oom_kill.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476
  1. /*
  2. * linux/mm/oom_kill.c
  3. *
  4. * Copyright (C) 1998,2000 Rik van Riel
  5. * Thanks go out to Claus Fischer for some serious inspiration and
  6. * for goading me into coding this file...
  7. *
  8. * The routines in this file are used to kill a process when
  9. * we're seriously out of memory. This gets called from __alloc_pages()
  10. * in mm/page_alloc.c when we really run out of memory.
  11. *
  12. * Since we won't call these routines often (on a well-configured
  13. * machine) this file will double as a 'coding guide' and a signpost
  14. * for newbie kernel hackers. It features several pointers to major
  15. * kernel subsystems and hints as to where to find out what things do.
  16. */
  17. #include <linux/oom.h>
  18. #include <linux/mm.h>
  19. #include <linux/err.h>
  20. #include <linux/sched.h>
  21. #include <linux/swap.h>
  22. #include <linux/timex.h>
  23. #include <linux/jiffies.h>
  24. #include <linux/cpuset.h>
  25. #include <linux/module.h>
  26. #include <linux/notifier.h>
  27. int sysctl_panic_on_oom;
  28. /* #define DEBUG */
  29. /**
  30. * badness - calculate a numeric value for how bad this task has been
  31. * @p: task struct of which task we should calculate
  32. * @uptime: current uptime in seconds
  33. *
  34. * The formula used is relatively simple and documented inline in the
  35. * function. The main rationale is that we want to select a good task
  36. * to kill when we run out of memory.
  37. *
  38. * Good in this context means that:
  39. * 1) we lose the minimum amount of work done
  40. * 2) we recover a large amount of memory
  41. * 3) we don't kill anything innocent of eating tons of memory
  42. * 4) we want to kill the minimum amount of processes (one)
  43. * 5) we try to kill the process the user expects us to kill, this
  44. * algorithm has been meticulously tuned to meet the principle
  45. * of least surprise ... (be careful when you change it)
  46. */
  47. unsigned long badness(struct task_struct *p, unsigned long uptime)
  48. {
  49. unsigned long points, cpu_time, run_time, s;
  50. struct mm_struct *mm;
  51. struct task_struct *child;
  52. task_lock(p);
  53. mm = p->mm;
  54. if (!mm) {
  55. task_unlock(p);
  56. return 0;
  57. }
  58. /*
  59. * The memory size of the process is the basis for the badness.
  60. */
  61. points = mm->total_vm;
  62. /*
  63. * After this unlock we can no longer dereference local variable `mm'
  64. */
  65. task_unlock(p);
  66. /*
  67. * swapoff can easily use up all memory, so kill those first.
  68. */
  69. if (p->flags & PF_SWAPOFF)
  70. return ULONG_MAX;
  71. /*
  72. * Processes which fork a lot of child processes are likely
  73. * a good choice. We add half the vmsize of the children if they
  74. * have an own mm. This prevents forking servers to flood the
  75. * machine with an endless amount of children. In case a single
  76. * child is eating the vast majority of memory, adding only half
  77. * to the parents will make the child our kill candidate of choice.
  78. */
  79. list_for_each_entry(child, &p->children, sibling) {
  80. task_lock(child);
  81. if (child->mm != mm && child->mm)
  82. points += child->mm->total_vm/2 + 1;
  83. task_unlock(child);
  84. }
  85. /*
  86. * CPU time is in tens of seconds and run time is in thousands
  87. * of seconds. There is no particular reason for this other than
  88. * that it turned out to work very well in practice.
  89. */
  90. cpu_time = (cputime_to_jiffies(p->utime) + cputime_to_jiffies(p->stime))
  91. >> (SHIFT_HZ + 3);
  92. if (uptime >= p->start_time.tv_sec)
  93. run_time = (uptime - p->start_time.tv_sec) >> 10;
  94. else
  95. run_time = 0;
  96. s = int_sqrt(cpu_time);
  97. if (s)
  98. points /= s;
  99. s = int_sqrt(int_sqrt(run_time));
  100. if (s)
  101. points /= s;
  102. /*
  103. * Niced processes are most likely less important, so double
  104. * their badness points.
  105. */
  106. if (task_nice(p) > 0)
  107. points *= 2;
  108. /*
  109. * Superuser processes are usually more important, so we make it
  110. * less likely that we kill those.
  111. */
  112. if (cap_t(p->cap_effective) & CAP_TO_MASK(CAP_SYS_ADMIN) ||
  113. p->uid == 0 || p->euid == 0)
  114. points /= 4;
  115. /*
  116. * We don't want to kill a process with direct hardware access.
  117. * Not only could that mess up the hardware, but usually users
  118. * tend to only have this flag set on applications they think
  119. * of as important.
  120. */
  121. if (cap_t(p->cap_effective) & CAP_TO_MASK(CAP_SYS_RAWIO))
  122. points /= 4;
  123. /*
  124. * If p's nodes don't overlap ours, it may still help to kill p
  125. * because p may have allocated or otherwise mapped memory on
  126. * this node before. However it will be less likely.
  127. */
  128. if (!cpuset_excl_nodes_overlap(p))
  129. points /= 8;
  130. /*
  131. * Adjust the score by oomkilladj.
  132. */
  133. if (p->oomkilladj) {
  134. if (p->oomkilladj > 0) {
  135. if (!points)
  136. points = 1;
  137. points <<= p->oomkilladj;
  138. } else
  139. points >>= -(p->oomkilladj);
  140. }
  141. #ifdef DEBUG
  142. printk(KERN_DEBUG "OOMkill: task %d (%s) got %lu points\n",
  143. p->pid, p->comm, points);
  144. #endif
  145. return points;
  146. }
  147. /*
  148. * Types of limitations to the nodes from which allocations may occur
  149. */
  150. #define CONSTRAINT_NONE 1
  151. #define CONSTRAINT_MEMORY_POLICY 2
  152. #define CONSTRAINT_CPUSET 3
  153. /*
  154. * Determine the type of allocation constraint.
  155. */
  156. static inline int constrained_alloc(struct zonelist *zonelist, gfp_t gfp_mask)
  157. {
  158. #ifdef CONFIG_NUMA
  159. struct zone **z;
  160. nodemask_t nodes;
  161. int node;
  162. nodes_clear(nodes);
  163. /* node has memory ? */
  164. for_each_online_node(node)
  165. if (NODE_DATA(node)->node_present_pages)
  166. node_set(node, nodes);
  167. for (z = zonelist->zones; *z; z++)
  168. if (cpuset_zone_allowed_softwall(*z, gfp_mask))
  169. node_clear(zone_to_nid(*z), nodes);
  170. else
  171. return CONSTRAINT_CPUSET;
  172. if (!nodes_empty(nodes))
  173. return CONSTRAINT_MEMORY_POLICY;
  174. #endif
  175. return CONSTRAINT_NONE;
  176. }
  177. /*
  178. * Simple selection loop. We chose the process with the highest
  179. * number of 'points'. We expect the caller will lock the tasklist.
  180. *
  181. * (not docbooked, we don't want this one cluttering up the manual)
  182. */
  183. static struct task_struct *select_bad_process(unsigned long *ppoints)
  184. {
  185. struct task_struct *g, *p;
  186. struct task_struct *chosen = NULL;
  187. struct timespec uptime;
  188. *ppoints = 0;
  189. do_posix_clock_monotonic_gettime(&uptime);
  190. do_each_thread(g, p) {
  191. unsigned long points;
  192. /*
  193. * skip kernel threads and tasks which have already released
  194. * their mm.
  195. */
  196. if (!p->mm)
  197. continue;
  198. /* skip the init task */
  199. if (is_init(p))
  200. continue;
  201. /*
  202. * This task already has access to memory reserves and is
  203. * being killed. Don't allow any other task access to the
  204. * memory reserve.
  205. *
  206. * Note: this may have a chance of deadlock if it gets
  207. * blocked waiting for another task which itself is waiting
  208. * for memory. Is there a better alternative?
  209. */
  210. if (test_tsk_thread_flag(p, TIF_MEMDIE))
  211. return ERR_PTR(-1UL);
  212. /*
  213. * This is in the process of releasing memory so wait for it
  214. * to finish before killing some other task by mistake.
  215. *
  216. * However, if p is the current task, we allow the 'kill' to
  217. * go ahead if it is exiting: this will simply set TIF_MEMDIE,
  218. * which will allow it to gain access to memory reserves in
  219. * the process of exiting and releasing its resources.
  220. * Otherwise we could get an easy OOM deadlock.
  221. */
  222. if (p->flags & PF_EXITING) {
  223. if (p != current)
  224. return ERR_PTR(-1UL);
  225. chosen = p;
  226. *ppoints = ULONG_MAX;
  227. }
  228. if (p->oomkilladj == OOM_DISABLE)
  229. continue;
  230. points = badness(p, uptime.tv_sec);
  231. if (points > *ppoints || !chosen) {
  232. chosen = p;
  233. *ppoints = points;
  234. }
  235. } while_each_thread(g, p);
  236. return chosen;
  237. }
  238. /**
  239. * Send SIGKILL to the selected process irrespective of CAP_SYS_RAW_IO
  240. * flag though it's unlikely that we select a process with CAP_SYS_RAW_IO
  241. * set.
  242. */
  243. static void __oom_kill_task(struct task_struct *p, int verbose)
  244. {
  245. if (is_init(p)) {
  246. WARN_ON(1);
  247. printk(KERN_WARNING "tried to kill init!\n");
  248. return;
  249. }
  250. if (!p->mm) {
  251. WARN_ON(1);
  252. printk(KERN_WARNING "tried to kill an mm-less task!\n");
  253. return;
  254. }
  255. if (verbose)
  256. printk(KERN_ERR "Killed process %d (%s)\n", p->pid, p->comm);
  257. /*
  258. * We give our sacrificial lamb high priority and access to
  259. * all the memory it needs. That way it should be able to
  260. * exit() and clear out its resources quickly...
  261. */
  262. p->time_slice = HZ;
  263. set_tsk_thread_flag(p, TIF_MEMDIE);
  264. force_sig(SIGKILL, p);
  265. }
  266. static int oom_kill_task(struct task_struct *p)
  267. {
  268. struct mm_struct *mm;
  269. struct task_struct *g, *q;
  270. mm = p->mm;
  271. /* WARNING: mm may not be dereferenced since we did not obtain its
  272. * value from get_task_mm(p). This is OK since all we need to do is
  273. * compare mm to q->mm below.
  274. *
  275. * Furthermore, even if mm contains a non-NULL value, p->mm may
  276. * change to NULL at any time since we do not hold task_lock(p).
  277. * However, this is of no concern to us.
  278. */
  279. if (mm == NULL)
  280. return 1;
  281. /*
  282. * Don't kill the process if any threads are set to OOM_DISABLE
  283. */
  284. do_each_thread(g, q) {
  285. if (q->mm == mm && q->oomkilladj == OOM_DISABLE)
  286. return 1;
  287. } while_each_thread(g, q);
  288. __oom_kill_task(p, 1);
  289. /*
  290. * kill all processes that share the ->mm (i.e. all threads),
  291. * but are in a different thread group. Don't let them have access
  292. * to memory reserves though, otherwise we might deplete all memory.
  293. */
  294. do_each_thread(g, q) {
  295. if (q->mm == mm && q->tgid != p->tgid)
  296. force_sig(SIGKILL, q);
  297. } while_each_thread(g, q);
  298. return 0;
  299. }
  300. static int oom_kill_process(struct task_struct *p, unsigned long points,
  301. const char *message)
  302. {
  303. struct task_struct *c;
  304. struct list_head *tsk;
  305. /*
  306. * If the task is already exiting, don't alarm the sysadmin or kill
  307. * its children or threads, just set TIF_MEMDIE so it can die quickly
  308. */
  309. if (p->flags & PF_EXITING) {
  310. __oom_kill_task(p, 0);
  311. return 0;
  312. }
  313. printk(KERN_ERR "%s: kill process %d (%s) score %li or a child\n",
  314. message, p->pid, p->comm, points);
  315. /* Try to kill a child first */
  316. list_for_each(tsk, &p->children) {
  317. c = list_entry(tsk, struct task_struct, sibling);
  318. if (c->mm == p->mm)
  319. continue;
  320. if (!oom_kill_task(c))
  321. return 0;
  322. }
  323. return oom_kill_task(p);
  324. }
  325. static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
  326. int register_oom_notifier(struct notifier_block *nb)
  327. {
  328. return blocking_notifier_chain_register(&oom_notify_list, nb);
  329. }
  330. EXPORT_SYMBOL_GPL(register_oom_notifier);
  331. int unregister_oom_notifier(struct notifier_block *nb)
  332. {
  333. return blocking_notifier_chain_unregister(&oom_notify_list, nb);
  334. }
  335. EXPORT_SYMBOL_GPL(unregister_oom_notifier);
  336. /**
  337. * out_of_memory - kill the "best" process when we run out of memory
  338. *
  339. * If we run out of memory, we have the choice between either
  340. * killing a random task (bad), letting the system crash (worse)
  341. * OR try to be smart about which process to kill. Note that we
  342. * don't have to be perfect here, we just have to be good.
  343. */
  344. void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, int order)
  345. {
  346. struct task_struct *p;
  347. unsigned long points = 0;
  348. unsigned long freed = 0;
  349. int constraint;
  350. blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
  351. if (freed > 0)
  352. /* Got some memory back in the last second. */
  353. return;
  354. if (printk_ratelimit()) {
  355. printk(KERN_WARNING "%s invoked oom-killer: "
  356. "gfp_mask=0x%x, order=%d, oomkilladj=%d\n",
  357. current->comm, gfp_mask, order, current->oomkilladj);
  358. dump_stack();
  359. show_mem();
  360. }
  361. if (sysctl_panic_on_oom == 2)
  362. panic("out of memory. Compulsory panic_on_oom is selected.\n");
  363. /*
  364. * Check if there were limitations on the allocation (only relevant for
  365. * NUMA) that may require different handling.
  366. */
  367. constraint = constrained_alloc(zonelist, gfp_mask);
  368. cpuset_lock();
  369. read_lock(&tasklist_lock);
  370. switch (constraint) {
  371. case CONSTRAINT_MEMORY_POLICY:
  372. oom_kill_process(current, points,
  373. "No available memory (MPOL_BIND)");
  374. break;
  375. case CONSTRAINT_CPUSET:
  376. oom_kill_process(current, points,
  377. "No available memory in cpuset");
  378. break;
  379. case CONSTRAINT_NONE:
  380. if (sysctl_panic_on_oom)
  381. panic("out of memory. panic_on_oom is selected\n");
  382. retry:
  383. /*
  384. * Rambo mode: Shoot down a process and hope it solves whatever
  385. * issues we may have.
  386. */
  387. p = select_bad_process(&points);
  388. if (PTR_ERR(p) == -1UL)
  389. goto out;
  390. /* Found nothing?!?! Either we hang forever, or we panic. */
  391. if (!p) {
  392. read_unlock(&tasklist_lock);
  393. cpuset_unlock();
  394. panic("Out of memory and no killable processes...\n");
  395. }
  396. if (oom_kill_process(p, points, "Out of memory"))
  397. goto retry;
  398. break;
  399. }
  400. out:
  401. read_unlock(&tasklist_lock);
  402. cpuset_unlock();
  403. /*
  404. * Give "p" a good chance of killing itself before we
  405. * retry to allocate memory unless "p" is current
  406. */
  407. if (!test_thread_flag(TIF_MEMDIE))
  408. schedule_timeout_uninterruptible(1);
  409. }