)(sp + 1);
  291. struct sockaddr_in *sin;
  292. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  293. struct sockaddr_in6 *sin6;
  294. #endif
  295. int len;
  296. switch (addr->sa_family) {
  297. case AF_INET:
  298. len = DIV_ROUND_UP(sizeof(*sp) + sizeof(*sin), sizeof(uint64_t));
  299. if (sp->sadb_address_len != len ||
  300. sp->sadb_address_prefixlen > 32)
  301. return -EINVAL;
  302. break;
  303. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  304. case AF_INET6:
  305. len = DIV_ROUND_UP(sizeof(*sp) + sizeof(*sin6), sizeof(uint64_t));
  306. if (sp->sadb_address_len != len ||
  307. sp->sadb_address_prefixlen > 128)
  308. return -EINVAL;
  309. break;
  310. #endif
  311. default:
  312. /* It is user using kernel to keep track of security
  313. * associations for another protocol, such as
  314. * OSPF/RSVP/RIPV2/MIP. It is user's job to verify
  315. * lengths.
  316. *
  317. * XXX Actually, association/policy database is not yet
  318. * XXX able to cope with arbitrary sockaddr families.
  319. * XXX When it can, remove this -EINVAL. -DaveM
  320. */
  321. return -EINVAL;
  322. break;
  323. }
  324. return 0;
  325. }
  326. static inline int pfkey_sec_ctx_len(struct sadb_x_sec_ctx *sec_ctx)
  327. {
  328. return DIV_ROUND_UP(sizeof(struct sadb_x_sec_ctx) +
  329. sec_ctx->sadb_x_ctx_len,
  330. sizeof(uint64_t));
  331. }
  332. static inline int verify_sec_ctx_len(void *p)
  333. {
  334. struct sadb_x_sec_ctx *sec_ctx = (struct sadb_x_sec_ctx *)p;
  335. int len;
  336. if (sec_ctx->sadb_x_ctx_len > PAGE_SIZE)
  337. return -EINVAL;
  338. len = pfkey_sec_ctx_len(sec_ctx);
  339. if (sec_ctx->sadb_x_sec_len != len)
  340. return -EINVAL;
  341. return 0;
  342. }
  343. static inline struct xfrm_user_sec_ctx *pfkey_sadb2xfrm_user_sec_ctx(struct sadb_x_sec_ctx *sec_ctx)
  344. {
  345. struct xfrm_user_sec_ctx *uctx = NULL;
  346. int ctx_size = sec_ctx->sadb_x_ctx_len;
  347. uctx = kmalloc((sizeof(*uctx)+ctx_size), GFP_KERNEL);
  348. if (!uctx)
  349. return NULL;
  350. uctx->len = pfkey_sec_ctx_len(sec_ctx);
  351. uctx->exttype = sec_ctx->sadb_x_sec_exttype;
  352. uctx->ctx_doi = sec_ctx->sadb_x_ctx_doi;
  353. uctx->ctx_alg = sec_ctx->sadb_x_ctx_alg;
  354. uctx->ctx_len = sec_ctx->sadb_x_ctx_len;
  355. memcpy(uctx + 1, sec_ctx + 1,
  356. uctx->ctx_len);
  357. return uctx;
  358. }
  359. static int present_and_same_family(struct sadb_address *src,
  360. struct sadb_address *dst)
  361. {
  362. struct sockaddr *s_addr, *d_addr;
  363. if (!src || !dst)
  364. return 0;
  365. s_addr = (struct sockaddr *)(src + 1);
  366. d_addr = (struct sockaddr *)(dst + 1);
  367. if (s_addr->sa_family != d_addr->sa_family)
  368. return 0;
  369. if (s_addr->sa_family != AF_INET
  370. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  371. && s_addr->sa_family != AF_INET6
  372. #endif
  373. )
  374. return 0;
  375. return 1;
  376. }
  377. static int parse_exthdrs(struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  378. {
  379. char *p = (char *) hdr;
  380. int len = skb->len;
  381. len -= sizeof(*hdr);
  382. p += sizeof(*hdr);
  383. while (len > 0) {
  384. struct sadb_ext *ehdr = (struct sadb_ext *) p;
  385. uint16_t ext_type;
  386. int ext_len;
  387. ext_len = ehdr->sadb_ext_len;
  388. ext_len *= sizeof(uint64_t);
  389. ext_type = ehdr->sadb_ext_type;
  390. if (ext_len < sizeof(uint64_t) ||
  391. ext_len > len ||
  392. ext_type == SADB_EXT_RESERVED)
  393. return -EINVAL;
  394. if (ext_type <= SADB_EXT_MAX) {
  395. int min = (int) sadb_ext_min_len[ext_type];
  396. if (ext_len < min)
  397. return -EINVAL;
  398. if (ext_hdrs[ext_type-1] != NULL)
  399. return -EINVAL;
  400. if (ext_type == SADB_EXT_ADDRESS_SRC ||
  401. ext_type == SADB_EXT_ADDRESS_DST ||
  402. ext_type == SADB_EXT_ADDRESS_PROXY ||
  403. ext_type == SADB_X_EXT_NAT_T_OA) {
  404. if (verify_address_len(p))
  405. return -EINVAL;
  406. }
  407. if (ext_type == SADB_X_EXT_SEC_CTX) {
  408. if (verify_sec_ctx_len(p))
  409. return -EINVAL;
  410. }
  411. ext_hdrs[ext_type-1] = p;
  412. }
  413. p += ext_len;
  414. len -= ext_len;
  415. }
  416. return 0;
  417. }
  418. static uint16_t
  419. pfkey_satype2proto(uint8_t satype)
  420. {
  421. switch (satype) {
  422. case SADB_SATYPE_UNSPEC:
  423. return IPSEC_PROTO_ANY;
  424. case SADB_SATYPE_AH:
  425. return IPPROTO_AH;
  426. case SADB_SATYPE_ESP:
  427. return IPPROTO_ESP;
  428. case SADB_X_SATYPE_IPCOMP:
  429. return IPPROTO_COMP;
  430. break;
  431. default:
  432. return 0;
  433. }
  434. /* NOTREACHED */
  435. }
  436. static uint8_t
  437. pfkey_proto2satype(uint16_t proto)
  438. {
  439. switch (proto) {
  440. case IPPROTO_AH:
  441. return SADB_SATYPE_AH;
  442. case IPPROTO_ESP:
  443. return SADB_SATYPE_ESP;
  444. case IPPROTO_COMP:
  445. return SADB_X_SATYPE_IPCOMP;
  446. break;
  447. default:
  448. return 0;
  449. }
  450. /* NOTREACHED */
  451. }
  452. /* BTW, this scheme means that there is no way with PFKEY2 sockets to
  453. * say specifically 'just raw sockets' as we encode them as 255.
  454. */
  455. static uint8_t pfkey_proto_to_xfrm(uint8_t proto)
  456. {
  457. return (proto == IPSEC_PROTO_ANY ? 0 : proto);
  458. }
  459. static uint8_t pfkey_proto_from_xfrm(uint8_t proto)
  460. {
  461. return (proto ? proto : IPSEC_PROTO_ANY);
  462. }
  463. static int pfkey_sadb_addr2xfrm_addr(struct sadb_address *addr,
  464. xfrm_address_t *xaddr)
  465. {
  466. switch (((struct sockaddr*)(addr + 1))->sa_family) {
  467. case AF_INET:
  468. xaddr->a4 =
  469. ((struct sockaddr_in *)(addr + 1))->sin_addr.s_addr;
  470. return AF_INET;
  471. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  472. case AF_INET6:
  473. memcpy(xaddr->a6,
  474. &((struct sockaddr_in6 *)(addr + 1))->sin6_addr,
  475. sizeof(struct in6_addr));
  476. return AF_INET6;
  477. #endif
  478. default:
  479. return 0;
  480. }
  481. /* NOTREACHED */
  482. }
  483. static struct xfrm_state *pfkey_xfrm_state_lookup(struct sadb_msg *hdr, void **ext_hdrs)
  484. {
  485. struct sadb_sa *sa;
  486. struct sadb_address *addr;
  487. uint16_t proto;
  488. unsigned short family;
  489. xfrm_address_t *xaddr;
  490. sa = (struct sadb_sa *) ext_hdrs[SADB_EXT_SA-1];
  491. if (sa == NULL)
  492. return NULL;
  493. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  494. if (proto == 0)
  495. return NULL;
  496. /* sadb_address_len should be checked by caller */
  497. addr = (struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  498. if (addr == NULL)
  499. return NULL;
  500. family = ((struct sockaddr *)(addr + 1))->sa_family;
  501. switch (family) {
  502. case AF_INET:
  503. xaddr = (xfrm_address_t *)&((struct sockaddr_in *)(addr + 1))->sin_addr;
  504. break;
  505. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  506. case AF_INET6:
  507. xaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(addr + 1))->sin6_addr;
  508. break;
  509. #endif
  510. default:
  511. xaddr = NULL;
  512. }
  513. if (!xaddr)
  514. return NULL;
  515. return xfrm_state_lookup(xaddr, sa->sadb_sa_spi, proto, family);
  516. }
  517. #define PFKEY_ALIGN8(a) (1 + (((a) - 1) | (8 - 1)))
  518. static int
  519. pfkey_sockaddr_size(sa_family_t family)
  520. {
  521. switch (family) {
  522. case AF_INET:
  523. return PFKEY_ALIGN8(sizeof(struct sockaddr_in));
  524. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  525. case AF_INET6:
  526. return PFKEY_ALIGN8(sizeof(struct sockaddr_in6));
  527. #endif
  528. default:
  529. return 0;
  530. }
  531. /* NOTREACHED */
  532. }
  533. static inline int pfkey_mode_from_xfrm(int mode)
  534. {
  535. switch(mode) {
  536. case XFRM_MODE_TRANSPORT:
  537. return IPSEC_MODE_TRANSPORT;
  538. case XFRM_MODE_TUNNEL:
  539. return IPSEC_MODE_TUNNEL;
  540. case XFRM_MODE_BEET:
  541. return IPSEC_MODE_BEET;
  542. default:
  543. return -1;
  544. }
  545. }
  546. static inline int pfkey_mode_to_xfrm(int mode)
  547. {
  548. switch(mode) {
  549. case IPSEC_MODE_ANY: /*XXX*/
  550. case IPSEC_MODE_TRANSPORT:
  551. return XFRM_MODE_TRANSPORT;
  552. case IPSEC_MODE_TUNNEL:
  553. return XFRM_MODE_TUNNEL;
  554. case IPSEC_MODE_BEET:
  555. return XFRM_MODE_BEET;
  556. default:
  557. return -1;
  558. }
  559. }
  560. static struct sk_buff *__pfkey_xfrm_state2msg(struct xfrm_state *x,
  561. int add_keys, int hsc)
  562. {
  563. struct sk_buff *skb;
  564. struct sadb_msg *hdr;
  565. struct sadb_sa *sa;
  566. struct sadb_lifetime *lifetime;
  567. struct sadb_address *addr;
  568. struct sadb_key *key;
  569. struct sadb_x_sa2 *sa2;
  570. struct sockaddr_in *sin;
  571. struct sadb_x_sec_ctx *sec_ctx;
  572. struct xfrm_sec_ctx *xfrm_ctx;
  573. int ctx_size = 0;
  574. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  575. struct sockaddr_in6 *sin6;
  576. #endif
  577. int size;
  578. int auth_key_size = 0;
  579. int encrypt_key_size = 0;
  580. int sockaddr_size;
  581. struct xfrm_encap_tmpl *natt = NULL;
  582. int mode;
  583. /* address family check */
  584. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  585. if (!sockaddr_size)
  586. return ERR_PTR(-EINVAL);
  587. /* base, SA, (lifetime (HSC),) address(SD), (address(P),)
  588. key(AE), (identity(SD),) (sensitivity)> */
  589. size = sizeof(struct sadb_msg) +sizeof(struct sadb_sa) +
  590. sizeof(struct sadb_lifetime) +
  591. ((hsc & 1) ? sizeof(struct sadb_lifetime) : 0) +
  592. ((hsc & 2) ? sizeof(struct sadb_lifetime) : 0) +
  593. sizeof(struct sadb_address)*2 +
  594. sockaddr_size*2 +
  595. sizeof(struct sadb_x_sa2);
  596. if ((xfrm_ctx = x->security)) {
  597. ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
  598. size += sizeof(struct sadb_x_sec_ctx) + ctx_size;
  599. }
  600. /* identity & sensitivity */
  601. if ((x->props.family == AF_INET &&
  602. x->sel.saddr.a4 != x->props.saddr.a4)
  603. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  604. || (x->props.family == AF_INET6 &&
  605. memcmp (x->sel.saddr.a6, x->props.saddr.a6, sizeof (struct in6_addr)))
  606. #endif
  607. )
  608. size += sizeof(struct sadb_address) + sockaddr_size;
  609. if (add_keys) {
  610. if (x->aalg && x->aalg->alg_key_len) {
  611. auth_key_size =
  612. PFKEY_ALIGN8((x->aalg->alg_key_len + 7) / 8);
  613. size += sizeof(struct sadb_key) + auth_key_size;
  614. }
  615. if (x->ealg && x->ealg->alg_key_len) {
  616. encrypt_key_size =
  617. PFKEY_ALIGN8((x->ealg->alg_key_len+7) / 8);
  618. size += sizeof(struct sadb_key) + encrypt_key_size;
  619. }
  620. }
  621. if (x->encap)
  622. natt = x->encap;
  623. if (natt && natt->encap_type) {
  624. size += sizeof(struct sadb_x_nat_t_type);
  625. size += sizeof(struct sadb_x_nat_t_port);
  626. size += sizeof(struct sadb_x_nat_t_port);
  627. }
  628. skb = alloc_skb(size + 16, GFP_ATOMIC);
  629. if (skb == NULL)
  630. return ERR_PTR(-ENOBUFS);
  631. /* call should fill header later */
  632. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  633. memset(hdr, 0, size); /* XXX do we need this ? */
  634. hdr->sadb_msg_len = size / sizeof(uint64_t);
  635. /* sa */
  636. sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
  637. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  638. sa->sadb_sa_exttype = SADB_EXT_SA;
  639. sa->sadb_sa_spi = x->id.spi;
  640. sa->sadb_sa_replay = x->props.replay_window;
  641. switch (x->km.state) {
  642. case XFRM_STATE_VALID:
  643. sa->sadb_sa_state = x->km.dying ?
  644. SADB_SASTATE_DYING : SADB_SASTATE_MATURE;
  645. break;
  646. case XFRM_STATE_ACQ:
  647. sa->sadb_sa_state = SADB_SASTATE_LARVAL;
  648. break;
  649. default:
  650. sa->sadb_sa_state = SADB_SASTATE_DEAD;
  651. break;
  652. }
  653. sa->sadb_sa_auth = 0;
  654. if (x->aalg) {
  655. struct xfrm_algo_desc *a = xfrm_aalg_get_byname(x->aalg->alg_name, 0);
  656. sa->sadb_sa_auth = a ? a->desc.sadb_alg_id : 0;
  657. }
  658. sa->sadb_sa_encrypt = 0;
  659. BUG_ON(x->ealg && x->calg);
  660. if (x->ealg) {
  661. struct xfrm_algo_desc *a = xfrm_ealg_get_byname(x->ealg->alg_name, 0);
  662. sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0;
  663. }
  664. /* KAME compatible: sadb_sa_encrypt is overloaded with calg id */
  665. if (x->calg) {
  666. struct xfrm_algo_desc *a = xfrm_calg_get_byname(x->calg->alg_name, 0);
  667. sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0;
  668. }
  669. sa->sadb_sa_flags = 0;
  670. if (x->props.flags & XFRM_STATE_NOECN)
  671. sa->sadb_sa_flags |= SADB_SAFLAGS_NOECN;
  672. if (x->props.flags & XFRM_STATE_DECAP_DSCP)
  673. sa->sadb_sa_flags |= SADB_SAFLAGS_DECAP_DSCP;
  674. if (x->props.flags & XFRM_STATE_NOPMTUDISC)
  675. sa->sadb_sa_flags |= SADB_SAFLAGS_NOPMTUDISC;
  676. /* hard time */
  677. if (hsc & 2) {
  678. lifetime = (struct sadb_lifetime *) skb_put(skb,
  679. sizeof(struct sadb_lifetime));
  680. lifetime->sadb_lifetime_len =
  681. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  682. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  683. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.hard_packet_limit);
  684. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.hard_byte_limit);
  685. lifetime->sadb_lifetime_addtime = x->lft.hard_add_expires_seconds;
  686. lifetime->sadb_lifetime_usetime = x->lft.hard_use_expires_seconds;
  687. }
  688. /* soft time */
  689. if (hsc & 1) {
  690. lifetime = (struct sadb_lifetime *) skb_put(skb,
  691. sizeof(struct sadb_lifetime));
  692. lifetime->sadb_lifetime_len =
  693. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  694. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  695. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.soft_packet_limit);
  696. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.soft_byte_limit);
  697. lifetime->sadb_lifetime_addtime = x->lft.soft_add_expires_seconds;
  698. lifetime->sadb_lifetime_usetime = x->lft.soft_use_expires_seconds;
  699. }
  700. /* current time */
  701. lifetime = (struct sadb_lifetime *) skb_put(skb,
  702. sizeof(struct sadb_lifetime));
  703. lifetime->sadb_lifetime_len =
  704. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  705. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  706. lifetime->sadb_lifetime_allocations = x->curlft.packets;
  707. lifetime->sadb_lifetime_bytes = x->curlft.bytes;
  708. lifetime->sadb_lifetime_addtime = x->curlft.add_time;
  709. lifetime->sadb_lifetime_usetime = x->curlft.use_time;
  710. /* src address */
  711. addr = (struct sadb_address*) skb_put(skb,
  712. sizeof(struct sadb_address)+sockaddr_size);
  713. addr->sadb_address_len =
  714. (sizeof(struct sadb_address)+sockaddr_size)/
  715. sizeof(uint64_t);
  716. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  717. /* "if the ports are non-zero, then the sadb_address_proto field,
  718. normally zero, MUST be filled in with the transport
  719. protocol's number." - RFC2367 */
  720. addr->sadb_address_proto = 0;
  721. addr->sadb_address_reserved = 0;
  722. if (x->props.family == AF_INET) {
  723. addr->sadb_address_prefixlen = 32;
  724. sin = (struct sockaddr_in *) (addr + 1);
  725. sin->sin_family = AF_INET;
  726. sin->sin_addr.s_addr = x->props.saddr.a4;
  727. sin->sin_port = 0;
  728. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  729. }
  730. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  731. else if (x->props.family == AF_INET6) {
  732. addr->sadb_address_prefixlen = 128;
  733. sin6 = (struct sockaddr_in6 *) (addr + 1);
  734. sin6->sin6_family = AF_INET6;
  735. sin6->sin6_port = 0;
  736. sin6->sin6_flowinfo = 0;
  737. memcpy(&sin6->sin6_addr, x->props.saddr.a6,
  738. sizeof(struct in6_addr));
  739. sin6->sin6_scope_id = 0;
  740. }
  741. #endif
  742. else
  743. BUG();
  744. /* dst address */
  745. addr = (struct sadb_address*) skb_put(skb,
  746. sizeof(struct sadb_address)+sockaddr_size);
  747. addr->sadb_address_len =
  748. (sizeof(struct sadb_address)+sockaddr_size)/
  749. sizeof(uint64_t);
  750. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  751. addr->sadb_address_proto = 0;
  752. addr->sadb_address_prefixlen = 32; /* XXX */
  753. addr->sadb_address_reserved = 0;
  754. if (x->props.family == AF_INET) {
  755. sin = (struct sockaddr_in *) (addr + 1);
  756. sin->sin_family = AF_INET;
  757. sin->sin_addr.s_addr = x->id.daddr.a4;
  758. sin->sin_port = 0;
  759. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  760. if (x->sel.saddr.a4 != x->props.saddr.a4) {
  761. addr = (struct sadb_address*) skb_put(skb,
  762. sizeof(struct sadb_address)+sockaddr_size);
  763. addr->sadb_address_len =
  764. (sizeof(struct sadb_address)+sockaddr_size)/
  765. sizeof(uint64_t);
  766. addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY;
  767. addr->sadb_address_proto =
  768. pfkey_proto_from_xfrm(x->sel.proto);
  769. addr->sadb_address_prefixlen = x->sel.prefixlen_s;
  770. addr->sadb_address_reserved = 0;
  771. sin = (struct sockaddr_in *) (addr + 1);
  772. sin->sin_family = AF_INET;
  773. sin->sin_addr.s_addr = x->sel.saddr.a4;
  774. sin->sin_port = x->sel.sport;
  775. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  776. }
  777. }
  778. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  779. else if (x->props.family == AF_INET6) {
  780. addr->sadb_address_prefixlen = 128;
  781. sin6 = (struct sockaddr_in6 *) (addr + 1);
  782. sin6->sin6_family = AF_INET6;
  783. sin6->sin6_port = 0;
  784. sin6->sin6_flowinfo = 0;
  785. memcpy(&sin6->sin6_addr, x->id.daddr.a6, sizeof(struct in6_addr));
  786. sin6->sin6_scope_id = 0;
  787. if (memcmp (x->sel.saddr.a6, x->props.saddr.a6,
  788. sizeof(struct in6_addr))) {
  789. addr = (struct sadb_address *) skb_put(skb,
  790. sizeof(struct sadb_address)+sockaddr_size);
  791. addr->sadb_address_len =
  792. (sizeof(struct sadb_address)+sockaddr_size)/
  793. sizeof(uint64_t);
  794. addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY;
  795. addr->sadb_address_proto =
  796. pfkey_proto_from_xfrm(x->sel.proto);
  797. addr->sadb_address_prefixlen = x->sel.prefixlen_s;
  798. addr->sadb_address_reserved = 0;
  799. sin6 = (struct sockaddr_in6 *) (addr + 1);
  800. sin6->sin6_family = AF_INET6;
  801. sin6->sin6_port = x->sel.sport;
  802. sin6->sin6_flowinfo = 0;
  803. memcpy(&sin6->sin6_addr, x->sel.saddr.a6,
  804. sizeof(struct in6_addr));
  805. sin6->sin6_scope_id = 0;
  806. }
  807. }
  808. #endif
  809. else
  810. BUG();
  811. /* auth key */
  812. if (add_keys && auth_key_size) {
  813. key = (struct sadb_key *) skb_put(skb,
  814. sizeof(struct sadb_key)+auth_key_size);
  815. key->sadb_key_len = (sizeof(struct sadb_key) + auth_key_size) /
  816. sizeof(uint64_t);
  817. key->sadb_key_exttype = SADB_EXT_KEY_AUTH;
  818. key->sadb_key_bits = x->aalg->alg_key_len;
  819. key->sadb_key_reserved = 0;
  820. memcpy(key + 1, x->aalg->alg_key, (x->aalg->alg_key_len+7)/8);
  821. }
  822. /* encrypt key */
  823. if (add_keys && encrypt_key_size) {
  824. key = (struct sadb_key *) skb_put(skb,
  825. sizeof(struct sadb_key)+encrypt_key_size);
  826. key->sadb_key_len = (sizeof(struct sadb_key) +
  827. encrypt_key_size) / sizeof(uint64_t);
  828. key->sadb_key_exttype = SADB_EXT_KEY_ENCRYPT;
  829. key->sadb_key_bits = x->ealg->alg_key_len;
  830. key->sadb_key_reserved = 0;
  831. memcpy(key + 1, x->ealg->alg_key,
  832. (x->ealg->alg_key_len+7)/8);
  833. }
  834. /* sa */
  835. sa2 = (struct sadb_x_sa2 *) skb_put(skb, sizeof(struct sadb_x_sa2));
  836. sa2->sadb_x_sa2_len = sizeof(struct sadb_x_sa2)/sizeof(uint64_t);
  837. sa2->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
  838. if ((mode = pfkey_mode_from_xfrm(x->props.mode)) < 0) {
  839. kfree_skb(skb);
  840. return ERR_PTR(-EINVAL);
  841. }
  842. sa2->sadb_x_sa2_mode = mode;
  843. sa2->sadb_x_sa2_reserved1 = 0;
  844. sa2->sadb_x_sa2_reserved2 = 0;
  845. sa2->sadb_x_sa2_sequence = 0;
  846. sa2->sadb_x_sa2_reqid = x->props.reqid;
  847. if (natt && natt->encap_type) {
  848. struct sadb_x_nat_t_type *n_type;
  849. struct sadb_x_nat_t_port *n_port;
  850. /* type */
  851. n_type = (struct sadb_x_nat_t_type*) skb_put(skb, sizeof(*n_type));
  852. n_type->sadb_x_nat_t_type_len = sizeof(*n_type)/sizeof(uint64_t);
  853. n_type->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
  854. n_type->sadb_x_nat_t_type_type = natt->encap_type;
  855. n_type->sadb_x_nat_t_type_reserved[0] = 0;
  856. n_type->sadb_x_nat_t_type_reserved[1] = 0;
  857. n_type->sadb_x_nat_t_type_reserved[2] = 0;
  858. /* source port */
  859. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  860. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  861. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  862. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  863. n_port->sadb_x_nat_t_port_reserved = 0;
  864. /* dest port */
  865. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  866. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  867. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  868. n_port->sadb_x_nat_t_port_port = natt->encap_dport;
  869. n_port->sadb_x_nat_t_port_reserved = 0;
  870. }
  871. /* security context */
  872. if (xfrm_ctx) {
  873. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb,
  874. sizeof(struct sadb_x_sec_ctx) + ctx_size);
  875. sec_ctx->sadb_x_sec_len =
  876. (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
  877. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  878. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  879. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  880. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  881. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  882. xfrm_ctx->ctx_len);
  883. }
  884. return skb;
  885. }
  886. static inline struct sk_buff *pfkey_xfrm_state2msg(struct xfrm_state *x)
  887. {
  888. struct sk_buff *skb;
  889. spin_lock_bh(&x->lock);
  890. skb = __pfkey_xfrm_state2msg(x, 1, 3);
  891. spin_unlock_bh(&x->lock);
  892. return skb;
  893. }
  894. static inline struct sk_buff *pfkey_xfrm_state2msg_expire(struct xfrm_state *x,
  895. int hsc)
  896. {
  897. return __pfkey_xfrm_state2msg(x, 0, hsc);
  898. }
  899. static struct xfrm_state * pfkey_msg2xfrm_state(struct sadb_msg *hdr,
  900. void **ext_hdrs)
  901. {
  902. struct xfrm_state *x;
  903. struct sadb_lifetime *lifetime;
  904. struct sadb_sa *sa;
  905. struct sadb_key *key;
  906. struct sadb_x_sec_ctx *sec_ctx;
  907. uint16_t proto;
  908. int err;
  909. sa = (struct sadb_sa *) ext_hdrs[SADB_EXT_SA-1];
  910. if (!sa ||
  911. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  912. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  913. return ERR_PTR(-EINVAL);
  914. if (hdr->sadb_msg_satype == SADB_SATYPE_ESP &&
  915. !ext_hdrs[SADB_EXT_KEY_ENCRYPT-1])
  916. return ERR_PTR(-EINVAL);
  917. if (hdr->sadb_msg_satype == SADB_SATYPE_AH &&
  918. !ext_hdrs[SADB_EXT_KEY_AUTH-1])
  919. return ERR_PTR(-EINVAL);
  920. if (!!ext_hdrs[SADB_EXT_LIFETIME_HARD-1] !=
  921. !!ext_hdrs[SADB_EXT_LIFETIME_SOFT-1])
  922. return ERR_PTR(-EINVAL);
  923. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  924. if (proto == 0)
  925. return ERR_PTR(-EINVAL);
  926. /* default error is no buffer space */
  927. err = -ENOBUFS;
  928. /* RFC2367:
  929. Only SADB_SASTATE_MATURE SAs may be submitted in an SADB_ADD message.
  930. SADB_SASTATE_LARVAL SAs are created by SADB_GETSPI and it is not
  931. sensible to add a new SA in the DYING or SADB_SASTATE_DEAD state.
  932. Therefore, the sadb_sa_state field of all submitted SAs MUST be
  933. SADB_SASTATE_MATURE and the kernel MUST return an error if this is
  934. not true.
  935. However, KAME setkey always uses SADB_SASTATE_LARVAL.
  936. Hence, we have to _ignore_ sadb_sa_state, which is also reasonable.
  937. */
  938. if (sa->sadb_sa_auth > SADB_AALG_MAX ||
  939. (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP &&
  940. sa->sadb_sa_encrypt > SADB_X_CALG_MAX) ||
  941. sa->sadb_sa_encrypt > SADB_EALG_MAX)
  942. return ERR_PTR(-EINVAL);
  943. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_AUTH-1];
  944. if (key != NULL &&
  945. sa->sadb_sa_auth != SADB_X_AALG_NULL &&
  946. ((key->sadb_key_bits+7) / 8 == 0 ||
  947. (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
  948. return ERR_PTR(-EINVAL);
  949. key = ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  950. if (key != NULL &&
  951. sa->sadb_sa_encrypt != SADB_EALG_NULL &&
  952. ((key->sadb_key_bits+7) / 8 == 0 ||
  953. (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
  954. return ERR_PTR(-EINVAL);
  955. x = xfrm_state_alloc();
  956. if (x == NULL)
  957. return ERR_PTR(-ENOBUFS);
  958. x->id.proto = proto;
  959. x->id.spi = sa->sadb_sa_spi;
  960. x->props.replay_window = sa->sadb_sa_replay;
  961. if (sa->sadb_sa_flags & SADB_SAFLAGS_NOECN)
  962. x->props.flags |= XFRM_STATE_NOECN;
  963. if (sa->sadb_sa_flags & SADB_SAFLAGS_DECAP_DSCP)
  964. x->props.flags |= XFRM_STATE_DECAP_DSCP;
  965. if (sa->sadb_sa_flags & SADB_SAFLAGS_NOPMTUDISC)
  966. x->props.flags |= XFRM_STATE_NOPMTUDISC;
  967. lifetime = (struct sadb_lifetime*) ext_hdrs[SADB_EXT_LIFETIME_HARD-1];
  968. if (lifetime != NULL) {
  969. x->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  970. x->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  971. x->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  972. x->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  973. }
  974. lifetime = (struct sadb_lifetime*) ext_hdrs[SADB_EXT_LIFETIME_SOFT-1];
  975. if (lifetime != NULL) {
  976. x->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  977. x->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  978. x->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  979. x->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  980. }
  981. sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
  982. if (sec_ctx != NULL) {
  983. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  984. if (!uctx)
  985. goto out;
  986. err = security_xfrm_state_alloc(x, uctx);
  987. kfree(uctx);
  988. if (err)
  989. goto out;
  990. }
  991. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_AUTH-1];
  992. if (sa->sadb_sa_auth) {
  993. int keysize = 0;
  994. struct xfrm_algo_desc *a = xfrm_aalg_get_byid(sa->sadb_sa_auth);
  995. if (!a) {
  996. err = -ENOSYS;
  997. goto out;
  998. }
  999. if (key)
  1000. keysize = (key->sadb_key_bits + 7) / 8;
  1001. x->aalg = kmalloc(sizeof(*x->aalg) + keysize, GFP_KERNEL);
  1002. if (!x->aalg)
  1003. goto out;
  1004. strcpy(x->aalg->alg_name, a->name);
  1005. x->aalg->alg_key_len = 0;
  1006. if (key) {
  1007. x->aalg->alg_key_len = key->sadb_key_bits;
  1008. memcpy(x->aalg->alg_key, key+1, keysize);
  1009. }
  1010. x->props.aalgo = sa->sadb_sa_auth;
  1011. /* x->algo.flags = sa->sadb_sa_flags; */
  1012. }
  1013. if (sa->sadb_sa_encrypt) {
  1014. if (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP) {
  1015. struct xfrm_algo_desc *a = xfrm_calg_get_byid(sa->sadb_sa_encrypt);
  1016. if (!a) {
  1017. err = -ENOSYS;
  1018. goto out;
  1019. }
  1020. x->calg = kmalloc(sizeof(*x->calg), GFP_KERNEL);
  1021. if (!x->calg)
  1022. goto out;
  1023. strcpy(x->calg->alg_name, a->name);
  1024. x->props.calgo = sa->sadb_sa_encrypt;
  1025. } else {
  1026. int keysize = 0;
  1027. struct xfrm_algo_desc *a = xfrm_ealg_get_byid(sa->sadb_sa_encrypt);
  1028. if (!a) {
  1029. err = -ENOSYS;
  1030. goto out;
  1031. }
  1032. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  1033. if (key)
  1034. keysize = (key->sadb_key_bits + 7) / 8;
  1035. x->ealg = kmalloc(sizeof(*x->ealg) + keysize, GFP_KERNEL);
  1036. if (!x->ealg)
  1037. goto out;
  1038. strcpy(x->ealg->alg_name, a->name);
  1039. x->ealg->alg_key_len = 0;
  1040. if (key) {
  1041. x->ealg->alg_key_len = key->sadb_key_bits;
  1042. memcpy(x->ealg->alg_key, key+1, keysize);
  1043. }
  1044. x->props.ealgo = sa->sadb_sa_encrypt;
  1045. }
  1046. }
  1047. /* x->algo.flags = sa->sadb_sa_flags; */
  1048. x->props.family = pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1049. &x->props.saddr);
  1050. if (!x->props.family) {
  1051. err = -EAFNOSUPPORT;
  1052. goto out;
  1053. }
  1054. pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1055. &x->id.daddr);
  1056. if (ext_hdrs[SADB_X_EXT_SA2-1]) {
  1057. struct sadb_x_sa2 *sa2 = (void*)ext_hdrs[SADB_X_EXT_SA2-1];
  1058. int mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode);
  1059. if (mode < 0) {
  1060. err = -EINVAL;
  1061. goto out;
  1062. }
  1063. x->props.mode = mode;
  1064. x->props.reqid = sa2->sadb_x_sa2_reqid;
  1065. }
  1066. if (ext_hdrs[SADB_EXT_ADDRESS_PROXY-1]) {
  1067. struct sadb_address *addr = ext_hdrs[SADB_EXT_ADDRESS_PROXY-1];
  1068. /* Nobody uses this, but we try. */
  1069. x->sel.family = pfkey_sadb_addr2xfrm_addr(addr, &x->sel.saddr);
  1070. x->sel.prefixlen_s = addr->sadb_address_prefixlen;
  1071. }
  1072. if (!x->sel.family)
  1073. x->sel.family = x->props.family;
  1074. if (ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1]) {
  1075. struct sadb_x_nat_t_type* n_type;
  1076. struct xfrm_encap_tmpl *natt;
  1077. x->encap = kmalloc(sizeof(*x->encap), GFP_KERNEL);
  1078. if (!x->encap)
  1079. goto out;
  1080. natt = x->encap;
  1081. n_type = ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1];
  1082. natt->encap_type = n_type->sadb_x_nat_t_type_type;
  1083. if (ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1]) {
  1084. struct sadb_x_nat_t_port* n_port =
  1085. ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1];
  1086. natt->encap_sport = n_port->sadb_x_nat_t_port_port;
  1087. }
  1088. if (ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1]) {
  1089. struct sadb_x_nat_t_port* n_port =
  1090. ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1];
  1091. natt->encap_dport = n_port->sadb_x_nat_t_port_port;
  1092. }
  1093. }
  1094. err = xfrm_init_state(x);
  1095. if (err)
  1096. goto out;
  1097. x->km.seq = hdr->sadb_msg_seq;
  1098. return x;
  1099. out:
  1100. x->km.state = XFRM_STATE_DEAD;
  1101. xfrm_state_put(x);
  1102. return ERR_PTR(err);
  1103. }
  1104. static int pfkey_reserved(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1105. {
  1106. return -EOPNOTSUPP;
  1107. }
  1108. static int pfkey_getspi(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1109. {
  1110. struct sk_buff *resp_skb;
  1111. struct sadb_x_sa2 *sa2;
  1112. struct sadb_address *saddr, *daddr;
  1113. struct sadb_msg *out_hdr;
  1114. struct sadb_spirange *range;
  1115. struct xfrm_state *x = NULL;
  1116. int mode;
  1117. int err;
  1118. u32 min_spi, max_spi;
  1119. u32 reqid;
  1120. u8 proto;
  1121. unsigned short family;
  1122. xfrm_address_t *xsaddr = NULL, *xdaddr = NULL;
  1123. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1124. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1125. return -EINVAL;
  1126. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1127. if (proto == 0)
  1128. return -EINVAL;
  1129. if ((sa2 = ext_hdrs[SADB_X_EXT_SA2-1]) != NULL) {
  1130. mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode);
  1131. if (mode < 0)
  1132. return -EINVAL;
  1133. reqid = sa2->sadb_x_sa2_reqid;
  1134. } else {
  1135. mode = 0;
  1136. reqid = 0;
  1137. }
  1138. saddr = ext_hdrs[SADB_EXT_ADDRESS_SRC-1];
  1139. daddr = ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  1140. family = ((struct sockaddr *)(saddr + 1))->sa_family;
  1141. switch (family) {
  1142. case AF_INET:
  1143. xdaddr = (xfrm_address_t *)&((struct sockaddr_in *)(daddr + 1))->sin_addr.s_addr;
  1144. xsaddr = (xfrm_address_t *)&((struct sockaddr_in *)(saddr + 1))->sin_addr.s_addr;
  1145. break;
  1146. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1147. case AF_INET6:
  1148. xdaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(daddr + 1))->sin6_addr;
  1149. xsaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(saddr + 1))->sin6_addr;
  1150. break;
  1151. #endif
  1152. }
  1153. if (hdr->sadb_msg_seq) {
  1154. x = xfrm_find_acq_byseq(hdr->sadb_msg_seq);
  1155. if (x && xfrm_addr_cmp(&x->id.daddr, xdaddr, family)) {
  1156. xfrm_state_put(x);
  1157. x = NULL;
  1158. }
  1159. }
  1160. if (!x)
  1161. x = xfrm_find_acq(mode, reqid, proto, xdaddr, xsaddr, 1, family);
  1162. if (x == NULL)
  1163. return -ENOENT;
  1164. min_spi = 0x100;
  1165. max_spi = 0x0fffffff;
  1166. range = ext_hdrs[SADB_EXT_SPIRANGE-1];
  1167. if (range) {
  1168. min_spi = range->sadb_spirange_min;
  1169. max_spi = range->sadb_spirange_max;
  1170. }
  1171. err = xfrm_alloc_spi(x, min_spi, max_spi);
  1172. resp_skb = err ? ERR_PTR(err) : pfkey_xfrm_state2msg(x);
  1173. if (IS_ERR(resp_skb)) {
  1174. xfrm_state_put(x);
  1175. return PTR_ERR(resp_skb);
  1176. }
  1177. out_hdr = (struct sadb_msg *) resp_skb->data;
  1178. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1179. out_hdr->sadb_msg_type = SADB_GETSPI;
  1180. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1181. out_hdr->sadb_msg_errno = 0;
  1182. out_hdr->sadb_msg_reserved = 0;
  1183. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1184. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1185. xfrm_state_put(x);
  1186. pfkey_broadcast(resp_skb, GFP_KERNEL, BROADCAST_ONE, sk);
  1187. return 0;
  1188. }
  1189. static int pfkey_acquire(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1190. {
  1191. struct xfrm_state *x;
  1192. if (hdr->sadb_msg_len != sizeof(struct sadb_msg)/8)
  1193. return -EOPNOTSUPP;
  1194. if (hdr->sadb_msg_seq == 0 || hdr->sadb_msg_errno == 0)
  1195. return 0;
  1196. x = xfrm_find_acq_byseq(hdr->sadb_msg_seq);
  1197. if (x == NULL)
  1198. return 0;
  1199. spin_lock_bh(&x->lock);
  1200. if (x->km.state == XFRM_STATE_ACQ) {
  1201. x->km.state = XFRM_STATE_ERROR;
  1202. wake_up(&km_waitq);
  1203. }
  1204. spin_unlock_bh(&x->lock);
  1205. xfrm_state_put(x);
  1206. return 0;
  1207. }
  1208. static inline int event2poltype(int event)
  1209. {
  1210. switch (event) {
  1211. case XFRM_MSG_DELPOLICY:
  1212. return SADB_X_SPDDELETE;
  1213. case XFRM_MSG_NEWPOLICY:
  1214. return SADB_X_SPDADD;
  1215. case XFRM_MSG_UPDPOLICY:
  1216. return SADB_X_SPDUPDATE;
  1217. case XFRM_MSG_POLEXPIRE:
  1218. // return SADB_X_SPDEXPIRE;
  1219. default:
  1220. printk("pfkey: Unknown policy event %d\n", event);
  1221. break;
  1222. }
  1223. return 0;
  1224. }
  1225. static inline int event2keytype(int event)
  1226. {
  1227. switch (event) {
  1228. case XFRM_MSG_DELSA:
  1229. return SADB_DELETE;
  1230. case XFRM_MSG_NEWSA:
  1231. return SADB_ADD;
  1232. case XFRM_MSG_UPDSA:
  1233. return SADB_UPDATE;
  1234. case XFRM_MSG_EXPIRE:
  1235. return SADB_EXPIRE;
  1236. default:
  1237. printk("pfkey: Unknown SA event %d\n", event);
  1238. break;
  1239. }
  1240. return 0;
  1241. }
  1242. /* ADD/UPD/DEL */
  1243. static int key_notify_sa(struct xfrm_state *x, struct km_event *c)
  1244. {
  1245. struct sk_buff *skb;
  1246. struct sadb_msg *hdr;
  1247. skb = pfkey_xfrm_state2msg(x);
  1248. if (IS_ERR(skb))
  1249. return PTR_ERR(skb);
  1250. hdr = (struct sadb_msg *) skb->data;
  1251. hdr->sadb_msg_version = PF_KEY_V2;
  1252. hdr->sadb_msg_type = event2keytype(c->event);
  1253. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1254. hdr->sadb_msg_errno = 0;
  1255. hdr->sadb_msg_reserved = 0;
  1256. hdr->sadb_msg_seq = c->seq;
  1257. hdr->sadb_msg_pid = c->pid;
  1258. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  1259. return 0;
  1260. }
  1261. static int pfkey_add(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1262. {
  1263. struct xfrm_state *x;
  1264. int err;
  1265. struct km_event c;
  1266. x = pfkey_msg2xfrm_state(hdr, ext_hdrs);
  1267. if (IS_ERR(x))
  1268. return PTR_ERR(x);
  1269. xfrm_state_hold(x);
  1270. if (hdr->sadb_msg_type == SADB_ADD)
  1271. err = xfrm_state_add(x);
  1272. else
  1273. err = xfrm_state_update(x);
  1274. xfrm_audit_state_add(x, err ? 0 : 1,
  1275. audit_get_loginuid(current->audit_context), 0);
  1276. if (err < 0) {
  1277. x->km.state = XFRM_STATE_DEAD;
  1278. __xfrm_state_put(x);
  1279. goto out;
  1280. }
  1281. if (hdr->sadb_msg_type == SADB_ADD)
  1282. c.event = XFRM_MSG_NEWSA;
  1283. else
  1284. c.event = XFRM_MSG_UPDSA;
  1285. c.seq = hdr->sadb_msg_seq;
  1286. c.pid = hdr->sadb_msg_pid;
  1287. km_state_notify(x, &c);
  1288. out:
  1289. xfrm_state_put(x);
  1290. return err;
  1291. }
  1292. static int pfkey_delete(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1293. {
  1294. struct xfrm_state *x;
  1295. struct km_event c;
  1296. int err;
  1297. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1298. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1299. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1300. return -EINVAL;
  1301. x = pfkey_xfrm_state_lookup(hdr, ext_hdrs);
  1302. if (x == NULL)
  1303. return -ESRCH;
  1304. if ((err = security_xfrm_state_delete(x)))
  1305. goto out;
  1306. if (xfrm_state_kern(x)) {
  1307. err = -EPERM;
  1308. goto out;
  1309. }
  1310. err = xfrm_state_delete(x);
  1311. if (err < 0)
  1312. goto out;
  1313. c.seq = hdr->sadb_msg_seq;
  1314. c.pid = hdr->sadb_msg_pid;
  1315. c.event = XFRM_MSG_DELSA;
  1316. km_state_notify(x, &c);
  1317. out:
  1318. xfrm_audit_state_delete(x, err ? 0 : 1,
  1319. audit_get_loginuid(current->audit_context), 0);
  1320. xfrm_state_put(x);
  1321. return err;
  1322. }
  1323. static int pfkey_get(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1324. {
  1325. __u8 proto;
  1326. struct sk_buff *out_skb;
  1327. struct sadb_msg *out_hdr;
  1328. struct xfrm_state *x;
  1329. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1330. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1331. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1332. return -EINVAL;
  1333. x = pfkey_xfrm_state_lookup(hdr, ext_hdrs);
  1334. if (x == NULL)
  1335. return -ESRCH;
  1336. out_skb = pfkey_xfrm_state2msg(x);
  1337. proto = x->id.proto;
  1338. xfrm_state_put(x);
  1339. if (IS_ERR(out_skb))
  1340. return PTR_ERR(out_skb);
  1341. out_hdr = (struct sadb_msg *) out_skb->data;
  1342. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1343. out_hdr->sadb_msg_type = SADB_DUMP;
  1344. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1345. out_hdr->sadb_msg_errno = 0;
  1346. out_hdr->sadb_msg_reserved = 0;
  1347. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1348. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1349. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk);
  1350. return 0;
  1351. }
  1352. static struct sk_buff *compose_sadb_supported(struct sadb_msg *orig,
  1353. gfp_t allocation)
  1354. {
  1355. struct sk_buff *skb;
  1356. struct sadb_msg *hdr;
  1357. int len, auth_len, enc_len, i;
  1358. auth_len = xfrm_count_auth_supported();
  1359. if (auth_len) {
  1360. auth_len *= sizeof(struct sadb_alg);
  1361. auth_len += sizeof(struct sadb_supported);
  1362. }
  1363. enc_len = xfrm_count_enc_supported();
  1364. if (enc_len) {
  1365. enc_len *= sizeof(struct sadb_alg);
  1366. enc_len += sizeof(struct sadb_supported);
  1367. }
  1368. len = enc_len + auth_len + sizeof(struct sadb_msg);
  1369. skb = alloc_skb(len + 16, allocation);
  1370. if (!skb)
  1371. goto out_put_algs;
  1372. hdr = (struct sadb_msg *) skb_put(skb, sizeof(*hdr));
  1373. pfkey_hdr_dup(hdr, orig);
  1374. hdr->sadb_msg_errno = 0;
  1375. hdr->sadb_msg_len = len / sizeof(uint64_t);
  1376. if (auth_len) {
  1377. struct sadb_supported *sp;
  1378. struct sadb_alg *ap;
  1379. sp = (struct sadb_supported *) skb_put(skb, auth_len);
  1380. ap = (struct sadb_alg *) (sp + 1);
  1381. sp->sadb_supported_len = auth_len / sizeof(uint64_t);
  1382. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
  1383. for (i = 0; ; i++) {
  1384. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  1385. if (!aalg)
  1386. break;
  1387. if (aalg->available)
  1388. *ap++ = aalg->desc;
  1389. }
  1390. }
  1391. if (enc_len) {
  1392. struct sadb_supported *sp;
  1393. struct sadb_alg *ap;
  1394. sp = (struct sadb_supported *) skb_put(skb, enc_len);
  1395. ap = (struct sadb_alg *) (sp + 1);
  1396. sp->sadb_supported_len = enc_len / sizeof(uint64_t);
  1397. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
  1398. for (i = 0; ; i++) {
  1399. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  1400. if (!ealg)
  1401. break;
  1402. if (ealg->available)
  1403. *ap++ = ealg->desc;
  1404. }
  1405. }
  1406. out_put_algs:
  1407. return skb;
  1408. }
  1409. static int pfkey_register(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1410. {
  1411. struct pfkey_sock *pfk = pfkey_sk(sk);
  1412. struct sk_buff *supp_skb;
  1413. if (hdr->sadb_msg_satype > SADB_SATYPE_MAX)
  1414. return -EINVAL;
  1415. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC) {
  1416. if (pfk->registered&(1<<hdr->sadb_msg_satype))
  1417. return -EEXIST;
  1418. pfk->registered |= (1<<hdr->sadb_msg_satype);
  1419. }
  1420. xfrm_probe_algs();
  1421. supp_skb = compose_sadb_supported(hdr, GFP_KERNEL);
  1422. if (!supp_skb) {
  1423. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC)
  1424. pfk->registered &= ~(1<<hdr->sadb_msg_satype);
  1425. return -ENOBUFS;
  1426. }
  1427. pfkey_broadcast(supp_skb, GFP_KERNEL, BROADCAST_REGISTERED, sk);
  1428. return 0;
  1429. }
  1430. static int key_notify_sa_flush(struct km_event *c)
  1431. {
  1432. struct sk_buff *skb;
  1433. struct sadb_msg *hdr;
  1434. skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  1435. if (!skb)
  1436. return -ENOBUFS;
  1437. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1438. hdr->sadb_msg_satype = pfkey_proto2satype(c->data.proto);
  1439. hdr->sadb_msg_type = SADB_FLUSH;
  1440. hdr->sadb_msg_seq = c->seq;
  1441. hdr->sadb_msg_pid = c->pid;
  1442. hdr->sadb_msg_version = PF_KEY_V2;
  1443. hdr->sadb_msg_errno = (uint8_t) 0;
  1444. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  1445. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  1446. return 0;
  1447. }
  1448. static int pfkey_flush(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1449. {
  1450. unsigned proto;
  1451. struct km_event c;
  1452. struct xfrm_audit audit_info;
  1453. int err;
  1454. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1455. if (proto == 0)
  1456. return -EINVAL;
  1457. audit_info.loginuid = audit_get_loginuid(current->audit_context);
  1458. audit_info.secid = 0;
  1459. err = xfrm_state_flush(proto, &audit_info);
  1460. if (err)
  1461. return err;
  1462. c.data.proto = proto;
  1463. c.seq = hdr->sadb_msg_seq;
  1464. c.pid = hdr->sadb_msg_pid;
  1465. c.event = XFRM_MSG_FLUSHSA;
  1466. km_state_notify(NULL, &c);
  1467. return 0;
  1468. }
  1469. struct pfkey_dump_data
  1470. {
  1471. struct sk_buff *skb;
  1472. struct sadb_msg *hdr;
  1473. struct sock *sk;
  1474. };
  1475. static int dump_sa(struct xfrm_state *x, int count, void *ptr)
  1476. {
  1477. struct pfkey_dump_data *data = ptr;
  1478. struct sk_buff *out_skb;
  1479. struct sadb_msg *out_hdr;
  1480. out_skb = pfkey_xfrm_state2msg(x);
  1481. if (IS_ERR(out_skb))
  1482. return PTR_ERR(out_skb);
  1483. out_hdr = (struct sadb_msg *) out_skb->data;
  1484. out_hdr->sadb_msg_version = data->hdr->sadb_msg_version;
  1485. out_hdr->sadb_msg_type = SADB_DUMP;
  1486. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1487. out_hdr->sadb_msg_errno = 0;
  1488. out_hdr->sadb_msg_reserved = 0;
  1489. out_hdr->sadb_msg_seq = count;
  1490. out_hdr->sadb_msg_pid = data->hdr->sadb_msg_pid;
  1491. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, data->sk);
  1492. return 0;
  1493. }
  1494. static int pfkey_dump(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1495. {
  1496. u8 proto;
  1497. struct pfkey_dump_data data = { .skb = skb, .hdr = hdr, .sk = sk };
  1498. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1499. if (proto == 0)
  1500. return -EINVAL;
  1501. return xfrm_state_walk(proto, dump_sa, &data);
  1502. }
  1503. static int pfkey_promisc(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1504. {
  1505. struct pfkey_sock *pfk = pfkey_sk(sk);
  1506. int satype = hdr->sadb_msg_satype;
  1507. if (hdr->sadb_msg_len == (sizeof(*hdr) / sizeof(uint64_t))) {
  1508. /* XXX we mangle packet... */
  1509. hdr->sadb_msg_errno = 0;
  1510. if (satype != 0 && satype != 1)
  1511. return -EINVAL;
  1512. pfk->promisc = satype;
  1513. }
  1514. pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL, BROADCAST_ALL, NULL);
  1515. return 0;
  1516. }
  1517. static int check_reqid(struct xfrm_policy *xp, int dir, int count, void *ptr)
  1518. {
  1519. int i;
  1520. u32 reqid = *(u32*)ptr;
  1521. for (i=0; i<xp->xfrm_nr; i++) {
  1522. if (xp->xfrm_vec[i].reqid == reqid)
  1523. return -EEXIST;
  1524. }
  1525. return 0;
  1526. }
  1527. static u32 gen_reqid(void)
  1528. {
  1529. u32 start;
  1530. static u32 reqid = IPSEC_MANUAL_REQID_MAX;
  1531. start = reqid;
  1532. do {
  1533. ++reqid;
  1534. if (reqid == 0)
  1535. reqid = IPSEC_MANUAL_REQID_MAX+1;
  1536. if (xfrm_policy_walk(XFRM_POLICY_TYPE_MAIN, check_reqid,
  1537. (void*)&reqid) != -EEXIST)
  1538. return reqid;
  1539. } while (reqid != start);
  1540. return 0;
  1541. }
  1542. static int
  1543. parse_ipsecrequest(struct xfrm_policy *xp, struct sadb_x_ipsecrequest *rq)
  1544. {
  1545. struct xfrm_tmpl *t = xp->xfrm_vec + xp->xfrm_nr;
  1546. struct sockaddr_in *sin;
  1547. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1548. struct sockaddr_in6 *sin6;
  1549. #endif
  1550. int mode;
  1551. if (xp->xfrm_nr >= XFRM_MAX_DEPTH)
  1552. return -ELOOP;
  1553. if (rq->sadb_x_ipsecrequest_mode == 0)
  1554. return -EINVAL;
  1555. t->id.proto = rq->sadb_x_ipsecrequest_proto; /* XXX check proto */
  1556. if ((mode = pfkey_mode_to_xfrm(rq->sadb_x_ipsecrequest_mode)) < 0)
  1557. return -EINVAL;
  1558. t->mode = mode;
  1559. if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_USE)
  1560. t->optional = 1;
  1561. else if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_UNIQUE) {
  1562. t->reqid = rq->sadb_x_ipsecrequest_reqid;
  1563. if (t->reqid > IPSEC_MANUAL_REQID_MAX)
  1564. t->reqid = 0;
  1565. if (!t->reqid && !(t->reqid = gen_reqid()))
  1566. return -ENOBUFS;
  1567. }
  1568. /* addresses present only in tunnel mode */
  1569. if (t->mode == XFRM_MODE_TUNNEL) {
  1570. struct sockaddr *sa;
  1571. sa = (struct sockaddr *)(rq+1);
  1572. switch(sa->sa_family) {
  1573. case AF_INET:
  1574. sin = (struct sockaddr_in*)sa;
  1575. t->saddr.a4 = sin->sin_addr.s_addr;
  1576. sin++;
  1577. if (sin->sin_family != AF_INET)
  1578. return -EINVAL;
  1579. t->id.daddr.a4 = sin->sin_addr.s_addr;
  1580. break;
  1581. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1582. case AF_INET6:
  1583. sin6 = (struct sockaddr_in6*)sa;
  1584. memcpy(t->saddr.a6, &sin6->sin6_addr, sizeof(struct in6_addr));
  1585. sin6++;
  1586. if (sin6->sin6_family != AF_INET6)
  1587. return -EINVAL;
  1588. memcpy(t->id.daddr.a6, &sin6->sin6_addr, sizeof(struct in6_addr));
  1589. break;
  1590. #endif
  1591. default:
  1592. return -EINVAL;
  1593. }
  1594. t->encap_family = sa->sa_family;
  1595. } else
  1596. t->encap_family = xp->family;
  1597. /* No way to set this via kame pfkey */
  1598. t->aalgos = t->ealgos = t->calgos = ~0;
  1599. xp->xfrm_nr++;
  1600. return 0;
  1601. }
  1602. static int
  1603. parse_ipsecrequests(struct xfrm_policy *xp, struct sadb_x_policy *pol)
  1604. {
  1605. int err;
  1606. int len = pol->sadb_x_policy_len*8 - sizeof(struct sadb_x_policy);
  1607. struct sadb_x_ipsecrequest *rq = (void*)(pol+1);
  1608. while (len >= sizeof(struct sadb_x_ipsecrequest)) {
  1609. if ((err = parse_ipsecrequest(xp, rq)) < 0)
  1610. return err;
  1611. len -= rq->sadb_x_ipsecrequest_len;
  1612. rq = (void*)((u8*)rq + rq->sadb_x_ipsecrequest_len);
  1613. }
  1614. return 0;
  1615. }
  1616. static inline int pfkey_xfrm_policy2sec_ctx_size(struct xfrm_policy *xp)
  1617. {
  1618. struct xfrm_sec_ctx *xfrm_ctx = xp->security;
  1619. if (xfrm_ctx) {
  1620. int len = sizeof(struct sadb_x_sec_ctx);
  1621. len += xfrm_ctx->ctx_len;
  1622. return PFKEY_ALIGN8(len);
  1623. }
  1624. return 0;
  1625. }
  1626. static int pfkey_xfrm_policy2msg_size(struct xfrm_policy *xp)
  1627. {
  1628. struct xfrm_tmpl *t;
  1629. int sockaddr_size = pfkey_sockaddr_size(xp->family);
  1630. int socklen = 0;
  1631. int i;
  1632. for (i=0; i<xp->xfrm_nr; i++) {
  1633. t = xp->xfrm_vec + i;
  1634. socklen += (t->encap_family == AF_INET ?
  1635. sizeof(struct sockaddr_in) :
  1636. sizeof(struct sockaddr_in6));
  1637. }
  1638. return sizeof(struct sadb_msg) +
  1639. (sizeof(struct sadb_lifetime) * 3) +
  1640. (sizeof(struct sadb_address) * 2) +
  1641. (sockaddr_size * 2) +
  1642. sizeof(struct sadb_x_policy) +
  1643. (xp->xfrm_nr * sizeof(struct sadb_x_ipsecrequest)) +
  1644. (socklen * 2) +
  1645. pfkey_xfrm_policy2sec_ctx_size(xp);
  1646. }
  1647. static struct sk_buff * pfkey_xfrm_policy2msg_prep(struct xfrm_policy *xp)
  1648. {
  1649. struct sk_buff *skb;
  1650. int size;
  1651. size = pfkey_xfrm_policy2msg_size(xp);
  1652. skb = alloc_skb(size + 16, GFP_ATOMIC);
  1653. if (skb == NULL)
  1654. return ERR_PTR(-ENOBUFS);
  1655. return skb;
  1656. }
  1657. static int pfkey_xfrm_policy2msg(struct sk_buff *skb, struct xfrm_policy *xp, int dir)
  1658. {
  1659. struct sadb_msg *hdr;
  1660. struct sadb_address *addr;
  1661. struct sadb_lifetime *lifetime;
  1662. struct sadb_x_policy *pol;
  1663. struct sockaddr_in *sin;
  1664. struct sadb_x_sec_ctx *sec_ctx;
  1665. struct xfrm_sec_ctx *xfrm_ctx;
  1666. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1667. struct sockaddr_in6 *sin6;
  1668. #endif
  1669. int i;
  1670. int size;
  1671. int sockaddr_size = pfkey_sockaddr_size(xp->family);
  1672. int socklen = (xp->family == AF_INET ?
  1673. sizeof(struct sockaddr_in) :
  1674. sizeof(struct sockaddr_in6));
  1675. size = pfkey_xfrm_policy2msg_size(xp);
  1676. /* call should fill header later */
  1677. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1678. memset(hdr, 0, size); /* XXX do we need this ? */
  1679. /* src address */
  1680. addr = (struct sadb_address*) skb_put(skb,
  1681. sizeof(struct sadb_address)+sockaddr_size);
  1682. addr->sadb_address_len =
  1683. (sizeof(struct sadb_address)+sockaddr_size)/
  1684. sizeof(uint64_t);
  1685. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  1686. addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
  1687. addr->sadb_address_prefixlen = xp->selector.prefixlen_s;
  1688. addr->sadb_address_reserved = 0;
  1689. /* src address */
  1690. if (xp->family == AF_INET) {
  1691. sin = (struct sockaddr_in *) (addr + 1);
  1692. sin->sin_family = AF_INET;
  1693. sin->sin_addr.s_addr = xp->selector.saddr.a4;
  1694. sin->sin_port = xp->selector.sport;
  1695. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  1696. }
  1697. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1698. else if (xp->family == AF_INET6) {
  1699. sin6 = (struct sockaddr_in6 *) (addr + 1);
  1700. sin6->sin6_family = AF_INET6;
  1701. sin6->sin6_port = xp->selector.sport;
  1702. sin6->sin6_flowinfo = 0;
  1703. memcpy(&sin6->sin6_addr, xp->selector.saddr.a6,
  1704. sizeof(struct in6_addr));
  1705. sin6->sin6_scope_id = 0;
  1706. }
  1707. #endif
  1708. else
  1709. BUG();
  1710. /* dst address */
  1711. addr = (struct sadb_address*) skb_put(skb,
  1712. sizeof(struct sadb_address)+sockaddr_size);
  1713. addr->sadb_address_len =
  1714. (sizeof(struct sadb_address)+sockaddr_size)/
  1715. sizeof(uint64_t);
  1716. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  1717. addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
  1718. addr->sadb_address_prefixlen = xp->selector.prefixlen_d;
  1719. addr->sadb_address_reserved = 0;
  1720. if (xp->family == AF_INET) {
  1721. sin = (struct sockaddr_in *) (addr + 1);
  1722. sin->sin_family = AF_INET;
  1723. sin->sin_addr.s_addr = xp->selector.daddr.a4;
  1724. sin->sin_port = xp->selector.dport;
  1725. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  1726. }
  1727. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1728. else if (xp->family == AF_INET6) {
  1729. sin6 = (struct sockaddr_in6 *) (addr + 1);
  1730. sin6->sin6_family = AF_INET6;
  1731. sin6->sin6_port = xp->selector.dport;
  1732. sin6->sin6_flowinfo = 0;
  1733. memcpy(&sin6->sin6_addr, xp->selector.daddr.a6,
  1734. sizeof(struct in6_addr));
  1735. sin6->sin6_scope_id = 0;
  1736. }
  1737. #endif
  1738. else
  1739. BUG();
  1740. /* hard time */
  1741. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1742. sizeof(struct sadb_lifetime));
  1743. lifetime->sadb_lifetime_len =
  1744. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1745. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  1746. lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.hard_packet_limit);
  1747. lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.hard_byte_limit);
  1748. lifetime->sadb_lifetime_addtime = xp->lft.hard_add_expires_seconds;
  1749. lifetime->sadb_lifetime_usetime = xp->lft.hard_use_expires_seconds;
  1750. /* soft time */
  1751. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1752. sizeof(struct sadb_lifetime));
  1753. lifetime->sadb_lifetime_len =
  1754. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1755. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  1756. lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.soft_packet_limit);
  1757. lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.soft_byte_limit);
  1758. lifetime->sadb_lifetime_addtime = xp->lft.soft_add_expires_seconds;
  1759. lifetime->sadb_lifetime_usetime = xp->lft.soft_use_expires_seconds;
  1760. /* current time */
  1761. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1762. sizeof(struct sadb_lifetime));
  1763. lifetime->sadb_lifetime_len =
  1764. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1765. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  1766. lifetime->sadb_lifetime_allocations = xp->curlft.packets;
  1767. lifetime->sadb_lifetime_bytes = xp->curlft.bytes;
  1768. lifetime->sadb_lifetime_addtime = xp->curlft.add_time;
  1769. lifetime->sadb_lifetime_usetime = xp->curlft.use_time;
  1770. pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
  1771. pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
  1772. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  1773. pol->sadb_x_policy_type = IPSEC_POLICY_DISCARD;
  1774. if (xp->action == XFRM_POLICY_ALLOW) {
  1775. if (xp->xfrm_nr)
  1776. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  1777. else
  1778. pol->sadb_x_policy_type = IPSEC_POLICY_NONE;
  1779. }
  1780. pol->sadb_x_policy_dir = dir+1;
  1781. pol->sadb_x_policy_id = xp->index;
  1782. pol->sadb_x_policy_priority = xp->priority;
  1783. for (i=0; i<xp->xfrm_nr; i++) {
  1784. struct sadb_x_ipsecrequest *rq;
  1785. struct xfrm_tmpl *t = xp->xfrm_vec + i;
  1786. int req_size;
  1787. int mode;
  1788. req_size = sizeof(struct sadb_x_ipsecrequest);
  1789. if (t->mode == XFRM_MODE_TUNNEL)
  1790. req_size += ((t->encap_family == AF_INET ?
  1791. sizeof(struct sockaddr_in) :
  1792. sizeof(struct sockaddr_in6)) * 2);
  1793. else
  1794. size -= 2*socklen;
  1795. rq = (void*)skb_put(skb, req_size);
  1796. pol->sadb_x_policy_len += req_size/8;
  1797. memset(rq, 0, sizeof(*rq));
  1798. rq->sadb_x_ipsecrequest_len = req_size;
  1799. rq->sadb_x_ipsecrequest_proto = t->id.proto;
  1800. if ((mode = pfkey_mode_from_xfrm(t->mode)) < 0)
  1801. return -EINVAL;
  1802. rq->sadb_x_ipsecrequest_mode = mode;
  1803. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_REQUIRE;
  1804. if (t->reqid)
  1805. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_UNIQUE;
  1806. if (t->optional)
  1807. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_USE;
  1808. rq->sadb_x_ipsecrequest_reqid = t->reqid;
  1809. if (t->mode == XFRM_MODE_TUNNEL) {
  1810. switch (t->encap_family) {
  1811. case AF_INET:
  1812. sin = (void*)(rq+1);
  1813. sin->sin_family = AF_INET;
  1814. sin->sin_addr.s_addr = t->saddr.a4;
  1815. sin->sin_port = 0;
  1816. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  1817. sin++;
  1818. sin->sin_family = AF_INET;
  1819. sin->sin_addr.s_addr = t->id.daddr.a4;
  1820. sin->sin_port = 0;
  1821. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  1822. break;
  1823. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1824. case AF_INET6:
  1825. sin6 = (void*)(rq+1);
  1826. sin6->sin6_family = AF_INET6;
  1827. sin6->sin6_port = 0;
  1828. sin6->sin6_flowinfo = 0;
  1829. memcpy(&sin6->sin6_addr, t->saddr.a6,
  1830. sizeof(struct in6_addr));
  1831. sin6->sin6_scope_id = 0;
  1832. sin6++;
  1833. sin6->sin6_family = AF_INET6;
  1834. sin6->sin6_port = 0;
  1835. sin6->sin6_flowinfo = 0;
  1836. memcpy(&sin6->sin6_addr, t->id.daddr.a6,
  1837. sizeof(struct in6_addr));
  1838. sin6->sin6_scope_id = 0;
  1839. break;
  1840. #endif
  1841. default:
  1842. break;
  1843. }
  1844. }
  1845. }
  1846. /* security context */
  1847. if ((xfrm_ctx = xp->security)) {
  1848. int ctx_size = pfkey_xfrm_policy2sec_ctx_size(xp);
  1849. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb, ctx_size);
  1850. sec_ctx->sadb_x_sec_len = ctx_size / sizeof(uint64_t);
  1851. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  1852. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  1853. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  1854. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  1855. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  1856. xfrm_ctx->ctx_len);
  1857. }
  1858. hdr->sadb_msg_len = size / sizeof(uint64_t);
  1859. hdr->sadb_msg_reserved = atomic_read(&xp->refcnt);
  1860. return 0;
  1861. }
  1862. static int key_notify_policy(struct xfrm_policy *xp, int dir, struct km_event *c)
  1863. {
  1864. struct sk_buff *out_skb;
  1865. struct sadb_msg *out_hdr;
  1866. int err;
  1867. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  1868. if (IS_ERR(out_skb)) {
  1869. err = PTR_ERR(out_skb);
  1870. goto out;
  1871. }
  1872. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  1873. if (err < 0)
  1874. return err;
  1875. out_hdr = (struct sadb_msg *) out_skb->data;
  1876. out_hdr->sadb_msg_version = PF_KEY_V2;
  1877. if (c->data.byid && c->event == XFRM_MSG_DELPOLICY)
  1878. out_hdr->sadb_msg_type = SADB_X_SPDDELETE2;
  1879. else
  1880. out_hdr->sadb_msg_type = event2poltype(c->event);
  1881. out_hdr->sadb_msg_errno = 0;
  1882. out_hdr->sadb_msg_seq = c->seq;
  1883. out_hdr->sadb_msg_pid = c->pid;
  1884. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  1885. out:
  1886. return 0;
  1887. }
  1888. static int pfkey_spdadd(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1889. {
  1890. int err = 0;
  1891. struct sadb_lifetime *lifetime;
  1892. struct sadb_address *sa;
  1893. struct sadb_x_policy *pol;
  1894. struct xfrm_policy *xp;
  1895. struct km_event c;
  1896. struct sadb_x_sec_ctx *sec_ctx;
  1897. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1898. ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
  1899. !ext_hdrs[SADB_X_EXT_POLICY-1])
  1900. return -EINVAL;
  1901. pol = ext_hdrs[SADB_X_EXT_POLICY-1];
  1902. if (pol->sadb_x_policy_type > IPSEC_POLICY_IPSEC)
  1903. return -EINVAL;
  1904. if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
  1905. return -EINVAL;
  1906. xp = xfrm_policy_alloc(GFP_KERNEL);
  1907. if (xp == NULL)
  1908. return -ENOBUFS;
  1909. xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
  1910. XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
  1911. xp->priority = pol->sadb_x_policy_priority;
  1912. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1913. xp->family = pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.saddr);
  1914. if (!xp->family) {
  1915. err = -EINVAL;
  1916. goto out;
  1917. }
  1918. xp->selector.family = xp->family;
  1919. xp->selector.prefixlen_s = sa->sadb_address_prefixlen;
  1920. xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1921. xp->selector.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1922. if (xp->selector.sport)
  1923. xp->selector.sport_mask = htons(0xffff);
  1924. sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1925. pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.daddr);
  1926. xp->selector.prefixlen_d = sa->sadb_address_prefixlen;
  1927. /* Amusing, we set this twice. KAME apps appear to set same value
  1928. * in both addresses.
  1929. */
  1930. xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1931. xp->selector.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1932. if (xp->selector.dport)
  1933. xp->selector.dport_mask = htons(0xffff);
  1934. sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
  1935. if (sec_ctx != NULL) {
  1936. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  1937. if (!uctx) {
  1938. err = -ENOBUFS;
  1939. goto out;
  1940. }
  1941. err = security_xfrm_policy_alloc(xp, uctx);
  1942. kfree(uctx);
  1943. if (err)
  1944. goto out;
  1945. }
  1946. xp->lft.soft_byte_limit = XFRM_INF;
  1947. xp->lft.hard_byte_limit = XFRM_INF;
  1948. xp->lft.soft_packet_limit = XFRM_INF;
  1949. xp->lft.hard_packet_limit = XFRM_INF;
  1950. if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_HARD-1]) != NULL) {
  1951. xp->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1952. xp->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1953. xp->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1954. xp->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1955. }
  1956. if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_SOFT-1]) != NULL) {
  1957. xp->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1958. xp->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1959. xp->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1960. xp->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1961. }
  1962. xp->xfrm_nr = 0;
  1963. if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
  1964. (err = parse_ipsecrequests(xp, pol)) < 0)
  1965. goto out;
  1966. err = xfrm_policy_insert(pol->sadb_x_policy_dir-1, xp,
  1967. hdr->sadb_msg_type != SADB_X_SPDUPDATE);
  1968. xfrm_audit_policy_add(xp, err ? 0 : 1,
  1969. audit_get_loginuid(current->audit_context), 0);
  1970. if (err)
  1971. goto out;
  1972. if (hdr->sadb_msg_type == SADB_X_SPDUPDATE)
  1973. c.event = XFRM_MSG_UPDPOLICY;
  1974. else
  1975. c.event = XFRM_MSG_NEWPOLICY;
  1976. c.seq = hdr->sadb_msg_seq;
  1977. c.pid = hdr->sadb_msg_pid;
  1978. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  1979. xfrm_pol_put(xp);
  1980. return 0;
  1981. out:
  1982. security_xfrm_policy_free(xp);
  1983. kfree(xp);
  1984. return err;
  1985. }
  1986. static int pfkey_spddelete(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1987. {
  1988. int err;
  1989. struct sadb_address *sa;
  1990. struct sadb_x_policy *pol;
  1991. struct xfrm_policy *xp, tmp;
  1992. struct xfrm_selector sel;
  1993. struct km_event c;
  1994. struct sadb_x_sec_ctx *sec_ctx;
  1995. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1996. ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
  1997. !ext_hdrs[SADB_X_EXT_POLICY-1])
  1998. return -EINVAL;
  1999. pol = ext_hdrs[SADB_X_EXT_POLICY-1];
  2000. if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
  2001. return -EINVAL;
  2002. memset(&sel, 0, sizeof(sel));
  2003. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  2004. sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
  2005. sel.prefixlen_s = sa->sadb_address_prefixlen;
  2006. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2007. sel.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
  2008. if (sel.sport)
  2009. sel.sport_mask = htons(0xffff);
  2010. sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  2011. pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
  2012. sel.prefixlen_d = sa->sadb_address_prefixlen;
  2013. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2014. sel.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
  2015. if (sel.dport)
  2016. sel.dport_mask = htons(0xffff);
  2017. sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
  2018. memset(&tmp, 0, sizeof(struct xfrm_policy));
  2019. if (sec_ctx != NULL) {
  2020. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  2021. if (!uctx)
  2022. return -ENOMEM;
  2023. err = security_xfrm_policy_alloc(&tmp, uctx);
  2024. kfree(uctx);
  2025. if (err)
  2026. return err;
  2027. }
  2028. xp = xfrm_policy_bysel_ctx(XFRM_POLICY_TYPE_MAIN, pol->sadb_x_policy_dir-1,
  2029. &sel, tmp.security, 1, &err);
  2030. security_xfrm_policy_free(&tmp);
  2031. if (xp == NULL)
  2032. return -ENOENT;
  2033. xfrm_audit_policy_delete(xp, err ? 0 : 1,
  2034. audit_get_loginuid(current->audit_context), 0);
  2035. if (err)
  2036. goto out;
  2037. c.seq = hdr->sadb_msg_seq;
  2038. c.pid = hdr->sadb_msg_pid;
  2039. c.event = XFRM_MSG_DELPOLICY;
  2040. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  2041. out:
  2042. xfrm_pol_put(xp);
  2043. return err;
  2044. }
  2045. static int key_pol_get_resp(struct sock *sk, struct xfrm_policy *xp, struct sadb_msg *hdr, int dir)
  2046. {
  2047. int err;
  2048. struct sk_buff *out_skb;
  2049. struct sadb_msg *out_hdr;
  2050. err = 0;
  2051. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  2052. if (IS_ERR(out_skb)) {
  2053. err = PTR_ERR(out_skb);
  2054. goto out;
  2055. }
  2056. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  2057. if (err < 0)
  2058. goto out;
  2059. out_hdr = (struct sadb_msg *) out_skb->data;
  2060. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  2061. out_hdr->sadb_msg_type = hdr->sadb_msg_type;
  2062. out_hdr->sadb_msg_satype = 0;
  2063. out_hdr->sadb_msg_errno = 0;
  2064. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  2065. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  2066. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk);
  2067. err = 0;
  2068. out:
  2069. return err;
  2070. }
  2071. #ifdef CONFIG_NET_KEY_MIGRATE
  2072. static int pfkey_sockaddr_pair_size(sa_family_t family)
  2073. {
  2074. switch (family) {
  2075. case AF_INET:
  2076. return PFKEY_ALIGN8(sizeof(struct sockaddr_in) * 2);
  2077. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2078. case AF_INET6:
  2079. return PFKEY_ALIGN8(sizeof(struct sockaddr_in6) * 2);
  2080. #endif
  2081. default:
  2082. return 0;
  2083. }
  2084. /* NOTREACHED */
  2085. }
  2086. static int parse_sockaddr_pair(struct sadb_x_ipsecrequest *rq,
  2087. xfrm_address_t *saddr, xfrm_address_t *daddr,
  2088. u16 *family)
  2089. {
  2090. struct sockaddr *sa = (struct sockaddr *)(rq + 1);
  2091. if (rq->sadb_x_ipsecrequest_len <
  2092. pfkey_sockaddr_pair_size(sa->sa_family))
  2093. return -EINVAL;
  2094. switch (sa->sa_family) {
  2095. case AF_INET:
  2096. {
  2097. struct sockaddr_in *sin;
  2098. sin = (struct sockaddr_in *)sa;
  2099. if ((sin+1)->sin_family != AF_INET)
  2100. return -EINVAL;
  2101. memcpy(&saddr->a4, &sin->sin_addr, sizeof(saddr->a4));
  2102. sin++;
  2103. memcpy(&daddr->a4, &sin->sin_addr, sizeof(daddr->a4));
  2104. *family = AF_INET;
  2105. break;
  2106. }
  2107. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2108. case AF_INET6:
  2109. {
  2110. struct sockaddr_in6 *sin6;
  2111. sin6 = (struct sockaddr_in6 *)sa;
  2112. if ((sin6+1)->sin6_family != AF_INET6)
  2113. return -EINVAL;
  2114. memcpy(&saddr->a6, &sin6->sin6_addr,
  2115. sizeof(saddr->a6));
  2116. sin6++;
  2117. memcpy(&daddr->a6, &sin6->sin6_addr,
  2118. sizeof(daddr->a6));
  2119. *family = AF_INET6;
  2120. break;
  2121. }
  2122. #endif
  2123. default:
  2124. return -EINVAL;
  2125. }
  2126. return 0;
  2127. }
  2128. static int ipsecrequests_to_migrate(struct sadb_x_ipsecrequest *rq1, int len,
  2129. struct xfrm_migrate *m)
  2130. {
  2131. int err;
  2132. struct sadb_x_ipsecrequest *rq2;
  2133. int mode;
  2134. if (len <= sizeof(struct sadb_x_ipsecrequest) ||
  2135. len < rq1->sadb_x_ipsecrequest_len)
  2136. return -EINVAL;
  2137. /* old endoints */
  2138. err = parse_sockaddr_pair(rq1, &m->old_saddr, &m->old_daddr,
  2139. &m->old_family);
  2140. if (err)
  2141. return err;
  2142. rq2 = (struct sadb_x_ipsecrequest *)((u8 *)rq1 + rq1->sadb_x_ipsecrequest_len);
  2143. len -= rq1->sadb_x_ipsecrequest_len;
  2144. if (len <= sizeof(struct sadb_x_ipsecrequest) ||
  2145. len < rq2->sadb_x_ipsecrequest_len)
  2146. return -EINVAL;
  2147. /* new endpoints */
  2148. err = parse_sockaddr_pair(rq2, &m->new_saddr, &m->new_daddr,
  2149. &m->new_family);
  2150. if (err)
  2151. return err;
  2152. if (rq1->sadb_x_ipsecrequest_proto != rq2->sadb_x_ipsecrequest_proto ||
  2153. rq1->sadb_x_ipsecrequest_mode != rq2->sadb_x_ipsecrequest_mode ||
  2154. rq1->sadb_x_ipsecrequest_reqid != rq2->sadb_x_ipsecrequest_reqid)
  2155. return -EINVAL;
  2156. m->proto = rq1->sadb_x_ipsecrequest_proto;
  2157. if ((mode = pfkey_mode_to_xfrm(rq1->sadb_x_ipsecrequest_mode)) < 0)
  2158. return -EINVAL;
  2159. m->mode = mode;
  2160. m->reqid = rq1->sadb_x_ipsecrequest_reqid;
  2161. return ((int)(rq1->sadb_x_ipsecrequest_len +
  2162. rq2->sadb_x_ipsecrequest_len));
  2163. }
  2164. static int pfkey_migrate(struct sock *sk, struct sk_buff *skb,
  2165. struct sadb_msg *hdr, void **ext_hdrs)
  2166. {
  2167. int i, len, ret, err = -EINVAL;
  2168. u8 dir;
  2169. struct sadb_address *sa;
  2170. struct sadb_x_policy *pol;
  2171. struct sadb_x_ipsecrequest *rq;
  2172. struct xfrm_selector sel;
  2173. struct xfrm_migrate m[XFRM_MAX_DEPTH];
  2174. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC - 1],
  2175. ext_hdrs[SADB_EXT_ADDRESS_DST - 1]) ||
  2176. !ext_hdrs[SADB_X_EXT_POLICY - 1]) {
  2177. err = -EINVAL;
  2178. goto out;
  2179. }
  2180. pol = ext_hdrs[SADB_X_EXT_POLICY - 1];
  2181. if (!pol) {
  2182. err = -EINVAL;
  2183. goto out;
  2184. }
  2185. if (pol->sadb_x_policy_dir >= IPSEC_DIR_MAX) {
  2186. err = -EINVAL;
  2187. goto out;
  2188. }
  2189. dir = pol->sadb_x_policy_dir - 1;
  2190. memset(&sel, 0, sizeof(sel));
  2191. /* set source address info of selector */
  2192. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC - 1];
  2193. sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
  2194. sel.prefixlen_s = sa->sadb_address_prefixlen;
  2195. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2196. sel.sport = ((struct sockaddr_in *)(sa + 1))->sin_port;
  2197. if (sel.sport)
  2198. sel.sport_mask = htons(0xffff);
  2199. /* set destination address info of selector */
  2200. sa = ext_hdrs[SADB_EXT_ADDRESS_DST - 1],
  2201. pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
  2202. sel.prefixlen_d = sa->sadb_address_prefixlen;
  2203. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2204. sel.dport = ((struct sockaddr_in *)(sa + 1))->sin_port;
  2205. if (sel.dport)
  2206. sel.dport_mask = htons(0xffff);
  2207. rq = (struct sadb_x_ipsecrequest *)(pol + 1);
  2208. /* extract ipsecrequests */
  2209. i = 0;
  2210. len = pol->sadb_x_policy_len * 8 - sizeof(struct sadb_x_policy);
  2211. while (len > 0 && i < XFRM_MAX_DEPTH) {
  2212. ret = ipsecrequests_to_migrate(rq, len, &m[i]);
  2213. if (ret < 0) {
  2214. err = ret;
  2215. goto out;
  2216. } else {
  2217. rq = (struct sadb_x_ipsecrequest *)((u8 *)rq + ret);
  2218. len -= ret;
  2219. i++;
  2220. }
  2221. }
  2222. if (!i || len > 0) {
  2223. err = -EINVAL;
  2224. goto out;
  2225. }
  2226. return xfrm_migrate(&sel, dir, XFRM_POLICY_TYPE_MAIN, m, i);
  2227. out:
  2228. return err;
  2229. }
  2230. #else
  2231. static int pfkey_migrate(struct sock *sk, struct sk_buff *skb,
  2232. struct sadb_msg *hdr, void **ext_hdrs)
  2233. {
  2234. return -ENOPROTOOPT;
  2235. }
  2236. #endif
  2237. static int pfkey_spdget(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  2238. {
  2239. unsigned int dir;
  2240. int err = 0, delete;
  2241. struct sadb_x_policy *pol;
  2242. struct xfrm_policy *xp;
  2243. struct km_event c;
  2244. if ((pol = ext_hdrs[SADB_X_EXT_POLICY-1]) == NULL)
  2245. return -EINVAL;
  2246. dir = xfrm_policy_id2dir(pol->sadb_x_policy_id);
  2247. if (dir >= XFRM_POLICY_MAX)
  2248. return -EINVAL;
  2249. delete = (hdr->sadb_msg_type == SADB_X_SPDDELETE2);
  2250. xp = xfrm_policy_byid(XFRM_POLICY_TYPE_MAIN, dir, pol->sadb_x_policy_id,
  2251. delete, &err);
  2252. if (xp == NULL)
  2253. return -ENOENT;
  2254. if (delete) {
  2255. xfrm_audit_policy_delete(xp, err ? 0 : 1,
  2256. audit_get_loginuid(current->audit_context), 0);
  2257. if (err)
  2258. goto out;
  2259. c.seq = hdr->sadb_msg_seq;
  2260. c.pid = hdr->sadb_msg_pid;
  2261. c.data.byid = 1;
  2262. c.event = XFRM_MSG_DELPOLICY;
  2263. km_policy_notify(xp, dir, &c);
  2264. } else {
  2265. err = key_pol_get_resp(sk, xp, hdr, dir);
  2266. }
  2267. out:
  2268. xfrm_pol_put(xp);
  2269. return err;
  2270. }
  2271. static int dump_sp(struct xfrm_policy *xp, int dir, int count, void *ptr)
  2272. {
  2273. struct pfkey_dump_data *data = ptr;
  2274. struct sk_buff *out_skb;
  2275. struct sadb_msg *out_hdr;
  2276. int err;
  2277. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  2278. if (IS_ERR(out_skb))
  2279. return PTR_ERR(out_skb);
  2280. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  2281. if (err < 0)
  2282. return err;
  2283. out_hdr = (struct sadb_msg *) out_skb->data;
  2284. out_hdr->sadb_msg_version = data->hdr->sadb_msg_version;
  2285. out_hdr->sadb_msg_type = SADB_X_SPDDUMP;
  2286. out_hdr->sadb_msg_satype = SADB_SATYPE_UNSPEC;
  2287. out_hdr->sadb_msg_errno = 0;
  2288. out_hdr->sadb_msg_seq = count;
  2289. out_hdr->sadb_msg_pid = data->hdr->sadb_msg_pid;
  2290. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, data->sk);
  2291. return 0;
  2292. }
  2293. static int pfkey_spddump(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  2294. {
  2295. struct pfkey_dump_data data = { .skb = skb, .hdr = hdr, .sk = sk };
  2296. return xfrm_policy_walk(XFRM_POLICY_TYPE_MAIN, dump_sp, &data);
  2297. }
  2298. static int key_notify_policy_flush(struct km_event *c)
  2299. {
  2300. struct sk_buff *skb_out;
  2301. struct sadb_msg *hdr;
  2302. skb_out = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  2303. if (!skb_out)
  2304. return -ENOBUFS;
  2305. hdr = (struct sadb_msg *) skb_put(skb_out, sizeof(struct sadb_msg));
  2306. hdr->sadb_msg_type = SADB_X_SPDFLUSH;
  2307. hdr->sadb_msg_seq = c->seq;
  2308. hdr->sadb_msg_pid = c->pid;
  2309. hdr->sadb_msg_version = PF_KEY_V2;
  2310. hdr->sadb_msg_errno = (uint8_t) 0;
  2311. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  2312. pfkey_broadcast(skb_out, GFP_ATOMIC, BROADCAST_ALL, NULL);
  2313. return 0;
  2314. }
  2315. static int pfkey_spdflush(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  2316. {
  2317. struct km_event c;
  2318. struct xfrm_audit audit_info;
  2319. int err;
  2320. audit_info.loginuid = audit_get_loginuid(current->audit_context);
  2321. audit_info.secid = 0;
  2322. err = xfrm_policy_flush(XFRM_POLICY_TYPE_MAIN, &audit_info);
  2323. if (err)
  2324. return err;
  2325. c.data.type = XFRM_POLICY_TYPE_MAIN;
  2326. c.event = XFRM_MSG_FLUSHPOLICY;
  2327. c.pid = hdr->sadb_msg_pid;
  2328. c.seq = hdr->sadb_msg_seq;
  2329. km_policy_notify(NULL, 0, &c);
  2330. return 0;
  2331. }
  2332. typedef int (*pfkey_handler)(struct sock *sk, struct sk_buff *skb,
  2333. struct sadb_msg *hdr, void **ext_hdrs);
  2334. static pfkey_handler pfkey_funcs[SADB_MAX + 1] = {
  2335. [SADB_RESERVED] = pfkey_reserved,
  2336. [SADB_GETSPI] = pfkey_getspi,
  2337. [SADB_UPDATE] = pfkey_add,
  2338. [SADB_ADD] = pfkey_add,
  2339. [SADB_DELETE] = pfkey_delete,
  2340. [SADB_GET] = pfkey_get,
  2341. [SADB_ACQUIRE] = pfkey_acquire,
  2342. [SADB_REGISTER] = pfkey_register,
  2343. [SADB_EXPIRE] = NULL,
  2344. [SADB_FLUSH] = pfkey_flush,
  2345. [SADB_DUMP] = pfkey_dump,
  2346. [SADB_X_PROMISC] = pfkey_promisc,
  2347. [SADB_X_PCHANGE] = NULL,
  2348. [SADB_X_SPDUPDATE] = pfkey_spdadd,
  2349. [SADB_X_SPDADD] = pfkey_spdadd,
  2350. [SADB_X_SPDDELETE] = pfkey_spddelete,
  2351. [SADB_X_SPDGET] = pfkey_spdget,
  2352. [SADB_X_SPDACQUIRE] = NULL,
  2353. [SADB_X_SPDDUMP] = pfkey_spddump,
  2354. [SADB_X_SPDFLUSH] = pfkey_spdflush,
  2355. [SADB_X_SPDSETIDX] = pfkey_spdadd,
  2356. [SADB_X_SPDDELETE2] = pfkey_spdget,
  2357. [SADB_X_MIGRATE] = pfkey_migrate,
  2358. };
  2359. static int pfkey_process(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr)
  2360. {
  2361. void *ext_hdrs[SADB_EXT_MAX];
  2362. int err;
  2363. pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL,
  2364. BROADCAST_PROMISC_ONLY, NULL);
  2365. memset(ext_hdrs, 0, sizeof(ext_hdrs));
  2366. err = parse_exthdrs(skb, hdr, ext_hdrs);
  2367. if (!err) {
  2368. err = -EOPNOTSUPP;
  2369. if (pfkey_funcs[hdr->sadb_msg_type])
  2370. err = pfkey_funcs[hdr->sadb_msg_type](sk, skb, hdr, ext_hdrs);
  2371. }
  2372. return err;
  2373. }
  2374. static struct sadb_msg *pfkey_get_base_msg(struct sk_buff *skb, int *errp)
  2375. {
  2376. struct sadb_msg *hdr = NULL;
  2377. if (skb->len < sizeof(*hdr)) {
  2378. *errp = -EMSGSIZE;
  2379. } else {
  2380. hdr = (struct sadb_msg *) skb->data;
  2381. if (hdr->sadb_msg_version != PF_KEY_V2 ||
  2382. hdr->sadb_msg_reserved != 0 ||
  2383. (hdr->sadb_msg_type <= SADB_RESERVED ||
  2384. hdr->sadb_msg_type > SADB_MAX)) {
  2385. hdr = NULL;
  2386. *errp = -EINVAL;
  2387. } else if (hdr->sadb_msg_len != (skb->len /
  2388. sizeof(uint64_t)) ||
  2389. hdr->sadb_msg_len < (sizeof(struct sadb_msg) /
  2390. sizeof(uint64_t))) {
  2391. hdr = NULL;
  2392. *errp = -EMSGSIZE;
  2393. } else {
  2394. *errp = 0;
  2395. }
  2396. }
  2397. return hdr;
  2398. }
  2399. static inline int aalg_tmpl_set(struct xfrm_tmpl *t, struct xfrm_algo_desc *d)
  2400. {
  2401. return t->aalgos & (1 << d->desc.sadb_alg_id);
  2402. }
  2403. static inline int ealg_tmpl_set(struct xfrm_tmpl *t, struct xfrm_algo_desc *d)
  2404. {
  2405. return t->ealgos & (1 << d->desc.sadb_alg_id);
  2406. }
  2407. static int count_ah_combs(struct xfrm_tmpl *t)
  2408. {
  2409. int i, sz = 0;
  2410. for (i = 0; ; i++) {
  2411. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  2412. if (!aalg)
  2413. break;
  2414. if (aalg_tmpl_set(t, aalg) && aalg->available)
  2415. sz += sizeof(struct sadb_comb);
  2416. }
  2417. return sz + sizeof(struct sadb_prop);
  2418. }
  2419. static int count_esp_combs(struct xfrm_tmpl *t)
  2420. {
  2421. int i, k, sz = 0;
  2422. for (i = 0; ; i++) {
  2423. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  2424. if (!ealg)
  2425. break;
  2426. if (!(ealg_tmpl_set(t, ealg) && ealg->available))
  2427. continue;
  2428. for (k = 1; ; k++) {
  2429. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
  2430. if (!aalg)
  2431. break;
  2432. if (aalg_tmpl_set(t, aalg) && aalg->available)
  2433. sz += sizeof(struct sadb_comb);
  2434. }
  2435. }
  2436. return sz + sizeof(struct sadb_prop);
  2437. }
  2438. static void dump_ah_combs(struct sk_buff *skb, struct xfrm_tmpl *t)
  2439. {
  2440. struct sadb_prop *p;
  2441. int i;
  2442. p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
  2443. p->sadb_prop_len = sizeof(struct sadb_prop)/8;
  2444. p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
  2445. p->sadb_prop_replay = 32;
  2446. memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
  2447. for (i = 0; ; i++) {
  2448. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  2449. if (!aalg)
  2450. break;
  2451. if (aalg_tmpl_set(t, aalg) && aalg->available) {
  2452. struct sadb_comb *c;
  2453. c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
  2454. memset(c, 0, sizeof(*c));
  2455. p->sadb_prop_len += sizeof(struct sadb_comb)/8;
  2456. c->sadb_comb_auth = aalg->desc.sadb_alg_id;
  2457. c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
  2458. c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
  2459. c->sadb_comb_hard_addtime = 24*60*60;
  2460. c->sadb_comb_soft_addtime = 20*60*60;
  2461. c->sadb_comb_hard_usetime = 8*60*60;
  2462. c->sadb_comb_soft_usetime = 7*60*60;
  2463. }
  2464. }
  2465. }
  2466. static void dump_esp_combs(struct sk_buff *skb, struct xfrm_tmpl *t)
  2467. {
  2468. struct sadb_prop *p;
  2469. int i, k;
  2470. p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
  2471. p->sadb_prop_len = sizeof(struct sadb_prop)/8;
  2472. p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
  2473. p->sadb_prop_replay = 32;
  2474. memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
  2475. for (i=0; ; i++) {
  2476. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  2477. if (!ealg)
  2478. break;
  2479. if (!(ealg_tmpl_set(t, ealg) && ealg->available))
  2480. continue;
  2481. for (k = 1; ; k++) {
  2482. struct sadb_comb *c;
  2483. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
  2484. if (!aalg)
  2485. break;
  2486. if (!(aalg_tmpl_set(t, aalg) && aalg->available))
  2487. continue;
  2488. c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
  2489. memset(c, 0, sizeof(*c));
  2490. p->sadb_prop_len += sizeof(struct sadb_comb)/8;
  2491. c->sadb_comb_auth = aalg->desc.sadb_alg_id;
  2492. c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
  2493. c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
  2494. c->sadb_comb_encrypt = ealg->desc.sadb_alg_id;
  2495. c->sadb_comb_encrypt_minbits = ealg->desc.sadb_alg_minbits;
  2496. c->sadb_comb_encrypt_maxbits = ealg->desc.sadb_alg_maxbits;
  2497. c->sadb_comb_hard_addtime = 24*60*60;
  2498. c->sadb_comb_soft_addtime = 20*60*60;
  2499. c->sadb_comb_hard_usetime = 8*60*60;
  2500. c->sadb_comb_soft_usetime = 7*60*60;
  2501. }
  2502. }
  2503. }
  2504. static int key_notify_policy_expire(struct xfrm_policy *xp, struct km_event *c)
  2505. {
  2506. return 0;
  2507. }
  2508. static int key_notify_sa_expire(struct xfrm_state *x, struct km_event *c)
  2509. {
  2510. struct sk_buff *out_skb;
  2511. struct sadb_msg *out_hdr;
  2512. int hard;
  2513. int hsc;
  2514. hard = c->data.hard;
  2515. if (hard)
  2516. hsc = 2;
  2517. else
  2518. hsc = 1;
  2519. out_skb = pfkey_xfrm_state2msg_expire(x, hsc);
  2520. if (IS_ERR(out_skb))
  2521. return PTR_ERR(out_skb);
  2522. out_hdr = (struct sadb_msg *) out_skb->data;
  2523. out_hdr->sadb_msg_version = PF_KEY_V2;
  2524. out_hdr->sadb_msg_type = SADB_EXPIRE;
  2525. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  2526. out_hdr->sadb_msg_errno = 0;
  2527. out_hdr->sadb_msg_reserved = 0;
  2528. out_hdr->sadb_msg_seq = 0;
  2529. out_hdr->sadb_msg_pid = 0;
  2530. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
  2531. return 0;
  2532. }
  2533. static int pfkey_send_notify(struct xfrm_state *x, struct km_event *c)
  2534. {
  2535. switch (c->event) {
  2536. case XFRM_MSG_EXPIRE:
  2537. return key_notify_sa_expire(x, c);
  2538. case XFRM_MSG_DELSA:
  2539. case XFRM_MSG_NEWSA:
  2540. case XFRM_MSG_UPDSA:
  2541. return key_notify_sa(x, c);
  2542. case XFRM_MSG_FLUSHSA:
  2543. return key_notify_sa_flush(c);
  2544. case XFRM_MSG_NEWAE: /* not yet supported */
  2545. break;
  2546. default:
  2547. printk("pfkey: Unknown SA event %d\n", c->event);
  2548. break;
  2549. }
  2550. return 0;
  2551. }
  2552. static int pfkey_send_policy_notify(struct xfrm_policy *xp, int dir, struct km_event *c)
  2553. {
  2554. if (xp && xp->type != XFRM_POLICY_TYPE_MAIN)
  2555. return 0;
  2556. switch (c->event) {
  2557. case XFRM_MSG_POLEXPIRE:
  2558. return key_notify_policy_expire(xp, c);
  2559. case XFRM_MSG_DELPOLICY:
  2560. case XFRM_MSG_NEWPOLICY:
  2561. case XFRM_MSG_UPDPOLICY:
  2562. return key_notify_policy(xp, dir, c);
  2563. case XFRM_MSG_FLUSHPOLICY:
  2564. if (c->data.type != XFRM_POLICY_TYPE_MAIN)
  2565. break;
  2566. return key_notify_policy_flush(c);
  2567. default:
  2568. printk("pfkey: Unknown policy event %d\n", c->event);
  2569. break;
  2570. }
  2571. return 0;
  2572. }
  2573. static u32 get_acqseq(void)
  2574. {
  2575. u32 res;
  2576. static u32 acqseq;
  2577. static DEFINE_SPINLOCK(acqseq_lock);
  2578. spin_lock_bh(&acqseq_lock);
  2579. res = (++acqseq ? : ++acqseq);
  2580. spin_unlock_bh(&acqseq_lock);
  2581. return res;
  2582. }
  2583. static int pfkey_send_acquire(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *xp, int dir)
  2584. {
  2585. struct sk_buff *skb;
  2586. struct sadb_msg *hdr;
  2587. struct sadb_address *addr;
  2588. struct sadb_x_policy *pol;
  2589. struct sockaddr_in *sin;
  2590. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2591. struct sockaddr_in6 *sin6;
  2592. #endif
  2593. int sockaddr_size;
  2594. int size;
  2595. struct sadb_x_sec_ctx *sec_ctx;
  2596. struct xfrm_sec_ctx *xfrm_ctx;
  2597. int ctx_size = 0;
  2598. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  2599. if (!sockaddr_size)
  2600. return -EINVAL;
  2601. size = sizeof(struct sadb_msg) +
  2602. (sizeof(struct sadb_address) * 2) +
  2603. (sockaddr_size * 2) +
  2604. sizeof(struct sadb_x_policy);
  2605. if (x->id.proto == IPPROTO_AH)
  2606. size += count_ah_combs(t);
  2607. else if (x->id.proto == IPPROTO_ESP)
  2608. size += count_esp_combs(t);
  2609. if ((xfrm_ctx = x->security)) {
  2610. ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
  2611. size += sizeof(struct sadb_x_sec_ctx) + ctx_size;
  2612. }
  2613. skb = alloc_skb(size + 16, GFP_ATOMIC);
  2614. if (skb == NULL)
  2615. return -ENOMEM;
  2616. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  2617. hdr->sadb_msg_version = PF_KEY_V2;
  2618. hdr->sadb_msg_type = SADB_ACQUIRE;
  2619. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  2620. hdr->sadb_msg_len = size / sizeof(uint64_t);
  2621. hdr->sadb_msg_errno = 0;
  2622. hdr->sadb_msg_reserved = 0;
  2623. hdr->sadb_msg_seq = x->km.seq = get_acqseq();
  2624. hdr->sadb_msg_pid = 0;
  2625. /* src address */
  2626. addr = (struct sadb_address*) skb_put(skb,
  2627. sizeof(struct sadb_address)+sockaddr_size);
  2628. addr->sadb_address_len =
  2629. (sizeof(struct sadb_address)+sockaddr_size)/
  2630. sizeof(uint64_t);
  2631. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  2632. addr->sadb_address_proto = 0;
  2633. addr->sadb_address_reserved = 0;
  2634. if (x->props.family == AF_INET) {
  2635. addr->sadb_address_prefixlen = 32;
  2636. sin = (struct sockaddr_in *) (addr + 1);
  2637. sin->sin_family = AF_INET;
  2638. sin->sin_addr.s_addr = x->props.saddr.a4;
  2639. sin->sin_port = 0;
  2640. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2641. }
  2642. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2643. else if (x->props.family == AF_INET6) {
  2644. addr->sadb_address_prefixlen = 128;
  2645. sin6 = (struct sockaddr_in6 *) (addr + 1);
  2646. sin6->sin6_family = AF_INET6;
  2647. sin6->sin6_port = 0;
  2648. sin6->sin6_flowinfo = 0;
  2649. memcpy(&sin6->sin6_addr,
  2650. x->props.saddr.a6, sizeof(struct in6_addr));
  2651. sin6->sin6_scope_id = 0;
  2652. }
  2653. #endif
  2654. else
  2655. BUG();
  2656. /* dst address */
  2657. addr = (struct sadb_address*) skb_put(skb,
  2658. sizeof(struct sadb_address)+sockaddr_size);
  2659. addr->sadb_address_len =
  2660. (sizeof(struct sadb_address)+sockaddr_size)/
  2661. sizeof(uint64_t);
  2662. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  2663. addr->sadb_address_proto = 0;
  2664. addr->sadb_address_reserved = 0;
  2665. if (x->props.family == AF_INET) {
  2666. addr->sadb_address_prefixlen = 32;
  2667. sin = (struct sockaddr_in *) (addr + 1);
  2668. sin->sin_family = AF_INET;
  2669. sin->sin_addr.s_addr = x->id.daddr.a4;
  2670. sin->sin_port = 0;
  2671. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2672. }
  2673. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2674. else if (x->props.family == AF_INET6) {
  2675. addr->sadb_address_prefixlen = 128;
  2676. sin6 = (struct sockaddr_in6 *) (addr + 1);
  2677. sin6->sin6_family = AF_INET6;
  2678. sin6->sin6_port = 0;
  2679. sin6->sin6_flowinfo = 0;
  2680. memcpy(&sin6->sin6_addr,
  2681. x->id.daddr.a6, sizeof(struct in6_addr));
  2682. sin6->sin6_scope_id = 0;
  2683. }
  2684. #endif
  2685. else
  2686. BUG();
  2687. pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
  2688. pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
  2689. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  2690. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  2691. pol->sadb_x_policy_dir = dir+1;
  2692. pol->sadb_x_policy_id = xp->index;
  2693. /* Set sadb_comb's. */
  2694. if (x->id.proto == IPPROTO_AH)
  2695. dump_ah_combs(skb, t);
  2696. else if (x->id.proto == IPPROTO_ESP)
  2697. dump_esp_combs(skb, t);
  2698. /* security context */
  2699. if (xfrm_ctx) {
  2700. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb,
  2701. sizeof(struct sadb_x_sec_ctx) + ctx_size);
  2702. sec_ctx->sadb_x_sec_len =
  2703. (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
  2704. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  2705. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  2706. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  2707. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  2708. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  2709. xfrm_ctx->ctx_len);
  2710. }
  2711. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
  2712. }
  2713. static struct xfrm_policy *pfkey_compile_policy(struct sock *sk, int opt,
  2714. u8 *data, int len, int *dir)
  2715. {
  2716. struct xfrm_policy *xp;
  2717. struct sadb_x_policy *pol = (struct sadb_x_policy*)data;
  2718. struct sadb_x_sec_ctx *sec_ctx;
  2719. switch (sk->sk_family) {
  2720. case AF_INET:
  2721. if (opt != IP_IPSEC_POLICY) {
  2722. *dir = -EOPNOTSUPP;
  2723. return NULL;
  2724. }
  2725. break;
  2726. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2727. case AF_INET6:
  2728. if (opt != IPV6_IPSEC_POLICY) {
  2729. *dir = -EOPNOTSUPP;
  2730. return NULL;
  2731. }
  2732. break;
  2733. #endif
  2734. default:
  2735. *dir = -EINVAL;
  2736. return NULL;
  2737. }
  2738. *dir = -EINVAL;
  2739. if (len < sizeof(struct sadb_x_policy) ||
  2740. pol->sadb_x_policy_len*8 > len ||
  2741. pol->sadb_x_policy_type > IPSEC_POLICY_BYPASS ||
  2742. (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir > IPSEC_DIR_OUTBOUND))
  2743. return NULL;
  2744. xp = xfrm_policy_alloc(GFP_ATOMIC);
  2745. if (xp == NULL) {
  2746. *dir = -ENOBUFS;
  2747. return NULL;
  2748. }
  2749. xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
  2750. XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
  2751. xp->lft.soft_byte_limit = XFRM_INF;
  2752. xp->lft.hard_byte_limit = XFRM_INF;
  2753. xp->lft.soft_packet_limit = XFRM_INF;
  2754. xp->lft.hard_packet_limit = XFRM_INF;
  2755. xp->family = sk->sk_family;
  2756. xp->xfrm_nr = 0;
  2757. if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
  2758. (*dir = parse_ipsecrequests(xp, pol)) < 0)
  2759. goto out;
  2760. /* security context too */
  2761. if (len >= (pol->sadb_x_policy_len*8 +
  2762. sizeof(struct sadb_x_sec_ctx))) {
  2763. char *p = (char *)pol;
  2764. struct xfrm_user_sec_ctx *uctx;
  2765. p += pol->sadb_x_policy_len*8;
  2766. sec_ctx = (struct sadb_x_sec_ctx *)p;
  2767. if (len < pol->sadb_x_policy_len*8 +
  2768. sec_ctx->sadb_x_sec_len) {
  2769. *dir = -EINVAL;
  2770. goto out;
  2771. }
  2772. if ((*dir = verify_sec_ctx_len(p)))
  2773. goto out;
  2774. uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  2775. *dir = security_xfrm_policy_alloc(xp, uctx);
  2776. kfree(uctx);
  2777. if (*dir)
  2778. goto out;
  2779. }
  2780. *dir = pol->sadb_x_policy_dir-1;
  2781. return xp;
  2782. out:
  2783. security_xfrm_policy_free(xp);
  2784. kfree(xp);
  2785. return NULL;
  2786. }
  2787. static int pfkey_send_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport)
  2788. {
  2789. struct sk_buff *skb;
  2790. struct sadb_msg *hdr;
  2791. struct sadb_sa *sa;
  2792. struct sadb_address *addr;
  2793. struct sadb_x_nat_t_port *n_port;
  2794. struct sockaddr_in *sin;
  2795. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2796. struct sockaddr_in6 *sin6;
  2797. #endif
  2798. int sockaddr_size;
  2799. int size;
  2800. __u8 satype = (x->id.proto == IPPROTO_ESP ? SADB_SATYPE_ESP : 0);
  2801. struct xfrm_encap_tmpl *natt = NULL;
  2802. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  2803. if (!sockaddr_size)
  2804. return -EINVAL;
  2805. if (!satype)
  2806. return -EINVAL;
  2807. if (!x->encap)
  2808. return -EINVAL;
  2809. natt = x->encap;
  2810. /* Build an SADB_X_NAT_T_NEW_MAPPING message:
  2811. *
  2812. * HDR | SA | ADDRESS_SRC (old addr) | NAT_T_SPORT (old port) |
  2813. * ADDRESS_DST (new addr) | NAT_T_DPORT (new port)
  2814. */
  2815. size = sizeof(struct sadb_msg) +
  2816. sizeof(struct sadb_sa) +
  2817. (sizeof(struct sadb_address) * 2) +
  2818. (sockaddr_size * 2) +
  2819. (sizeof(struct sadb_x_nat_t_port) * 2);
  2820. skb = alloc_skb(size + 16, GFP_ATOMIC);
  2821. if (skb == NULL)
  2822. return -ENOMEM;
  2823. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  2824. hdr->sadb_msg_version = PF_KEY_V2;
  2825. hdr->sadb_msg_type = SADB_X_NAT_T_NEW_MAPPING;
  2826. hdr->sadb_msg_satype = satype;
  2827. hdr->sadb_msg_len = size / sizeof(uint64_t);
  2828. hdr->sadb_msg_errno = 0;
  2829. hdr->sadb_msg_reserved = 0;
  2830. hdr->sadb_msg_seq = x->km.seq = get_acqseq();
  2831. hdr->sadb_msg_pid = 0;
  2832. /* SA */
  2833. sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
  2834. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  2835. sa->sadb_sa_exttype = SADB_EXT_SA;
  2836. sa->sadb_sa_spi = x->id.spi;
  2837. sa->sadb_sa_replay = 0;
  2838. sa->sadb_sa_state = 0;
  2839. sa->sadb_sa_auth = 0;
  2840. sa->sadb_sa_encrypt = 0;
  2841. sa->sadb_sa_flags = 0;
  2842. /* ADDRESS_SRC (old addr) */
  2843. addr = (struct sadb_address*)
  2844. skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
  2845. addr->sadb_address_len =
  2846. (sizeof(struct sadb_address)+sockaddr_size)/
  2847. sizeof(uint64_t);
  2848. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  2849. addr->sadb_address_proto = 0;
  2850. addr->sadb_address_reserved = 0;
  2851. if (x->props.family == AF_INET) {
  2852. addr->sadb_address_prefixlen = 32;
  2853. sin = (struct sockaddr_in *) (addr + 1);
  2854. sin->sin_family = AF_INET;
  2855. sin->sin_addr.s_addr = x->props.saddr.a4;
  2856. sin->sin_port = 0;
  2857. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2858. }
  2859. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2860. else if (x->props.family == AF_INET6) {
  2861. addr->sadb_address_prefixlen = 128;
  2862. sin6 = (struct sockaddr_in6 *) (addr + 1);
  2863. sin6->sin6_family = AF_INET6;
  2864. sin6->sin6_port = 0;
  2865. sin6->sin6_flowinfo = 0;
  2866. memcpy(&sin6->sin6_addr,
  2867. x->props.saddr.a6, sizeof(struct in6_addr));
  2868. sin6->sin6_scope_id = 0;
  2869. }
  2870. #endif
  2871. else
  2872. BUG();
  2873. /* NAT_T_SPORT (old port) */
  2874. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  2875. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  2876. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  2877. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  2878. n_port->sadb_x_nat_t_port_reserved = 0;
  2879. /* ADDRESS_DST (new addr) */
  2880. addr = (struct sadb_address*)
  2881. skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
  2882. addr->sadb_address_len =
  2883. (sizeof(struct sadb_address)+sockaddr_size)/
  2884. sizeof(uint64_t);
  2885. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  2886. addr->sadb_address_proto = 0;
  2887. addr->sadb_address_reserved = 0;
  2888. if (x->props.family == AF_INET) {
  2889. addr->sadb_address_prefixlen = 32;
  2890. sin = (struct sockaddr_in *) (addr + 1);
  2891. sin->sin_family = AF_INET;
  2892. sin->sin_addr.s_addr = ipaddr->a4;
  2893. sin->sin_port = 0;
  2894. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2895. }
  2896. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2897. else if (x->props.family == AF_INET6) {
  2898. addr->sadb_address_prefixlen = 128;
  2899. sin6 = (struct sockaddr_in6 *) (addr + 1);
  2900. sin6->sin6_family = AF_INET6;
  2901. sin6->sin6_port = 0;
  2902. sin6->sin6_flowinfo = 0;
  2903. memcpy(&sin6->sin6_addr, &ipaddr->a6, sizeof(struct in6_addr));
  2904. sin6->sin6_scope_id = 0;
  2905. }
  2906. #endif
  2907. else
  2908. BUG();
  2909. /* NAT_T_DPORT (new port) */
  2910. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  2911. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  2912. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  2913. n_port->sadb_x_nat_t_port_port = sport;
  2914. n_port->sadb_x_nat_t_port_reserved = 0;
  2915. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
  2916. }
  2917. #ifdef CONFIG_NET_KEY_MIGRATE
  2918. static int set_sadb_address(struct sk_buff *skb, int sasize, int type,
  2919. struct xfrm_selector *sel)
  2920. {
  2921. struct sadb_address *addr;
  2922. struct sockaddr_in *sin;
  2923. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2924. struct sockaddr_in6 *sin6;
  2925. #endif
  2926. addr = (struct sadb_address *)skb_put(skb, sizeof(struct sadb_address) + sasize);
  2927. addr->sadb_address_len = (sizeof(struct sadb_address) + sasize)/8;
  2928. addr->sadb_address_exttype = type;
  2929. addr->sadb_address_proto = sel->proto;
  2930. addr->sadb_address_reserved = 0;
  2931. switch (type) {
  2932. case SADB_EXT_ADDRESS_SRC:
  2933. if (sel->family == AF_INET) {
  2934. addr->sadb_address_prefixlen = sel->prefixlen_s;
  2935. sin = (struct sockaddr_in *)(addr + 1);
  2936. sin->sin_family = AF_INET;
  2937. memcpy(&sin->sin_addr.s_addr, &sel->saddr,
  2938. sizeof(sin->sin_addr.s_addr));
  2939. sin->sin_port = 0;
  2940. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2941. }
  2942. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2943. else if (sel->family == AF_INET6) {
  2944. addr->sadb_address_prefixlen = sel->prefixlen_s;
  2945. sin6 = (struct sockaddr_in6 *)(addr + 1);
  2946. sin6->sin6_family = AF_INET6;
  2947. sin6->sin6_port = 0;
  2948. sin6->sin6_flowinfo = 0;
  2949. sin6->sin6_scope_id = 0;
  2950. memcpy(&sin6->sin6_addr.s6_addr, &sel->saddr,
  2951. sizeof(sin6->sin6_addr.s6_addr));
  2952. }
  2953. #endif
  2954. break;
  2955. case SADB_EXT_ADDRESS_DST:
  2956. if (sel->family == AF_INET) {
  2957. addr->sadb_address_prefixlen = sel->prefixlen_d;
  2958. sin = (struct sockaddr_in *)(addr + 1);
  2959. sin->sin_family = AF_INET;
  2960. memcpy(&sin->sin_addr.s_addr, &sel->daddr,
  2961. sizeof(sin->sin_addr.s_addr));
  2962. sin->sin_port = 0;
  2963. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2964. }
  2965. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2966. else if (sel->family == AF_INET6) {
  2967. addr->sadb_address_prefixlen = sel->prefixlen_d;
  2968. sin6 = (struct sockaddr_in6 *)(addr + 1);
  2969. sin6->sin6_family = AF_INET6;
  2970. sin6->sin6_port = 0;
  2971. sin6->sin6_flowinfo = 0;
  2972. sin6->sin6_scope_id = 0;
  2973. memcpy(&sin6->sin6_addr.s6_addr, &sel->daddr,
  2974. sizeof(sin6->sin6_addr.s6_addr));
  2975. }
  2976. #endif
  2977. break;
  2978. default:
  2979. return -EINVAL;
  2980. }
  2981. return 0;
  2982. }
  2983. static int set_ipsecrequest(struct sk_buff *skb,
  2984. uint8_t proto, uint8_t mode, int level,
  2985. uint32_t reqid, uint8_t family,
  2986. xfrm_address_t *src, xfrm_address_t *dst)
  2987. {
  2988. struct sadb_x_ipsecrequest *rq;
  2989. struct sockaddr_in *sin;
  2990. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2991. struct sockaddr_in6 *sin6;
  2992. #endif
  2993. int size_req;
  2994. size_req = sizeof(struct sadb_x_ipsecrequest) +
  2995. pfkey_sockaddr_pair_size(family);
  2996. rq = (struct sadb_x_ipsecrequest *)skb_put(skb, size_req);
  2997. memset(rq, 0, size_req);
  2998. rq->sadb_x_ipsecrequest_len = size_req;
  2999. rq->sadb_x_ipsecrequest_proto = proto;
  3000. rq->sadb_x_ipsecrequest_mode = mode;
  3001. rq->sadb_x_ipsecrequest_level = level;
  3002. rq->sadb_x_ipsecrequest_reqid = reqid;
  3003. switch (family) {
  3004. case AF_INET:
  3005. sin = (struct sockaddr_in *)(rq + 1);
  3006. sin->sin_family = AF_INET;
  3007. memcpy(&sin->sin_addr.s_addr, src,
  3008. sizeof(sin->sin_addr.s_addr));
  3009. sin++;
  3010. sin->sin_family = AF_INET;
  3011. memcpy(&sin->sin_addr.s_addr, dst,
  3012. sizeof(sin->sin_addr.s_addr));
  3013. break;
  3014. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  3015. case AF_INET6:
  3016. sin6 = (struct sockaddr_in6 *)(rq + 1);
  3017. sin6->sin6_family = AF_INET6;
  3018. sin6->sin6_port = 0;
  3019. sin6->sin6_flowinfo = 0;
  3020. sin6->sin6_scope_id = 0;
  3021. memcpy(&sin6->sin6_addr.s6_addr, src,
  3022. sizeof(sin6->sin6_addr.s6_addr));
  3023. sin6++;
  3024. sin6->sin6_family = AF_INET6;
  3025. sin6->sin6_port = 0;
  3026. sin6->sin6_flowinfo = 0;
  3027. sin6->sin6_scope_id = 0;
  3028. memcpy(&sin6->sin6_addr.s6_addr, dst,
  3029. sizeof(sin6->sin6_addr.s6_addr));
  3030. break;
  3031. #endif
  3032. default:
  3033. return -EINVAL;
  3034. }
  3035. return 0;
  3036. }
  3037. #endif
  3038. #ifdef CONFIG_NET_KEY_MIGRATE
  3039. static int pfkey_send_migrate(struct xfrm_selector *sel, u8 dir, u8 type,
  3040. struct xfrm_migrate *m, int num_bundles)
  3041. {
  3042. int i;
  3043. int sasize_sel;
  3044. int size = 0;
  3045. int size_pol = 0;
  3046. struct sk_buff *skb;
  3047. struct sadb_msg *hdr;
  3048. struct sadb_x_policy *pol;
  3049. struct xfrm_migrate *mp;
  3050. if (type != XFRM_POLICY_TYPE_MAIN)
  3051. return 0;
  3052. if (num_bundles <= 0 || num_bundles > XFRM_MAX_DEPTH)
  3053. return -EINVAL;
  3054. /* selector */
  3055. sasize_sel = pfkey_sockaddr_size(sel->family);
  3056. if (!sasize_sel)
  3057. return -EINVAL;
  3058. size += (sizeof(struct sadb_address) + sasize_sel) * 2;
  3059. /* policy info */
  3060. size_pol += sizeof(struct sadb_x_policy);
  3061. /* ipsecrequests */
  3062. for (i = 0, mp = m; i < num_bundles; i++, mp++) {
  3063. /* old locator pair */
  3064. size_pol += sizeof(struct sadb_x_ipsecrequest) +
  3065. pfkey_sockaddr_pair_size(mp->old_family);
  3066. /* new locator pair */
  3067. size_pol += sizeof(struct sadb_x_ipsecrequest) +
  3068. pfkey_sockaddr_pair_size(mp->new_family);
  3069. }
  3070. size += sizeof(struct sadb_msg) + size_pol;
  3071. /* alloc buffer */
  3072. skb = alloc_skb(size, GFP_ATOMIC);
  3073. if (skb == NULL)
  3074. return -ENOMEM;
  3075. hdr = (struct sadb_msg *)skb_put(skb, sizeof(struct sadb_msg));
  3076. hdr->sadb_msg_version = PF_KEY_V2;
  3077. hdr->sadb_msg_type = SADB_X_MIGRATE;
  3078. hdr->sadb_msg_satype = pfkey_proto2satype(m->proto);
  3079. hdr->sadb_msg_len = size / 8;
  3080. hdr->sadb_msg_errno = 0;
  3081. hdr->sadb_msg_reserved = 0;
  3082. hdr->sadb_msg_seq = 0;
  3083. hdr->sadb_msg_pid = 0;
  3084. /* selector src */
  3085. set_sadb_address(skb, sasize_sel, SADB_EXT_ADDRESS_SRC, sel);
  3086. /* selector dst */
  3087. set_sadb_address(skb, sasize_sel, SADB_EXT_ADDRESS_DST, sel);
  3088. /* policy information */
  3089. pol = (struct sadb_x_policy *)skb_put(skb, sizeof(struct sadb_x_policy));
  3090. pol->sadb_x_policy_len = size_pol / 8;
  3091. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  3092. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  3093. pol->sadb_x_policy_dir = dir + 1;
  3094. pol->sadb_x_policy_id = 0;
  3095. pol->sadb_x_policy_priority = 0;
  3096. for (i = 0, mp = m; i < num_bundles; i++, mp++) {
  3097. /* old ipsecrequest */
  3098. int mode = pfkey_mode_from_xfrm(mp->mode);
  3099. if (mode < 0)
  3100. return -EINVAL;
  3101. if (set_ipsecrequest(skb, mp->proto, mode,
  3102. (mp->reqid ? IPSEC_LEVEL_UNIQUE : IPSEC_LEVEL_REQUIRE),
  3103. mp->reqid, mp->old_family,
  3104. &mp->old_saddr, &mp->old_daddr) < 0) {
  3105. return -EINVAL;
  3106. }
  3107. /* new ipsecrequest */
  3108. if (set_ipsecrequest(skb, mp->proto, mode,
  3109. (mp->reqid ? IPSEC_LEVEL_UNIQUE : IPSEC_LEVEL_REQUIRE),
  3110. mp->reqid, mp->new_family,
  3111. &mp->new_saddr, &mp->new_daddr) < 0) {
  3112. return -EINVAL;
  3113. }
  3114. }
  3115. /* broadcast migrate message to sockets */
  3116. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  3117. return 0;
  3118. }
  3119. #else
  3120. static int pfkey_send_migrate(struct xfrm_selector *sel, u8 dir, u8 type,
  3121. struct xfrm_migrate *m, int num_bundles)
  3122. {
  3123. return -ENOPROTOOPT;
  3124. }
  3125. #endif
  3126. static int pfkey_sendmsg(struct kiocb *kiocb,
  3127. struct socket *sock, struct msghdr *msg, size_t len)
  3128. {
  3129. struct sock *sk = sock->sk;
  3130. struct sk_buff *skb = NULL;
  3131. struct sadb_msg *hdr = NULL;
  3132. int err;
  3133. err = -EOPNOTSUPP;
  3134. if (msg->msg_flags & MSG_OOB)
  3135. goto out;
  3136. err = -EMSGSIZE;
  3137. if ((unsigned)len > sk->sk_sndbuf - 32)
  3138. goto out;
  3139. err = -ENOBUFS;
  3140. skb = alloc_skb(len, GFP_KERNEL);
  3141. if (skb == NULL)
  3142. goto out;
  3143. err = -EFAULT;
  3144. if (memcpy_fromiovec(skb_put(skb,len), msg->msg_iov, len))
  3145. goto out;
  3146. hdr = pfkey_get_base_msg(skb, &err);
  3147. if (!hdr)
  3148. goto out;
  3149. mutex_lock(&xfrm_cfg_mutex);
  3150. err = pfkey_process(sk, skb, hdr);
  3151. mutex_unlock(&xfrm_cfg_mutex);
  3152. out:
  3153. if (err && hdr && pfkey_error(hdr, err, sk) == 0)
  3154. err = 0;
  3155. if (skb)
  3156. kfree_skb(skb);
  3157. return err ? : len;
  3158. }
  3159. static int pfkey_recvmsg(struct kiocb *kiocb,
  3160. struct socket *sock, struct msghdr *msg, size_t len,
  3161. int flags)
  3162. {
  3163. struct sock *sk = sock->sk;
  3164. struct sk_buff *skb;
  3165. int copied, err;
  3166. err = -EINVAL;
  3167. if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT))
  3168. goto out;
  3169. msg->msg_namelen = 0;
  3170. skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
  3171. if (skb == NULL)
  3172. goto out;
  3173. copied = skb->len;
  3174. if (copied > len) {
  3175. msg->msg_flags |= MSG_TRUNC;
  3176. copied = len;
  3177. }
  3178. skb_reset_transport_header(skb);
  3179. err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
  3180. if (err)
  3181. goto out_free;
  3182. sock_recv_timestamp(msg, sk, skb);
  3183. err = (flags & MSG_TRUNC) ? skb->len : copied;
  3184. out_free:
  3185. skb_free_datagram(sk, skb);
  3186. out:
  3187. return err;
  3188. }
  3189. static const struct proto_ops pfkey_ops = {
  3190. .family = PF_KEY,
  3191. .owner = THIS_MODULE,
  3192. /* Operations that make no sense on pfkey sockets. */
  3193. .bind = sock_no_bind,
  3194. .connect = sock_no_connect,
  3195. .socketpair = sock_no_socketpair,
  3196. .accept = sock_no_accept,
  3197. .getname = sock_no_getname,
  3198. .ioctl = sock_no_ioctl,
  3199. .listen = sock_no_listen,
  3200. .shutdown = sock_no_shutdown,
  3201. .setsockopt = sock_no_setsockopt,
  3202. .getsockopt = sock_no_getsockopt,
  3203. .mmap = sock_no_mmap,
  3204. .sendpage = sock_no_sendpage,
  3205. /* Now the operations that really occur. */
  3206. .release = pfkey_release,
  3207. .poll = datagram_poll,
  3208. .sendmsg = pfkey_sendmsg,
  3209. .recvmsg = pfkey_recvmsg,
  3210. };
  3211. static struct net_proto_family pfkey_family_ops = {
  3212. .family = PF_KEY,
  3213. .create = pfkey_create,
  3214. .owner = THIS_MODULE,
  3215. };
  3216. #ifdef CONFIG_PROC_FS
  3217. static int pfkey_read_proc(char *buffer, char **start, off_t offset,
  3218. int length, int *eof, void *data)
  3219. {
  3220. off_t pos = 0;
  3221. off_t begin = 0;
  3222. int len = 0;
  3223. struct sock *s;
  3224. struct hlist_node *node;
  3225. len += sprintf(buffer,"sk RefCnt Rmem Wmem User Inode\n");
  3226. read_lock(&pfkey_table_lock);
  3227. sk_for_each(s, node, &pfkey_table) {
  3228. len += sprintf(buffer+len,"%p %-6d %-6u %-6u %-6u %-6lu",
  3229. s,
  3230. atomic_read(&s->sk_refcnt),
  3231. atomic_read(&s->sk_rmem_alloc),
  3232. atomic_read(&s->sk_wmem_alloc),
  3233. sock_i_uid(s),
  3234. sock_i_ino(s)
  3235. );
  3236. buffer[len++] = '\n';
  3237. pos = begin + len;
  3238. if (pos < offset) {
  3239. len = 0;
  3240. begin = pos;
  3241. }
  3242. if(pos > offset + length)
  3243. goto done;
  3244. }
  3245. *eof = 1;
  3246. done:
  3247. read_unlock(&pfkey_table_lock);
  3248. *start = buffer + (offset - begin);
  3249. len -= (offset - begin);
  3250. if (len > length)
  3251. len = length;
  3252. if (len < 0)
  3253. len = 0;
  3254. return len;
  3255. }
  3256. #endif
  3257. static struct xfrm_mgr pfkeyv2_mgr =
  3258. {
  3259. .id = "pfkeyv2",
  3260. .notify = pfkey_send_notify,
  3261. .acquire = pfkey_send_acquire,
  3262. .compile_policy = pfkey_compile_policy,
  3263. .new_mapping = pfkey_send_new_mapping,
  3264. .notify_policy = pfkey_send_policy_notify,
  3265. .migrate = pfkey_send_migrate,
  3266. };
  3267. static void __exit ipsec_pfkey_exit(void)
  3268. {
  3269. xfrm_unregister_km(&pfkeyv2_mgr);
  3270. remove_proc_entry("pfkey", init_net.proc_net);
  3271. sock_unregister(PF_KEY);
  3272. proto_unregister(&key_proto);
  3273. }
  3274. static int __init ipsec_pfkey_init(void)
  3275. {
  3276. int err = proto_register(&key_proto, 0);
  3277. if (err != 0)
  3278. goto out;
  3279. err = sock_register(&pfkey_family_ops);
  3280. if (err != 0)
  3281. goto out_unregister_key_proto;
  3282. #ifdef CONFIG_PROC_FS
  3283. err = -ENOMEM;
  3284. if (create_proc_read_entry("pfkey", 0, init_net.proc_net, pfkey_read_proc, NULL) == NULL)
  3285. goto out_sock_unregister;
  3286. #endif
  3287. err = xfrm_register_km(&pfkeyv2_mgr);
  3288. if (err != 0)
  3289. goto out_remove_proc_entry;
  3290. out:
  3291. return err;
  3292. out_remove_proc_entry:
  3293. #ifdef CONFIG_PROC_FS
  3294. remove_proc_entry("net/pfkey", NULL);
  3295. out_sock_unregister:
  3296. #endif
  3297. sock_unregister(PF_KEY);
  3298. out_unregister_key_proto:
  3299. proto_unregister(&key_proto);
  3300. goto out;
  3301. }
  3302. module_init(ipsec_pfkey_init);
  3303. module_exit(ipsec_pfkey_exit);
  3304. MODULE_LICENSE("GPL");
  3305. MODULE_ALIAS_NETPROTO(PF_KEY);