1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243 |
- /*
- * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
- *
- * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
- *
- * Interactivity improvements by Mike Galbraith
- * (C) 2007 Mike Galbraith <efault@gmx.de>
- *
- * Various enhancements by Dmitry Adamushko.
- * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
- *
- * Group scheduling enhancements by Srivatsa Vaddagiri
- * Copyright IBM Corporation, 2007
- * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
- *
- * Scaled math optimizations by Thomas Gleixner
- * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
- *
- * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
- * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
- */
- /*
- * Targeted preemption latency for CPU-bound tasks:
- * (default: 20ms, units: nanoseconds)
- *
- * NOTE: this latency value is not the same as the concept of
- * 'timeslice length' - timeslices in CFS are of variable length.
- * (to see the precise effective timeslice length of your workload,
- * run vmstat and monitor the context-switches field)
- *
- * On SMP systems the value of this is multiplied by the log2 of the
- * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
- * systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
- * Targeted preemption latency for CPU-bound tasks:
- */
- unsigned int sysctl_sched_latency __read_mostly = 20000000ULL;
- /*
- * Minimal preemption granularity for CPU-bound tasks:
- * (default: 2 msec, units: nanoseconds)
- */
- unsigned int sysctl_sched_min_granularity __read_mostly = 2000000ULL;
- /*
- * sys_sched_yield() compat mode
- *
- * This option switches the agressive yield implementation of the
- * old scheduler back on.
- */
- unsigned int __read_mostly sysctl_sched_compat_yield;
- /*
- * SCHED_BATCH wake-up granularity.
- * (default: 25 msec, units: nanoseconds)
- *
- * This option delays the preemption effects of decoupled workloads
- * and reduces their over-scheduling. Synchronous workloads will still
- * have immediate wakeup/sleep latencies.
- */
- unsigned int sysctl_sched_batch_wakeup_granularity __read_mostly = 25000000UL;
- /*
- * SCHED_OTHER wake-up granularity.
- * (default: 1 msec, units: nanoseconds)
- *
- * This option delays the preemption effects of decoupled workloads
- * and reduces their over-scheduling. Synchronous workloads will still
- * have immediate wakeup/sleep latencies.
- */
- unsigned int sysctl_sched_wakeup_granularity __read_mostly = 1000000UL;
- unsigned int sysctl_sched_stat_granularity __read_mostly;
- /*
- * Initialized in sched_init_granularity() [to 5 times the base granularity]:
- */
- unsigned int sysctl_sched_runtime_limit __read_mostly;
- /*
- * Debugging: various feature bits
- */
- enum {
- SCHED_FEAT_FAIR_SLEEPERS = 1,
- SCHED_FEAT_SLEEPER_AVG = 2,
- SCHED_FEAT_SLEEPER_LOAD_AVG = 4,
- SCHED_FEAT_PRECISE_CPU_LOAD = 8,
- SCHED_FEAT_START_DEBIT = 16,
- SCHED_FEAT_SKIP_INITIAL = 32,
- };
- unsigned int sysctl_sched_features __read_mostly =
- SCHED_FEAT_FAIR_SLEEPERS *1 |
- SCHED_FEAT_SLEEPER_AVG *0 |
- SCHED_FEAT_SLEEPER_LOAD_AVG *1 |
- SCHED_FEAT_PRECISE_CPU_LOAD *1 |
- SCHED_FEAT_START_DEBIT *1 |
- SCHED_FEAT_SKIP_INITIAL *0;
- extern struct sched_class fair_sched_class;
- /**************************************************************
- * CFS operations on generic schedulable entities:
- */
- #ifdef CONFIG_FAIR_GROUP_SCHED
- /* cpu runqueue to which this cfs_rq is attached */
- static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
- {
- return cfs_rq->rq;
- }
- /* currently running entity (if any) on this cfs_rq */
- static inline struct sched_entity *cfs_rq_curr(struct cfs_rq *cfs_rq)
- {
- return cfs_rq->curr;
- }
- /* An entity is a task if it doesn't "own" a runqueue */
- #define entity_is_task(se) (!se->my_q)
- static inline void
- set_cfs_rq_curr(struct cfs_rq *cfs_rq, struct sched_entity *se)
- {
- cfs_rq->curr = se;
- }
- #else /* CONFIG_FAIR_GROUP_SCHED */
- static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
- {
- return container_of(cfs_rq, struct rq, cfs);
- }
- static inline struct sched_entity *cfs_rq_curr(struct cfs_rq *cfs_rq)
- {
- struct rq *rq = rq_of(cfs_rq);
- if (unlikely(rq->curr->sched_class != &fair_sched_class))
- return NULL;
- return &rq->curr->se;
- }
- #define entity_is_task(se) 1
- static inline void
- set_cfs_rq_curr(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
- #endif /* CONFIG_FAIR_GROUP_SCHED */
- static inline struct task_struct *task_of(struct sched_entity *se)
- {
- return container_of(se, struct task_struct, se);
- }
- /**************************************************************
- * Scheduling class tree data structure manipulation methods:
- */
- /*
- * Enqueue an entity into the rb-tree:
- */
- static inline void
- __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
- {
- struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
- struct rb_node *parent = NULL;
- struct sched_entity *entry;
- s64 key = se->fair_key;
- int leftmost = 1;
- /*
- * Find the right place in the rbtree:
- */
- while (*link) {
- parent = *link;
- entry = rb_entry(parent, struct sched_entity, run_node);
- /*
- * We dont care about collisions. Nodes with
- * the same key stay together.
- */
- if (key - entry->fair_key < 0) {
- link = &parent->rb_left;
- } else {
- link = &parent->rb_right;
- leftmost = 0;
- }
- }
- /*
- * Maintain a cache of leftmost tree entries (it is frequently
- * used):
- */
- if (leftmost)
- cfs_rq->rb_leftmost = &se->run_node;
- rb_link_node(&se->run_node, parent, link);
- rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
- update_load_add(&cfs_rq->load, se->load.weight);
- cfs_rq->nr_running++;
- se->on_rq = 1;
- schedstat_add(cfs_rq, wait_runtime, se->wait_runtime);
- }
- static inline void
- __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
- {
- if (cfs_rq->rb_leftmost == &se->run_node)
- cfs_rq->rb_leftmost = rb_next(&se->run_node);
- rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
- update_load_sub(&cfs_rq->load, se->load.weight);
- cfs_rq->nr_running--;
- se->on_rq = 0;
- schedstat_add(cfs_rq, wait_runtime, -se->wait_runtime);
- }
- static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
- {
- return cfs_rq->rb_leftmost;
- }
- static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
- {
- return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
- }
- /**************************************************************
- * Scheduling class statistics methods:
- */
- /*
- * Calculate the preemption granularity needed to schedule every
- * runnable task once per sysctl_sched_latency amount of time.
- * (down to a sensible low limit on granularity)
- *
- * For example, if there are 2 tasks running and latency is 10 msecs,
- * we switch tasks every 5 msecs. If we have 3 tasks running, we have
- * to switch tasks every 3.33 msecs to get a 10 msecs observed latency
- * for each task. We do finer and finer scheduling up to until we
- * reach the minimum granularity value.
- *
- * To achieve this we use the following dynamic-granularity rule:
- *
- * gran = lat/nr - lat/nr/nr
- *
- * This comes out of the following equations:
- *
- * kA1 + gran = kB1
- * kB2 + gran = kA2
- * kA2 = kA1
- * kB2 = kB1 - d + d/nr
- * lat = d * nr
- *
- * Where 'k' is key, 'A' is task A (waiting), 'B' is task B (running),
- * '1' is start of time, '2' is end of time, 'd' is delay between
- * 1 and 2 (during which task B was running), 'nr' is number of tasks
- * running, 'lat' is the the period of each task. ('lat' is the
- * sched_latency that we aim for.)
- */
- static long
- sched_granularity(struct cfs_rq *cfs_rq)
- {
- unsigned int gran = sysctl_sched_latency;
- unsigned int nr = cfs_rq->nr_running;
- if (nr > 1) {
- gran = gran/nr - gran/nr/nr;
- gran = max(gran, sysctl_sched_min_granularity);
- }
- return gran;
- }
- /*
- * We rescale the rescheduling granularity of tasks according to their
- * nice level, but only linearly, not exponentially:
- */
- static long
- niced_granularity(struct sched_entity *curr, unsigned long granularity)
- {
- u64 tmp;
- if (likely(curr->load.weight == NICE_0_LOAD))
- return granularity;
- /*
- * Positive nice levels get the same granularity as nice-0:
- */
- if (likely(curr->load.weight < NICE_0_LOAD)) {
- tmp = curr->load.weight * (u64)granularity;
- return (long) (tmp >> NICE_0_SHIFT);
- }
- /*
- * Negative nice level tasks get linearly finer
- * granularity:
- */
- tmp = curr->load.inv_weight * (u64)granularity;
- /*
- * It will always fit into 'long':
- */
- return (long) (tmp >> (WMULT_SHIFT-NICE_0_SHIFT));
- }
- static inline void
- limit_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se)
- {
- long limit = sysctl_sched_runtime_limit;
- /*
- * Niced tasks have the same history dynamic range as
- * non-niced tasks:
- */
- if (unlikely(se->wait_runtime > limit)) {
- se->wait_runtime = limit;
- schedstat_inc(se, wait_runtime_overruns);
- schedstat_inc(cfs_rq, wait_runtime_overruns);
- }
- if (unlikely(se->wait_runtime < -limit)) {
- se->wait_runtime = -limit;
- schedstat_inc(se, wait_runtime_underruns);
- schedstat_inc(cfs_rq, wait_runtime_underruns);
- }
- }
- static inline void
- __add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta)
- {
- se->wait_runtime += delta;
- schedstat_add(se, sum_wait_runtime, delta);
- limit_wait_runtime(cfs_rq, se);
- }
- static void
- add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta)
- {
- schedstat_add(cfs_rq, wait_runtime, -se->wait_runtime);
- __add_wait_runtime(cfs_rq, se, delta);
- schedstat_add(cfs_rq, wait_runtime, se->wait_runtime);
- }
- /*
- * Update the current task's runtime statistics. Skip current tasks that
- * are not in our scheduling class.
- */
- static inline void
- __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr)
- {
- unsigned long delta, delta_exec, delta_fair, delta_mine;
- struct load_weight *lw = &cfs_rq->load;
- unsigned long load = lw->weight;
- delta_exec = curr->delta_exec;
- schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
- curr->sum_exec_runtime += delta_exec;
- cfs_rq->exec_clock += delta_exec;
- if (unlikely(!load))
- return;
- delta_fair = calc_delta_fair(delta_exec, lw);
- delta_mine = calc_delta_mine(delta_exec, curr->load.weight, lw);
- if (cfs_rq->sleeper_bonus > sysctl_sched_min_granularity) {
- delta = min((u64)delta_mine, cfs_rq->sleeper_bonus);
- delta = min(delta, (unsigned long)(
- (long)sysctl_sched_runtime_limit - curr->wait_runtime));
- cfs_rq->sleeper_bonus -= delta;
- delta_mine -= delta;
- }
- cfs_rq->fair_clock += delta_fair;
- /*
- * We executed delta_exec amount of time on the CPU,
- * but we were only entitled to delta_mine amount of
- * time during that period (if nr_running == 1 then
- * the two values are equal)
- * [Note: delta_mine - delta_exec is negative]:
- */
- add_wait_runtime(cfs_rq, curr, delta_mine - delta_exec);
- }
- static void update_curr(struct cfs_rq *cfs_rq)
- {
- struct sched_entity *curr = cfs_rq_curr(cfs_rq);
- unsigned long delta_exec;
- if (unlikely(!curr))
- return;
- /*
- * Get the amount of time the current task was running
- * since the last time we changed load (this cannot
- * overflow on 32 bits):
- */
- delta_exec = (unsigned long)(rq_of(cfs_rq)->clock - curr->exec_start);
- curr->delta_exec += delta_exec;
- if (unlikely(curr->delta_exec > sysctl_sched_stat_granularity)) {
- __update_curr(cfs_rq, curr);
- curr->delta_exec = 0;
- }
- curr->exec_start = rq_of(cfs_rq)->clock;
- }
- static inline void
- update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
- {
- se->wait_start_fair = cfs_rq->fair_clock;
- schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
- }
- /*
- * We calculate fair deltas here, so protect against the random effects
- * of a multiplication overflow by capping it to the runtime limit:
- */
- #if BITS_PER_LONG == 32
- static inline unsigned long
- calc_weighted(unsigned long delta, unsigned long weight, int shift)
- {
- u64 tmp = (u64)delta * weight >> shift;
- if (unlikely(tmp > sysctl_sched_runtime_limit*2))
- return sysctl_sched_runtime_limit*2;
- return tmp;
- }
- #else
- static inline unsigned long
- calc_weighted(unsigned long delta, unsigned long weight, int shift)
- {
- return delta * weight >> shift;
- }
- #endif
- /*
- * Task is being enqueued - update stats:
- */
- static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
- {
- s64 key;
- /*
- * Are we enqueueing a waiting task? (for current tasks
- * a dequeue/enqueue event is a NOP)
- */
- if (se != cfs_rq_curr(cfs_rq))
- update_stats_wait_start(cfs_rq, se);
- /*
- * Update the key:
- */
- key = cfs_rq->fair_clock;
- /*
- * Optimize the common nice 0 case:
- */
- if (likely(se->load.weight == NICE_0_LOAD)) {
- key -= se->wait_runtime;
- } else {
- u64 tmp;
- if (se->wait_runtime < 0) {
- tmp = -se->wait_runtime;
- key += (tmp * se->load.inv_weight) >>
- (WMULT_SHIFT - NICE_0_SHIFT);
- } else {
- tmp = se->wait_runtime;
- key -= (tmp * se->load.inv_weight) >>
- (WMULT_SHIFT - NICE_0_SHIFT);
- }
- }
- se->fair_key = key;
- }
- /*
- * Note: must be called with a freshly updated rq->fair_clock.
- */
- static inline void
- __update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
- {
- unsigned long delta_fair = se->delta_fair_run;
- schedstat_set(se->wait_max, max(se->wait_max,
- rq_of(cfs_rq)->clock - se->wait_start));
- if (unlikely(se->load.weight != NICE_0_LOAD))
- delta_fair = calc_weighted(delta_fair, se->load.weight,
- NICE_0_SHIFT);
- add_wait_runtime(cfs_rq, se, delta_fair);
- }
- static void
- update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
- {
- unsigned long delta_fair;
- if (unlikely(!se->wait_start_fair))
- return;
- delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit),
- (u64)(cfs_rq->fair_clock - se->wait_start_fair));
- se->delta_fair_run += delta_fair;
- if (unlikely(abs(se->delta_fair_run) >=
- sysctl_sched_stat_granularity)) {
- __update_stats_wait_end(cfs_rq, se);
- se->delta_fair_run = 0;
- }
- se->wait_start_fair = 0;
- schedstat_set(se->wait_start, 0);
- }
- static inline void
- update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
- {
- update_curr(cfs_rq);
- /*
- * Mark the end of the wait period if dequeueing a
- * waiting task:
- */
- if (se != cfs_rq_curr(cfs_rq))
- update_stats_wait_end(cfs_rq, se);
- }
- /*
- * We are picking a new current task - update its stats:
- */
- static inline void
- update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
- {
- /*
- * We are starting a new run period:
- */
- se->exec_start = rq_of(cfs_rq)->clock;
- }
- /*
- * We are descheduling a task - update its stats:
- */
- static inline void
- update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
- {
- se->exec_start = 0;
- }
- /**************************************************
- * Scheduling class queueing methods:
- */
- static void __enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
- {
- unsigned long load = cfs_rq->load.weight, delta_fair;
- long prev_runtime;
- /*
- * Do not boost sleepers if there's too much bonus 'in flight'
- * already:
- */
- if (unlikely(cfs_rq->sleeper_bonus > sysctl_sched_runtime_limit))
- return;
- if (sysctl_sched_features & SCHED_FEAT_SLEEPER_LOAD_AVG)
- load = rq_of(cfs_rq)->cpu_load[2];
- delta_fair = se->delta_fair_sleep;
- /*
- * Fix up delta_fair with the effect of us running
- * during the whole sleep period:
- */
- if (sysctl_sched_features & SCHED_FEAT_SLEEPER_AVG)
- delta_fair = div64_likely32((u64)delta_fair * load,
- load + se->load.weight);
- if (unlikely(se->load.weight != NICE_0_LOAD))
- delta_fair = calc_weighted(delta_fair, se->load.weight,
- NICE_0_SHIFT);
- prev_runtime = se->wait_runtime;
- __add_wait_runtime(cfs_rq, se, delta_fair);
- delta_fair = se->wait_runtime - prev_runtime;
- /*
- * Track the amount of bonus we've given to sleepers:
- */
- cfs_rq->sleeper_bonus += delta_fair;
- }
- static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
- {
- struct task_struct *tsk = task_of(se);
- unsigned long delta_fair;
- if ((entity_is_task(se) && tsk->policy == SCHED_BATCH) ||
- !(sysctl_sched_features & SCHED_FEAT_FAIR_SLEEPERS))
- return;
- delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit),
- (u64)(cfs_rq->fair_clock - se->sleep_start_fair));
- se->delta_fair_sleep += delta_fair;
- if (unlikely(abs(se->delta_fair_sleep) >=
- sysctl_sched_stat_granularity)) {
- __enqueue_sleeper(cfs_rq, se);
- se->delta_fair_sleep = 0;
- }
- se->sleep_start_fair = 0;
- #ifdef CONFIG_SCHEDSTATS
- if (se->sleep_start) {
- u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
- if ((s64)delta < 0)
- delta = 0;
- if (unlikely(delta > se->sleep_max))
- se->sleep_max = delta;
- se->sleep_start = 0;
- se->sum_sleep_runtime += delta;
- }
- if (se->block_start) {
- u64 delta = rq_of(cfs_rq)->clock - se->block_start;
- if ((s64)delta < 0)
- delta = 0;
- if (unlikely(delta > se->block_max))
- se->block_max = delta;
- se->block_start = 0;
- se->sum_sleep_runtime += delta;
- /*
- * Blocking time is in units of nanosecs, so shift by 20 to
- * get a milliseconds-range estimation of the amount of
- * time that the task spent sleeping:
- */
- if (unlikely(prof_on == SLEEP_PROFILING)) {
- profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
- delta >> 20);
- }
- }
- #endif
- }
- static void
- enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
- {
- /*
- * Update the fair clock.
- */
- update_curr(cfs_rq);
- if (wakeup)
- enqueue_sleeper(cfs_rq, se);
- update_stats_enqueue(cfs_rq, se);
- __enqueue_entity(cfs_rq, se);
- }
- static void
- dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
- {
- update_stats_dequeue(cfs_rq, se);
- if (sleep) {
- se->sleep_start_fair = cfs_rq->fair_clock;
- #ifdef CONFIG_SCHEDSTATS
- if (entity_is_task(se)) {
- struct task_struct *tsk = task_of(se);
- if (tsk->state & TASK_INTERRUPTIBLE)
- se->sleep_start = rq_of(cfs_rq)->clock;
- if (tsk->state & TASK_UNINTERRUPTIBLE)
- se->block_start = rq_of(cfs_rq)->clock;
- }
- #endif
- }
- __dequeue_entity(cfs_rq, se);
- }
- /*
- * Preempt the current task with a newly woken task if needed:
- */
- static void
- __check_preempt_curr_fair(struct cfs_rq *cfs_rq, struct sched_entity *se,
- struct sched_entity *curr, unsigned long granularity)
- {
- s64 __delta = curr->fair_key - se->fair_key;
- unsigned long ideal_runtime, delta_exec;
- /*
- * ideal_runtime is compared against sum_exec_runtime, which is
- * walltime, hence do not scale.
- */
- ideal_runtime = max(sysctl_sched_latency / cfs_rq->nr_running,
- (unsigned long)sysctl_sched_min_granularity);
- /*
- * If we executed more than what the latency constraint suggests,
- * reduce the rescheduling granularity. This way the total latency
- * of how much a task is not scheduled converges to
- * sysctl_sched_latency:
- */
- delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
- if (delta_exec > ideal_runtime)
- granularity = 0;
- /*
- * Take scheduling granularity into account - do not
- * preempt the current task unless the best task has
- * a larger than sched_granularity fairness advantage:
- *
- * scale granularity as key space is in fair_clock.
- */
- if (__delta > niced_granularity(curr, granularity))
- resched_task(rq_of(cfs_rq)->curr);
- }
- static inline void
- set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
- {
- /*
- * Any task has to be enqueued before it get to execute on
- * a CPU. So account for the time it spent waiting on the
- * runqueue. (note, here we rely on pick_next_task() having
- * done a put_prev_task_fair() shortly before this, which
- * updated rq->fair_clock - used by update_stats_wait_end())
- */
- update_stats_wait_end(cfs_rq, se);
- update_stats_curr_start(cfs_rq, se);
- set_cfs_rq_curr(cfs_rq, se);
- se->prev_sum_exec_runtime = se->sum_exec_runtime;
- }
- static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
- {
- struct sched_entity *se = __pick_next_entity(cfs_rq);
- set_next_entity(cfs_rq, se);
- return se;
- }
- static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
- {
- /*
- * If still on the runqueue then deactivate_task()
- * was not called and update_curr() has to be done:
- */
- if (prev->on_rq)
- update_curr(cfs_rq);
- update_stats_curr_end(cfs_rq, prev);
- if (prev->on_rq)
- update_stats_wait_start(cfs_rq, prev);
- set_cfs_rq_curr(cfs_rq, NULL);
- }
- static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
- {
- struct sched_entity *next;
- /*
- * Dequeue and enqueue the task to update its
- * position within the tree:
- */
- dequeue_entity(cfs_rq, curr, 0);
- enqueue_entity(cfs_rq, curr, 0);
- /*
- * Reschedule if another task tops the current one.
- */
- next = __pick_next_entity(cfs_rq);
- if (next == curr)
- return;
- __check_preempt_curr_fair(cfs_rq, next, curr,
- sched_granularity(cfs_rq));
- }
- /**************************************************
- * CFS operations on tasks:
- */
- #ifdef CONFIG_FAIR_GROUP_SCHED
- /* Walk up scheduling entities hierarchy */
- #define for_each_sched_entity(se) \
- for (; se; se = se->parent)
- static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
- {
- return p->se.cfs_rq;
- }
- /* runqueue on which this entity is (to be) queued */
- static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
- {
- return se->cfs_rq;
- }
- /* runqueue "owned" by this group */
- static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
- {
- return grp->my_q;
- }
- /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
- * another cpu ('this_cpu')
- */
- static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
- {
- /* A later patch will take group into account */
- return &cpu_rq(this_cpu)->cfs;
- }
- /* Iterate thr' all leaf cfs_rq's on a runqueue */
- #define for_each_leaf_cfs_rq(rq, cfs_rq) \
- list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
- /* Do the two (enqueued) tasks belong to the same group ? */
- static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
- {
- if (curr->se.cfs_rq == p->se.cfs_rq)
- return 1;
- return 0;
- }
- #else /* CONFIG_FAIR_GROUP_SCHED */
- #define for_each_sched_entity(se) \
- for (; se; se = NULL)
- static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
- {
- return &task_rq(p)->cfs;
- }
- static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
- {
- struct task_struct *p = task_of(se);
- struct rq *rq = task_rq(p);
- return &rq->cfs;
- }
- /* runqueue "owned" by this group */
- static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
- {
- return NULL;
- }
- static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
- {
- return &cpu_rq(this_cpu)->cfs;
- }
- #define for_each_leaf_cfs_rq(rq, cfs_rq) \
- for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
- static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
- {
- return 1;
- }
- #endif /* CONFIG_FAIR_GROUP_SCHED */
- /*
- * The enqueue_task method is called before nr_running is
- * increased. Here we update the fair scheduling stats and
- * then put the task into the rbtree:
- */
- static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
- {
- struct cfs_rq *cfs_rq;
- struct sched_entity *se = &p->se;
- for_each_sched_entity(se) {
- if (se->on_rq)
- break;
- cfs_rq = cfs_rq_of(se);
- enqueue_entity(cfs_rq, se, wakeup);
- }
- }
- /*
- * The dequeue_task method is called before nr_running is
- * decreased. We remove the task from the rbtree and
- * update the fair scheduling stats:
- */
- static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
- {
- struct cfs_rq *cfs_rq;
- struct sched_entity *se = &p->se;
- for_each_sched_entity(se) {
- cfs_rq = cfs_rq_of(se);
- dequeue_entity(cfs_rq, se, sleep);
- /* Don't dequeue parent if it has other entities besides us */
- if (cfs_rq->load.weight)
- break;
- }
- }
- /*
- * sched_yield() support is very simple - we dequeue and enqueue.
- *
- * If compat_yield is turned on then we requeue to the end of the tree.
- */
- static void yield_task_fair(struct rq *rq, struct task_struct *p)
- {
- struct cfs_rq *cfs_rq = task_cfs_rq(p);
- struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
- struct sched_entity *rightmost, *se = &p->se;
- struct rb_node *parent;
- /*
- * Are we the only task in the tree?
- */
- if (unlikely(cfs_rq->nr_running == 1))
- return;
- if (likely(!sysctl_sched_compat_yield)) {
- __update_rq_clock(rq);
- /*
- * Dequeue and enqueue the task to update its
- * position within the tree:
- */
- dequeue_entity(cfs_rq, &p->se, 0);
- enqueue_entity(cfs_rq, &p->se, 0);
- return;
- }
- /*
- * Find the rightmost entry in the rbtree:
- */
- do {
- parent = *link;
- link = &parent->rb_right;
- } while (*link);
- rightmost = rb_entry(parent, struct sched_entity, run_node);
- /*
- * Already in the rightmost position?
- */
- if (unlikely(rightmost == se))
- return;
- /*
- * Minimally necessary key value to be last in the tree:
- */
- se->fair_key = rightmost->fair_key + 1;
- if (cfs_rq->rb_leftmost == &se->run_node)
- cfs_rq->rb_leftmost = rb_next(&se->run_node);
- /*
- * Relink the task to the rightmost position:
- */
- rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
- rb_link_node(&se->run_node, parent, link);
- rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
- }
- /*
- * Preempt the current task with a newly woken task if needed:
- */
- static void check_preempt_curr_fair(struct rq *rq, struct task_struct *p)
- {
- struct task_struct *curr = rq->curr;
- struct cfs_rq *cfs_rq = task_cfs_rq(curr);
- unsigned long gran;
- if (unlikely(rt_prio(p->prio))) {
- update_rq_clock(rq);
- update_curr(cfs_rq);
- resched_task(curr);
- return;
- }
- gran = sysctl_sched_wakeup_granularity;
- /*
- * Batch tasks prefer throughput over latency:
- */
- if (unlikely(p->policy == SCHED_BATCH))
- gran = sysctl_sched_batch_wakeup_granularity;
- if (is_same_group(curr, p))
- __check_preempt_curr_fair(cfs_rq, &p->se, &curr->se, gran);
- }
- static struct task_struct *pick_next_task_fair(struct rq *rq)
- {
- struct cfs_rq *cfs_rq = &rq->cfs;
- struct sched_entity *se;
- if (unlikely(!cfs_rq->nr_running))
- return NULL;
- do {
- se = pick_next_entity(cfs_rq);
- cfs_rq = group_cfs_rq(se);
- } while (cfs_rq);
- return task_of(se);
- }
- /*
- * Account for a descheduled task:
- */
- static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
- {
- struct sched_entity *se = &prev->se;
- struct cfs_rq *cfs_rq;
- for_each_sched_entity(se) {
- cfs_rq = cfs_rq_of(se);
- put_prev_entity(cfs_rq, se);
- }
- }
- /**************************************************
- * Fair scheduling class load-balancing methods:
- */
- /*
- * Load-balancing iterator. Note: while the runqueue stays locked
- * during the whole iteration, the current task might be
- * dequeued so the iterator has to be dequeue-safe. Here we
- * achieve that by always pre-iterating before returning
- * the current task:
- */
- static inline struct task_struct *
- __load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
- {
- struct task_struct *p;
- if (!curr)
- return NULL;
- p = rb_entry(curr, struct task_struct, se.run_node);
- cfs_rq->rb_load_balance_curr = rb_next(curr);
- return p;
- }
- static struct task_struct *load_balance_start_fair(void *arg)
- {
- struct cfs_rq *cfs_rq = arg;
- return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
- }
- static struct task_struct *load_balance_next_fair(void *arg)
- {
- struct cfs_rq *cfs_rq = arg;
- return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
- }
- #ifdef CONFIG_FAIR_GROUP_SCHED
- static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
- {
- struct sched_entity *curr;
- struct task_struct *p;
- if (!cfs_rq->nr_running)
- return MAX_PRIO;
- curr = __pick_next_entity(cfs_rq);
- p = task_of(curr);
- return p->prio;
- }
- #endif
- static unsigned long
- load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
- unsigned long max_nr_move, unsigned long max_load_move,
- struct sched_domain *sd, enum cpu_idle_type idle,
- int *all_pinned, int *this_best_prio)
- {
- struct cfs_rq *busy_cfs_rq;
- unsigned long load_moved, total_nr_moved = 0, nr_moved;
- long rem_load_move = max_load_move;
- struct rq_iterator cfs_rq_iterator;
- cfs_rq_iterator.start = load_balance_start_fair;
- cfs_rq_iterator.next = load_balance_next_fair;
- for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
- #ifdef CONFIG_FAIR_GROUP_SCHED
- struct cfs_rq *this_cfs_rq;
- long imbalance;
- unsigned long maxload;
- this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
- imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
- /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
- if (imbalance <= 0)
- continue;
- /* Don't pull more than imbalance/2 */
- imbalance /= 2;
- maxload = min(rem_load_move, imbalance);
- *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
- #else
- # define maxload rem_load_move
- #endif
- /* pass busy_cfs_rq argument into
- * load_balance_[start|next]_fair iterators
- */
- cfs_rq_iterator.arg = busy_cfs_rq;
- nr_moved = balance_tasks(this_rq, this_cpu, busiest,
- max_nr_move, maxload, sd, idle, all_pinned,
- &load_moved, this_best_prio, &cfs_rq_iterator);
- total_nr_moved += nr_moved;
- max_nr_move -= nr_moved;
- rem_load_move -= load_moved;
- if (max_nr_move <= 0 || rem_load_move <= 0)
- break;
- }
- return max_load_move - rem_load_move;
- }
- /*
- * scheduler tick hitting a task of our scheduling class:
- */
- static void task_tick_fair(struct rq *rq, struct task_struct *curr)
- {
- struct cfs_rq *cfs_rq;
- struct sched_entity *se = &curr->se;
- for_each_sched_entity(se) {
- cfs_rq = cfs_rq_of(se);
- entity_tick(cfs_rq, se);
- }
- }
- /*
- * Share the fairness runtime between parent and child, thus the
- * total amount of pressure for CPU stays equal - new tasks
- * get a chance to run but frequent forkers are not allowed to
- * monopolize the CPU. Note: the parent runqueue is locked,
- * the child is not running yet.
- */
- static void task_new_fair(struct rq *rq, struct task_struct *p)
- {
- struct cfs_rq *cfs_rq = task_cfs_rq(p);
- struct sched_entity *se = &p->se, *curr = cfs_rq_curr(cfs_rq);
- sched_info_queued(p);
- update_curr(cfs_rq);
- update_stats_enqueue(cfs_rq, se);
- /*
- * Child runs first: we let it run before the parent
- * until it reschedules once. We set up the key so that
- * it will preempt the parent:
- */
- se->fair_key = curr->fair_key -
- niced_granularity(curr, sched_granularity(cfs_rq)) - 1;
- /*
- * The first wait is dominated by the child-runs-first logic,
- * so do not credit it with that waiting time yet:
- */
- if (sysctl_sched_features & SCHED_FEAT_SKIP_INITIAL)
- se->wait_start_fair = 0;
- /*
- * The statistical average of wait_runtime is about
- * -granularity/2, so initialize the task with that:
- */
- if (sysctl_sched_features & SCHED_FEAT_START_DEBIT)
- se->wait_runtime = -(sched_granularity(cfs_rq) / 2);
- __enqueue_entity(cfs_rq, se);
- }
- #ifdef CONFIG_FAIR_GROUP_SCHED
- /* Account for a task changing its policy or group.
- *
- * This routine is mostly called to set cfs_rq->curr field when a task
- * migrates between groups/classes.
- */
- static void set_curr_task_fair(struct rq *rq)
- {
- struct sched_entity *se = &rq->curr->se;
- for_each_sched_entity(se)
- set_next_entity(cfs_rq_of(se), se);
- }
- #else
- static void set_curr_task_fair(struct rq *rq)
- {
- }
- #endif
- /*
- * All the scheduling class methods:
- */
- struct sched_class fair_sched_class __read_mostly = {
- .enqueue_task = enqueue_task_fair,
- .dequeue_task = dequeue_task_fair,
- .yield_task = yield_task_fair,
- .check_preempt_curr = check_preempt_curr_fair,
- .pick_next_task = pick_next_task_fair,
- .put_prev_task = put_prev_task_fair,
- .load_balance = load_balance_fair,
- .set_curr_task = set_curr_task_fair,
- .task_tick = task_tick_fair,
- .task_new = task_new_fair,
- };
- #ifdef CONFIG_SCHED_DEBUG
- static void print_cfs_stats(struct seq_file *m, int cpu)
- {
- struct cfs_rq *cfs_rq;
- for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
- print_cfs_rq(m, cpu, cfs_rq);
- }
- #endif
|