123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348 |
- /*
- * sparse memory mappings.
- */
- #include <linux/mm.h>
- #include <linux/mmzone.h>
- #include <linux/bootmem.h>
- #include <linux/highmem.h>
- #include <linux/module.h>
- #include <linux/spinlock.h>
- #include <linux/vmalloc.h>
- #include <asm/dma.h>
- /*
- * Permanent SPARSEMEM data:
- *
- * 1) mem_section - memory sections, mem_map's for valid memory
- */
- #ifdef CONFIG_SPARSEMEM_EXTREME
- struct mem_section *mem_section[NR_SECTION_ROOTS]
- ____cacheline_internodealigned_in_smp;
- #else
- struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
- ____cacheline_internodealigned_in_smp;
- #endif
- EXPORT_SYMBOL(mem_section);
- #ifdef NODE_NOT_IN_PAGE_FLAGS
- /*
- * If we did not store the node number in the page then we have to
- * do a lookup in the section_to_node_table in order to find which
- * node the page belongs to.
- */
- #if MAX_NUMNODES <= 256
- static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
- #else
- static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
- #endif
- int page_to_nid(struct page *page)
- {
- return section_to_node_table[page_to_section(page)];
- }
- EXPORT_SYMBOL(page_to_nid);
- static void set_section_nid(unsigned long section_nr, int nid)
- {
- section_to_node_table[section_nr] = nid;
- }
- #else /* !NODE_NOT_IN_PAGE_FLAGS */
- static inline void set_section_nid(unsigned long section_nr, int nid)
- {
- }
- #endif
- #ifdef CONFIG_SPARSEMEM_EXTREME
- static struct mem_section noinline __init_refok *sparse_index_alloc(int nid)
- {
- struct mem_section *section = NULL;
- unsigned long array_size = SECTIONS_PER_ROOT *
- sizeof(struct mem_section);
- if (slab_is_available())
- section = kmalloc_node(array_size, GFP_KERNEL, nid);
- else
- section = alloc_bootmem_node(NODE_DATA(nid), array_size);
- if (section)
- memset(section, 0, array_size);
- return section;
- }
- static int __meminit sparse_index_init(unsigned long section_nr, int nid)
- {
- static DEFINE_SPINLOCK(index_init_lock);
- unsigned long root = SECTION_NR_TO_ROOT(section_nr);
- struct mem_section *section;
- int ret = 0;
- if (mem_section[root])
- return -EEXIST;
- section = sparse_index_alloc(nid);
- /*
- * This lock keeps two different sections from
- * reallocating for the same index
- */
- spin_lock(&index_init_lock);
- if (mem_section[root]) {
- ret = -EEXIST;
- goto out;
- }
- mem_section[root] = section;
- out:
- spin_unlock(&index_init_lock);
- return ret;
- }
- #else /* !SPARSEMEM_EXTREME */
- static inline int sparse_index_init(unsigned long section_nr, int nid)
- {
- return 0;
- }
- #endif
- /*
- * Although written for the SPARSEMEM_EXTREME case, this happens
- * to also work for the flat array case becase
- * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
- */
- int __section_nr(struct mem_section* ms)
- {
- unsigned long root_nr;
- struct mem_section* root;
- for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
- root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
- if (!root)
- continue;
- if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
- break;
- }
- return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
- }
- /*
- * During early boot, before section_mem_map is used for an actual
- * mem_map, we use section_mem_map to store the section's NUMA
- * node. This keeps us from having to use another data structure. The
- * node information is cleared just before we store the real mem_map.
- */
- static inline unsigned long sparse_encode_early_nid(int nid)
- {
- return (nid << SECTION_NID_SHIFT);
- }
- static inline int sparse_early_nid(struct mem_section *section)
- {
- return (section->section_mem_map >> SECTION_NID_SHIFT);
- }
- /* Record a memory area against a node. */
- void __init memory_present(int nid, unsigned long start, unsigned long end)
- {
- unsigned long pfn;
- start &= PAGE_SECTION_MASK;
- for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
- unsigned long section = pfn_to_section_nr(pfn);
- struct mem_section *ms;
- sparse_index_init(section, nid);
- set_section_nid(section, nid);
- ms = __nr_to_section(section);
- if (!ms->section_mem_map)
- ms->section_mem_map = sparse_encode_early_nid(nid) |
- SECTION_MARKED_PRESENT;
- }
- }
- /*
- * Only used by the i386 NUMA architecures, but relatively
- * generic code.
- */
- unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
- unsigned long end_pfn)
- {
- unsigned long pfn;
- unsigned long nr_pages = 0;
- for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
- if (nid != early_pfn_to_nid(pfn))
- continue;
- if (pfn_valid(pfn))
- nr_pages += PAGES_PER_SECTION;
- }
- return nr_pages * sizeof(struct page);
- }
- /*
- * Subtle, we encode the real pfn into the mem_map such that
- * the identity pfn - section_mem_map will return the actual
- * physical page frame number.
- */
- static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
- {
- return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
- }
- /*
- * We need this if we ever free the mem_maps. While not implemented yet,
- * this function is included for parity with its sibling.
- */
- static __attribute((unused))
- struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
- {
- return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
- }
- static int __meminit sparse_init_one_section(struct mem_section *ms,
- unsigned long pnum, struct page *mem_map)
- {
- if (!valid_section(ms))
- return -EINVAL;
- ms->section_mem_map &= ~SECTION_MAP_MASK;
- ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum);
- return 1;
- }
- __attribute__((weak)) __init
- void *alloc_bootmem_high_node(pg_data_t *pgdat, unsigned long size)
- {
- return NULL;
- }
- static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
- {
- struct page *map;
- struct mem_section *ms = __nr_to_section(pnum);
- int nid = sparse_early_nid(ms);
- map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
- if (map)
- return map;
- map = alloc_bootmem_high_node(NODE_DATA(nid),
- sizeof(struct page) * PAGES_PER_SECTION);
- if (map)
- return map;
- map = alloc_bootmem_node(NODE_DATA(nid),
- sizeof(struct page) * PAGES_PER_SECTION);
- if (map)
- return map;
- printk(KERN_WARNING "%s: allocation failed\n", __FUNCTION__);
- ms->section_mem_map = 0;
- return NULL;
- }
- /*
- * Allocate the accumulated non-linear sections, allocate a mem_map
- * for each and record the physical to section mapping.
- */
- void __init sparse_init(void)
- {
- unsigned long pnum;
- struct page *map;
- for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
- if (!valid_section_nr(pnum))
- continue;
- map = sparse_early_mem_map_alloc(pnum);
- if (!map)
- continue;
- sparse_init_one_section(__nr_to_section(pnum), pnum, map);
- }
- }
- #ifdef CONFIG_MEMORY_HOTPLUG
- static struct page *__kmalloc_section_memmap(unsigned long nr_pages)
- {
- struct page *page, *ret;
- unsigned long memmap_size = sizeof(struct page) * nr_pages;
- page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
- if (page)
- goto got_map_page;
- ret = vmalloc(memmap_size);
- if (ret)
- goto got_map_ptr;
- return NULL;
- got_map_page:
- ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
- got_map_ptr:
- memset(ret, 0, memmap_size);
- return ret;
- }
- static int vaddr_in_vmalloc_area(void *addr)
- {
- if (addr >= (void *)VMALLOC_START &&
- addr < (void *)VMALLOC_END)
- return 1;
- return 0;
- }
- static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
- {
- if (vaddr_in_vmalloc_area(memmap))
- vfree(memmap);
- else
- free_pages((unsigned long)memmap,
- get_order(sizeof(struct page) * nr_pages));
- }
- /*
- * returns the number of sections whose mem_maps were properly
- * set. If this is <=0, then that means that the passed-in
- * map was not consumed and must be freed.
- */
- int sparse_add_one_section(struct zone *zone, unsigned long start_pfn,
- int nr_pages)
- {
- unsigned long section_nr = pfn_to_section_nr(start_pfn);
- struct pglist_data *pgdat = zone->zone_pgdat;
- struct mem_section *ms;
- struct page *memmap;
- unsigned long flags;
- int ret;
- /*
- * no locking for this, because it does its own
- * plus, it does a kmalloc
- */
- sparse_index_init(section_nr, pgdat->node_id);
- memmap = __kmalloc_section_memmap(nr_pages);
- pgdat_resize_lock(pgdat, &flags);
- ms = __pfn_to_section(start_pfn);
- if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
- ret = -EEXIST;
- goto out;
- }
- ms->section_mem_map |= SECTION_MARKED_PRESENT;
- ret = sparse_init_one_section(ms, section_nr, memmap);
- out:
- pgdat_resize_unlock(pgdat, &flags);
- if (ret <= 0)
- __kfree_section_memmap(memmap, nr_pages);
- return ret;
- }
- #endif
|