12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845 |
- /*
- * SLUB: A slab allocator that limits cache line use instead of queuing
- * objects in per cpu and per node lists.
- *
- * The allocator synchronizes using per slab locks and only
- * uses a centralized lock to manage a pool of partial slabs.
- *
- * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
- */
- #include <linux/mm.h>
- #include <linux/module.h>
- #include <linux/bit_spinlock.h>
- #include <linux/interrupt.h>
- #include <linux/bitops.h>
- #include <linux/slab.h>
- #include <linux/seq_file.h>
- #include <linux/cpu.h>
- #include <linux/cpuset.h>
- #include <linux/mempolicy.h>
- #include <linux/ctype.h>
- #include <linux/kallsyms.h>
- /*
- * Lock order:
- * 1. slab_lock(page)
- * 2. slab->list_lock
- *
- * The slab_lock protects operations on the object of a particular
- * slab and its metadata in the page struct. If the slab lock
- * has been taken then no allocations nor frees can be performed
- * on the objects in the slab nor can the slab be added or removed
- * from the partial or full lists since this would mean modifying
- * the page_struct of the slab.
- *
- * The list_lock protects the partial and full list on each node and
- * the partial slab counter. If taken then no new slabs may be added or
- * removed from the lists nor make the number of partial slabs be modified.
- * (Note that the total number of slabs is an atomic value that may be
- * modified without taking the list lock).
- *
- * The list_lock is a centralized lock and thus we avoid taking it as
- * much as possible. As long as SLUB does not have to handle partial
- * slabs, operations can continue without any centralized lock. F.e.
- * allocating a long series of objects that fill up slabs does not require
- * the list lock.
- *
- * The lock order is sometimes inverted when we are trying to get a slab
- * off a list. We take the list_lock and then look for a page on the list
- * to use. While we do that objects in the slabs may be freed. We can
- * only operate on the slab if we have also taken the slab_lock. So we use
- * a slab_trylock() on the slab. If trylock was successful then no frees
- * can occur anymore and we can use the slab for allocations etc. If the
- * slab_trylock() does not succeed then frees are in progress in the slab and
- * we must stay away from it for a while since we may cause a bouncing
- * cacheline if we try to acquire the lock. So go onto the next slab.
- * If all pages are busy then we may allocate a new slab instead of reusing
- * a partial slab. A new slab has noone operating on it and thus there is
- * no danger of cacheline contention.
- *
- * Interrupts are disabled during allocation and deallocation in order to
- * make the slab allocator safe to use in the context of an irq. In addition
- * interrupts are disabled to ensure that the processor does not change
- * while handling per_cpu slabs, due to kernel preemption.
- *
- * SLUB assigns one slab for allocation to each processor.
- * Allocations only occur from these slabs called cpu slabs.
- *
- * Slabs with free elements are kept on a partial list and during regular
- * operations no list for full slabs is used. If an object in a full slab is
- * freed then the slab will show up again on the partial lists.
- * We track full slabs for debugging purposes though because otherwise we
- * cannot scan all objects.
- *
- * Slabs are freed when they become empty. Teardown and setup is
- * minimal so we rely on the page allocators per cpu caches for
- * fast frees and allocs.
- *
- * Overloading of page flags that are otherwise used for LRU management.
- *
- * PageActive The slab is frozen and exempt from list processing.
- * This means that the slab is dedicated to a purpose
- * such as satisfying allocations for a specific
- * processor. Objects may be freed in the slab while
- * it is frozen but slab_free will then skip the usual
- * list operations. It is up to the processor holding
- * the slab to integrate the slab into the slab lists
- * when the slab is no longer needed.
- *
- * One use of this flag is to mark slabs that are
- * used for allocations. Then such a slab becomes a cpu
- * slab. The cpu slab may be equipped with an additional
- * lockless_freelist that allows lockless access to
- * free objects in addition to the regular freelist
- * that requires the slab lock.
- *
- * PageError Slab requires special handling due to debug
- * options set. This moves slab handling out of
- * the fast path and disables lockless freelists.
- */
- #define FROZEN (1 << PG_active)
- #ifdef CONFIG_SLUB_DEBUG
- #define SLABDEBUG (1 << PG_error)
- #else
- #define SLABDEBUG 0
- #endif
- static inline int SlabFrozen(struct page *page)
- {
- return page->flags & FROZEN;
- }
- static inline void SetSlabFrozen(struct page *page)
- {
- page->flags |= FROZEN;
- }
- static inline void ClearSlabFrozen(struct page *page)
- {
- page->flags &= ~FROZEN;
- }
- static inline int SlabDebug(struct page *page)
- {
- return page->flags & SLABDEBUG;
- }
- static inline void SetSlabDebug(struct page *page)
- {
- page->flags |= SLABDEBUG;
- }
- static inline void ClearSlabDebug(struct page *page)
- {
- page->flags &= ~SLABDEBUG;
- }
- /*
- * Issues still to be resolved:
- *
- * - The per cpu array is updated for each new slab and and is a remote
- * cacheline for most nodes. This could become a bouncing cacheline given
- * enough frequent updates. There are 16 pointers in a cacheline, so at
- * max 16 cpus could compete for the cacheline which may be okay.
- *
- * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
- *
- * - Variable sizing of the per node arrays
- */
- /* Enable to test recovery from slab corruption on boot */
- #undef SLUB_RESILIENCY_TEST
- #if PAGE_SHIFT <= 12
- /*
- * Small page size. Make sure that we do not fragment memory
- */
- #define DEFAULT_MAX_ORDER 1
- #define DEFAULT_MIN_OBJECTS 4
- #else
- /*
- * Large page machines are customarily able to handle larger
- * page orders.
- */
- #define DEFAULT_MAX_ORDER 2
- #define DEFAULT_MIN_OBJECTS 8
- #endif
- /*
- * Mininum number of partial slabs. These will be left on the partial
- * lists even if they are empty. kmem_cache_shrink may reclaim them.
- */
- #define MIN_PARTIAL 2
- /*
- * Maximum number of desirable partial slabs.
- * The existence of more partial slabs makes kmem_cache_shrink
- * sort the partial list by the number of objects in the.
- */
- #define MAX_PARTIAL 10
- #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
- SLAB_POISON | SLAB_STORE_USER)
- /*
- * Set of flags that will prevent slab merging
- */
- #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
- SLAB_TRACE | SLAB_DESTROY_BY_RCU)
- #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
- SLAB_CACHE_DMA)
- #ifndef ARCH_KMALLOC_MINALIGN
- #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
- #endif
- #ifndef ARCH_SLAB_MINALIGN
- #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
- #endif
- /*
- * The page->inuse field is 16 bit thus we have this limitation
- */
- #define MAX_OBJECTS_PER_SLAB 65535
- /* Internal SLUB flags */
- #define __OBJECT_POISON 0x80000000 /* Poison object */
- #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
- /* Not all arches define cache_line_size */
- #ifndef cache_line_size
- #define cache_line_size() L1_CACHE_BYTES
- #endif
- static int kmem_size = sizeof(struct kmem_cache);
- #ifdef CONFIG_SMP
- static struct notifier_block slab_notifier;
- #endif
- static enum {
- DOWN, /* No slab functionality available */
- PARTIAL, /* kmem_cache_open() works but kmalloc does not */
- UP, /* Everything works but does not show up in sysfs */
- SYSFS /* Sysfs up */
- } slab_state = DOWN;
- /* A list of all slab caches on the system */
- static DECLARE_RWSEM(slub_lock);
- static LIST_HEAD(slab_caches);
- /*
- * Tracking user of a slab.
- */
- struct track {
- void *addr; /* Called from address */
- int cpu; /* Was running on cpu */
- int pid; /* Pid context */
- unsigned long when; /* When did the operation occur */
- };
- enum track_item { TRACK_ALLOC, TRACK_FREE };
- #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
- static int sysfs_slab_add(struct kmem_cache *);
- static int sysfs_slab_alias(struct kmem_cache *, const char *);
- static void sysfs_slab_remove(struct kmem_cache *);
- #else
- static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
- static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
- { return 0; }
- static inline void sysfs_slab_remove(struct kmem_cache *s) {}
- #endif
- /********************************************************************
- * Core slab cache functions
- *******************************************************************/
- int slab_is_available(void)
- {
- return slab_state >= UP;
- }
- static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
- {
- #ifdef CONFIG_NUMA
- return s->node[node];
- #else
- return &s->local_node;
- #endif
- }
- static inline int check_valid_pointer(struct kmem_cache *s,
- struct page *page, const void *object)
- {
- void *base;
- if (!object)
- return 1;
- base = page_address(page);
- if (object < base || object >= base + s->objects * s->size ||
- (object - base) % s->size) {
- return 0;
- }
- return 1;
- }
- /*
- * Slow version of get and set free pointer.
- *
- * This version requires touching the cache lines of kmem_cache which
- * we avoid to do in the fast alloc free paths. There we obtain the offset
- * from the page struct.
- */
- static inline void *get_freepointer(struct kmem_cache *s, void *object)
- {
- return *(void **)(object + s->offset);
- }
- static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
- {
- *(void **)(object + s->offset) = fp;
- }
- /* Loop over all objects in a slab */
- #define for_each_object(__p, __s, __addr) \
- for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
- __p += (__s)->size)
- /* Scan freelist */
- #define for_each_free_object(__p, __s, __free) \
- for (__p = (__free); __p; __p = get_freepointer((__s), __p))
- /* Determine object index from a given position */
- static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
- {
- return (p - addr) / s->size;
- }
- #ifdef CONFIG_SLUB_DEBUG
- /*
- * Debug settings:
- */
- #ifdef CONFIG_SLUB_DEBUG_ON
- static int slub_debug = DEBUG_DEFAULT_FLAGS;
- #else
- static int slub_debug;
- #endif
- static char *slub_debug_slabs;
- /*
- * Object debugging
- */
- static void print_section(char *text, u8 *addr, unsigned int length)
- {
- int i, offset;
- int newline = 1;
- char ascii[17];
- ascii[16] = 0;
- for (i = 0; i < length; i++) {
- if (newline) {
- printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
- newline = 0;
- }
- printk(" %02x", addr[i]);
- offset = i % 16;
- ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
- if (offset == 15) {
- printk(" %s\n",ascii);
- newline = 1;
- }
- }
- if (!newline) {
- i %= 16;
- while (i < 16) {
- printk(" ");
- ascii[i] = ' ';
- i++;
- }
- printk(" %s\n", ascii);
- }
- }
- static struct track *get_track(struct kmem_cache *s, void *object,
- enum track_item alloc)
- {
- struct track *p;
- if (s->offset)
- p = object + s->offset + sizeof(void *);
- else
- p = object + s->inuse;
- return p + alloc;
- }
- static void set_track(struct kmem_cache *s, void *object,
- enum track_item alloc, void *addr)
- {
- struct track *p;
- if (s->offset)
- p = object + s->offset + sizeof(void *);
- else
- p = object + s->inuse;
- p += alloc;
- if (addr) {
- p->addr = addr;
- p->cpu = smp_processor_id();
- p->pid = current ? current->pid : -1;
- p->when = jiffies;
- } else
- memset(p, 0, sizeof(struct track));
- }
- static void init_tracking(struct kmem_cache *s, void *object)
- {
- if (!(s->flags & SLAB_STORE_USER))
- return;
- set_track(s, object, TRACK_FREE, NULL);
- set_track(s, object, TRACK_ALLOC, NULL);
- }
- static void print_track(const char *s, struct track *t)
- {
- if (!t->addr)
- return;
- printk(KERN_ERR "INFO: %s in ", s);
- __print_symbol("%s", (unsigned long)t->addr);
- printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
- }
- static void print_tracking(struct kmem_cache *s, void *object)
- {
- if (!(s->flags & SLAB_STORE_USER))
- return;
- print_track("Allocated", get_track(s, object, TRACK_ALLOC));
- print_track("Freed", get_track(s, object, TRACK_FREE));
- }
- static void print_page_info(struct page *page)
- {
- printk(KERN_ERR "INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n",
- page, page->inuse, page->freelist, page->flags);
- }
- static void slab_bug(struct kmem_cache *s, char *fmt, ...)
- {
- va_list args;
- char buf[100];
- va_start(args, fmt);
- vsnprintf(buf, sizeof(buf), fmt, args);
- va_end(args);
- printk(KERN_ERR "========================================"
- "=====================================\n");
- printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
- printk(KERN_ERR "----------------------------------------"
- "-------------------------------------\n\n");
- }
- static void slab_fix(struct kmem_cache *s, char *fmt, ...)
- {
- va_list args;
- char buf[100];
- va_start(args, fmt);
- vsnprintf(buf, sizeof(buf), fmt, args);
- va_end(args);
- printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
- }
- static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
- {
- unsigned int off; /* Offset of last byte */
- u8 *addr = page_address(page);
- print_tracking(s, p);
- print_page_info(page);
- printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
- p, p - addr, get_freepointer(s, p));
- if (p > addr + 16)
- print_section("Bytes b4", p - 16, 16);
- print_section("Object", p, min(s->objsize, 128));
- if (s->flags & SLAB_RED_ZONE)
- print_section("Redzone", p + s->objsize,
- s->inuse - s->objsize);
- if (s->offset)
- off = s->offset + sizeof(void *);
- else
- off = s->inuse;
- if (s->flags & SLAB_STORE_USER)
- off += 2 * sizeof(struct track);
- if (off != s->size)
- /* Beginning of the filler is the free pointer */
- print_section("Padding", p + off, s->size - off);
- dump_stack();
- }
- static void object_err(struct kmem_cache *s, struct page *page,
- u8 *object, char *reason)
- {
- slab_bug(s, reason);
- print_trailer(s, page, object);
- }
- static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
- {
- va_list args;
- char buf[100];
- va_start(args, fmt);
- vsnprintf(buf, sizeof(buf), fmt, args);
- va_end(args);
- slab_bug(s, fmt);
- print_page_info(page);
- dump_stack();
- }
- static void init_object(struct kmem_cache *s, void *object, int active)
- {
- u8 *p = object;
- if (s->flags & __OBJECT_POISON) {
- memset(p, POISON_FREE, s->objsize - 1);
- p[s->objsize -1] = POISON_END;
- }
- if (s->flags & SLAB_RED_ZONE)
- memset(p + s->objsize,
- active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
- s->inuse - s->objsize);
- }
- static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
- {
- while (bytes) {
- if (*start != (u8)value)
- return start;
- start++;
- bytes--;
- }
- return NULL;
- }
- static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
- void *from, void *to)
- {
- slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
- memset(from, data, to - from);
- }
- static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
- u8 *object, char *what,
- u8* start, unsigned int value, unsigned int bytes)
- {
- u8 *fault;
- u8 *end;
- fault = check_bytes(start, value, bytes);
- if (!fault)
- return 1;
- end = start + bytes;
- while (end > fault && end[-1] == value)
- end--;
- slab_bug(s, "%s overwritten", what);
- printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
- fault, end - 1, fault[0], value);
- print_trailer(s, page, object);
- restore_bytes(s, what, value, fault, end);
- return 0;
- }
- /*
- * Object layout:
- *
- * object address
- * Bytes of the object to be managed.
- * If the freepointer may overlay the object then the free
- * pointer is the first word of the object.
- *
- * Poisoning uses 0x6b (POISON_FREE) and the last byte is
- * 0xa5 (POISON_END)
- *
- * object + s->objsize
- * Padding to reach word boundary. This is also used for Redzoning.
- * Padding is extended by another word if Redzoning is enabled and
- * objsize == inuse.
- *
- * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
- * 0xcc (RED_ACTIVE) for objects in use.
- *
- * object + s->inuse
- * Meta data starts here.
- *
- * A. Free pointer (if we cannot overwrite object on free)
- * B. Tracking data for SLAB_STORE_USER
- * C. Padding to reach required alignment boundary or at mininum
- * one word if debuggin is on to be able to detect writes
- * before the word boundary.
- *
- * Padding is done using 0x5a (POISON_INUSE)
- *
- * object + s->size
- * Nothing is used beyond s->size.
- *
- * If slabcaches are merged then the objsize and inuse boundaries are mostly
- * ignored. And therefore no slab options that rely on these boundaries
- * may be used with merged slabcaches.
- */
- static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
- {
- unsigned long off = s->inuse; /* The end of info */
- if (s->offset)
- /* Freepointer is placed after the object. */
- off += sizeof(void *);
- if (s->flags & SLAB_STORE_USER)
- /* We also have user information there */
- off += 2 * sizeof(struct track);
- if (s->size == off)
- return 1;
- return check_bytes_and_report(s, page, p, "Object padding",
- p + off, POISON_INUSE, s->size - off);
- }
- static int slab_pad_check(struct kmem_cache *s, struct page *page)
- {
- u8 *start;
- u8 *fault;
- u8 *end;
- int length;
- int remainder;
- if (!(s->flags & SLAB_POISON))
- return 1;
- start = page_address(page);
- end = start + (PAGE_SIZE << s->order);
- length = s->objects * s->size;
- remainder = end - (start + length);
- if (!remainder)
- return 1;
- fault = check_bytes(start + length, POISON_INUSE, remainder);
- if (!fault)
- return 1;
- while (end > fault && end[-1] == POISON_INUSE)
- end--;
- slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
- print_section("Padding", start, length);
- restore_bytes(s, "slab padding", POISON_INUSE, start, end);
- return 0;
- }
- static int check_object(struct kmem_cache *s, struct page *page,
- void *object, int active)
- {
- u8 *p = object;
- u8 *endobject = object + s->objsize;
- if (s->flags & SLAB_RED_ZONE) {
- unsigned int red =
- active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
- if (!check_bytes_and_report(s, page, object, "Redzone",
- endobject, red, s->inuse - s->objsize))
- return 0;
- } else {
- if ((s->flags & SLAB_POISON) && s->objsize < s->inuse)
- check_bytes_and_report(s, page, p, "Alignment padding", endobject,
- POISON_INUSE, s->inuse - s->objsize);
- }
- if (s->flags & SLAB_POISON) {
- if (!active && (s->flags & __OBJECT_POISON) &&
- (!check_bytes_and_report(s, page, p, "Poison", p,
- POISON_FREE, s->objsize - 1) ||
- !check_bytes_and_report(s, page, p, "Poison",
- p + s->objsize -1, POISON_END, 1)))
- return 0;
- /*
- * check_pad_bytes cleans up on its own.
- */
- check_pad_bytes(s, page, p);
- }
- if (!s->offset && active)
- /*
- * Object and freepointer overlap. Cannot check
- * freepointer while object is allocated.
- */
- return 1;
- /* Check free pointer validity */
- if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
- object_err(s, page, p, "Freepointer corrupt");
- /*
- * No choice but to zap it and thus loose the remainder
- * of the free objects in this slab. May cause
- * another error because the object count is now wrong.
- */
- set_freepointer(s, p, NULL);
- return 0;
- }
- return 1;
- }
- static int check_slab(struct kmem_cache *s, struct page *page)
- {
- VM_BUG_ON(!irqs_disabled());
- if (!PageSlab(page)) {
- slab_err(s, page, "Not a valid slab page");
- return 0;
- }
- if (page->offset * sizeof(void *) != s->offset) {
- slab_err(s, page, "Corrupted offset %lu",
- (unsigned long)(page->offset * sizeof(void *)));
- return 0;
- }
- if (page->inuse > s->objects) {
- slab_err(s, page, "inuse %u > max %u",
- s->name, page->inuse, s->objects);
- return 0;
- }
- /* Slab_pad_check fixes things up after itself */
- slab_pad_check(s, page);
- return 1;
- }
- /*
- * Determine if a certain object on a page is on the freelist. Must hold the
- * slab lock to guarantee that the chains are in a consistent state.
- */
- static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
- {
- int nr = 0;
- void *fp = page->freelist;
- void *object = NULL;
- while (fp && nr <= s->objects) {
- if (fp == search)
- return 1;
- if (!check_valid_pointer(s, page, fp)) {
- if (object) {
- object_err(s, page, object,
- "Freechain corrupt");
- set_freepointer(s, object, NULL);
- break;
- } else {
- slab_err(s, page, "Freepointer corrupt");
- page->freelist = NULL;
- page->inuse = s->objects;
- slab_fix(s, "Freelist cleared");
- return 0;
- }
- break;
- }
- object = fp;
- fp = get_freepointer(s, object);
- nr++;
- }
- if (page->inuse != s->objects - nr) {
- slab_err(s, page, "Wrong object count. Counter is %d but "
- "counted were %d", page->inuse, s->objects - nr);
- page->inuse = s->objects - nr;
- slab_fix(s, "Object count adjusted.");
- }
- return search == NULL;
- }
- static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
- {
- if (s->flags & SLAB_TRACE) {
- printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
- s->name,
- alloc ? "alloc" : "free",
- object, page->inuse,
- page->freelist);
- if (!alloc)
- print_section("Object", (void *)object, s->objsize);
- dump_stack();
- }
- }
- /*
- * Tracking of fully allocated slabs for debugging purposes.
- */
- static void add_full(struct kmem_cache_node *n, struct page *page)
- {
- spin_lock(&n->list_lock);
- list_add(&page->lru, &n->full);
- spin_unlock(&n->list_lock);
- }
- static void remove_full(struct kmem_cache *s, struct page *page)
- {
- struct kmem_cache_node *n;
- if (!(s->flags & SLAB_STORE_USER))
- return;
- n = get_node(s, page_to_nid(page));
- spin_lock(&n->list_lock);
- list_del(&page->lru);
- spin_unlock(&n->list_lock);
- }
- static void setup_object_debug(struct kmem_cache *s, struct page *page,
- void *object)
- {
- if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
- return;
- init_object(s, object, 0);
- init_tracking(s, object);
- }
- static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
- void *object, void *addr)
- {
- if (!check_slab(s, page))
- goto bad;
- if (object && !on_freelist(s, page, object)) {
- object_err(s, page, object, "Object already allocated");
- goto bad;
- }
- if (!check_valid_pointer(s, page, object)) {
- object_err(s, page, object, "Freelist Pointer check fails");
- goto bad;
- }
- if (object && !check_object(s, page, object, 0))
- goto bad;
- /* Success perform special debug activities for allocs */
- if (s->flags & SLAB_STORE_USER)
- set_track(s, object, TRACK_ALLOC, addr);
- trace(s, page, object, 1);
- init_object(s, object, 1);
- return 1;
- bad:
- if (PageSlab(page)) {
- /*
- * If this is a slab page then lets do the best we can
- * to avoid issues in the future. Marking all objects
- * as used avoids touching the remaining objects.
- */
- slab_fix(s, "Marking all objects used");
- page->inuse = s->objects;
- page->freelist = NULL;
- /* Fix up fields that may be corrupted */
- page->offset = s->offset / sizeof(void *);
- }
- return 0;
- }
- static int free_debug_processing(struct kmem_cache *s, struct page *page,
- void *object, void *addr)
- {
- if (!check_slab(s, page))
- goto fail;
- if (!check_valid_pointer(s, page, object)) {
- slab_err(s, page, "Invalid object pointer 0x%p", object);
- goto fail;
- }
- if (on_freelist(s, page, object)) {
- object_err(s, page, object, "Object already free");
- goto fail;
- }
- if (!check_object(s, page, object, 1))
- return 0;
- if (unlikely(s != page->slab)) {
- if (!PageSlab(page))
- slab_err(s, page, "Attempt to free object(0x%p) "
- "outside of slab", object);
- else
- if (!page->slab) {
- printk(KERN_ERR
- "SLUB <none>: no slab for object 0x%p.\n",
- object);
- dump_stack();
- }
- else
- object_err(s, page, object,
- "page slab pointer corrupt.");
- goto fail;
- }
- /* Special debug activities for freeing objects */
- if (!SlabFrozen(page) && !page->freelist)
- remove_full(s, page);
- if (s->flags & SLAB_STORE_USER)
- set_track(s, object, TRACK_FREE, addr);
- trace(s, page, object, 0);
- init_object(s, object, 0);
- return 1;
- fail:
- slab_fix(s, "Object at 0x%p not freed", object);
- return 0;
- }
- static int __init setup_slub_debug(char *str)
- {
- slub_debug = DEBUG_DEFAULT_FLAGS;
- if (*str++ != '=' || !*str)
- /*
- * No options specified. Switch on full debugging.
- */
- goto out;
- if (*str == ',')
- /*
- * No options but restriction on slabs. This means full
- * debugging for slabs matching a pattern.
- */
- goto check_slabs;
- slub_debug = 0;
- if (*str == '-')
- /*
- * Switch off all debugging measures.
- */
- goto out;
- /*
- * Determine which debug features should be switched on
- */
- for ( ;*str && *str != ','; str++) {
- switch (tolower(*str)) {
- case 'f':
- slub_debug |= SLAB_DEBUG_FREE;
- break;
- case 'z':
- slub_debug |= SLAB_RED_ZONE;
- break;
- case 'p':
- slub_debug |= SLAB_POISON;
- break;
- case 'u':
- slub_debug |= SLAB_STORE_USER;
- break;
- case 't':
- slub_debug |= SLAB_TRACE;
- break;
- default:
- printk(KERN_ERR "slub_debug option '%c' "
- "unknown. skipped\n",*str);
- }
- }
- check_slabs:
- if (*str == ',')
- slub_debug_slabs = str + 1;
- out:
- return 1;
- }
- __setup("slub_debug", setup_slub_debug);
- static unsigned long kmem_cache_flags(unsigned long objsize,
- unsigned long flags, const char *name,
- void (*ctor)(void *, struct kmem_cache *, unsigned long))
- {
- /*
- * The page->offset field is only 16 bit wide. This is an offset
- * in units of words from the beginning of an object. If the slab
- * size is bigger then we cannot move the free pointer behind the
- * object anymore.
- *
- * On 32 bit platforms the limit is 256k. On 64bit platforms
- * the limit is 512k.
- *
- * Debugging or ctor may create a need to move the free
- * pointer. Fail if this happens.
- */
- if (objsize >= 65535 * sizeof(void *)) {
- BUG_ON(flags & (SLAB_RED_ZONE | SLAB_POISON |
- SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
- BUG_ON(ctor);
- } else {
- /*
- * Enable debugging if selected on the kernel commandline.
- */
- if (slub_debug && (!slub_debug_slabs ||
- strncmp(slub_debug_slabs, name,
- strlen(slub_debug_slabs)) == 0))
- flags |= slub_debug;
- }
- return flags;
- }
- #else
- static inline void setup_object_debug(struct kmem_cache *s,
- struct page *page, void *object) {}
- static inline int alloc_debug_processing(struct kmem_cache *s,
- struct page *page, void *object, void *addr) { return 0; }
- static inline int free_debug_processing(struct kmem_cache *s,
- struct page *page, void *object, void *addr) { return 0; }
- static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
- { return 1; }
- static inline int check_object(struct kmem_cache *s, struct page *page,
- void *object, int active) { return 1; }
- static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
- static inline unsigned long kmem_cache_flags(unsigned long objsize,
- unsigned long flags, const char *name,
- void (*ctor)(void *, struct kmem_cache *, unsigned long))
- {
- return flags;
- }
- #define slub_debug 0
- #endif
- /*
- * Slab allocation and freeing
- */
- static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
- {
- struct page * page;
- int pages = 1 << s->order;
- if (s->order)
- flags |= __GFP_COMP;
- if (s->flags & SLAB_CACHE_DMA)
- flags |= SLUB_DMA;
- if (node == -1)
- page = alloc_pages(flags, s->order);
- else
- page = alloc_pages_node(node, flags, s->order);
- if (!page)
- return NULL;
- mod_zone_page_state(page_zone(page),
- (s->flags & SLAB_RECLAIM_ACCOUNT) ?
- NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
- pages);
- return page;
- }
- static void setup_object(struct kmem_cache *s, struct page *page,
- void *object)
- {
- setup_object_debug(s, page, object);
- if (unlikely(s->ctor))
- s->ctor(object, s, 0);
- }
- static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
- {
- struct page *page;
- struct kmem_cache_node *n;
- void *start;
- void *end;
- void *last;
- void *p;
- BUG_ON(flags & ~(GFP_DMA | __GFP_ZERO | GFP_LEVEL_MASK));
- if (flags & __GFP_WAIT)
- local_irq_enable();
- page = allocate_slab(s, flags & GFP_LEVEL_MASK, node);
- if (!page)
- goto out;
- n = get_node(s, page_to_nid(page));
- if (n)
- atomic_long_inc(&n->nr_slabs);
- page->offset = s->offset / sizeof(void *);
- page->slab = s;
- page->flags |= 1 << PG_slab;
- if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
- SLAB_STORE_USER | SLAB_TRACE))
- SetSlabDebug(page);
- start = page_address(page);
- end = start + s->objects * s->size;
- if (unlikely(s->flags & SLAB_POISON))
- memset(start, POISON_INUSE, PAGE_SIZE << s->order);
- last = start;
- for_each_object(p, s, start) {
- setup_object(s, page, last);
- set_freepointer(s, last, p);
- last = p;
- }
- setup_object(s, page, last);
- set_freepointer(s, last, NULL);
- page->freelist = start;
- page->lockless_freelist = NULL;
- page->inuse = 0;
- out:
- if (flags & __GFP_WAIT)
- local_irq_disable();
- return page;
- }
- static void __free_slab(struct kmem_cache *s, struct page *page)
- {
- int pages = 1 << s->order;
- if (unlikely(SlabDebug(page))) {
- void *p;
- slab_pad_check(s, page);
- for_each_object(p, s, page_address(page))
- check_object(s, page, p, 0);
- ClearSlabDebug(page);
- }
- mod_zone_page_state(page_zone(page),
- (s->flags & SLAB_RECLAIM_ACCOUNT) ?
- NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
- - pages);
- page->mapping = NULL;
- __free_pages(page, s->order);
- }
- static void rcu_free_slab(struct rcu_head *h)
- {
- struct page *page;
- page = container_of((struct list_head *)h, struct page, lru);
- __free_slab(page->slab, page);
- }
- static void free_slab(struct kmem_cache *s, struct page *page)
- {
- if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
- /*
- * RCU free overloads the RCU head over the LRU
- */
- struct rcu_head *head = (void *)&page->lru;
- call_rcu(head, rcu_free_slab);
- } else
- __free_slab(s, page);
- }
- static void discard_slab(struct kmem_cache *s, struct page *page)
- {
- struct kmem_cache_node *n = get_node(s, page_to_nid(page));
- atomic_long_dec(&n->nr_slabs);
- reset_page_mapcount(page);
- __ClearPageSlab(page);
- free_slab(s, page);
- }
- /*
- * Per slab locking using the pagelock
- */
- static __always_inline void slab_lock(struct page *page)
- {
- bit_spin_lock(PG_locked, &page->flags);
- }
- static __always_inline void slab_unlock(struct page *page)
- {
- bit_spin_unlock(PG_locked, &page->flags);
- }
- static __always_inline int slab_trylock(struct page *page)
- {
- int rc = 1;
- rc = bit_spin_trylock(PG_locked, &page->flags);
- return rc;
- }
- /*
- * Management of partially allocated slabs
- */
- static void add_partial_tail(struct kmem_cache_node *n, struct page *page)
- {
- spin_lock(&n->list_lock);
- n->nr_partial++;
- list_add_tail(&page->lru, &n->partial);
- spin_unlock(&n->list_lock);
- }
- static void add_partial(struct kmem_cache_node *n, struct page *page)
- {
- spin_lock(&n->list_lock);
- n->nr_partial++;
- list_add(&page->lru, &n->partial);
- spin_unlock(&n->list_lock);
- }
- static void remove_partial(struct kmem_cache *s,
- struct page *page)
- {
- struct kmem_cache_node *n = get_node(s, page_to_nid(page));
- spin_lock(&n->list_lock);
- list_del(&page->lru);
- n->nr_partial--;
- spin_unlock(&n->list_lock);
- }
- /*
- * Lock slab and remove from the partial list.
- *
- * Must hold list_lock.
- */
- static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
- {
- if (slab_trylock(page)) {
- list_del(&page->lru);
- n->nr_partial--;
- SetSlabFrozen(page);
- return 1;
- }
- return 0;
- }
- /*
- * Try to allocate a partial slab from a specific node.
- */
- static struct page *get_partial_node(struct kmem_cache_node *n)
- {
- struct page *page;
- /*
- * Racy check. If we mistakenly see no partial slabs then we
- * just allocate an empty slab. If we mistakenly try to get a
- * partial slab and there is none available then get_partials()
- * will return NULL.
- */
- if (!n || !n->nr_partial)
- return NULL;
- spin_lock(&n->list_lock);
- list_for_each_entry(page, &n->partial, lru)
- if (lock_and_freeze_slab(n, page))
- goto out;
- page = NULL;
- out:
- spin_unlock(&n->list_lock);
- return page;
- }
- /*
- * Get a page from somewhere. Search in increasing NUMA distances.
- */
- static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
- {
- #ifdef CONFIG_NUMA
- struct zonelist *zonelist;
- struct zone **z;
- struct page *page;
- /*
- * The defrag ratio allows a configuration of the tradeoffs between
- * inter node defragmentation and node local allocations. A lower
- * defrag_ratio increases the tendency to do local allocations
- * instead of attempting to obtain partial slabs from other nodes.
- *
- * If the defrag_ratio is set to 0 then kmalloc() always
- * returns node local objects. If the ratio is higher then kmalloc()
- * may return off node objects because partial slabs are obtained
- * from other nodes and filled up.
- *
- * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
- * defrag_ratio = 1000) then every (well almost) allocation will
- * first attempt to defrag slab caches on other nodes. This means
- * scanning over all nodes to look for partial slabs which may be
- * expensive if we do it every time we are trying to find a slab
- * with available objects.
- */
- if (!s->defrag_ratio || get_cycles() % 1024 > s->defrag_ratio)
- return NULL;
- zonelist = &NODE_DATA(slab_node(current->mempolicy))
- ->node_zonelists[gfp_zone(flags)];
- for (z = zonelist->zones; *z; z++) {
- struct kmem_cache_node *n;
- n = get_node(s, zone_to_nid(*z));
- if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
- n->nr_partial > MIN_PARTIAL) {
- page = get_partial_node(n);
- if (page)
- return page;
- }
- }
- #endif
- return NULL;
- }
- /*
- * Get a partial page, lock it and return it.
- */
- static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
- {
- struct page *page;
- int searchnode = (node == -1) ? numa_node_id() : node;
- page = get_partial_node(get_node(s, searchnode));
- if (page || (flags & __GFP_THISNODE))
- return page;
- return get_any_partial(s, flags);
- }
- /*
- * Move a page back to the lists.
- *
- * Must be called with the slab lock held.
- *
- * On exit the slab lock will have been dropped.
- */
- static void unfreeze_slab(struct kmem_cache *s, struct page *page)
- {
- struct kmem_cache_node *n = get_node(s, page_to_nid(page));
- ClearSlabFrozen(page);
- if (page->inuse) {
- if (page->freelist)
- add_partial(n, page);
- else if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
- add_full(n, page);
- slab_unlock(page);
- } else {
- if (n->nr_partial < MIN_PARTIAL) {
- /*
- * Adding an empty slab to the partial slabs in order
- * to avoid page allocator overhead. This slab needs
- * to come after the other slabs with objects in
- * order to fill them up. That way the size of the
- * partial list stays small. kmem_cache_shrink can
- * reclaim empty slabs from the partial list.
- */
- add_partial_tail(n, page);
- slab_unlock(page);
- } else {
- slab_unlock(page);
- discard_slab(s, page);
- }
- }
- }
- /*
- * Remove the cpu slab
- */
- static void deactivate_slab(struct kmem_cache *s, struct page *page, int cpu)
- {
- /*
- * Merge cpu freelist into freelist. Typically we get here
- * because both freelists are empty. So this is unlikely
- * to occur.
- */
- while (unlikely(page->lockless_freelist)) {
- void **object;
- /* Retrieve object from cpu_freelist */
- object = page->lockless_freelist;
- page->lockless_freelist = page->lockless_freelist[page->offset];
- /* And put onto the regular freelist */
- object[page->offset] = page->freelist;
- page->freelist = object;
- page->inuse--;
- }
- s->cpu_slab[cpu] = NULL;
- unfreeze_slab(s, page);
- }
- static inline void flush_slab(struct kmem_cache *s, struct page *page, int cpu)
- {
- slab_lock(page);
- deactivate_slab(s, page, cpu);
- }
- /*
- * Flush cpu slab.
- * Called from IPI handler with interrupts disabled.
- */
- static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
- {
- struct page *page = s->cpu_slab[cpu];
- if (likely(page))
- flush_slab(s, page, cpu);
- }
- static void flush_cpu_slab(void *d)
- {
- struct kmem_cache *s = d;
- int cpu = smp_processor_id();
- __flush_cpu_slab(s, cpu);
- }
- static void flush_all(struct kmem_cache *s)
- {
- #ifdef CONFIG_SMP
- on_each_cpu(flush_cpu_slab, s, 1, 1);
- #else
- unsigned long flags;
- local_irq_save(flags);
- flush_cpu_slab(s);
- local_irq_restore(flags);
- #endif
- }
- /*
- * Slow path. The lockless freelist is empty or we need to perform
- * debugging duties.
- *
- * Interrupts are disabled.
- *
- * Processing is still very fast if new objects have been freed to the
- * regular freelist. In that case we simply take over the regular freelist
- * as the lockless freelist and zap the regular freelist.
- *
- * If that is not working then we fall back to the partial lists. We take the
- * first element of the freelist as the object to allocate now and move the
- * rest of the freelist to the lockless freelist.
- *
- * And if we were unable to get a new slab from the partial slab lists then
- * we need to allocate a new slab. This is slowest path since we may sleep.
- */
- static void *__slab_alloc(struct kmem_cache *s,
- gfp_t gfpflags, int node, void *addr, struct page *page)
- {
- void **object;
- int cpu = smp_processor_id();
- if (!page)
- goto new_slab;
- slab_lock(page);
- if (unlikely(node != -1 && page_to_nid(page) != node))
- goto another_slab;
- load_freelist:
- object = page->freelist;
- if (unlikely(!object))
- goto another_slab;
- if (unlikely(SlabDebug(page)))
- goto debug;
- object = page->freelist;
- page->lockless_freelist = object[page->offset];
- page->inuse = s->objects;
- page->freelist = NULL;
- slab_unlock(page);
- return object;
- another_slab:
- deactivate_slab(s, page, cpu);
- new_slab:
- page = get_partial(s, gfpflags, node);
- if (page) {
- s->cpu_slab[cpu] = page;
- goto load_freelist;
- }
- page = new_slab(s, gfpflags, node);
- if (page) {
- cpu = smp_processor_id();
- if (s->cpu_slab[cpu]) {
- /*
- * Someone else populated the cpu_slab while we
- * enabled interrupts, or we have gotten scheduled
- * on another cpu. The page may not be on the
- * requested node even if __GFP_THISNODE was
- * specified. So we need to recheck.
- */
- if (node == -1 ||
- page_to_nid(s->cpu_slab[cpu]) == node) {
- /*
- * Current cpuslab is acceptable and we
- * want the current one since its cache hot
- */
- discard_slab(s, page);
- page = s->cpu_slab[cpu];
- slab_lock(page);
- goto load_freelist;
- }
- /* New slab does not fit our expectations */
- flush_slab(s, s->cpu_slab[cpu], cpu);
- }
- slab_lock(page);
- SetSlabFrozen(page);
- s->cpu_slab[cpu] = page;
- goto load_freelist;
- }
- return NULL;
- debug:
- object = page->freelist;
- if (!alloc_debug_processing(s, page, object, addr))
- goto another_slab;
- page->inuse++;
- page->freelist = object[page->offset];
- slab_unlock(page);
- return object;
- }
- /*
- * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
- * have the fastpath folded into their functions. So no function call
- * overhead for requests that can be satisfied on the fastpath.
- *
- * The fastpath works by first checking if the lockless freelist can be used.
- * If not then __slab_alloc is called for slow processing.
- *
- * Otherwise we can simply pick the next object from the lockless free list.
- */
- static void __always_inline *slab_alloc(struct kmem_cache *s,
- gfp_t gfpflags, int node, void *addr)
- {
- struct page *page;
- void **object;
- unsigned long flags;
- local_irq_save(flags);
- page = s->cpu_slab[smp_processor_id()];
- if (unlikely(!page || !page->lockless_freelist ||
- (node != -1 && page_to_nid(page) != node)))
- object = __slab_alloc(s, gfpflags, node, addr, page);
- else {
- object = page->lockless_freelist;
- page->lockless_freelist = object[page->offset];
- }
- local_irq_restore(flags);
- if (unlikely((gfpflags & __GFP_ZERO) && object))
- memset(object, 0, s->objsize);
- return object;
- }
- void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
- {
- return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
- }
- EXPORT_SYMBOL(kmem_cache_alloc);
- #ifdef CONFIG_NUMA
- void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
- {
- return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
- }
- EXPORT_SYMBOL(kmem_cache_alloc_node);
- #endif
- /*
- * Slow patch handling. This may still be called frequently since objects
- * have a longer lifetime than the cpu slabs in most processing loads.
- *
- * So we still attempt to reduce cache line usage. Just take the slab
- * lock and free the item. If there is no additional partial page
- * handling required then we can return immediately.
- */
- static void __slab_free(struct kmem_cache *s, struct page *page,
- void *x, void *addr)
- {
- void *prior;
- void **object = (void *)x;
- slab_lock(page);
- if (unlikely(SlabDebug(page)))
- goto debug;
- checks_ok:
- prior = object[page->offset] = page->freelist;
- page->freelist = object;
- page->inuse--;
- if (unlikely(SlabFrozen(page)))
- goto out_unlock;
- if (unlikely(!page->inuse))
- goto slab_empty;
- /*
- * Objects left in the slab. If it
- * was not on the partial list before
- * then add it.
- */
- if (unlikely(!prior))
- add_partial(get_node(s, page_to_nid(page)), page);
- out_unlock:
- slab_unlock(page);
- return;
- slab_empty:
- if (prior)
- /*
- * Slab still on the partial list.
- */
- remove_partial(s, page);
- slab_unlock(page);
- discard_slab(s, page);
- return;
- debug:
- if (!free_debug_processing(s, page, x, addr))
- goto out_unlock;
- goto checks_ok;
- }
- /*
- * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
- * can perform fastpath freeing without additional function calls.
- *
- * The fastpath is only possible if we are freeing to the current cpu slab
- * of this processor. This typically the case if we have just allocated
- * the item before.
- *
- * If fastpath is not possible then fall back to __slab_free where we deal
- * with all sorts of special processing.
- */
- static void __always_inline slab_free(struct kmem_cache *s,
- struct page *page, void *x, void *addr)
- {
- void **object = (void *)x;
- unsigned long flags;
- local_irq_save(flags);
- debug_check_no_locks_freed(object, s->objsize);
- if (likely(page == s->cpu_slab[smp_processor_id()] &&
- !SlabDebug(page))) {
- object[page->offset] = page->lockless_freelist;
- page->lockless_freelist = object;
- } else
- __slab_free(s, page, x, addr);
- local_irq_restore(flags);
- }
- void kmem_cache_free(struct kmem_cache *s, void *x)
- {
- struct page *page;
- page = virt_to_head_page(x);
- slab_free(s, page, x, __builtin_return_address(0));
- }
- EXPORT_SYMBOL(kmem_cache_free);
- /* Figure out on which slab object the object resides */
- static struct page *get_object_page(const void *x)
- {
- struct page *page = virt_to_head_page(x);
- if (!PageSlab(page))
- return NULL;
- return page;
- }
- /*
- * Object placement in a slab is made very easy because we always start at
- * offset 0. If we tune the size of the object to the alignment then we can
- * get the required alignment by putting one properly sized object after
- * another.
- *
- * Notice that the allocation order determines the sizes of the per cpu
- * caches. Each processor has always one slab available for allocations.
- * Increasing the allocation order reduces the number of times that slabs
- * must be moved on and off the partial lists and is therefore a factor in
- * locking overhead.
- */
- /*
- * Mininum / Maximum order of slab pages. This influences locking overhead
- * and slab fragmentation. A higher order reduces the number of partial slabs
- * and increases the number of allocations possible without having to
- * take the list_lock.
- */
- static int slub_min_order;
- static int slub_max_order = DEFAULT_MAX_ORDER;
- static int slub_min_objects = DEFAULT_MIN_OBJECTS;
- /*
- * Merge control. If this is set then no merging of slab caches will occur.
- * (Could be removed. This was introduced to pacify the merge skeptics.)
- */
- static int slub_nomerge;
- /*
- * Calculate the order of allocation given an slab object size.
- *
- * The order of allocation has significant impact on performance and other
- * system components. Generally order 0 allocations should be preferred since
- * order 0 does not cause fragmentation in the page allocator. Larger objects
- * be problematic to put into order 0 slabs because there may be too much
- * unused space left. We go to a higher order if more than 1/8th of the slab
- * would be wasted.
- *
- * In order to reach satisfactory performance we must ensure that a minimum
- * number of objects is in one slab. Otherwise we may generate too much
- * activity on the partial lists which requires taking the list_lock. This is
- * less a concern for large slabs though which are rarely used.
- *
- * slub_max_order specifies the order where we begin to stop considering the
- * number of objects in a slab as critical. If we reach slub_max_order then
- * we try to keep the page order as low as possible. So we accept more waste
- * of space in favor of a small page order.
- *
- * Higher order allocations also allow the placement of more objects in a
- * slab and thereby reduce object handling overhead. If the user has
- * requested a higher mininum order then we start with that one instead of
- * the smallest order which will fit the object.
- */
- static inline int slab_order(int size, int min_objects,
- int max_order, int fract_leftover)
- {
- int order;
- int rem;
- int min_order = slub_min_order;
- /*
- * If we would create too many object per slab then reduce
- * the slab order even if it goes below slub_min_order.
- */
- while (min_order > 0 &&
- (PAGE_SIZE << min_order) >= MAX_OBJECTS_PER_SLAB * size)
- min_order--;
- for (order = max(min_order,
- fls(min_objects * size - 1) - PAGE_SHIFT);
- order <= max_order; order++) {
- unsigned long slab_size = PAGE_SIZE << order;
- if (slab_size < min_objects * size)
- continue;
- rem = slab_size % size;
- if (rem <= slab_size / fract_leftover)
- break;
- /* If the next size is too high then exit now */
- if (slab_size * 2 >= MAX_OBJECTS_PER_SLAB * size)
- break;
- }
- return order;
- }
- static inline int calculate_order(int size)
- {
- int order;
- int min_objects;
- int fraction;
- /*
- * Attempt to find best configuration for a slab. This
- * works by first attempting to generate a layout with
- * the best configuration and backing off gradually.
- *
- * First we reduce the acceptable waste in a slab. Then
- * we reduce the minimum objects required in a slab.
- */
- min_objects = slub_min_objects;
- while (min_objects > 1) {
- fraction = 8;
- while (fraction >= 4) {
- order = slab_order(size, min_objects,
- slub_max_order, fraction);
- if (order <= slub_max_order)
- return order;
- fraction /= 2;
- }
- min_objects /= 2;
- }
- /*
- * We were unable to place multiple objects in a slab. Now
- * lets see if we can place a single object there.
- */
- order = slab_order(size, 1, slub_max_order, 1);
- if (order <= slub_max_order)
- return order;
- /*
- * Doh this slab cannot be placed using slub_max_order.
- */
- order = slab_order(size, 1, MAX_ORDER, 1);
- if (order <= MAX_ORDER)
- return order;
- return -ENOSYS;
- }
- /*
- * Figure out what the alignment of the objects will be.
- */
- static unsigned long calculate_alignment(unsigned long flags,
- unsigned long align, unsigned long size)
- {
- /*
- * If the user wants hardware cache aligned objects then
- * follow that suggestion if the object is sufficiently
- * large.
- *
- * The hardware cache alignment cannot override the
- * specified alignment though. If that is greater
- * then use it.
- */
- if ((flags & SLAB_HWCACHE_ALIGN) &&
- size > cache_line_size() / 2)
- return max_t(unsigned long, align, cache_line_size());
- if (align < ARCH_SLAB_MINALIGN)
- return ARCH_SLAB_MINALIGN;
- return ALIGN(align, sizeof(void *));
- }
- static void init_kmem_cache_node(struct kmem_cache_node *n)
- {
- n->nr_partial = 0;
- atomic_long_set(&n->nr_slabs, 0);
- spin_lock_init(&n->list_lock);
- INIT_LIST_HEAD(&n->partial);
- #ifdef CONFIG_SLUB_DEBUG
- INIT_LIST_HEAD(&n->full);
- #endif
- }
- #ifdef CONFIG_NUMA
- /*
- * No kmalloc_node yet so do it by hand. We know that this is the first
- * slab on the node for this slabcache. There are no concurrent accesses
- * possible.
- *
- * Note that this function only works on the kmalloc_node_cache
- * when allocating for the kmalloc_node_cache.
- */
- static struct kmem_cache_node * __init early_kmem_cache_node_alloc(gfp_t gfpflags,
- int node)
- {
- struct page *page;
- struct kmem_cache_node *n;
- BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
- page = new_slab(kmalloc_caches, gfpflags, node);
- BUG_ON(!page);
- if (page_to_nid(page) != node) {
- printk(KERN_ERR "SLUB: Unable to allocate memory from "
- "node %d\n", node);
- printk(KERN_ERR "SLUB: Allocating a useless per node structure "
- "in order to be able to continue\n");
- }
- n = page->freelist;
- BUG_ON(!n);
- page->freelist = get_freepointer(kmalloc_caches, n);
- page->inuse++;
- kmalloc_caches->node[node] = n;
- #ifdef CONFIG_SLUB_DEBUG
- init_object(kmalloc_caches, n, 1);
- init_tracking(kmalloc_caches, n);
- #endif
- init_kmem_cache_node(n);
- atomic_long_inc(&n->nr_slabs);
- add_partial(n, page);
- /*
- * new_slab() disables interupts. If we do not reenable interrupts here
- * then bootup would continue with interrupts disabled.
- */
- local_irq_enable();
- return n;
- }
- static void free_kmem_cache_nodes(struct kmem_cache *s)
- {
- int node;
- for_each_online_node(node) {
- struct kmem_cache_node *n = s->node[node];
- if (n && n != &s->local_node)
- kmem_cache_free(kmalloc_caches, n);
- s->node[node] = NULL;
- }
- }
- static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
- {
- int node;
- int local_node;
- if (slab_state >= UP)
- local_node = page_to_nid(virt_to_page(s));
- else
- local_node = 0;
- for_each_online_node(node) {
- struct kmem_cache_node *n;
- if (local_node == node)
- n = &s->local_node;
- else {
- if (slab_state == DOWN) {
- n = early_kmem_cache_node_alloc(gfpflags,
- node);
- continue;
- }
- n = kmem_cache_alloc_node(kmalloc_caches,
- gfpflags, node);
- if (!n) {
- free_kmem_cache_nodes(s);
- return 0;
- }
- }
- s->node[node] = n;
- init_kmem_cache_node(n);
- }
- return 1;
- }
- #else
- static void free_kmem_cache_nodes(struct kmem_cache *s)
- {
- }
- static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
- {
- init_kmem_cache_node(&s->local_node);
- return 1;
- }
- #endif
- /*
- * calculate_sizes() determines the order and the distribution of data within
- * a slab object.
- */
- static int calculate_sizes(struct kmem_cache *s)
- {
- unsigned long flags = s->flags;
- unsigned long size = s->objsize;
- unsigned long align = s->align;
- /*
- * Determine if we can poison the object itself. If the user of
- * the slab may touch the object after free or before allocation
- * then we should never poison the object itself.
- */
- if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
- !s->ctor)
- s->flags |= __OBJECT_POISON;
- else
- s->flags &= ~__OBJECT_POISON;
- /*
- * Round up object size to the next word boundary. We can only
- * place the free pointer at word boundaries and this determines
- * the possible location of the free pointer.
- */
- size = ALIGN(size, sizeof(void *));
- #ifdef CONFIG_SLUB_DEBUG
- /*
- * If we are Redzoning then check if there is some space between the
- * end of the object and the free pointer. If not then add an
- * additional word to have some bytes to store Redzone information.
- */
- if ((flags & SLAB_RED_ZONE) && size == s->objsize)
- size += sizeof(void *);
- #endif
- /*
- * With that we have determined the number of bytes in actual use
- * by the object. This is the potential offset to the free pointer.
- */
- s->inuse = size;
- if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
- s->ctor)) {
- /*
- * Relocate free pointer after the object if it is not
- * permitted to overwrite the first word of the object on
- * kmem_cache_free.
- *
- * This is the case if we do RCU, have a constructor or
- * destructor or are poisoning the objects.
- */
- s->offset = size;
- size += sizeof(void *);
- }
- #ifdef CONFIG_SLUB_DEBUG
- if (flags & SLAB_STORE_USER)
- /*
- * Need to store information about allocs and frees after
- * the object.
- */
- size += 2 * sizeof(struct track);
- if (flags & SLAB_RED_ZONE)
- /*
- * Add some empty padding so that we can catch
- * overwrites from earlier objects rather than let
- * tracking information or the free pointer be
- * corrupted if an user writes before the start
- * of the object.
- */
- size += sizeof(void *);
- #endif
- /*
- * Determine the alignment based on various parameters that the
- * user specified and the dynamic determination of cache line size
- * on bootup.
- */
- align = calculate_alignment(flags, align, s->objsize);
- /*
- * SLUB stores one object immediately after another beginning from
- * offset 0. In order to align the objects we have to simply size
- * each object to conform to the alignment.
- */
- size = ALIGN(size, align);
- s->size = size;
- s->order = calculate_order(size);
- if (s->order < 0)
- return 0;
- /*
- * Determine the number of objects per slab
- */
- s->objects = (PAGE_SIZE << s->order) / size;
- /*
- * Verify that the number of objects is within permitted limits.
- * The page->inuse field is only 16 bit wide! So we cannot have
- * more than 64k objects per slab.
- */
- if (!s->objects || s->objects > MAX_OBJECTS_PER_SLAB)
- return 0;
- return 1;
- }
- static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
- const char *name, size_t size,
- size_t align, unsigned long flags,
- void (*ctor)(void *, struct kmem_cache *, unsigned long))
- {
- memset(s, 0, kmem_size);
- s->name = name;
- s->ctor = ctor;
- s->objsize = size;
- s->align = align;
- s->flags = kmem_cache_flags(size, flags, name, ctor);
- if (!calculate_sizes(s))
- goto error;
- s->refcount = 1;
- #ifdef CONFIG_NUMA
- s->defrag_ratio = 100;
- #endif
- if (init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
- return 1;
- error:
- if (flags & SLAB_PANIC)
- panic("Cannot create slab %s size=%lu realsize=%u "
- "order=%u offset=%u flags=%lx\n",
- s->name, (unsigned long)size, s->size, s->order,
- s->offset, flags);
- return 0;
- }
- /*
- * Check if a given pointer is valid
- */
- int kmem_ptr_validate(struct kmem_cache *s, const void *object)
- {
- struct page * page;
- page = get_object_page(object);
- if (!page || s != page->slab)
- /* No slab or wrong slab */
- return 0;
- if (!check_valid_pointer(s, page, object))
- return 0;
- /*
- * We could also check if the object is on the slabs freelist.
- * But this would be too expensive and it seems that the main
- * purpose of kmem_ptr_valid is to check if the object belongs
- * to a certain slab.
- */
- return 1;
- }
- EXPORT_SYMBOL(kmem_ptr_validate);
- /*
- * Determine the size of a slab object
- */
- unsigned int kmem_cache_size(struct kmem_cache *s)
- {
- return s->objsize;
- }
- EXPORT_SYMBOL(kmem_cache_size);
- const char *kmem_cache_name(struct kmem_cache *s)
- {
- return s->name;
- }
- EXPORT_SYMBOL(kmem_cache_name);
- /*
- * Attempt to free all slabs on a node. Return the number of slabs we
- * were unable to free.
- */
- static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
- struct list_head *list)
- {
- int slabs_inuse = 0;
- unsigned long flags;
- struct page *page, *h;
- spin_lock_irqsave(&n->list_lock, flags);
- list_for_each_entry_safe(page, h, list, lru)
- if (!page->inuse) {
- list_del(&page->lru);
- discard_slab(s, page);
- } else
- slabs_inuse++;
- spin_unlock_irqrestore(&n->list_lock, flags);
- return slabs_inuse;
- }
- /*
- * Release all resources used by a slab cache.
- */
- static inline int kmem_cache_close(struct kmem_cache *s)
- {
- int node;
- flush_all(s);
- /* Attempt to free all objects */
- for_each_online_node(node) {
- struct kmem_cache_node *n = get_node(s, node);
- n->nr_partial -= free_list(s, n, &n->partial);
- if (atomic_long_read(&n->nr_slabs))
- return 1;
- }
- free_kmem_cache_nodes(s);
- return 0;
- }
- /*
- * Close a cache and release the kmem_cache structure
- * (must be used for caches created using kmem_cache_create)
- */
- void kmem_cache_destroy(struct kmem_cache *s)
- {
- down_write(&slub_lock);
- s->refcount--;
- if (!s->refcount) {
- list_del(&s->list);
- up_write(&slub_lock);
- if (kmem_cache_close(s))
- WARN_ON(1);
- sysfs_slab_remove(s);
- kfree(s);
- } else
- up_write(&slub_lock);
- }
- EXPORT_SYMBOL(kmem_cache_destroy);
- /********************************************************************
- * Kmalloc subsystem
- *******************************************************************/
- struct kmem_cache kmalloc_caches[KMALLOC_SHIFT_HIGH + 1] __cacheline_aligned;
- EXPORT_SYMBOL(kmalloc_caches);
- #ifdef CONFIG_ZONE_DMA
- static struct kmem_cache *kmalloc_caches_dma[KMALLOC_SHIFT_HIGH + 1];
- #endif
- static int __init setup_slub_min_order(char *str)
- {
- get_option (&str, &slub_min_order);
- return 1;
- }
- __setup("slub_min_order=", setup_slub_min_order);
- static int __init setup_slub_max_order(char *str)
- {
- get_option (&str, &slub_max_order);
- return 1;
- }
- __setup("slub_max_order=", setup_slub_max_order);
- static int __init setup_slub_min_objects(char *str)
- {
- get_option (&str, &slub_min_objects);
- return 1;
- }
- __setup("slub_min_objects=", setup_slub_min_objects);
- static int __init setup_slub_nomerge(char *str)
- {
- slub_nomerge = 1;
- return 1;
- }
- __setup("slub_nomerge", setup_slub_nomerge);
- static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
- const char *name, int size, gfp_t gfp_flags)
- {
- unsigned int flags = 0;
- if (gfp_flags & SLUB_DMA)
- flags = SLAB_CACHE_DMA;
- down_write(&slub_lock);
- if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
- flags, NULL))
- goto panic;
- list_add(&s->list, &slab_caches);
- up_write(&slub_lock);
- if (sysfs_slab_add(s))
- goto panic;
- return s;
- panic:
- panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
- }
- #ifdef CONFIG_ZONE_DMA
- static void sysfs_add_func(struct work_struct *w)
- {
- struct kmem_cache *s;
- down_write(&slub_lock);
- list_for_each_entry(s, &slab_caches, list) {
- if (s->flags & __SYSFS_ADD_DEFERRED) {
- s->flags &= ~__SYSFS_ADD_DEFERRED;
- sysfs_slab_add(s);
- }
- }
- up_write(&slub_lock);
- }
- static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
- static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
- {
- struct kmem_cache *s;
- char *text;
- size_t realsize;
- s = kmalloc_caches_dma[index];
- if (s)
- return s;
- /* Dynamically create dma cache */
- if (flags & __GFP_WAIT)
- down_write(&slub_lock);
- else {
- if (!down_write_trylock(&slub_lock))
- goto out;
- }
- if (kmalloc_caches_dma[index])
- goto unlock_out;
- realsize = kmalloc_caches[index].objsize;
- text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d", (unsigned int)realsize),
- s = kmalloc(kmem_size, flags & ~SLUB_DMA);
- if (!s || !text || !kmem_cache_open(s, flags, text,
- realsize, ARCH_KMALLOC_MINALIGN,
- SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
- kfree(s);
- kfree(text);
- goto unlock_out;
- }
- list_add(&s->list, &slab_caches);
- kmalloc_caches_dma[index] = s;
- schedule_work(&sysfs_add_work);
- unlock_out:
- up_write(&slub_lock);
- out:
- return kmalloc_caches_dma[index];
- }
- #endif
- /*
- * Conversion table for small slabs sizes / 8 to the index in the
- * kmalloc array. This is necessary for slabs < 192 since we have non power
- * of two cache sizes there. The size of larger slabs can be determined using
- * fls.
- */
- static s8 size_index[24] = {
- 3, /* 8 */
- 4, /* 16 */
- 5, /* 24 */
- 5, /* 32 */
- 6, /* 40 */
- 6, /* 48 */
- 6, /* 56 */
- 6, /* 64 */
- 1, /* 72 */
- 1, /* 80 */
- 1, /* 88 */
- 1, /* 96 */
- 7, /* 104 */
- 7, /* 112 */
- 7, /* 120 */
- 7, /* 128 */
- 2, /* 136 */
- 2, /* 144 */
- 2, /* 152 */
- 2, /* 160 */
- 2, /* 168 */
- 2, /* 176 */
- 2, /* 184 */
- 2 /* 192 */
- };
- static struct kmem_cache *get_slab(size_t size, gfp_t flags)
- {
- int index;
- if (size <= 192) {
- if (!size)
- return ZERO_SIZE_PTR;
- index = size_index[(size - 1) / 8];
- } else {
- if (size > KMALLOC_MAX_SIZE)
- return NULL;
- index = fls(size - 1);
- }
- #ifdef CONFIG_ZONE_DMA
- if (unlikely((flags & SLUB_DMA)))
- return dma_kmalloc_cache(index, flags);
- #endif
- return &kmalloc_caches[index];
- }
- void *__kmalloc(size_t size, gfp_t flags)
- {
- struct kmem_cache *s = get_slab(size, flags);
- if (ZERO_OR_NULL_PTR(s))
- return s;
- return slab_alloc(s, flags, -1, __builtin_return_address(0));
- }
- EXPORT_SYMBOL(__kmalloc);
- #ifdef CONFIG_NUMA
- void *__kmalloc_node(size_t size, gfp_t flags, int node)
- {
- struct kmem_cache *s = get_slab(size, flags);
- if (ZERO_OR_NULL_PTR(s))
- return s;
- return slab_alloc(s, flags, node, __builtin_return_address(0));
- }
- EXPORT_SYMBOL(__kmalloc_node);
- #endif
- size_t ksize(const void *object)
- {
- struct page *page;
- struct kmem_cache *s;
- if (ZERO_OR_NULL_PTR(object))
- return 0;
- page = get_object_page(object);
- BUG_ON(!page);
- s = page->slab;
- BUG_ON(!s);
- /*
- * Debugging requires use of the padding between object
- * and whatever may come after it.
- */
- if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
- return s->objsize;
- /*
- * If we have the need to store the freelist pointer
- * back there or track user information then we can
- * only use the space before that information.
- */
- if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
- return s->inuse;
- /*
- * Else we can use all the padding etc for the allocation
- */
- return s->size;
- }
- EXPORT_SYMBOL(ksize);
- void kfree(const void *x)
- {
- struct kmem_cache *s;
- struct page *page;
- /*
- * This has to be an unsigned comparison. According to Linus
- * some gcc version treat a pointer as a signed entity. Then
- * this comparison would be true for all "negative" pointers
- * (which would cover the whole upper half of the address space).
- */
- if (ZERO_OR_NULL_PTR(x))
- return;
- page = virt_to_head_page(x);
- s = page->slab;
- slab_free(s, page, (void *)x, __builtin_return_address(0));
- }
- EXPORT_SYMBOL(kfree);
- /*
- * kmem_cache_shrink removes empty slabs from the partial lists and sorts
- * the remaining slabs by the number of items in use. The slabs with the
- * most items in use come first. New allocations will then fill those up
- * and thus they can be removed from the partial lists.
- *
- * The slabs with the least items are placed last. This results in them
- * being allocated from last increasing the chance that the last objects
- * are freed in them.
- */
- int kmem_cache_shrink(struct kmem_cache *s)
- {
- int node;
- int i;
- struct kmem_cache_node *n;
- struct page *page;
- struct page *t;
- struct list_head *slabs_by_inuse =
- kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
- unsigned long flags;
- if (!slabs_by_inuse)
- return -ENOMEM;
- flush_all(s);
- for_each_online_node(node) {
- n = get_node(s, node);
- if (!n->nr_partial)
- continue;
- for (i = 0; i < s->objects; i++)
- INIT_LIST_HEAD(slabs_by_inuse + i);
- spin_lock_irqsave(&n->list_lock, flags);
- /*
- * Build lists indexed by the items in use in each slab.
- *
- * Note that concurrent frees may occur while we hold the
- * list_lock. page->inuse here is the upper limit.
- */
- list_for_each_entry_safe(page, t, &n->partial, lru) {
- if (!page->inuse && slab_trylock(page)) {
- /*
- * Must hold slab lock here because slab_free
- * may have freed the last object and be
- * waiting to release the slab.
- */
- list_del(&page->lru);
- n->nr_partial--;
- slab_unlock(page);
- discard_slab(s, page);
- } else {
- list_move(&page->lru,
- slabs_by_inuse + page->inuse);
- }
- }
- /*
- * Rebuild the partial list with the slabs filled up most
- * first and the least used slabs at the end.
- */
- for (i = s->objects - 1; i >= 0; i--)
- list_splice(slabs_by_inuse + i, n->partial.prev);
- spin_unlock_irqrestore(&n->list_lock, flags);
- }
- kfree(slabs_by_inuse);
- return 0;
- }
- EXPORT_SYMBOL(kmem_cache_shrink);
- /********************************************************************
- * Basic setup of slabs
- *******************************************************************/
- void __init kmem_cache_init(void)
- {
- int i;
- int caches = 0;
- #ifdef CONFIG_NUMA
- /*
- * Must first have the slab cache available for the allocations of the
- * struct kmem_cache_node's. There is special bootstrap code in
- * kmem_cache_open for slab_state == DOWN.
- */
- create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
- sizeof(struct kmem_cache_node), GFP_KERNEL);
- kmalloc_caches[0].refcount = -1;
- caches++;
- #endif
- /* Able to allocate the per node structures */
- slab_state = PARTIAL;
- /* Caches that are not of the two-to-the-power-of size */
- if (KMALLOC_MIN_SIZE <= 64) {
- create_kmalloc_cache(&kmalloc_caches[1],
- "kmalloc-96", 96, GFP_KERNEL);
- caches++;
- }
- if (KMALLOC_MIN_SIZE <= 128) {
- create_kmalloc_cache(&kmalloc_caches[2],
- "kmalloc-192", 192, GFP_KERNEL);
- caches++;
- }
- for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
- create_kmalloc_cache(&kmalloc_caches[i],
- "kmalloc", 1 << i, GFP_KERNEL);
- caches++;
- }
- /*
- * Patch up the size_index table if we have strange large alignment
- * requirements for the kmalloc array. This is only the case for
- * mips it seems. The standard arches will not generate any code here.
- *
- * Largest permitted alignment is 256 bytes due to the way we
- * handle the index determination for the smaller caches.
- *
- * Make sure that nothing crazy happens if someone starts tinkering
- * around with ARCH_KMALLOC_MINALIGN
- */
- BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
- (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
- for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
- size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
- slab_state = UP;
- /* Provide the correct kmalloc names now that the caches are up */
- for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
- kmalloc_caches[i]. name =
- kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
- #ifdef CONFIG_SMP
- register_cpu_notifier(&slab_notifier);
- #endif
- kmem_size = offsetof(struct kmem_cache, cpu_slab) +
- nr_cpu_ids * sizeof(struct page *);
- printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
- " CPUs=%d, Nodes=%d\n",
- caches, cache_line_size(),
- slub_min_order, slub_max_order, slub_min_objects,
- nr_cpu_ids, nr_node_ids);
- }
- /*
- * Find a mergeable slab cache
- */
- static int slab_unmergeable(struct kmem_cache *s)
- {
- if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
- return 1;
- if (s->ctor)
- return 1;
- /*
- * We may have set a slab to be unmergeable during bootstrap.
- */
- if (s->refcount < 0)
- return 1;
- return 0;
- }
- static struct kmem_cache *find_mergeable(size_t size,
- size_t align, unsigned long flags, const char *name,
- void (*ctor)(void *, struct kmem_cache *, unsigned long))
- {
- struct kmem_cache *s;
- if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
- return NULL;
- if (ctor)
- return NULL;
- size = ALIGN(size, sizeof(void *));
- align = calculate_alignment(flags, align, size);
- size = ALIGN(size, align);
- flags = kmem_cache_flags(size, flags, name, NULL);
- list_for_each_entry(s, &slab_caches, list) {
- if (slab_unmergeable(s))
- continue;
- if (size > s->size)
- continue;
- if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
- continue;
- /*
- * Check if alignment is compatible.
- * Courtesy of Adrian Drzewiecki
- */
- if ((s->size & ~(align -1)) != s->size)
- continue;
- if (s->size - size >= sizeof(void *))
- continue;
- return s;
- }
- return NULL;
- }
- struct kmem_cache *kmem_cache_create(const char *name, size_t size,
- size_t align, unsigned long flags,
- void (*ctor)(void *, struct kmem_cache *, unsigned long))
- {
- struct kmem_cache *s;
- down_write(&slub_lock);
- s = find_mergeable(size, align, flags, name, ctor);
- if (s) {
- s->refcount++;
- /*
- * Adjust the object sizes so that we clear
- * the complete object on kzalloc.
- */
- s->objsize = max(s->objsize, (int)size);
- s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
- up_write(&slub_lock);
- if (sysfs_slab_alias(s, name))
- goto err;
- return s;
- }
- s = kmalloc(kmem_size, GFP_KERNEL);
- if (s) {
- if (kmem_cache_open(s, GFP_KERNEL, name,
- size, align, flags, ctor)) {
- list_add(&s->list, &slab_caches);
- up_write(&slub_lock);
- if (sysfs_slab_add(s))
- goto err;
- return s;
- }
- kfree(s);
- }
- up_write(&slub_lock);
- err:
- if (flags & SLAB_PANIC)
- panic("Cannot create slabcache %s\n", name);
- else
- s = NULL;
- return s;
- }
- EXPORT_SYMBOL(kmem_cache_create);
- #ifdef CONFIG_SMP
- /*
- * Use the cpu notifier to insure that the cpu slabs are flushed when
- * necessary.
- */
- static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
- unsigned long action, void *hcpu)
- {
- long cpu = (long)hcpu;
- struct kmem_cache *s;
- unsigned long flags;
- switch (action) {
- case CPU_UP_CANCELED:
- case CPU_UP_CANCELED_FROZEN:
- case CPU_DEAD:
- case CPU_DEAD_FROZEN:
- down_read(&slub_lock);
- list_for_each_entry(s, &slab_caches, list) {
- local_irq_save(flags);
- __flush_cpu_slab(s, cpu);
- local_irq_restore(flags);
- }
- up_read(&slub_lock);
- break;
- default:
- break;
- }
- return NOTIFY_OK;
- }
- static struct notifier_block __cpuinitdata slab_notifier =
- { &slab_cpuup_callback, NULL, 0 };
- #endif
- void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
- {
- struct kmem_cache *s = get_slab(size, gfpflags);
- if (ZERO_OR_NULL_PTR(s))
- return s;
- return slab_alloc(s, gfpflags, -1, caller);
- }
- void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
- int node, void *caller)
- {
- struct kmem_cache *s = get_slab(size, gfpflags);
- if (ZERO_OR_NULL_PTR(s))
- return s;
- return slab_alloc(s, gfpflags, node, caller);
- }
- #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
- static int validate_slab(struct kmem_cache *s, struct page *page,
- unsigned long *map)
- {
- void *p;
- void *addr = page_address(page);
- if (!check_slab(s, page) ||
- !on_freelist(s, page, NULL))
- return 0;
- /* Now we know that a valid freelist exists */
- bitmap_zero(map, s->objects);
- for_each_free_object(p, s, page->freelist) {
- set_bit(slab_index(p, s, addr), map);
- if (!check_object(s, page, p, 0))
- return 0;
- }
- for_each_object(p, s, addr)
- if (!test_bit(slab_index(p, s, addr), map))
- if (!check_object(s, page, p, 1))
- return 0;
- return 1;
- }
- static void validate_slab_slab(struct kmem_cache *s, struct page *page,
- unsigned long *map)
- {
- if (slab_trylock(page)) {
- validate_slab(s, page, map);
- slab_unlock(page);
- } else
- printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
- s->name, page);
- if (s->flags & DEBUG_DEFAULT_FLAGS) {
- if (!SlabDebug(page))
- printk(KERN_ERR "SLUB %s: SlabDebug not set "
- "on slab 0x%p\n", s->name, page);
- } else {
- if (SlabDebug(page))
- printk(KERN_ERR "SLUB %s: SlabDebug set on "
- "slab 0x%p\n", s->name, page);
- }
- }
- static int validate_slab_node(struct kmem_cache *s,
- struct kmem_cache_node *n, unsigned long *map)
- {
- unsigned long count = 0;
- struct page *page;
- unsigned long flags;
- spin_lock_irqsave(&n->list_lock, flags);
- list_for_each_entry(page, &n->partial, lru) {
- validate_slab_slab(s, page, map);
- count++;
- }
- if (count != n->nr_partial)
- printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
- "counter=%ld\n", s->name, count, n->nr_partial);
- if (!(s->flags & SLAB_STORE_USER))
- goto out;
- list_for_each_entry(page, &n->full, lru) {
- validate_slab_slab(s, page, map);
- count++;
- }
- if (count != atomic_long_read(&n->nr_slabs))
- printk(KERN_ERR "SLUB: %s %ld slabs counted but "
- "counter=%ld\n", s->name, count,
- atomic_long_read(&n->nr_slabs));
- out:
- spin_unlock_irqrestore(&n->list_lock, flags);
- return count;
- }
- static long validate_slab_cache(struct kmem_cache *s)
- {
- int node;
- unsigned long count = 0;
- unsigned long *map = kmalloc(BITS_TO_LONGS(s->objects) *
- sizeof(unsigned long), GFP_KERNEL);
- if (!map)
- return -ENOMEM;
- flush_all(s);
- for_each_online_node(node) {
- struct kmem_cache_node *n = get_node(s, node);
- count += validate_slab_node(s, n, map);
- }
- kfree(map);
- return count;
- }
- #ifdef SLUB_RESILIENCY_TEST
- static void resiliency_test(void)
- {
- u8 *p;
- printk(KERN_ERR "SLUB resiliency testing\n");
- printk(KERN_ERR "-----------------------\n");
- printk(KERN_ERR "A. Corruption after allocation\n");
- p = kzalloc(16, GFP_KERNEL);
- p[16] = 0x12;
- printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
- " 0x12->0x%p\n\n", p + 16);
- validate_slab_cache(kmalloc_caches + 4);
- /* Hmmm... The next two are dangerous */
- p = kzalloc(32, GFP_KERNEL);
- p[32 + sizeof(void *)] = 0x34;
- printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
- " 0x34 -> -0x%p\n", p);
- printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
- validate_slab_cache(kmalloc_caches + 5);
- p = kzalloc(64, GFP_KERNEL);
- p += 64 + (get_cycles() & 0xff) * sizeof(void *);
- *p = 0x56;
- printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
- p);
- printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
- validate_slab_cache(kmalloc_caches + 6);
- printk(KERN_ERR "\nB. Corruption after free\n");
- p = kzalloc(128, GFP_KERNEL);
- kfree(p);
- *p = 0x78;
- printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
- validate_slab_cache(kmalloc_caches + 7);
- p = kzalloc(256, GFP_KERNEL);
- kfree(p);
- p[50] = 0x9a;
- printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
- validate_slab_cache(kmalloc_caches + 8);
- p = kzalloc(512, GFP_KERNEL);
- kfree(p);
- p[512] = 0xab;
- printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
- validate_slab_cache(kmalloc_caches + 9);
- }
- #else
- static void resiliency_test(void) {};
- #endif
- /*
- * Generate lists of code addresses where slabcache objects are allocated
- * and freed.
- */
- struct location {
- unsigned long count;
- void *addr;
- long long sum_time;
- long min_time;
- long max_time;
- long min_pid;
- long max_pid;
- cpumask_t cpus;
- nodemask_t nodes;
- };
- struct loc_track {
- unsigned long max;
- unsigned long count;
- struct location *loc;
- };
- static void free_loc_track(struct loc_track *t)
- {
- if (t->max)
- free_pages((unsigned long)t->loc,
- get_order(sizeof(struct location) * t->max));
- }
- static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
- {
- struct location *l;
- int order;
- order = get_order(sizeof(struct location) * max);
- l = (void *)__get_free_pages(flags, order);
- if (!l)
- return 0;
- if (t->count) {
- memcpy(l, t->loc, sizeof(struct location) * t->count);
- free_loc_track(t);
- }
- t->max = max;
- t->loc = l;
- return 1;
- }
- static int add_location(struct loc_track *t, struct kmem_cache *s,
- const struct track *track)
- {
- long start, end, pos;
- struct location *l;
- void *caddr;
- unsigned long age = jiffies - track->when;
- start = -1;
- end = t->count;
- for ( ; ; ) {
- pos = start + (end - start + 1) / 2;
- /*
- * There is nothing at "end". If we end up there
- * we need to add something to before end.
- */
- if (pos == end)
- break;
- caddr = t->loc[pos].addr;
- if (track->addr == caddr) {
- l = &t->loc[pos];
- l->count++;
- if (track->when) {
- l->sum_time += age;
- if (age < l->min_time)
- l->min_time = age;
- if (age > l->max_time)
- l->max_time = age;
- if (track->pid < l->min_pid)
- l->min_pid = track->pid;
- if (track->pid > l->max_pid)
- l->max_pid = track->pid;
- cpu_set(track->cpu, l->cpus);
- }
- node_set(page_to_nid(virt_to_page(track)), l->nodes);
- return 1;
- }
- if (track->addr < caddr)
- end = pos;
- else
- start = pos;
- }
- /*
- * Not found. Insert new tracking element.
- */
- if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
- return 0;
- l = t->loc + pos;
- if (pos < t->count)
- memmove(l + 1, l,
- (t->count - pos) * sizeof(struct location));
- t->count++;
- l->count = 1;
- l->addr = track->addr;
- l->sum_time = age;
- l->min_time = age;
- l->max_time = age;
- l->min_pid = track->pid;
- l->max_pid = track->pid;
- cpus_clear(l->cpus);
- cpu_set(track->cpu, l->cpus);
- nodes_clear(l->nodes);
- node_set(page_to_nid(virt_to_page(track)), l->nodes);
- return 1;
- }
- static void process_slab(struct loc_track *t, struct kmem_cache *s,
- struct page *page, enum track_item alloc)
- {
- void *addr = page_address(page);
- DECLARE_BITMAP(map, s->objects);
- void *p;
- bitmap_zero(map, s->objects);
- for_each_free_object(p, s, page->freelist)
- set_bit(slab_index(p, s, addr), map);
- for_each_object(p, s, addr)
- if (!test_bit(slab_index(p, s, addr), map))
- add_location(t, s, get_track(s, p, alloc));
- }
- static int list_locations(struct kmem_cache *s, char *buf,
- enum track_item alloc)
- {
- int n = 0;
- unsigned long i;
- struct loc_track t = { 0, 0, NULL };
- int node;
- if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
- GFP_KERNEL))
- return sprintf(buf, "Out of memory\n");
- /* Push back cpu slabs */
- flush_all(s);
- for_each_online_node(node) {
- struct kmem_cache_node *n = get_node(s, node);
- unsigned long flags;
- struct page *page;
- if (!atomic_long_read(&n->nr_slabs))
- continue;
- spin_lock_irqsave(&n->list_lock, flags);
- list_for_each_entry(page, &n->partial, lru)
- process_slab(&t, s, page, alloc);
- list_for_each_entry(page, &n->full, lru)
- process_slab(&t, s, page, alloc);
- spin_unlock_irqrestore(&n->list_lock, flags);
- }
- for (i = 0; i < t.count; i++) {
- struct location *l = &t.loc[i];
- if (n > PAGE_SIZE - 100)
- break;
- n += sprintf(buf + n, "%7ld ", l->count);
- if (l->addr)
- n += sprint_symbol(buf + n, (unsigned long)l->addr);
- else
- n += sprintf(buf + n, "<not-available>");
- if (l->sum_time != l->min_time) {
- unsigned long remainder;
- n += sprintf(buf + n, " age=%ld/%ld/%ld",
- l->min_time,
- div_long_long_rem(l->sum_time, l->count, &remainder),
- l->max_time);
- } else
- n += sprintf(buf + n, " age=%ld",
- l->min_time);
- if (l->min_pid != l->max_pid)
- n += sprintf(buf + n, " pid=%ld-%ld",
- l->min_pid, l->max_pid);
- else
- n += sprintf(buf + n, " pid=%ld",
- l->min_pid);
- if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
- n < PAGE_SIZE - 60) {
- n += sprintf(buf + n, " cpus=");
- n += cpulist_scnprintf(buf + n, PAGE_SIZE - n - 50,
- l->cpus);
- }
- if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
- n < PAGE_SIZE - 60) {
- n += sprintf(buf + n, " nodes=");
- n += nodelist_scnprintf(buf + n, PAGE_SIZE - n - 50,
- l->nodes);
- }
- n += sprintf(buf + n, "\n");
- }
- free_loc_track(&t);
- if (!t.count)
- n += sprintf(buf, "No data\n");
- return n;
- }
- static unsigned long count_partial(struct kmem_cache_node *n)
- {
- unsigned long flags;
- unsigned long x = 0;
- struct page *page;
- spin_lock_irqsave(&n->list_lock, flags);
- list_for_each_entry(page, &n->partial, lru)
- x += page->inuse;
- spin_unlock_irqrestore(&n->list_lock, flags);
- return x;
- }
- enum slab_stat_type {
- SL_FULL,
- SL_PARTIAL,
- SL_CPU,
- SL_OBJECTS
- };
- #define SO_FULL (1 << SL_FULL)
- #define SO_PARTIAL (1 << SL_PARTIAL)
- #define SO_CPU (1 << SL_CPU)
- #define SO_OBJECTS (1 << SL_OBJECTS)
- static unsigned long slab_objects(struct kmem_cache *s,
- char *buf, unsigned long flags)
- {
- unsigned long total = 0;
- int cpu;
- int node;
- int x;
- unsigned long *nodes;
- unsigned long *per_cpu;
- nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
- per_cpu = nodes + nr_node_ids;
- for_each_possible_cpu(cpu) {
- struct page *page = s->cpu_slab[cpu];
- int node;
- if (page) {
- node = page_to_nid(page);
- if (flags & SO_CPU) {
- int x = 0;
- if (flags & SO_OBJECTS)
- x = page->inuse;
- else
- x = 1;
- total += x;
- nodes[node] += x;
- }
- per_cpu[node]++;
- }
- }
- for_each_online_node(node) {
- struct kmem_cache_node *n = get_node(s, node);
- if (flags & SO_PARTIAL) {
- if (flags & SO_OBJECTS)
- x = count_partial(n);
- else
- x = n->nr_partial;
- total += x;
- nodes[node] += x;
- }
- if (flags & SO_FULL) {
- int full_slabs = atomic_long_read(&n->nr_slabs)
- - per_cpu[node]
- - n->nr_partial;
- if (flags & SO_OBJECTS)
- x = full_slabs * s->objects;
- else
- x = full_slabs;
- total += x;
- nodes[node] += x;
- }
- }
- x = sprintf(buf, "%lu", total);
- #ifdef CONFIG_NUMA
- for_each_online_node(node)
- if (nodes[node])
- x += sprintf(buf + x, " N%d=%lu",
- node, nodes[node]);
- #endif
- kfree(nodes);
- return x + sprintf(buf + x, "\n");
- }
- static int any_slab_objects(struct kmem_cache *s)
- {
- int node;
- int cpu;
- for_each_possible_cpu(cpu)
- if (s->cpu_slab[cpu])
- return 1;
- for_each_node(node) {
- struct kmem_cache_node *n = get_node(s, node);
- if (n->nr_partial || atomic_long_read(&n->nr_slabs))
- return 1;
- }
- return 0;
- }
- #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
- #define to_slab(n) container_of(n, struct kmem_cache, kobj);
- struct slab_attribute {
- struct attribute attr;
- ssize_t (*show)(struct kmem_cache *s, char *buf);
- ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
- };
- #define SLAB_ATTR_RO(_name) \
- static struct slab_attribute _name##_attr = __ATTR_RO(_name)
- #define SLAB_ATTR(_name) \
- static struct slab_attribute _name##_attr = \
- __ATTR(_name, 0644, _name##_show, _name##_store)
- static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
- {
- return sprintf(buf, "%d\n", s->size);
- }
- SLAB_ATTR_RO(slab_size);
- static ssize_t align_show(struct kmem_cache *s, char *buf)
- {
- return sprintf(buf, "%d\n", s->align);
- }
- SLAB_ATTR_RO(align);
- static ssize_t object_size_show(struct kmem_cache *s, char *buf)
- {
- return sprintf(buf, "%d\n", s->objsize);
- }
- SLAB_ATTR_RO(object_size);
- static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
- {
- return sprintf(buf, "%d\n", s->objects);
- }
- SLAB_ATTR_RO(objs_per_slab);
- static ssize_t order_show(struct kmem_cache *s, char *buf)
- {
- return sprintf(buf, "%d\n", s->order);
- }
- SLAB_ATTR_RO(order);
- static ssize_t ctor_show(struct kmem_cache *s, char *buf)
- {
- if (s->ctor) {
- int n = sprint_symbol(buf, (unsigned long)s->ctor);
- return n + sprintf(buf + n, "\n");
- }
- return 0;
- }
- SLAB_ATTR_RO(ctor);
- static ssize_t aliases_show(struct kmem_cache *s, char *buf)
- {
- return sprintf(buf, "%d\n", s->refcount - 1);
- }
- SLAB_ATTR_RO(aliases);
- static ssize_t slabs_show(struct kmem_cache *s, char *buf)
- {
- return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
- }
- SLAB_ATTR_RO(slabs);
- static ssize_t partial_show(struct kmem_cache *s, char *buf)
- {
- return slab_objects(s, buf, SO_PARTIAL);
- }
- SLAB_ATTR_RO(partial);
- static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
- {
- return slab_objects(s, buf, SO_CPU);
- }
- SLAB_ATTR_RO(cpu_slabs);
- static ssize_t objects_show(struct kmem_cache *s, char *buf)
- {
- return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
- }
- SLAB_ATTR_RO(objects);
- static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
- {
- return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
- }
- static ssize_t sanity_checks_store(struct kmem_cache *s,
- const char *buf, size_t length)
- {
- s->flags &= ~SLAB_DEBUG_FREE;
- if (buf[0] == '1')
- s->flags |= SLAB_DEBUG_FREE;
- return length;
- }
- SLAB_ATTR(sanity_checks);
- static ssize_t trace_show(struct kmem_cache *s, char *buf)
- {
- return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
- }
- static ssize_t trace_store(struct kmem_cache *s, const char *buf,
- size_t length)
- {
- s->flags &= ~SLAB_TRACE;
- if (buf[0] == '1')
- s->flags |= SLAB_TRACE;
- return length;
- }
- SLAB_ATTR(trace);
- static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
- {
- return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
- }
- static ssize_t reclaim_account_store(struct kmem_cache *s,
- const char *buf, size_t length)
- {
- s->flags &= ~SLAB_RECLAIM_ACCOUNT;
- if (buf[0] == '1')
- s->flags |= SLAB_RECLAIM_ACCOUNT;
- return length;
- }
- SLAB_ATTR(reclaim_account);
- static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
- {
- return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
- }
- SLAB_ATTR_RO(hwcache_align);
- #ifdef CONFIG_ZONE_DMA
- static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
- {
- return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
- }
- SLAB_ATTR_RO(cache_dma);
- #endif
- static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
- {
- return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
- }
- SLAB_ATTR_RO(destroy_by_rcu);
- static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
- {
- return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
- }
- static ssize_t red_zone_store(struct kmem_cache *s,
- const char *buf, size_t length)
- {
- if (any_slab_objects(s))
- return -EBUSY;
- s->flags &= ~SLAB_RED_ZONE;
- if (buf[0] == '1')
- s->flags |= SLAB_RED_ZONE;
- calculate_sizes(s);
- return length;
- }
- SLAB_ATTR(red_zone);
- static ssize_t poison_show(struct kmem_cache *s, char *buf)
- {
- return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
- }
- static ssize_t poison_store(struct kmem_cache *s,
- const char *buf, size_t length)
- {
- if (any_slab_objects(s))
- return -EBUSY;
- s->flags &= ~SLAB_POISON;
- if (buf[0] == '1')
- s->flags |= SLAB_POISON;
- calculate_sizes(s);
- return length;
- }
- SLAB_ATTR(poison);
- static ssize_t store_user_show(struct kmem_cache *s, char *buf)
- {
- return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
- }
- static ssize_t store_user_store(struct kmem_cache *s,
- const char *buf, size_t length)
- {
- if (any_slab_objects(s))
- return -EBUSY;
- s->flags &= ~SLAB_STORE_USER;
- if (buf[0] == '1')
- s->flags |= SLAB_STORE_USER;
- calculate_sizes(s);
- return length;
- }
- SLAB_ATTR(store_user);
- static ssize_t validate_show(struct kmem_cache *s, char *buf)
- {
- return 0;
- }
- static ssize_t validate_store(struct kmem_cache *s,
- const char *buf, size_t length)
- {
- int ret = -EINVAL;
- if (buf[0] == '1') {
- ret = validate_slab_cache(s);
- if (ret >= 0)
- ret = length;
- }
- return ret;
- }
- SLAB_ATTR(validate);
- static ssize_t shrink_show(struct kmem_cache *s, char *buf)
- {
- return 0;
- }
- static ssize_t shrink_store(struct kmem_cache *s,
- const char *buf, size_t length)
- {
- if (buf[0] == '1') {
- int rc = kmem_cache_shrink(s);
- if (rc)
- return rc;
- } else
- return -EINVAL;
- return length;
- }
- SLAB_ATTR(shrink);
- static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
- {
- if (!(s->flags & SLAB_STORE_USER))
- return -ENOSYS;
- return list_locations(s, buf, TRACK_ALLOC);
- }
- SLAB_ATTR_RO(alloc_calls);
- static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
- {
- if (!(s->flags & SLAB_STORE_USER))
- return -ENOSYS;
- return list_locations(s, buf, TRACK_FREE);
- }
- SLAB_ATTR_RO(free_calls);
- #ifdef CONFIG_NUMA
- static ssize_t defrag_ratio_show(struct kmem_cache *s, char *buf)
- {
- return sprintf(buf, "%d\n", s->defrag_ratio / 10);
- }
- static ssize_t defrag_ratio_store(struct kmem_cache *s,
- const char *buf, size_t length)
- {
- int n = simple_strtoul(buf, NULL, 10);
- if (n < 100)
- s->defrag_ratio = n * 10;
- return length;
- }
- SLAB_ATTR(defrag_ratio);
- #endif
- static struct attribute * slab_attrs[] = {
- &slab_size_attr.attr,
- &object_size_attr.attr,
- &objs_per_slab_attr.attr,
- &order_attr.attr,
- &objects_attr.attr,
- &slabs_attr.attr,
- &partial_attr.attr,
- &cpu_slabs_attr.attr,
- &ctor_attr.attr,
- &aliases_attr.attr,
- &align_attr.attr,
- &sanity_checks_attr.attr,
- &trace_attr.attr,
- &hwcache_align_attr.attr,
- &reclaim_account_attr.attr,
- &destroy_by_rcu_attr.attr,
- &red_zone_attr.attr,
- &poison_attr.attr,
- &store_user_attr.attr,
- &validate_attr.attr,
- &shrink_attr.attr,
- &alloc_calls_attr.attr,
- &free_calls_attr.attr,
- #ifdef CONFIG_ZONE_DMA
- &cache_dma_attr.attr,
- #endif
- #ifdef CONFIG_NUMA
- &defrag_ratio_attr.attr,
- #endif
- NULL
- };
- static struct attribute_group slab_attr_group = {
- .attrs = slab_attrs,
- };
- static ssize_t slab_attr_show(struct kobject *kobj,
- struct attribute *attr,
- char *buf)
- {
- struct slab_attribute *attribute;
- struct kmem_cache *s;
- int err;
- attribute = to_slab_attr(attr);
- s = to_slab(kobj);
- if (!attribute->show)
- return -EIO;
- err = attribute->show(s, buf);
- return err;
- }
- static ssize_t slab_attr_store(struct kobject *kobj,
- struct attribute *attr,
- const char *buf, size_t len)
- {
- struct slab_attribute *attribute;
- struct kmem_cache *s;
- int err;
- attribute = to_slab_attr(attr);
- s = to_slab(kobj);
- if (!attribute->store)
- return -EIO;
- err = attribute->store(s, buf, len);
- return err;
- }
- static struct sysfs_ops slab_sysfs_ops = {
- .show = slab_attr_show,
- .store = slab_attr_store,
- };
- static struct kobj_type slab_ktype = {
- .sysfs_ops = &slab_sysfs_ops,
- };
- static int uevent_filter(struct kset *kset, struct kobject *kobj)
- {
- struct kobj_type *ktype = get_ktype(kobj);
- if (ktype == &slab_ktype)
- return 1;
- return 0;
- }
- static struct kset_uevent_ops slab_uevent_ops = {
- .filter = uevent_filter,
- };
- static decl_subsys(slab, &slab_ktype, &slab_uevent_ops);
- #define ID_STR_LENGTH 64
- /* Create a unique string id for a slab cache:
- * format
- * :[flags-]size:[memory address of kmemcache]
- */
- static char *create_unique_id(struct kmem_cache *s)
- {
- char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
- char *p = name;
- BUG_ON(!name);
- *p++ = ':';
- /*
- * First flags affecting slabcache operations. We will only
- * get here for aliasable slabs so we do not need to support
- * too many flags. The flags here must cover all flags that
- * are matched during merging to guarantee that the id is
- * unique.
- */
- if (s->flags & SLAB_CACHE_DMA)
- *p++ = 'd';
- if (s->flags & SLAB_RECLAIM_ACCOUNT)
- *p++ = 'a';
- if (s->flags & SLAB_DEBUG_FREE)
- *p++ = 'F';
- if (p != name + 1)
- *p++ = '-';
- p += sprintf(p, "%07d", s->size);
- BUG_ON(p > name + ID_STR_LENGTH - 1);
- return name;
- }
- static int sysfs_slab_add(struct kmem_cache *s)
- {
- int err;
- const char *name;
- int unmergeable;
- if (slab_state < SYSFS)
- /* Defer until later */
- return 0;
- unmergeable = slab_unmergeable(s);
- if (unmergeable) {
- /*
- * Slabcache can never be merged so we can use the name proper.
- * This is typically the case for debug situations. In that
- * case we can catch duplicate names easily.
- */
- sysfs_remove_link(&slab_subsys.kobj, s->name);
- name = s->name;
- } else {
- /*
- * Create a unique name for the slab as a target
- * for the symlinks.
- */
- name = create_unique_id(s);
- }
- kobj_set_kset_s(s, slab_subsys);
- kobject_set_name(&s->kobj, name);
- kobject_init(&s->kobj);
- err = kobject_add(&s->kobj);
- if (err)
- return err;
- err = sysfs_create_group(&s->kobj, &slab_attr_group);
- if (err)
- return err;
- kobject_uevent(&s->kobj, KOBJ_ADD);
- if (!unmergeable) {
- /* Setup first alias */
- sysfs_slab_alias(s, s->name);
- kfree(name);
- }
- return 0;
- }
- static void sysfs_slab_remove(struct kmem_cache *s)
- {
- kobject_uevent(&s->kobj, KOBJ_REMOVE);
- kobject_del(&s->kobj);
- }
- /*
- * Need to buffer aliases during bootup until sysfs becomes
- * available lest we loose that information.
- */
- struct saved_alias {
- struct kmem_cache *s;
- const char *name;
- struct saved_alias *next;
- };
- static struct saved_alias *alias_list;
- static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
- {
- struct saved_alias *al;
- if (slab_state == SYSFS) {
- /*
- * If we have a leftover link then remove it.
- */
- sysfs_remove_link(&slab_subsys.kobj, name);
- return sysfs_create_link(&slab_subsys.kobj,
- &s->kobj, name);
- }
- al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
- if (!al)
- return -ENOMEM;
- al->s = s;
- al->name = name;
- al->next = alias_list;
- alias_list = al;
- return 0;
- }
- static int __init slab_sysfs_init(void)
- {
- struct kmem_cache *s;
- int err;
- err = subsystem_register(&slab_subsys);
- if (err) {
- printk(KERN_ERR "Cannot register slab subsystem.\n");
- return -ENOSYS;
- }
- slab_state = SYSFS;
- list_for_each_entry(s, &slab_caches, list) {
- err = sysfs_slab_add(s);
- if (err)
- printk(KERN_ERR "SLUB: Unable to add boot slab %s"
- " to sysfs\n", s->name);
- }
- while (alias_list) {
- struct saved_alias *al = alias_list;
- alias_list = alias_list->next;
- err = sysfs_slab_alias(al->s, al->name);
- if (err)
- printk(KERN_ERR "SLUB: Unable to add boot slab alias"
- " %s to sysfs\n", s->name);
- kfree(al);
- }
- resiliency_test();
- return 0;
- }
- __initcall(slab_sysfs_init);
- #endif
|