time.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655
  1. /*
  2. * linux/kernel/time.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. *
  6. * This file contains the interface functions for the various
  7. * time related system calls: time, stime, gettimeofday, settimeofday,
  8. * adjtime
  9. */
  10. /*
  11. * Modification history kernel/time.c
  12. *
  13. * 1993-09-02 Philip Gladstone
  14. * Created file with time related functions from sched.c and adjtimex()
  15. * 1993-10-08 Torsten Duwe
  16. * adjtime interface update and CMOS clock write code
  17. * 1995-08-13 Torsten Duwe
  18. * kernel PLL updated to 1994-12-13 specs (rfc-1589)
  19. * 1999-01-16 Ulrich Windl
  20. * Introduced error checking for many cases in adjtimex().
  21. * Updated NTP code according to technical memorandum Jan '96
  22. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  23. * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
  24. * (Even though the technical memorandum forbids it)
  25. * 2004-07-14 Christoph Lameter
  26. * Added getnstimeofday to allow the posix timer functions to return
  27. * with nanosecond accuracy
  28. */
  29. #include <linux/module.h>
  30. #include <linux/timex.h>
  31. #include <linux/capability.h>
  32. #include <linux/errno.h>
  33. #include <linux/syscalls.h>
  34. #include <linux/security.h>
  35. #include <linux/fs.h>
  36. #include <linux/module.h>
  37. #include <asm/uaccess.h>
  38. #include <asm/unistd.h>
  39. /*
  40. * The timezone where the local system is located. Used as a default by some
  41. * programs who obtain this value by using gettimeofday.
  42. */
  43. struct timezone sys_tz;
  44. EXPORT_SYMBOL(sys_tz);
  45. #ifdef __ARCH_WANT_SYS_TIME
  46. /*
  47. * sys_time() can be implemented in user-level using
  48. * sys_gettimeofday(). Is this for backwards compatibility? If so,
  49. * why not move it into the appropriate arch directory (for those
  50. * architectures that need it).
  51. */
  52. asmlinkage long sys_time(time_t __user * tloc)
  53. {
  54. time_t i;
  55. struct timespec tv;
  56. getnstimeofday(&tv);
  57. i = tv.tv_sec;
  58. if (tloc) {
  59. if (put_user(i,tloc))
  60. i = -EFAULT;
  61. }
  62. return i;
  63. }
  64. /*
  65. * sys_stime() can be implemented in user-level using
  66. * sys_settimeofday(). Is this for backwards compatibility? If so,
  67. * why not move it into the appropriate arch directory (for those
  68. * architectures that need it).
  69. */
  70. asmlinkage long sys_stime(time_t __user *tptr)
  71. {
  72. struct timespec tv;
  73. int err;
  74. if (get_user(tv.tv_sec, tptr))
  75. return -EFAULT;
  76. tv.tv_nsec = 0;
  77. err = security_settime(&tv, NULL);
  78. if (err)
  79. return err;
  80. do_settimeofday(&tv);
  81. return 0;
  82. }
  83. #endif /* __ARCH_WANT_SYS_TIME */
  84. asmlinkage long sys_gettimeofday(struct timeval __user *tv, struct timezone __user *tz)
  85. {
  86. if (likely(tv != NULL)) {
  87. struct timeval ktv;
  88. do_gettimeofday(&ktv);
  89. if (copy_to_user(tv, &ktv, sizeof(ktv)))
  90. return -EFAULT;
  91. }
  92. if (unlikely(tz != NULL)) {
  93. if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
  94. return -EFAULT;
  95. }
  96. return 0;
  97. }
  98. /*
  99. * Adjust the time obtained from the CMOS to be UTC time instead of
  100. * local time.
  101. *
  102. * This is ugly, but preferable to the alternatives. Otherwise we
  103. * would either need to write a program to do it in /etc/rc (and risk
  104. * confusion if the program gets run more than once; it would also be
  105. * hard to make the program warp the clock precisely n hours) or
  106. * compile in the timezone information into the kernel. Bad, bad....
  107. *
  108. * - TYT, 1992-01-01
  109. *
  110. * The best thing to do is to keep the CMOS clock in universal time (UTC)
  111. * as real UNIX machines always do it. This avoids all headaches about
  112. * daylight saving times and warping kernel clocks.
  113. */
  114. static inline void warp_clock(void)
  115. {
  116. write_seqlock_irq(&xtime_lock);
  117. wall_to_monotonic.tv_sec -= sys_tz.tz_minuteswest * 60;
  118. xtime.tv_sec += sys_tz.tz_minuteswest * 60;
  119. write_sequnlock_irq(&xtime_lock);
  120. clock_was_set();
  121. }
  122. /*
  123. * In case for some reason the CMOS clock has not already been running
  124. * in UTC, but in some local time: The first time we set the timezone,
  125. * we will warp the clock so that it is ticking UTC time instead of
  126. * local time. Presumably, if someone is setting the timezone then we
  127. * are running in an environment where the programs understand about
  128. * timezones. This should be done at boot time in the /etc/rc script,
  129. * as soon as possible, so that the clock can be set right. Otherwise,
  130. * various programs will get confused when the clock gets warped.
  131. */
  132. int do_sys_settimeofday(struct timespec *tv, struct timezone *tz)
  133. {
  134. static int firsttime = 1;
  135. int error = 0;
  136. if (tv && !timespec_valid(tv))
  137. return -EINVAL;
  138. error = security_settime(tv, tz);
  139. if (error)
  140. return error;
  141. if (tz) {
  142. /* SMP safe, global irq locking makes it work. */
  143. sys_tz = *tz;
  144. if (firsttime) {
  145. firsttime = 0;
  146. if (!tv)
  147. warp_clock();
  148. }
  149. }
  150. if (tv)
  151. {
  152. /* SMP safe, again the code in arch/foo/time.c should
  153. * globally block out interrupts when it runs.
  154. */
  155. return do_settimeofday(tv);
  156. }
  157. return 0;
  158. }
  159. asmlinkage long sys_settimeofday(struct timeval __user *tv,
  160. struct timezone __user *tz)
  161. {
  162. struct timeval user_tv;
  163. struct timespec new_ts;
  164. struct timezone new_tz;
  165. if (tv) {
  166. if (copy_from_user(&user_tv, tv, sizeof(*tv)))
  167. return -EFAULT;
  168. new_ts.tv_sec = user_tv.tv_sec;
  169. new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
  170. }
  171. if (tz) {
  172. if (copy_from_user(&new_tz, tz, sizeof(*tz)))
  173. return -EFAULT;
  174. }
  175. return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
  176. }
  177. asmlinkage long sys_adjtimex(struct timex __user *txc_p)
  178. {
  179. struct timex txc; /* Local copy of parameter */
  180. int ret;
  181. /* Copy the user data space into the kernel copy
  182. * structure. But bear in mind that the structures
  183. * may change
  184. */
  185. if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
  186. return -EFAULT;
  187. ret = do_adjtimex(&txc);
  188. return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
  189. }
  190. /**
  191. * current_fs_time - Return FS time
  192. * @sb: Superblock.
  193. *
  194. * Return the current time truncated to the time granularity supported by
  195. * the fs.
  196. */
  197. struct timespec current_fs_time(struct super_block *sb)
  198. {
  199. struct timespec now = current_kernel_time();
  200. return timespec_trunc(now, sb->s_time_gran);
  201. }
  202. EXPORT_SYMBOL(current_fs_time);
  203. /*
  204. * Convert jiffies to milliseconds and back.
  205. *
  206. * Avoid unnecessary multiplications/divisions in the
  207. * two most common HZ cases:
  208. */
  209. unsigned int inline jiffies_to_msecs(const unsigned long j)
  210. {
  211. #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
  212. return (MSEC_PER_SEC / HZ) * j;
  213. #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
  214. return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
  215. #else
  216. return (j * MSEC_PER_SEC) / HZ;
  217. #endif
  218. }
  219. EXPORT_SYMBOL(jiffies_to_msecs);
  220. unsigned int inline jiffies_to_usecs(const unsigned long j)
  221. {
  222. #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
  223. return (USEC_PER_SEC / HZ) * j;
  224. #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
  225. return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
  226. #else
  227. return (j * USEC_PER_SEC) / HZ;
  228. #endif
  229. }
  230. EXPORT_SYMBOL(jiffies_to_usecs);
  231. /**
  232. * timespec_trunc - Truncate timespec to a granularity
  233. * @t: Timespec
  234. * @gran: Granularity in ns.
  235. *
  236. * Truncate a timespec to a granularity. gran must be smaller than a second.
  237. * Always rounds down.
  238. *
  239. * This function should be only used for timestamps returned by
  240. * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
  241. * it doesn't handle the better resolution of the later.
  242. */
  243. struct timespec timespec_trunc(struct timespec t, unsigned gran)
  244. {
  245. /*
  246. * Division is pretty slow so avoid it for common cases.
  247. * Currently current_kernel_time() never returns better than
  248. * jiffies resolution. Exploit that.
  249. */
  250. if (gran <= jiffies_to_usecs(1) * 1000) {
  251. /* nothing */
  252. } else if (gran == 1000000000) {
  253. t.tv_nsec = 0;
  254. } else {
  255. t.tv_nsec -= t.tv_nsec % gran;
  256. }
  257. return t;
  258. }
  259. EXPORT_SYMBOL(timespec_trunc);
  260. #ifndef CONFIG_GENERIC_TIME
  261. /*
  262. * Simulate gettimeofday using do_gettimeofday which only allows a timeval
  263. * and therefore only yields usec accuracy
  264. */
  265. void getnstimeofday(struct timespec *tv)
  266. {
  267. struct timeval x;
  268. do_gettimeofday(&x);
  269. tv->tv_sec = x.tv_sec;
  270. tv->tv_nsec = x.tv_usec * NSEC_PER_USEC;
  271. }
  272. EXPORT_SYMBOL_GPL(getnstimeofday);
  273. #endif
  274. /* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
  275. * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
  276. * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
  277. *
  278. * [For the Julian calendar (which was used in Russia before 1917,
  279. * Britain & colonies before 1752, anywhere else before 1582,
  280. * and is still in use by some communities) leave out the
  281. * -year/100+year/400 terms, and add 10.]
  282. *
  283. * This algorithm was first published by Gauss (I think).
  284. *
  285. * WARNING: this function will overflow on 2106-02-07 06:28:16 on
  286. * machines were long is 32-bit! (However, as time_t is signed, we
  287. * will already get problems at other places on 2038-01-19 03:14:08)
  288. */
  289. unsigned long
  290. mktime(const unsigned int year0, const unsigned int mon0,
  291. const unsigned int day, const unsigned int hour,
  292. const unsigned int min, const unsigned int sec)
  293. {
  294. unsigned int mon = mon0, year = year0;
  295. /* 1..12 -> 11,12,1..10 */
  296. if (0 >= (int) (mon -= 2)) {
  297. mon += 12; /* Puts Feb last since it has leap day */
  298. year -= 1;
  299. }
  300. return ((((unsigned long)
  301. (year/4 - year/100 + year/400 + 367*mon/12 + day) +
  302. year*365 - 719499
  303. )*24 + hour /* now have hours */
  304. )*60 + min /* now have minutes */
  305. )*60 + sec; /* finally seconds */
  306. }
  307. EXPORT_SYMBOL(mktime);
  308. /**
  309. * set_normalized_timespec - set timespec sec and nsec parts and normalize
  310. *
  311. * @ts: pointer to timespec variable to be set
  312. * @sec: seconds to set
  313. * @nsec: nanoseconds to set
  314. *
  315. * Set seconds and nanoseconds field of a timespec variable and
  316. * normalize to the timespec storage format
  317. *
  318. * Note: The tv_nsec part is always in the range of
  319. * 0 <= tv_nsec < NSEC_PER_SEC
  320. * For negative values only the tv_sec field is negative !
  321. */
  322. void set_normalized_timespec(struct timespec *ts, time_t sec, long nsec)
  323. {
  324. while (nsec >= NSEC_PER_SEC) {
  325. nsec -= NSEC_PER_SEC;
  326. ++sec;
  327. }
  328. while (nsec < 0) {
  329. nsec += NSEC_PER_SEC;
  330. --sec;
  331. }
  332. ts->tv_sec = sec;
  333. ts->tv_nsec = nsec;
  334. }
  335. /**
  336. * ns_to_timespec - Convert nanoseconds to timespec
  337. * @nsec: the nanoseconds value to be converted
  338. *
  339. * Returns the timespec representation of the nsec parameter.
  340. */
  341. struct timespec ns_to_timespec(const s64 nsec)
  342. {
  343. struct timespec ts;
  344. if (!nsec)
  345. return (struct timespec) {0, 0};
  346. ts.tv_sec = div_long_long_rem_signed(nsec, NSEC_PER_SEC, &ts.tv_nsec);
  347. if (unlikely(nsec < 0))
  348. set_normalized_timespec(&ts, ts.tv_sec, ts.tv_nsec);
  349. return ts;
  350. }
  351. EXPORT_SYMBOL(ns_to_timespec);
  352. /**
  353. * ns_to_timeval - Convert nanoseconds to timeval
  354. * @nsec: the nanoseconds value to be converted
  355. *
  356. * Returns the timeval representation of the nsec parameter.
  357. */
  358. struct timeval ns_to_timeval(const s64 nsec)
  359. {
  360. struct timespec ts = ns_to_timespec(nsec);
  361. struct timeval tv;
  362. tv.tv_sec = ts.tv_sec;
  363. tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
  364. return tv;
  365. }
  366. EXPORT_SYMBOL(ns_to_timeval);
  367. /*
  368. * When we convert to jiffies then we interpret incoming values
  369. * the following way:
  370. *
  371. * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
  372. *
  373. * - 'too large' values [that would result in larger than
  374. * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
  375. *
  376. * - all other values are converted to jiffies by either multiplying
  377. * the input value by a factor or dividing it with a factor
  378. *
  379. * We must also be careful about 32-bit overflows.
  380. */
  381. unsigned long msecs_to_jiffies(const unsigned int m)
  382. {
  383. /*
  384. * Negative value, means infinite timeout:
  385. */
  386. if ((int)m < 0)
  387. return MAX_JIFFY_OFFSET;
  388. #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
  389. /*
  390. * HZ is equal to or smaller than 1000, and 1000 is a nice
  391. * round multiple of HZ, divide with the factor between them,
  392. * but round upwards:
  393. */
  394. return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
  395. #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
  396. /*
  397. * HZ is larger than 1000, and HZ is a nice round multiple of
  398. * 1000 - simply multiply with the factor between them.
  399. *
  400. * But first make sure the multiplication result cannot
  401. * overflow:
  402. */
  403. if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
  404. return MAX_JIFFY_OFFSET;
  405. return m * (HZ / MSEC_PER_SEC);
  406. #else
  407. /*
  408. * Generic case - multiply, round and divide. But first
  409. * check that if we are doing a net multiplication, that
  410. * we wouldnt overflow:
  411. */
  412. if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
  413. return MAX_JIFFY_OFFSET;
  414. return (m * HZ + MSEC_PER_SEC - 1) / MSEC_PER_SEC;
  415. #endif
  416. }
  417. EXPORT_SYMBOL(msecs_to_jiffies);
  418. unsigned long usecs_to_jiffies(const unsigned int u)
  419. {
  420. if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
  421. return MAX_JIFFY_OFFSET;
  422. #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
  423. return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
  424. #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
  425. return u * (HZ / USEC_PER_SEC);
  426. #else
  427. return (u * HZ + USEC_PER_SEC - 1) / USEC_PER_SEC;
  428. #endif
  429. }
  430. EXPORT_SYMBOL(usecs_to_jiffies);
  431. /*
  432. * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
  433. * that a remainder subtract here would not do the right thing as the
  434. * resolution values don't fall on second boundries. I.e. the line:
  435. * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
  436. *
  437. * Rather, we just shift the bits off the right.
  438. *
  439. * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
  440. * value to a scaled second value.
  441. */
  442. unsigned long
  443. timespec_to_jiffies(const struct timespec *value)
  444. {
  445. unsigned long sec = value->tv_sec;
  446. long nsec = value->tv_nsec + TICK_NSEC - 1;
  447. if (sec >= MAX_SEC_IN_JIFFIES){
  448. sec = MAX_SEC_IN_JIFFIES;
  449. nsec = 0;
  450. }
  451. return (((u64)sec * SEC_CONVERSION) +
  452. (((u64)nsec * NSEC_CONVERSION) >>
  453. (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
  454. }
  455. EXPORT_SYMBOL(timespec_to_jiffies);
  456. void
  457. jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
  458. {
  459. /*
  460. * Convert jiffies to nanoseconds and separate with
  461. * one divide.
  462. */
  463. u64 nsec = (u64)jiffies * TICK_NSEC;
  464. value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &value->tv_nsec);
  465. }
  466. EXPORT_SYMBOL(jiffies_to_timespec);
  467. /* Same for "timeval"
  468. *
  469. * Well, almost. The problem here is that the real system resolution is
  470. * in nanoseconds and the value being converted is in micro seconds.
  471. * Also for some machines (those that use HZ = 1024, in-particular),
  472. * there is a LARGE error in the tick size in microseconds.
  473. * The solution we use is to do the rounding AFTER we convert the
  474. * microsecond part. Thus the USEC_ROUND, the bits to be shifted off.
  475. * Instruction wise, this should cost only an additional add with carry
  476. * instruction above the way it was done above.
  477. */
  478. unsigned long
  479. timeval_to_jiffies(const struct timeval *value)
  480. {
  481. unsigned long sec = value->tv_sec;
  482. long usec = value->tv_usec;
  483. if (sec >= MAX_SEC_IN_JIFFIES){
  484. sec = MAX_SEC_IN_JIFFIES;
  485. usec = 0;
  486. }
  487. return (((u64)sec * SEC_CONVERSION) +
  488. (((u64)usec * USEC_CONVERSION + USEC_ROUND) >>
  489. (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
  490. }
  491. EXPORT_SYMBOL(timeval_to_jiffies);
  492. void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
  493. {
  494. /*
  495. * Convert jiffies to nanoseconds and separate with
  496. * one divide.
  497. */
  498. u64 nsec = (u64)jiffies * TICK_NSEC;
  499. long tv_usec;
  500. value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &tv_usec);
  501. tv_usec /= NSEC_PER_USEC;
  502. value->tv_usec = tv_usec;
  503. }
  504. EXPORT_SYMBOL(jiffies_to_timeval);
  505. /*
  506. * Convert jiffies/jiffies_64 to clock_t and back.
  507. */
  508. clock_t jiffies_to_clock_t(long x)
  509. {
  510. #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
  511. return x / (HZ / USER_HZ);
  512. #else
  513. u64 tmp = (u64)x * TICK_NSEC;
  514. do_div(tmp, (NSEC_PER_SEC / USER_HZ));
  515. return (long)tmp;
  516. #endif
  517. }
  518. EXPORT_SYMBOL(jiffies_to_clock_t);
  519. unsigned long clock_t_to_jiffies(unsigned long x)
  520. {
  521. #if (HZ % USER_HZ)==0
  522. if (x >= ~0UL / (HZ / USER_HZ))
  523. return ~0UL;
  524. return x * (HZ / USER_HZ);
  525. #else
  526. u64 jif;
  527. /* Don't worry about loss of precision here .. */
  528. if (x >= ~0UL / HZ * USER_HZ)
  529. return ~0UL;
  530. /* .. but do try to contain it here */
  531. jif = x * (u64) HZ;
  532. do_div(jif, USER_HZ);
  533. return jif;
  534. #endif
  535. }
  536. EXPORT_SYMBOL(clock_t_to_jiffies);
  537. u64 jiffies_64_to_clock_t(u64 x)
  538. {
  539. #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
  540. do_div(x, HZ / USER_HZ);
  541. #else
  542. /*
  543. * There are better ways that don't overflow early,
  544. * but even this doesn't overflow in hundreds of years
  545. * in 64 bits, so..
  546. */
  547. x *= TICK_NSEC;
  548. do_div(x, (NSEC_PER_SEC / USER_HZ));
  549. #endif
  550. return x;
  551. }
  552. EXPORT_SYMBOL(jiffies_64_to_clock_t);
  553. u64 nsec_to_clock_t(u64 x)
  554. {
  555. #if (NSEC_PER_SEC % USER_HZ) == 0
  556. do_div(x, (NSEC_PER_SEC / USER_HZ));
  557. #elif (USER_HZ % 512) == 0
  558. x *= USER_HZ/512;
  559. do_div(x, (NSEC_PER_SEC / 512));
  560. #else
  561. /*
  562. * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
  563. * overflow after 64.99 years.
  564. * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
  565. */
  566. x *= 9;
  567. do_div(x, (unsigned long)((9ull * NSEC_PER_SEC + (USER_HZ/2)) /
  568. USER_HZ));
  569. #endif
  570. return x;
  571. }
  572. #if (BITS_PER_LONG < 64)
  573. u64 get_jiffies_64(void)
  574. {
  575. unsigned long seq;
  576. u64 ret;
  577. do {
  578. seq = read_seqbegin(&xtime_lock);
  579. ret = jiffies_64;
  580. } while (read_seqretry(&xtime_lock, seq));
  581. return ret;
  582. }
  583. EXPORT_SYMBOL(get_jiffies_64);
  584. #endif
  585. EXPORT_SYMBOL(jiffies);