sched.c 166 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. */
  26. #include <linux/mm.h>
  27. #include <linux/module.h>
  28. #include <linux/nmi.h>
  29. #include <linux/init.h>
  30. #include <linux/uaccess.h>
  31. #include <linux/highmem.h>
  32. #include <linux/smp_lock.h>
  33. #include <asm/mmu_context.h>
  34. #include <linux/interrupt.h>
  35. #include <linux/capability.h>
  36. #include <linux/completion.h>
  37. #include <linux/kernel_stat.h>
  38. #include <linux/debug_locks.h>
  39. #include <linux/security.h>
  40. #include <linux/notifier.h>
  41. #include <linux/profile.h>
  42. #include <linux/freezer.h>
  43. #include <linux/vmalloc.h>
  44. #include <linux/blkdev.h>
  45. #include <linux/delay.h>
  46. #include <linux/smp.h>
  47. #include <linux/threads.h>
  48. #include <linux/timer.h>
  49. #include <linux/rcupdate.h>
  50. #include <linux/cpu.h>
  51. #include <linux/cpuset.h>
  52. #include <linux/percpu.h>
  53. #include <linux/kthread.h>
  54. #include <linux/seq_file.h>
  55. #include <linux/sysctl.h>
  56. #include <linux/syscalls.h>
  57. #include <linux/times.h>
  58. #include <linux/tsacct_kern.h>
  59. #include <linux/kprobes.h>
  60. #include <linux/delayacct.h>
  61. #include <linux/reciprocal_div.h>
  62. #include <linux/unistd.h>
  63. #include <linux/pagemap.h>
  64. #include <asm/tlb.h>
  65. /*
  66. * Scheduler clock - returns current time in nanosec units.
  67. * This is default implementation.
  68. * Architectures and sub-architectures can override this.
  69. */
  70. unsigned long long __attribute__((weak)) sched_clock(void)
  71. {
  72. return (unsigned long long)jiffies * (1000000000 / HZ);
  73. }
  74. /*
  75. * Convert user-nice values [ -20 ... 0 ... 19 ]
  76. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  77. * and back.
  78. */
  79. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  80. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  81. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  82. /*
  83. * 'User priority' is the nice value converted to something we
  84. * can work with better when scaling various scheduler parameters,
  85. * it's a [ 0 ... 39 ] range.
  86. */
  87. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  88. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  89. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  90. /*
  91. * Some helpers for converting nanosecond timing to jiffy resolution
  92. */
  93. #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
  94. #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
  95. #define NICE_0_LOAD SCHED_LOAD_SCALE
  96. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  97. /*
  98. * These are the 'tuning knobs' of the scheduler:
  99. *
  100. * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
  101. * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
  102. * Timeslices get refilled after they expire.
  103. */
  104. #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
  105. #define DEF_TIMESLICE (100 * HZ / 1000)
  106. #ifdef CONFIG_SMP
  107. /*
  108. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  109. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  110. */
  111. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  112. {
  113. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  114. }
  115. /*
  116. * Each time a sched group cpu_power is changed,
  117. * we must compute its reciprocal value
  118. */
  119. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  120. {
  121. sg->__cpu_power += val;
  122. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  123. }
  124. #endif
  125. #define SCALE_PRIO(x, prio) \
  126. max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
  127. /*
  128. * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
  129. * to time slice values: [800ms ... 100ms ... 5ms]
  130. */
  131. static unsigned int static_prio_timeslice(int static_prio)
  132. {
  133. if (static_prio == NICE_TO_PRIO(19))
  134. return 1;
  135. if (static_prio < NICE_TO_PRIO(0))
  136. return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
  137. else
  138. return SCALE_PRIO(DEF_TIMESLICE, static_prio);
  139. }
  140. static inline int rt_policy(int policy)
  141. {
  142. if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
  143. return 1;
  144. return 0;
  145. }
  146. static inline int task_has_rt_policy(struct task_struct *p)
  147. {
  148. return rt_policy(p->policy);
  149. }
  150. /*
  151. * This is the priority-queue data structure of the RT scheduling class:
  152. */
  153. struct rt_prio_array {
  154. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  155. struct list_head queue[MAX_RT_PRIO];
  156. };
  157. struct load_stat {
  158. struct load_weight load;
  159. u64 load_update_start, load_update_last;
  160. unsigned long delta_fair, delta_exec, delta_stat;
  161. };
  162. /* CFS-related fields in a runqueue */
  163. struct cfs_rq {
  164. struct load_weight load;
  165. unsigned long nr_running;
  166. s64 fair_clock;
  167. u64 exec_clock;
  168. s64 wait_runtime;
  169. u64 sleeper_bonus;
  170. unsigned long wait_runtime_overruns, wait_runtime_underruns;
  171. struct rb_root tasks_timeline;
  172. struct rb_node *rb_leftmost;
  173. struct rb_node *rb_load_balance_curr;
  174. #ifdef CONFIG_FAIR_GROUP_SCHED
  175. /* 'curr' points to currently running entity on this cfs_rq.
  176. * It is set to NULL otherwise (i.e when none are currently running).
  177. */
  178. struct sched_entity *curr;
  179. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  180. /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  181. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  182. * (like users, containers etc.)
  183. *
  184. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  185. * list is used during load balance.
  186. */
  187. struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
  188. #endif
  189. };
  190. /* Real-Time classes' related field in a runqueue: */
  191. struct rt_rq {
  192. struct rt_prio_array active;
  193. int rt_load_balance_idx;
  194. struct list_head *rt_load_balance_head, *rt_load_balance_curr;
  195. };
  196. /*
  197. * This is the main, per-CPU runqueue data structure.
  198. *
  199. * Locking rule: those places that want to lock multiple runqueues
  200. * (such as the load balancing or the thread migration code), lock
  201. * acquire operations must be ordered by ascending &runqueue.
  202. */
  203. struct rq {
  204. spinlock_t lock; /* runqueue lock */
  205. /*
  206. * nr_running and cpu_load should be in the same cacheline because
  207. * remote CPUs use both these fields when doing load calculation.
  208. */
  209. unsigned long nr_running;
  210. #define CPU_LOAD_IDX_MAX 5
  211. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  212. unsigned char idle_at_tick;
  213. #ifdef CONFIG_NO_HZ
  214. unsigned char in_nohz_recently;
  215. #endif
  216. struct load_stat ls; /* capture load from *all* tasks on this cpu */
  217. unsigned long nr_load_updates;
  218. u64 nr_switches;
  219. struct cfs_rq cfs;
  220. #ifdef CONFIG_FAIR_GROUP_SCHED
  221. struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
  222. #endif
  223. struct rt_rq rt;
  224. /*
  225. * This is part of a global counter where only the total sum
  226. * over all CPUs matters. A task can increase this counter on
  227. * one CPU and if it got migrated afterwards it may decrease
  228. * it on another CPU. Always updated under the runqueue lock:
  229. */
  230. unsigned long nr_uninterruptible;
  231. struct task_struct *curr, *idle;
  232. unsigned long next_balance;
  233. struct mm_struct *prev_mm;
  234. u64 clock, prev_clock_raw;
  235. s64 clock_max_delta;
  236. unsigned int clock_warps, clock_overflows;
  237. u64 idle_clock;
  238. unsigned int clock_deep_idle_events;
  239. u64 tick_timestamp;
  240. atomic_t nr_iowait;
  241. #ifdef CONFIG_SMP
  242. struct sched_domain *sd;
  243. /* For active balancing */
  244. int active_balance;
  245. int push_cpu;
  246. int cpu; /* cpu of this runqueue */
  247. struct task_struct *migration_thread;
  248. struct list_head migration_queue;
  249. #endif
  250. #ifdef CONFIG_SCHEDSTATS
  251. /* latency stats */
  252. struct sched_info rq_sched_info;
  253. /* sys_sched_yield() stats */
  254. unsigned long yld_exp_empty;
  255. unsigned long yld_act_empty;
  256. unsigned long yld_both_empty;
  257. unsigned long yld_cnt;
  258. /* schedule() stats */
  259. unsigned long sched_switch;
  260. unsigned long sched_cnt;
  261. unsigned long sched_goidle;
  262. /* try_to_wake_up() stats */
  263. unsigned long ttwu_cnt;
  264. unsigned long ttwu_local;
  265. #endif
  266. struct lock_class_key rq_lock_key;
  267. };
  268. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  269. static DEFINE_MUTEX(sched_hotcpu_mutex);
  270. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  271. {
  272. rq->curr->sched_class->check_preempt_curr(rq, p);
  273. }
  274. static inline int cpu_of(struct rq *rq)
  275. {
  276. #ifdef CONFIG_SMP
  277. return rq->cpu;
  278. #else
  279. return 0;
  280. #endif
  281. }
  282. /*
  283. * Update the per-runqueue clock, as finegrained as the platform can give
  284. * us, but without assuming monotonicity, etc.:
  285. */
  286. static void __update_rq_clock(struct rq *rq)
  287. {
  288. u64 prev_raw = rq->prev_clock_raw;
  289. u64 now = sched_clock();
  290. s64 delta = now - prev_raw;
  291. u64 clock = rq->clock;
  292. #ifdef CONFIG_SCHED_DEBUG
  293. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  294. #endif
  295. /*
  296. * Protect against sched_clock() occasionally going backwards:
  297. */
  298. if (unlikely(delta < 0)) {
  299. clock++;
  300. rq->clock_warps++;
  301. } else {
  302. /*
  303. * Catch too large forward jumps too:
  304. */
  305. if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
  306. if (clock < rq->tick_timestamp + TICK_NSEC)
  307. clock = rq->tick_timestamp + TICK_NSEC;
  308. else
  309. clock++;
  310. rq->clock_overflows++;
  311. } else {
  312. if (unlikely(delta > rq->clock_max_delta))
  313. rq->clock_max_delta = delta;
  314. clock += delta;
  315. }
  316. }
  317. rq->prev_clock_raw = now;
  318. rq->clock = clock;
  319. }
  320. static void update_rq_clock(struct rq *rq)
  321. {
  322. if (likely(smp_processor_id() == cpu_of(rq)))
  323. __update_rq_clock(rq);
  324. }
  325. /*
  326. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  327. * See detach_destroy_domains: synchronize_sched for details.
  328. *
  329. * The domain tree of any CPU may only be accessed from within
  330. * preempt-disabled sections.
  331. */
  332. #define for_each_domain(cpu, __sd) \
  333. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  334. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  335. #define this_rq() (&__get_cpu_var(runqueues))
  336. #define task_rq(p) cpu_rq(task_cpu(p))
  337. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  338. /*
  339. * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
  340. * clock constructed from sched_clock():
  341. */
  342. unsigned long long cpu_clock(int cpu)
  343. {
  344. unsigned long long now;
  345. unsigned long flags;
  346. struct rq *rq;
  347. local_irq_save(flags);
  348. rq = cpu_rq(cpu);
  349. update_rq_clock(rq);
  350. now = rq->clock;
  351. local_irq_restore(flags);
  352. return now;
  353. }
  354. #ifdef CONFIG_FAIR_GROUP_SCHED
  355. /* Change a task's ->cfs_rq if it moves across CPUs */
  356. static inline void set_task_cfs_rq(struct task_struct *p)
  357. {
  358. p->se.cfs_rq = &task_rq(p)->cfs;
  359. }
  360. #else
  361. static inline void set_task_cfs_rq(struct task_struct *p)
  362. {
  363. }
  364. #endif
  365. #ifndef prepare_arch_switch
  366. # define prepare_arch_switch(next) do { } while (0)
  367. #endif
  368. #ifndef finish_arch_switch
  369. # define finish_arch_switch(prev) do { } while (0)
  370. #endif
  371. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  372. static inline int task_running(struct rq *rq, struct task_struct *p)
  373. {
  374. return rq->curr == p;
  375. }
  376. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  377. {
  378. }
  379. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  380. {
  381. #ifdef CONFIG_DEBUG_SPINLOCK
  382. /* this is a valid case when another task releases the spinlock */
  383. rq->lock.owner = current;
  384. #endif
  385. /*
  386. * If we are tracking spinlock dependencies then we have to
  387. * fix up the runqueue lock - which gets 'carried over' from
  388. * prev into current:
  389. */
  390. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  391. spin_unlock_irq(&rq->lock);
  392. }
  393. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  394. static inline int task_running(struct rq *rq, struct task_struct *p)
  395. {
  396. #ifdef CONFIG_SMP
  397. return p->oncpu;
  398. #else
  399. return rq->curr == p;
  400. #endif
  401. }
  402. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  403. {
  404. #ifdef CONFIG_SMP
  405. /*
  406. * We can optimise this out completely for !SMP, because the
  407. * SMP rebalancing from interrupt is the only thing that cares
  408. * here.
  409. */
  410. next->oncpu = 1;
  411. #endif
  412. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  413. spin_unlock_irq(&rq->lock);
  414. #else
  415. spin_unlock(&rq->lock);
  416. #endif
  417. }
  418. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  419. {
  420. #ifdef CONFIG_SMP
  421. /*
  422. * After ->oncpu is cleared, the task can be moved to a different CPU.
  423. * We must ensure this doesn't happen until the switch is completely
  424. * finished.
  425. */
  426. smp_wmb();
  427. prev->oncpu = 0;
  428. #endif
  429. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  430. local_irq_enable();
  431. #endif
  432. }
  433. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  434. /*
  435. * __task_rq_lock - lock the runqueue a given task resides on.
  436. * Must be called interrupts disabled.
  437. */
  438. static inline struct rq *__task_rq_lock(struct task_struct *p)
  439. __acquires(rq->lock)
  440. {
  441. struct rq *rq;
  442. repeat_lock_task:
  443. rq = task_rq(p);
  444. spin_lock(&rq->lock);
  445. if (unlikely(rq != task_rq(p))) {
  446. spin_unlock(&rq->lock);
  447. goto repeat_lock_task;
  448. }
  449. return rq;
  450. }
  451. /*
  452. * task_rq_lock - lock the runqueue a given task resides on and disable
  453. * interrupts. Note the ordering: we can safely lookup the task_rq without
  454. * explicitly disabling preemption.
  455. */
  456. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  457. __acquires(rq->lock)
  458. {
  459. struct rq *rq;
  460. repeat_lock_task:
  461. local_irq_save(*flags);
  462. rq = task_rq(p);
  463. spin_lock(&rq->lock);
  464. if (unlikely(rq != task_rq(p))) {
  465. spin_unlock_irqrestore(&rq->lock, *flags);
  466. goto repeat_lock_task;
  467. }
  468. return rq;
  469. }
  470. static inline void __task_rq_unlock(struct rq *rq)
  471. __releases(rq->lock)
  472. {
  473. spin_unlock(&rq->lock);
  474. }
  475. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  476. __releases(rq->lock)
  477. {
  478. spin_unlock_irqrestore(&rq->lock, *flags);
  479. }
  480. /*
  481. * this_rq_lock - lock this runqueue and disable interrupts.
  482. */
  483. static inline struct rq *this_rq_lock(void)
  484. __acquires(rq->lock)
  485. {
  486. struct rq *rq;
  487. local_irq_disable();
  488. rq = this_rq();
  489. spin_lock(&rq->lock);
  490. return rq;
  491. }
  492. /*
  493. * We are going deep-idle (irqs are disabled):
  494. */
  495. void sched_clock_idle_sleep_event(void)
  496. {
  497. struct rq *rq = cpu_rq(smp_processor_id());
  498. spin_lock(&rq->lock);
  499. __update_rq_clock(rq);
  500. spin_unlock(&rq->lock);
  501. rq->clock_deep_idle_events++;
  502. }
  503. EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
  504. /*
  505. * We just idled delta nanoseconds (called with irqs disabled):
  506. */
  507. void sched_clock_idle_wakeup_event(u64 delta_ns)
  508. {
  509. struct rq *rq = cpu_rq(smp_processor_id());
  510. u64 now = sched_clock();
  511. rq->idle_clock += delta_ns;
  512. /*
  513. * Override the previous timestamp and ignore all
  514. * sched_clock() deltas that occured while we idled,
  515. * and use the PM-provided delta_ns to advance the
  516. * rq clock:
  517. */
  518. spin_lock(&rq->lock);
  519. rq->prev_clock_raw = now;
  520. rq->clock += delta_ns;
  521. spin_unlock(&rq->lock);
  522. }
  523. EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
  524. /*
  525. * resched_task - mark a task 'to be rescheduled now'.
  526. *
  527. * On UP this means the setting of the need_resched flag, on SMP it
  528. * might also involve a cross-CPU call to trigger the scheduler on
  529. * the target CPU.
  530. */
  531. #ifdef CONFIG_SMP
  532. #ifndef tsk_is_polling
  533. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  534. #endif
  535. static void resched_task(struct task_struct *p)
  536. {
  537. int cpu;
  538. assert_spin_locked(&task_rq(p)->lock);
  539. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  540. return;
  541. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  542. cpu = task_cpu(p);
  543. if (cpu == smp_processor_id())
  544. return;
  545. /* NEED_RESCHED must be visible before we test polling */
  546. smp_mb();
  547. if (!tsk_is_polling(p))
  548. smp_send_reschedule(cpu);
  549. }
  550. static void resched_cpu(int cpu)
  551. {
  552. struct rq *rq = cpu_rq(cpu);
  553. unsigned long flags;
  554. if (!spin_trylock_irqsave(&rq->lock, flags))
  555. return;
  556. resched_task(cpu_curr(cpu));
  557. spin_unlock_irqrestore(&rq->lock, flags);
  558. }
  559. #else
  560. static inline void resched_task(struct task_struct *p)
  561. {
  562. assert_spin_locked(&task_rq(p)->lock);
  563. set_tsk_need_resched(p);
  564. }
  565. #endif
  566. static u64 div64_likely32(u64 divident, unsigned long divisor)
  567. {
  568. #if BITS_PER_LONG == 32
  569. if (likely(divident <= 0xffffffffULL))
  570. return (u32)divident / divisor;
  571. do_div(divident, divisor);
  572. return divident;
  573. #else
  574. return divident / divisor;
  575. #endif
  576. }
  577. #if BITS_PER_LONG == 32
  578. # define WMULT_CONST (~0UL)
  579. #else
  580. # define WMULT_CONST (1UL << 32)
  581. #endif
  582. #define WMULT_SHIFT 32
  583. /*
  584. * Shift right and round:
  585. */
  586. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  587. static unsigned long
  588. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  589. struct load_weight *lw)
  590. {
  591. u64 tmp;
  592. if (unlikely(!lw->inv_weight))
  593. lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
  594. tmp = (u64)delta_exec * weight;
  595. /*
  596. * Check whether we'd overflow the 64-bit multiplication:
  597. */
  598. if (unlikely(tmp > WMULT_CONST))
  599. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  600. WMULT_SHIFT/2);
  601. else
  602. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  603. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  604. }
  605. static inline unsigned long
  606. calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
  607. {
  608. return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
  609. }
  610. static void update_load_add(struct load_weight *lw, unsigned long inc)
  611. {
  612. lw->weight += inc;
  613. lw->inv_weight = 0;
  614. }
  615. static void update_load_sub(struct load_weight *lw, unsigned long dec)
  616. {
  617. lw->weight -= dec;
  618. lw->inv_weight = 0;
  619. }
  620. /*
  621. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  622. * of tasks with abnormal "nice" values across CPUs the contribution that
  623. * each task makes to its run queue's load is weighted according to its
  624. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  625. * scaled version of the new time slice allocation that they receive on time
  626. * slice expiry etc.
  627. */
  628. #define WEIGHT_IDLEPRIO 2
  629. #define WMULT_IDLEPRIO (1 << 31)
  630. /*
  631. * Nice levels are multiplicative, with a gentle 10% change for every
  632. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  633. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  634. * that remained on nice 0.
  635. *
  636. * The "10% effect" is relative and cumulative: from _any_ nice level,
  637. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  638. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  639. * If a task goes up by ~10% and another task goes down by ~10% then
  640. * the relative distance between them is ~25%.)
  641. */
  642. static const int prio_to_weight[40] = {
  643. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  644. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  645. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  646. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  647. /* 0 */ 1024, 820, 655, 526, 423,
  648. /* 5 */ 335, 272, 215, 172, 137,
  649. /* 10 */ 110, 87, 70, 56, 45,
  650. /* 15 */ 36, 29, 23, 18, 15,
  651. };
  652. /*
  653. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  654. *
  655. * In cases where the weight does not change often, we can use the
  656. * precalculated inverse to speed up arithmetics by turning divisions
  657. * into multiplications:
  658. */
  659. static const u32 prio_to_wmult[40] = {
  660. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  661. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  662. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  663. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  664. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  665. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  666. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  667. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  668. };
  669. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  670. /*
  671. * runqueue iterator, to support SMP load-balancing between different
  672. * scheduling classes, without having to expose their internal data
  673. * structures to the load-balancing proper:
  674. */
  675. struct rq_iterator {
  676. void *arg;
  677. struct task_struct *(*start)(void *);
  678. struct task_struct *(*next)(void *);
  679. };
  680. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  681. unsigned long max_nr_move, unsigned long max_load_move,
  682. struct sched_domain *sd, enum cpu_idle_type idle,
  683. int *all_pinned, unsigned long *load_moved,
  684. int *this_best_prio, struct rq_iterator *iterator);
  685. #include "sched_stats.h"
  686. #include "sched_rt.c"
  687. #include "sched_fair.c"
  688. #include "sched_idletask.c"
  689. #ifdef CONFIG_SCHED_DEBUG
  690. # include "sched_debug.c"
  691. #endif
  692. #define sched_class_highest (&rt_sched_class)
  693. static void __update_curr_load(struct rq *rq, struct load_stat *ls)
  694. {
  695. if (rq->curr != rq->idle && ls->load.weight) {
  696. ls->delta_exec += ls->delta_stat;
  697. ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
  698. ls->delta_stat = 0;
  699. }
  700. }
  701. /*
  702. * Update delta_exec, delta_fair fields for rq.
  703. *
  704. * delta_fair clock advances at a rate inversely proportional to
  705. * total load (rq->ls.load.weight) on the runqueue, while
  706. * delta_exec advances at the same rate as wall-clock (provided
  707. * cpu is not idle).
  708. *
  709. * delta_exec / delta_fair is a measure of the (smoothened) load on this
  710. * runqueue over any given interval. This (smoothened) load is used
  711. * during load balance.
  712. *
  713. * This function is called /before/ updating rq->ls.load
  714. * and when switching tasks.
  715. */
  716. static void update_curr_load(struct rq *rq)
  717. {
  718. struct load_stat *ls = &rq->ls;
  719. u64 start;
  720. start = ls->load_update_start;
  721. ls->load_update_start = rq->clock;
  722. ls->delta_stat += rq->clock - start;
  723. /*
  724. * Stagger updates to ls->delta_fair. Very frequent updates
  725. * can be expensive.
  726. */
  727. if (ls->delta_stat >= sysctl_sched_stat_granularity)
  728. __update_curr_load(rq, ls);
  729. }
  730. static inline void inc_load(struct rq *rq, const struct task_struct *p)
  731. {
  732. update_curr_load(rq);
  733. update_load_add(&rq->ls.load, p->se.load.weight);
  734. }
  735. static inline void dec_load(struct rq *rq, const struct task_struct *p)
  736. {
  737. update_curr_load(rq);
  738. update_load_sub(&rq->ls.load, p->se.load.weight);
  739. }
  740. static void inc_nr_running(struct task_struct *p, struct rq *rq)
  741. {
  742. rq->nr_running++;
  743. inc_load(rq, p);
  744. }
  745. static void dec_nr_running(struct task_struct *p, struct rq *rq)
  746. {
  747. rq->nr_running--;
  748. dec_load(rq, p);
  749. }
  750. static void set_load_weight(struct task_struct *p)
  751. {
  752. p->se.wait_runtime = 0;
  753. if (task_has_rt_policy(p)) {
  754. p->se.load.weight = prio_to_weight[0] * 2;
  755. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  756. return;
  757. }
  758. /*
  759. * SCHED_IDLE tasks get minimal weight:
  760. */
  761. if (p->policy == SCHED_IDLE) {
  762. p->se.load.weight = WEIGHT_IDLEPRIO;
  763. p->se.load.inv_weight = WMULT_IDLEPRIO;
  764. return;
  765. }
  766. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  767. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  768. }
  769. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  770. {
  771. sched_info_queued(p);
  772. p->sched_class->enqueue_task(rq, p, wakeup);
  773. p->se.on_rq = 1;
  774. }
  775. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  776. {
  777. p->sched_class->dequeue_task(rq, p, sleep);
  778. p->se.on_rq = 0;
  779. }
  780. /*
  781. * __normal_prio - return the priority that is based on the static prio
  782. */
  783. static inline int __normal_prio(struct task_struct *p)
  784. {
  785. return p->static_prio;
  786. }
  787. /*
  788. * Calculate the expected normal priority: i.e. priority
  789. * without taking RT-inheritance into account. Might be
  790. * boosted by interactivity modifiers. Changes upon fork,
  791. * setprio syscalls, and whenever the interactivity
  792. * estimator recalculates.
  793. */
  794. static inline int normal_prio(struct task_struct *p)
  795. {
  796. int prio;
  797. if (task_has_rt_policy(p))
  798. prio = MAX_RT_PRIO-1 - p->rt_priority;
  799. else
  800. prio = __normal_prio(p);
  801. return prio;
  802. }
  803. /*
  804. * Calculate the current priority, i.e. the priority
  805. * taken into account by the scheduler. This value might
  806. * be boosted by RT tasks, or might be boosted by
  807. * interactivity modifiers. Will be RT if the task got
  808. * RT-boosted. If not then it returns p->normal_prio.
  809. */
  810. static int effective_prio(struct task_struct *p)
  811. {
  812. p->normal_prio = normal_prio(p);
  813. /*
  814. * If we are RT tasks or we were boosted to RT priority,
  815. * keep the priority unchanged. Otherwise, update priority
  816. * to the normal priority:
  817. */
  818. if (!rt_prio(p->prio))
  819. return p->normal_prio;
  820. return p->prio;
  821. }
  822. /*
  823. * activate_task - move a task to the runqueue.
  824. */
  825. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  826. {
  827. if (p->state == TASK_UNINTERRUPTIBLE)
  828. rq->nr_uninterruptible--;
  829. enqueue_task(rq, p, wakeup);
  830. inc_nr_running(p, rq);
  831. }
  832. /*
  833. * activate_idle_task - move idle task to the _front_ of runqueue.
  834. */
  835. static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
  836. {
  837. update_rq_clock(rq);
  838. if (p->state == TASK_UNINTERRUPTIBLE)
  839. rq->nr_uninterruptible--;
  840. enqueue_task(rq, p, 0);
  841. inc_nr_running(p, rq);
  842. }
  843. /*
  844. * deactivate_task - remove a task from the runqueue.
  845. */
  846. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  847. {
  848. if (p->state == TASK_UNINTERRUPTIBLE)
  849. rq->nr_uninterruptible++;
  850. dequeue_task(rq, p, sleep);
  851. dec_nr_running(p, rq);
  852. }
  853. /**
  854. * task_curr - is this task currently executing on a CPU?
  855. * @p: the task in question.
  856. */
  857. inline int task_curr(const struct task_struct *p)
  858. {
  859. return cpu_curr(task_cpu(p)) == p;
  860. }
  861. /* Used instead of source_load when we know the type == 0 */
  862. unsigned long weighted_cpuload(const int cpu)
  863. {
  864. return cpu_rq(cpu)->ls.load.weight;
  865. }
  866. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  867. {
  868. #ifdef CONFIG_SMP
  869. task_thread_info(p)->cpu = cpu;
  870. set_task_cfs_rq(p);
  871. #endif
  872. }
  873. #ifdef CONFIG_SMP
  874. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  875. {
  876. int old_cpu = task_cpu(p);
  877. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  878. u64 clock_offset, fair_clock_offset;
  879. clock_offset = old_rq->clock - new_rq->clock;
  880. fair_clock_offset = old_rq->cfs.fair_clock - new_rq->cfs.fair_clock;
  881. if (p->se.wait_start_fair)
  882. p->se.wait_start_fair -= fair_clock_offset;
  883. if (p->se.sleep_start_fair)
  884. p->se.sleep_start_fair -= fair_clock_offset;
  885. #ifdef CONFIG_SCHEDSTATS
  886. if (p->se.wait_start)
  887. p->se.wait_start -= clock_offset;
  888. if (p->se.sleep_start)
  889. p->se.sleep_start -= clock_offset;
  890. if (p->se.block_start)
  891. p->se.block_start -= clock_offset;
  892. #endif
  893. __set_task_cpu(p, new_cpu);
  894. }
  895. struct migration_req {
  896. struct list_head list;
  897. struct task_struct *task;
  898. int dest_cpu;
  899. struct completion done;
  900. };
  901. /*
  902. * The task's runqueue lock must be held.
  903. * Returns true if you have to wait for migration thread.
  904. */
  905. static int
  906. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  907. {
  908. struct rq *rq = task_rq(p);
  909. /*
  910. * If the task is not on a runqueue (and not running), then
  911. * it is sufficient to simply update the task's cpu field.
  912. */
  913. if (!p->se.on_rq && !task_running(rq, p)) {
  914. set_task_cpu(p, dest_cpu);
  915. return 0;
  916. }
  917. init_completion(&req->done);
  918. req->task = p;
  919. req->dest_cpu = dest_cpu;
  920. list_add(&req->list, &rq->migration_queue);
  921. return 1;
  922. }
  923. /*
  924. * wait_task_inactive - wait for a thread to unschedule.
  925. *
  926. * The caller must ensure that the task *will* unschedule sometime soon,
  927. * else this function might spin for a *long* time. This function can't
  928. * be called with interrupts off, or it may introduce deadlock with
  929. * smp_call_function() if an IPI is sent by the same process we are
  930. * waiting to become inactive.
  931. */
  932. void wait_task_inactive(struct task_struct *p)
  933. {
  934. unsigned long flags;
  935. int running, on_rq;
  936. struct rq *rq;
  937. repeat:
  938. /*
  939. * We do the initial early heuristics without holding
  940. * any task-queue locks at all. We'll only try to get
  941. * the runqueue lock when things look like they will
  942. * work out!
  943. */
  944. rq = task_rq(p);
  945. /*
  946. * If the task is actively running on another CPU
  947. * still, just relax and busy-wait without holding
  948. * any locks.
  949. *
  950. * NOTE! Since we don't hold any locks, it's not
  951. * even sure that "rq" stays as the right runqueue!
  952. * But we don't care, since "task_running()" will
  953. * return false if the runqueue has changed and p
  954. * is actually now running somewhere else!
  955. */
  956. while (task_running(rq, p))
  957. cpu_relax();
  958. /*
  959. * Ok, time to look more closely! We need the rq
  960. * lock now, to be *sure*. If we're wrong, we'll
  961. * just go back and repeat.
  962. */
  963. rq = task_rq_lock(p, &flags);
  964. running = task_running(rq, p);
  965. on_rq = p->se.on_rq;
  966. task_rq_unlock(rq, &flags);
  967. /*
  968. * Was it really running after all now that we
  969. * checked with the proper locks actually held?
  970. *
  971. * Oops. Go back and try again..
  972. */
  973. if (unlikely(running)) {
  974. cpu_relax();
  975. goto repeat;
  976. }
  977. /*
  978. * It's not enough that it's not actively running,
  979. * it must be off the runqueue _entirely_, and not
  980. * preempted!
  981. *
  982. * So if it wa still runnable (but just not actively
  983. * running right now), it's preempted, and we should
  984. * yield - it could be a while.
  985. */
  986. if (unlikely(on_rq)) {
  987. yield();
  988. goto repeat;
  989. }
  990. /*
  991. * Ahh, all good. It wasn't running, and it wasn't
  992. * runnable, which means that it will never become
  993. * running in the future either. We're all done!
  994. */
  995. }
  996. /***
  997. * kick_process - kick a running thread to enter/exit the kernel
  998. * @p: the to-be-kicked thread
  999. *
  1000. * Cause a process which is running on another CPU to enter
  1001. * kernel-mode, without any delay. (to get signals handled.)
  1002. *
  1003. * NOTE: this function doesnt have to take the runqueue lock,
  1004. * because all it wants to ensure is that the remote task enters
  1005. * the kernel. If the IPI races and the task has been migrated
  1006. * to another CPU then no harm is done and the purpose has been
  1007. * achieved as well.
  1008. */
  1009. void kick_process(struct task_struct *p)
  1010. {
  1011. int cpu;
  1012. preempt_disable();
  1013. cpu = task_cpu(p);
  1014. if ((cpu != smp_processor_id()) && task_curr(p))
  1015. smp_send_reschedule(cpu);
  1016. preempt_enable();
  1017. }
  1018. /*
  1019. * Return a low guess at the load of a migration-source cpu weighted
  1020. * according to the scheduling class and "nice" value.
  1021. *
  1022. * We want to under-estimate the load of migration sources, to
  1023. * balance conservatively.
  1024. */
  1025. static inline unsigned long source_load(int cpu, int type)
  1026. {
  1027. struct rq *rq = cpu_rq(cpu);
  1028. unsigned long total = weighted_cpuload(cpu);
  1029. if (type == 0)
  1030. return total;
  1031. return min(rq->cpu_load[type-1], total);
  1032. }
  1033. /*
  1034. * Return a high guess at the load of a migration-target cpu weighted
  1035. * according to the scheduling class and "nice" value.
  1036. */
  1037. static inline unsigned long target_load(int cpu, int type)
  1038. {
  1039. struct rq *rq = cpu_rq(cpu);
  1040. unsigned long total = weighted_cpuload(cpu);
  1041. if (type == 0)
  1042. return total;
  1043. return max(rq->cpu_load[type-1], total);
  1044. }
  1045. /*
  1046. * Return the average load per task on the cpu's run queue
  1047. */
  1048. static inline unsigned long cpu_avg_load_per_task(int cpu)
  1049. {
  1050. struct rq *rq = cpu_rq(cpu);
  1051. unsigned long total = weighted_cpuload(cpu);
  1052. unsigned long n = rq->nr_running;
  1053. return n ? total / n : SCHED_LOAD_SCALE;
  1054. }
  1055. /*
  1056. * find_idlest_group finds and returns the least busy CPU group within the
  1057. * domain.
  1058. */
  1059. static struct sched_group *
  1060. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1061. {
  1062. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1063. unsigned long min_load = ULONG_MAX, this_load = 0;
  1064. int load_idx = sd->forkexec_idx;
  1065. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1066. do {
  1067. unsigned long load, avg_load;
  1068. int local_group;
  1069. int i;
  1070. /* Skip over this group if it has no CPUs allowed */
  1071. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1072. goto nextgroup;
  1073. local_group = cpu_isset(this_cpu, group->cpumask);
  1074. /* Tally up the load of all CPUs in the group */
  1075. avg_load = 0;
  1076. for_each_cpu_mask(i, group->cpumask) {
  1077. /* Bias balancing toward cpus of our domain */
  1078. if (local_group)
  1079. load = source_load(i, load_idx);
  1080. else
  1081. load = target_load(i, load_idx);
  1082. avg_load += load;
  1083. }
  1084. /* Adjust by relative CPU power of the group */
  1085. avg_load = sg_div_cpu_power(group,
  1086. avg_load * SCHED_LOAD_SCALE);
  1087. if (local_group) {
  1088. this_load = avg_load;
  1089. this = group;
  1090. } else if (avg_load < min_load) {
  1091. min_load = avg_load;
  1092. idlest = group;
  1093. }
  1094. nextgroup:
  1095. group = group->next;
  1096. } while (group != sd->groups);
  1097. if (!idlest || 100*this_load < imbalance*min_load)
  1098. return NULL;
  1099. return idlest;
  1100. }
  1101. /*
  1102. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1103. */
  1104. static int
  1105. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1106. {
  1107. cpumask_t tmp;
  1108. unsigned long load, min_load = ULONG_MAX;
  1109. int idlest = -1;
  1110. int i;
  1111. /* Traverse only the allowed CPUs */
  1112. cpus_and(tmp, group->cpumask, p->cpus_allowed);
  1113. for_each_cpu_mask(i, tmp) {
  1114. load = weighted_cpuload(i);
  1115. if (load < min_load || (load == min_load && i == this_cpu)) {
  1116. min_load = load;
  1117. idlest = i;
  1118. }
  1119. }
  1120. return idlest;
  1121. }
  1122. /*
  1123. * sched_balance_self: balance the current task (running on cpu) in domains
  1124. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1125. * SD_BALANCE_EXEC.
  1126. *
  1127. * Balance, ie. select the least loaded group.
  1128. *
  1129. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1130. *
  1131. * preempt must be disabled.
  1132. */
  1133. static int sched_balance_self(int cpu, int flag)
  1134. {
  1135. struct task_struct *t = current;
  1136. struct sched_domain *tmp, *sd = NULL;
  1137. for_each_domain(cpu, tmp) {
  1138. /*
  1139. * If power savings logic is enabled for a domain, stop there.
  1140. */
  1141. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1142. break;
  1143. if (tmp->flags & flag)
  1144. sd = tmp;
  1145. }
  1146. while (sd) {
  1147. cpumask_t span;
  1148. struct sched_group *group;
  1149. int new_cpu, weight;
  1150. if (!(sd->flags & flag)) {
  1151. sd = sd->child;
  1152. continue;
  1153. }
  1154. span = sd->span;
  1155. group = find_idlest_group(sd, t, cpu);
  1156. if (!group) {
  1157. sd = sd->child;
  1158. continue;
  1159. }
  1160. new_cpu = find_idlest_cpu(group, t, cpu);
  1161. if (new_cpu == -1 || new_cpu == cpu) {
  1162. /* Now try balancing at a lower domain level of cpu */
  1163. sd = sd->child;
  1164. continue;
  1165. }
  1166. /* Now try balancing at a lower domain level of new_cpu */
  1167. cpu = new_cpu;
  1168. sd = NULL;
  1169. weight = cpus_weight(span);
  1170. for_each_domain(cpu, tmp) {
  1171. if (weight <= cpus_weight(tmp->span))
  1172. break;
  1173. if (tmp->flags & flag)
  1174. sd = tmp;
  1175. }
  1176. /* while loop will break here if sd == NULL */
  1177. }
  1178. return cpu;
  1179. }
  1180. #endif /* CONFIG_SMP */
  1181. /*
  1182. * wake_idle() will wake a task on an idle cpu if task->cpu is
  1183. * not idle and an idle cpu is available. The span of cpus to
  1184. * search starts with cpus closest then further out as needed,
  1185. * so we always favor a closer, idle cpu.
  1186. *
  1187. * Returns the CPU we should wake onto.
  1188. */
  1189. #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
  1190. static int wake_idle(int cpu, struct task_struct *p)
  1191. {
  1192. cpumask_t tmp;
  1193. struct sched_domain *sd;
  1194. int i;
  1195. /*
  1196. * If it is idle, then it is the best cpu to run this task.
  1197. *
  1198. * This cpu is also the best, if it has more than one task already.
  1199. * Siblings must be also busy(in most cases) as they didn't already
  1200. * pickup the extra load from this cpu and hence we need not check
  1201. * sibling runqueue info. This will avoid the checks and cache miss
  1202. * penalities associated with that.
  1203. */
  1204. if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
  1205. return cpu;
  1206. for_each_domain(cpu, sd) {
  1207. if (sd->flags & SD_WAKE_IDLE) {
  1208. cpus_and(tmp, sd->span, p->cpus_allowed);
  1209. for_each_cpu_mask(i, tmp) {
  1210. if (idle_cpu(i))
  1211. return i;
  1212. }
  1213. } else {
  1214. break;
  1215. }
  1216. }
  1217. return cpu;
  1218. }
  1219. #else
  1220. static inline int wake_idle(int cpu, struct task_struct *p)
  1221. {
  1222. return cpu;
  1223. }
  1224. #endif
  1225. /***
  1226. * try_to_wake_up - wake up a thread
  1227. * @p: the to-be-woken-up thread
  1228. * @state: the mask of task states that can be woken
  1229. * @sync: do a synchronous wakeup?
  1230. *
  1231. * Put it on the run-queue if it's not already there. The "current"
  1232. * thread is always on the run-queue (except when the actual
  1233. * re-schedule is in progress), and as such you're allowed to do
  1234. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1235. * runnable without the overhead of this.
  1236. *
  1237. * returns failure only if the task is already active.
  1238. */
  1239. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1240. {
  1241. int cpu, this_cpu, success = 0;
  1242. unsigned long flags;
  1243. long old_state;
  1244. struct rq *rq;
  1245. #ifdef CONFIG_SMP
  1246. struct sched_domain *sd, *this_sd = NULL;
  1247. unsigned long load, this_load;
  1248. int new_cpu;
  1249. #endif
  1250. rq = task_rq_lock(p, &flags);
  1251. old_state = p->state;
  1252. if (!(old_state & state))
  1253. goto out;
  1254. if (p->se.on_rq)
  1255. goto out_running;
  1256. cpu = task_cpu(p);
  1257. this_cpu = smp_processor_id();
  1258. #ifdef CONFIG_SMP
  1259. if (unlikely(task_running(rq, p)))
  1260. goto out_activate;
  1261. new_cpu = cpu;
  1262. schedstat_inc(rq, ttwu_cnt);
  1263. if (cpu == this_cpu) {
  1264. schedstat_inc(rq, ttwu_local);
  1265. goto out_set_cpu;
  1266. }
  1267. for_each_domain(this_cpu, sd) {
  1268. if (cpu_isset(cpu, sd->span)) {
  1269. schedstat_inc(sd, ttwu_wake_remote);
  1270. this_sd = sd;
  1271. break;
  1272. }
  1273. }
  1274. if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
  1275. goto out_set_cpu;
  1276. /*
  1277. * Check for affine wakeup and passive balancing possibilities.
  1278. */
  1279. if (this_sd) {
  1280. int idx = this_sd->wake_idx;
  1281. unsigned int imbalance;
  1282. imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
  1283. load = source_load(cpu, idx);
  1284. this_load = target_load(this_cpu, idx);
  1285. new_cpu = this_cpu; /* Wake to this CPU if we can */
  1286. if (this_sd->flags & SD_WAKE_AFFINE) {
  1287. unsigned long tl = this_load;
  1288. unsigned long tl_per_task;
  1289. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1290. /*
  1291. * If sync wakeup then subtract the (maximum possible)
  1292. * effect of the currently running task from the load
  1293. * of the current CPU:
  1294. */
  1295. if (sync)
  1296. tl -= current->se.load.weight;
  1297. if ((tl <= load &&
  1298. tl + target_load(cpu, idx) <= tl_per_task) ||
  1299. 100*(tl + p->se.load.weight) <= imbalance*load) {
  1300. /*
  1301. * This domain has SD_WAKE_AFFINE and
  1302. * p is cache cold in this domain, and
  1303. * there is no bad imbalance.
  1304. */
  1305. schedstat_inc(this_sd, ttwu_move_affine);
  1306. goto out_set_cpu;
  1307. }
  1308. }
  1309. /*
  1310. * Start passive balancing when half the imbalance_pct
  1311. * limit is reached.
  1312. */
  1313. if (this_sd->flags & SD_WAKE_BALANCE) {
  1314. if (imbalance*this_load <= 100*load) {
  1315. schedstat_inc(this_sd, ttwu_move_balance);
  1316. goto out_set_cpu;
  1317. }
  1318. }
  1319. }
  1320. new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
  1321. out_set_cpu:
  1322. new_cpu = wake_idle(new_cpu, p);
  1323. if (new_cpu != cpu) {
  1324. set_task_cpu(p, new_cpu);
  1325. task_rq_unlock(rq, &flags);
  1326. /* might preempt at this point */
  1327. rq = task_rq_lock(p, &flags);
  1328. old_state = p->state;
  1329. if (!(old_state & state))
  1330. goto out;
  1331. if (p->se.on_rq)
  1332. goto out_running;
  1333. this_cpu = smp_processor_id();
  1334. cpu = task_cpu(p);
  1335. }
  1336. out_activate:
  1337. #endif /* CONFIG_SMP */
  1338. update_rq_clock(rq);
  1339. activate_task(rq, p, 1);
  1340. /*
  1341. * Sync wakeups (i.e. those types of wakeups where the waker
  1342. * has indicated that it will leave the CPU in short order)
  1343. * don't trigger a preemption, if the woken up task will run on
  1344. * this cpu. (in this case the 'I will reschedule' promise of
  1345. * the waker guarantees that the freshly woken up task is going
  1346. * to be considered on this CPU.)
  1347. */
  1348. if (!sync || cpu != this_cpu)
  1349. check_preempt_curr(rq, p);
  1350. success = 1;
  1351. out_running:
  1352. p->state = TASK_RUNNING;
  1353. out:
  1354. task_rq_unlock(rq, &flags);
  1355. return success;
  1356. }
  1357. int fastcall wake_up_process(struct task_struct *p)
  1358. {
  1359. return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
  1360. TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
  1361. }
  1362. EXPORT_SYMBOL(wake_up_process);
  1363. int fastcall wake_up_state(struct task_struct *p, unsigned int state)
  1364. {
  1365. return try_to_wake_up(p, state, 0);
  1366. }
  1367. /*
  1368. * Perform scheduler related setup for a newly forked process p.
  1369. * p is forked by current.
  1370. *
  1371. * __sched_fork() is basic setup used by init_idle() too:
  1372. */
  1373. static void __sched_fork(struct task_struct *p)
  1374. {
  1375. p->se.wait_start_fair = 0;
  1376. p->se.exec_start = 0;
  1377. p->se.sum_exec_runtime = 0;
  1378. p->se.prev_sum_exec_runtime = 0;
  1379. p->se.delta_exec = 0;
  1380. p->se.delta_fair_run = 0;
  1381. p->se.delta_fair_sleep = 0;
  1382. p->se.wait_runtime = 0;
  1383. p->se.sleep_start_fair = 0;
  1384. #ifdef CONFIG_SCHEDSTATS
  1385. p->se.wait_start = 0;
  1386. p->se.sum_wait_runtime = 0;
  1387. p->se.sum_sleep_runtime = 0;
  1388. p->se.sleep_start = 0;
  1389. p->se.block_start = 0;
  1390. p->se.sleep_max = 0;
  1391. p->se.block_max = 0;
  1392. p->se.exec_max = 0;
  1393. p->se.wait_max = 0;
  1394. p->se.wait_runtime_overruns = 0;
  1395. p->se.wait_runtime_underruns = 0;
  1396. #endif
  1397. INIT_LIST_HEAD(&p->run_list);
  1398. p->se.on_rq = 0;
  1399. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1400. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1401. #endif
  1402. /*
  1403. * We mark the process as running here, but have not actually
  1404. * inserted it onto the runqueue yet. This guarantees that
  1405. * nobody will actually run it, and a signal or other external
  1406. * event cannot wake it up and insert it on the runqueue either.
  1407. */
  1408. p->state = TASK_RUNNING;
  1409. }
  1410. /*
  1411. * fork()/clone()-time setup:
  1412. */
  1413. void sched_fork(struct task_struct *p, int clone_flags)
  1414. {
  1415. int cpu = get_cpu();
  1416. __sched_fork(p);
  1417. #ifdef CONFIG_SMP
  1418. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1419. #endif
  1420. __set_task_cpu(p, cpu);
  1421. /*
  1422. * Make sure we do not leak PI boosting priority to the child:
  1423. */
  1424. p->prio = current->normal_prio;
  1425. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1426. if (likely(sched_info_on()))
  1427. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1428. #endif
  1429. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1430. p->oncpu = 0;
  1431. #endif
  1432. #ifdef CONFIG_PREEMPT
  1433. /* Want to start with kernel preemption disabled. */
  1434. task_thread_info(p)->preempt_count = 1;
  1435. #endif
  1436. put_cpu();
  1437. }
  1438. /*
  1439. * After fork, child runs first. (default) If set to 0 then
  1440. * parent will (try to) run first.
  1441. */
  1442. unsigned int __read_mostly sysctl_sched_child_runs_first = 1;
  1443. /*
  1444. * wake_up_new_task - wake up a newly created task for the first time.
  1445. *
  1446. * This function will do some initial scheduler statistics housekeeping
  1447. * that must be done for every newly created context, then puts the task
  1448. * on the runqueue and wakes it.
  1449. */
  1450. void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  1451. {
  1452. unsigned long flags;
  1453. struct rq *rq;
  1454. int this_cpu;
  1455. rq = task_rq_lock(p, &flags);
  1456. BUG_ON(p->state != TASK_RUNNING);
  1457. this_cpu = smp_processor_id(); /* parent's CPU */
  1458. update_rq_clock(rq);
  1459. p->prio = effective_prio(p);
  1460. if (rt_prio(p->prio))
  1461. p->sched_class = &rt_sched_class;
  1462. else
  1463. p->sched_class = &fair_sched_class;
  1464. if (!p->sched_class->task_new || !sysctl_sched_child_runs_first ||
  1465. (clone_flags & CLONE_VM) || task_cpu(p) != this_cpu ||
  1466. !current->se.on_rq) {
  1467. activate_task(rq, p, 0);
  1468. } else {
  1469. /*
  1470. * Let the scheduling class do new task startup
  1471. * management (if any):
  1472. */
  1473. p->sched_class->task_new(rq, p);
  1474. inc_nr_running(p, rq);
  1475. }
  1476. check_preempt_curr(rq, p);
  1477. task_rq_unlock(rq, &flags);
  1478. }
  1479. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1480. /**
  1481. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  1482. * @notifier: notifier struct to register
  1483. */
  1484. void preempt_notifier_register(struct preempt_notifier *notifier)
  1485. {
  1486. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1487. }
  1488. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1489. /**
  1490. * preempt_notifier_unregister - no longer interested in preemption notifications
  1491. * @notifier: notifier struct to unregister
  1492. *
  1493. * This is safe to call from within a preemption notifier.
  1494. */
  1495. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1496. {
  1497. hlist_del(&notifier->link);
  1498. }
  1499. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1500. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1501. {
  1502. struct preempt_notifier *notifier;
  1503. struct hlist_node *node;
  1504. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1505. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1506. }
  1507. static void
  1508. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1509. struct task_struct *next)
  1510. {
  1511. struct preempt_notifier *notifier;
  1512. struct hlist_node *node;
  1513. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1514. notifier->ops->sched_out(notifier, next);
  1515. }
  1516. #else
  1517. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1518. {
  1519. }
  1520. static void
  1521. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1522. struct task_struct *next)
  1523. {
  1524. }
  1525. #endif
  1526. /**
  1527. * prepare_task_switch - prepare to switch tasks
  1528. * @rq: the runqueue preparing to switch
  1529. * @prev: the current task that is being switched out
  1530. * @next: the task we are going to switch to.
  1531. *
  1532. * This is called with the rq lock held and interrupts off. It must
  1533. * be paired with a subsequent finish_task_switch after the context
  1534. * switch.
  1535. *
  1536. * prepare_task_switch sets up locking and calls architecture specific
  1537. * hooks.
  1538. */
  1539. static inline void
  1540. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1541. struct task_struct *next)
  1542. {
  1543. fire_sched_out_preempt_notifiers(prev, next);
  1544. prepare_lock_switch(rq, next);
  1545. prepare_arch_switch(next);
  1546. }
  1547. /**
  1548. * finish_task_switch - clean up after a task-switch
  1549. * @rq: runqueue associated with task-switch
  1550. * @prev: the thread we just switched away from.
  1551. *
  1552. * finish_task_switch must be called after the context switch, paired
  1553. * with a prepare_task_switch call before the context switch.
  1554. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1555. * and do any other architecture-specific cleanup actions.
  1556. *
  1557. * Note that we may have delayed dropping an mm in context_switch(). If
  1558. * so, we finish that here outside of the runqueue lock. (Doing it
  1559. * with the lock held can cause deadlocks; see schedule() for
  1560. * details.)
  1561. */
  1562. static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1563. __releases(rq->lock)
  1564. {
  1565. struct mm_struct *mm = rq->prev_mm;
  1566. long prev_state;
  1567. rq->prev_mm = NULL;
  1568. /*
  1569. * A task struct has one reference for the use as "current".
  1570. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1571. * schedule one last time. The schedule call will never return, and
  1572. * the scheduled task must drop that reference.
  1573. * The test for TASK_DEAD must occur while the runqueue locks are
  1574. * still held, otherwise prev could be scheduled on another cpu, die
  1575. * there before we look at prev->state, and then the reference would
  1576. * be dropped twice.
  1577. * Manfred Spraul <manfred@colorfullife.com>
  1578. */
  1579. prev_state = prev->state;
  1580. finish_arch_switch(prev);
  1581. finish_lock_switch(rq, prev);
  1582. fire_sched_in_preempt_notifiers(current);
  1583. if (mm)
  1584. mmdrop(mm);
  1585. if (unlikely(prev_state == TASK_DEAD)) {
  1586. /*
  1587. * Remove function-return probe instances associated with this
  1588. * task and put them back on the free list.
  1589. */
  1590. kprobe_flush_task(prev);
  1591. put_task_struct(prev);
  1592. }
  1593. }
  1594. /**
  1595. * schedule_tail - first thing a freshly forked thread must call.
  1596. * @prev: the thread we just switched away from.
  1597. */
  1598. asmlinkage void schedule_tail(struct task_struct *prev)
  1599. __releases(rq->lock)
  1600. {
  1601. struct rq *rq = this_rq();
  1602. finish_task_switch(rq, prev);
  1603. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1604. /* In this case, finish_task_switch does not reenable preemption */
  1605. preempt_enable();
  1606. #endif
  1607. if (current->set_child_tid)
  1608. put_user(current->pid, current->set_child_tid);
  1609. }
  1610. /*
  1611. * context_switch - switch to the new MM and the new
  1612. * thread's register state.
  1613. */
  1614. static inline void
  1615. context_switch(struct rq *rq, struct task_struct *prev,
  1616. struct task_struct *next)
  1617. {
  1618. struct mm_struct *mm, *oldmm;
  1619. prepare_task_switch(rq, prev, next);
  1620. mm = next->mm;
  1621. oldmm = prev->active_mm;
  1622. /*
  1623. * For paravirt, this is coupled with an exit in switch_to to
  1624. * combine the page table reload and the switch backend into
  1625. * one hypercall.
  1626. */
  1627. arch_enter_lazy_cpu_mode();
  1628. if (unlikely(!mm)) {
  1629. next->active_mm = oldmm;
  1630. atomic_inc(&oldmm->mm_count);
  1631. enter_lazy_tlb(oldmm, next);
  1632. } else
  1633. switch_mm(oldmm, mm, next);
  1634. if (unlikely(!prev->mm)) {
  1635. prev->active_mm = NULL;
  1636. rq->prev_mm = oldmm;
  1637. }
  1638. /*
  1639. * Since the runqueue lock will be released by the next
  1640. * task (which is an invalid locking op but in the case
  1641. * of the scheduler it's an obvious special-case), so we
  1642. * do an early lockdep release here:
  1643. */
  1644. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1645. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1646. #endif
  1647. /* Here we just switch the register state and the stack. */
  1648. switch_to(prev, next, prev);
  1649. barrier();
  1650. /*
  1651. * this_rq must be evaluated again because prev may have moved
  1652. * CPUs since it called schedule(), thus the 'rq' on its stack
  1653. * frame will be invalid.
  1654. */
  1655. finish_task_switch(this_rq(), prev);
  1656. }
  1657. /*
  1658. * nr_running, nr_uninterruptible and nr_context_switches:
  1659. *
  1660. * externally visible scheduler statistics: current number of runnable
  1661. * threads, current number of uninterruptible-sleeping threads, total
  1662. * number of context switches performed since bootup.
  1663. */
  1664. unsigned long nr_running(void)
  1665. {
  1666. unsigned long i, sum = 0;
  1667. for_each_online_cpu(i)
  1668. sum += cpu_rq(i)->nr_running;
  1669. return sum;
  1670. }
  1671. unsigned long nr_uninterruptible(void)
  1672. {
  1673. unsigned long i, sum = 0;
  1674. for_each_possible_cpu(i)
  1675. sum += cpu_rq(i)->nr_uninterruptible;
  1676. /*
  1677. * Since we read the counters lockless, it might be slightly
  1678. * inaccurate. Do not allow it to go below zero though:
  1679. */
  1680. if (unlikely((long)sum < 0))
  1681. sum = 0;
  1682. return sum;
  1683. }
  1684. unsigned long long nr_context_switches(void)
  1685. {
  1686. int i;
  1687. unsigned long long sum = 0;
  1688. for_each_possible_cpu(i)
  1689. sum += cpu_rq(i)->nr_switches;
  1690. return sum;
  1691. }
  1692. unsigned long nr_iowait(void)
  1693. {
  1694. unsigned long i, sum = 0;
  1695. for_each_possible_cpu(i)
  1696. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1697. return sum;
  1698. }
  1699. unsigned long nr_active(void)
  1700. {
  1701. unsigned long i, running = 0, uninterruptible = 0;
  1702. for_each_online_cpu(i) {
  1703. running += cpu_rq(i)->nr_running;
  1704. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  1705. }
  1706. if (unlikely((long)uninterruptible < 0))
  1707. uninterruptible = 0;
  1708. return running + uninterruptible;
  1709. }
  1710. /*
  1711. * Update rq->cpu_load[] statistics. This function is usually called every
  1712. * scheduler tick (TICK_NSEC).
  1713. */
  1714. static void update_cpu_load(struct rq *this_rq)
  1715. {
  1716. u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64;
  1717. unsigned long total_load = this_rq->ls.load.weight;
  1718. unsigned long this_load = total_load;
  1719. struct load_stat *ls = &this_rq->ls;
  1720. int i, scale;
  1721. this_rq->nr_load_updates++;
  1722. if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD)))
  1723. goto do_avg;
  1724. /* Update delta_fair/delta_exec fields first */
  1725. update_curr_load(this_rq);
  1726. fair_delta64 = ls->delta_fair + 1;
  1727. ls->delta_fair = 0;
  1728. exec_delta64 = ls->delta_exec + 1;
  1729. ls->delta_exec = 0;
  1730. sample_interval64 = this_rq->clock - ls->load_update_last;
  1731. ls->load_update_last = this_rq->clock;
  1732. if ((s64)sample_interval64 < (s64)TICK_NSEC)
  1733. sample_interval64 = TICK_NSEC;
  1734. if (exec_delta64 > sample_interval64)
  1735. exec_delta64 = sample_interval64;
  1736. idle_delta64 = sample_interval64 - exec_delta64;
  1737. tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64);
  1738. tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64);
  1739. this_load = (unsigned long)tmp64;
  1740. do_avg:
  1741. /* Update our load: */
  1742. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  1743. unsigned long old_load, new_load;
  1744. /* scale is effectively 1 << i now, and >> i divides by scale */
  1745. old_load = this_rq->cpu_load[i];
  1746. new_load = this_load;
  1747. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  1748. }
  1749. }
  1750. #ifdef CONFIG_SMP
  1751. /*
  1752. * double_rq_lock - safely lock two runqueues
  1753. *
  1754. * Note this does not disable interrupts like task_rq_lock,
  1755. * you need to do so manually before calling.
  1756. */
  1757. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1758. __acquires(rq1->lock)
  1759. __acquires(rq2->lock)
  1760. {
  1761. BUG_ON(!irqs_disabled());
  1762. if (rq1 == rq2) {
  1763. spin_lock(&rq1->lock);
  1764. __acquire(rq2->lock); /* Fake it out ;) */
  1765. } else {
  1766. if (rq1 < rq2) {
  1767. spin_lock(&rq1->lock);
  1768. spin_lock(&rq2->lock);
  1769. } else {
  1770. spin_lock(&rq2->lock);
  1771. spin_lock(&rq1->lock);
  1772. }
  1773. }
  1774. update_rq_clock(rq1);
  1775. update_rq_clock(rq2);
  1776. }
  1777. /*
  1778. * double_rq_unlock - safely unlock two runqueues
  1779. *
  1780. * Note this does not restore interrupts like task_rq_unlock,
  1781. * you need to do so manually after calling.
  1782. */
  1783. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1784. __releases(rq1->lock)
  1785. __releases(rq2->lock)
  1786. {
  1787. spin_unlock(&rq1->lock);
  1788. if (rq1 != rq2)
  1789. spin_unlock(&rq2->lock);
  1790. else
  1791. __release(rq2->lock);
  1792. }
  1793. /*
  1794. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1795. */
  1796. static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1797. __releases(this_rq->lock)
  1798. __acquires(busiest->lock)
  1799. __acquires(this_rq->lock)
  1800. {
  1801. if (unlikely(!irqs_disabled())) {
  1802. /* printk() doesn't work good under rq->lock */
  1803. spin_unlock(&this_rq->lock);
  1804. BUG_ON(1);
  1805. }
  1806. if (unlikely(!spin_trylock(&busiest->lock))) {
  1807. if (busiest < this_rq) {
  1808. spin_unlock(&this_rq->lock);
  1809. spin_lock(&busiest->lock);
  1810. spin_lock(&this_rq->lock);
  1811. } else
  1812. spin_lock(&busiest->lock);
  1813. }
  1814. }
  1815. /*
  1816. * If dest_cpu is allowed for this process, migrate the task to it.
  1817. * This is accomplished by forcing the cpu_allowed mask to only
  1818. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  1819. * the cpu_allowed mask is restored.
  1820. */
  1821. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  1822. {
  1823. struct migration_req req;
  1824. unsigned long flags;
  1825. struct rq *rq;
  1826. rq = task_rq_lock(p, &flags);
  1827. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  1828. || unlikely(cpu_is_offline(dest_cpu)))
  1829. goto out;
  1830. /* force the process onto the specified CPU */
  1831. if (migrate_task(p, dest_cpu, &req)) {
  1832. /* Need to wait for migration thread (might exit: take ref). */
  1833. struct task_struct *mt = rq->migration_thread;
  1834. get_task_struct(mt);
  1835. task_rq_unlock(rq, &flags);
  1836. wake_up_process(mt);
  1837. put_task_struct(mt);
  1838. wait_for_completion(&req.done);
  1839. return;
  1840. }
  1841. out:
  1842. task_rq_unlock(rq, &flags);
  1843. }
  1844. /*
  1845. * sched_exec - execve() is a valuable balancing opportunity, because at
  1846. * this point the task has the smallest effective memory and cache footprint.
  1847. */
  1848. void sched_exec(void)
  1849. {
  1850. int new_cpu, this_cpu = get_cpu();
  1851. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  1852. put_cpu();
  1853. if (new_cpu != this_cpu)
  1854. sched_migrate_task(current, new_cpu);
  1855. }
  1856. /*
  1857. * pull_task - move a task from a remote runqueue to the local runqueue.
  1858. * Both runqueues must be locked.
  1859. */
  1860. static void pull_task(struct rq *src_rq, struct task_struct *p,
  1861. struct rq *this_rq, int this_cpu)
  1862. {
  1863. deactivate_task(src_rq, p, 0);
  1864. set_task_cpu(p, this_cpu);
  1865. activate_task(this_rq, p, 0);
  1866. /*
  1867. * Note that idle threads have a prio of MAX_PRIO, for this test
  1868. * to be always true for them.
  1869. */
  1870. check_preempt_curr(this_rq, p);
  1871. }
  1872. /*
  1873. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1874. */
  1875. static
  1876. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  1877. struct sched_domain *sd, enum cpu_idle_type idle,
  1878. int *all_pinned)
  1879. {
  1880. /*
  1881. * We do not migrate tasks that are:
  1882. * 1) running (obviously), or
  1883. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1884. * 3) are cache-hot on their current CPU.
  1885. */
  1886. if (!cpu_isset(this_cpu, p->cpus_allowed))
  1887. return 0;
  1888. *all_pinned = 0;
  1889. if (task_running(rq, p))
  1890. return 0;
  1891. return 1;
  1892. }
  1893. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1894. unsigned long max_nr_move, unsigned long max_load_move,
  1895. struct sched_domain *sd, enum cpu_idle_type idle,
  1896. int *all_pinned, unsigned long *load_moved,
  1897. int *this_best_prio, struct rq_iterator *iterator)
  1898. {
  1899. int pulled = 0, pinned = 0, skip_for_load;
  1900. struct task_struct *p;
  1901. long rem_load_move = max_load_move;
  1902. if (max_nr_move == 0 || max_load_move == 0)
  1903. goto out;
  1904. pinned = 1;
  1905. /*
  1906. * Start the load-balancing iterator:
  1907. */
  1908. p = iterator->start(iterator->arg);
  1909. next:
  1910. if (!p)
  1911. goto out;
  1912. /*
  1913. * To help distribute high priority tasks accross CPUs we don't
  1914. * skip a task if it will be the highest priority task (i.e. smallest
  1915. * prio value) on its new queue regardless of its load weight
  1916. */
  1917. skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
  1918. SCHED_LOAD_SCALE_FUZZ;
  1919. if ((skip_for_load && p->prio >= *this_best_prio) ||
  1920. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  1921. p = iterator->next(iterator->arg);
  1922. goto next;
  1923. }
  1924. pull_task(busiest, p, this_rq, this_cpu);
  1925. pulled++;
  1926. rem_load_move -= p->se.load.weight;
  1927. /*
  1928. * We only want to steal up to the prescribed number of tasks
  1929. * and the prescribed amount of weighted load.
  1930. */
  1931. if (pulled < max_nr_move && rem_load_move > 0) {
  1932. if (p->prio < *this_best_prio)
  1933. *this_best_prio = p->prio;
  1934. p = iterator->next(iterator->arg);
  1935. goto next;
  1936. }
  1937. out:
  1938. /*
  1939. * Right now, this is the only place pull_task() is called,
  1940. * so we can safely collect pull_task() stats here rather than
  1941. * inside pull_task().
  1942. */
  1943. schedstat_add(sd, lb_gained[idle], pulled);
  1944. if (all_pinned)
  1945. *all_pinned = pinned;
  1946. *load_moved = max_load_move - rem_load_move;
  1947. return pulled;
  1948. }
  1949. /*
  1950. * move_tasks tries to move up to max_load_move weighted load from busiest to
  1951. * this_rq, as part of a balancing operation within domain "sd".
  1952. * Returns 1 if successful and 0 otherwise.
  1953. *
  1954. * Called with both runqueues locked.
  1955. */
  1956. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1957. unsigned long max_load_move,
  1958. struct sched_domain *sd, enum cpu_idle_type idle,
  1959. int *all_pinned)
  1960. {
  1961. struct sched_class *class = sched_class_highest;
  1962. unsigned long total_load_moved = 0;
  1963. int this_best_prio = this_rq->curr->prio;
  1964. do {
  1965. total_load_moved +=
  1966. class->load_balance(this_rq, this_cpu, busiest,
  1967. ULONG_MAX, max_load_move - total_load_moved,
  1968. sd, idle, all_pinned, &this_best_prio);
  1969. class = class->next;
  1970. } while (class && max_load_move > total_load_moved);
  1971. return total_load_moved > 0;
  1972. }
  1973. /*
  1974. * move_one_task tries to move exactly one task from busiest to this_rq, as
  1975. * part of active balancing operations within "domain".
  1976. * Returns 1 if successful and 0 otherwise.
  1977. *
  1978. * Called with both runqueues locked.
  1979. */
  1980. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1981. struct sched_domain *sd, enum cpu_idle_type idle)
  1982. {
  1983. struct sched_class *class;
  1984. int this_best_prio = MAX_PRIO;
  1985. for (class = sched_class_highest; class; class = class->next)
  1986. if (class->load_balance(this_rq, this_cpu, busiest,
  1987. 1, ULONG_MAX, sd, idle, NULL,
  1988. &this_best_prio))
  1989. return 1;
  1990. return 0;
  1991. }
  1992. /*
  1993. * find_busiest_group finds and returns the busiest CPU group within the
  1994. * domain. It calculates and returns the amount of weighted load which
  1995. * should be moved to restore balance via the imbalance parameter.
  1996. */
  1997. static struct sched_group *
  1998. find_busiest_group(struct sched_domain *sd, int this_cpu,
  1999. unsigned long *imbalance, enum cpu_idle_type idle,
  2000. int *sd_idle, cpumask_t *cpus, int *balance)
  2001. {
  2002. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2003. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2004. unsigned long max_pull;
  2005. unsigned long busiest_load_per_task, busiest_nr_running;
  2006. unsigned long this_load_per_task, this_nr_running;
  2007. int load_idx;
  2008. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2009. int power_savings_balance = 1;
  2010. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2011. unsigned long min_nr_running = ULONG_MAX;
  2012. struct sched_group *group_min = NULL, *group_leader = NULL;
  2013. #endif
  2014. max_load = this_load = total_load = total_pwr = 0;
  2015. busiest_load_per_task = busiest_nr_running = 0;
  2016. this_load_per_task = this_nr_running = 0;
  2017. if (idle == CPU_NOT_IDLE)
  2018. load_idx = sd->busy_idx;
  2019. else if (idle == CPU_NEWLY_IDLE)
  2020. load_idx = sd->newidle_idx;
  2021. else
  2022. load_idx = sd->idle_idx;
  2023. do {
  2024. unsigned long load, group_capacity;
  2025. int local_group;
  2026. int i;
  2027. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2028. unsigned long sum_nr_running, sum_weighted_load;
  2029. local_group = cpu_isset(this_cpu, group->cpumask);
  2030. if (local_group)
  2031. balance_cpu = first_cpu(group->cpumask);
  2032. /* Tally up the load of all CPUs in the group */
  2033. sum_weighted_load = sum_nr_running = avg_load = 0;
  2034. for_each_cpu_mask(i, group->cpumask) {
  2035. struct rq *rq;
  2036. if (!cpu_isset(i, *cpus))
  2037. continue;
  2038. rq = cpu_rq(i);
  2039. if (*sd_idle && rq->nr_running)
  2040. *sd_idle = 0;
  2041. /* Bias balancing toward cpus of our domain */
  2042. if (local_group) {
  2043. if (idle_cpu(i) && !first_idle_cpu) {
  2044. first_idle_cpu = 1;
  2045. balance_cpu = i;
  2046. }
  2047. load = target_load(i, load_idx);
  2048. } else
  2049. load = source_load(i, load_idx);
  2050. avg_load += load;
  2051. sum_nr_running += rq->nr_running;
  2052. sum_weighted_load += weighted_cpuload(i);
  2053. }
  2054. /*
  2055. * First idle cpu or the first cpu(busiest) in this sched group
  2056. * is eligible for doing load balancing at this and above
  2057. * domains. In the newly idle case, we will allow all the cpu's
  2058. * to do the newly idle load balance.
  2059. */
  2060. if (idle != CPU_NEWLY_IDLE && local_group &&
  2061. balance_cpu != this_cpu && balance) {
  2062. *balance = 0;
  2063. goto ret;
  2064. }
  2065. total_load += avg_load;
  2066. total_pwr += group->__cpu_power;
  2067. /* Adjust by relative CPU power of the group */
  2068. avg_load = sg_div_cpu_power(group,
  2069. avg_load * SCHED_LOAD_SCALE);
  2070. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2071. if (local_group) {
  2072. this_load = avg_load;
  2073. this = group;
  2074. this_nr_running = sum_nr_running;
  2075. this_load_per_task = sum_weighted_load;
  2076. } else if (avg_load > max_load &&
  2077. sum_nr_running > group_capacity) {
  2078. max_load = avg_load;
  2079. busiest = group;
  2080. busiest_nr_running = sum_nr_running;
  2081. busiest_load_per_task = sum_weighted_load;
  2082. }
  2083. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2084. /*
  2085. * Busy processors will not participate in power savings
  2086. * balance.
  2087. */
  2088. if (idle == CPU_NOT_IDLE ||
  2089. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2090. goto group_next;
  2091. /*
  2092. * If the local group is idle or completely loaded
  2093. * no need to do power savings balance at this domain
  2094. */
  2095. if (local_group && (this_nr_running >= group_capacity ||
  2096. !this_nr_running))
  2097. power_savings_balance = 0;
  2098. /*
  2099. * If a group is already running at full capacity or idle,
  2100. * don't include that group in power savings calculations
  2101. */
  2102. if (!power_savings_balance || sum_nr_running >= group_capacity
  2103. || !sum_nr_running)
  2104. goto group_next;
  2105. /*
  2106. * Calculate the group which has the least non-idle load.
  2107. * This is the group from where we need to pick up the load
  2108. * for saving power
  2109. */
  2110. if ((sum_nr_running < min_nr_running) ||
  2111. (sum_nr_running == min_nr_running &&
  2112. first_cpu(group->cpumask) <
  2113. first_cpu(group_min->cpumask))) {
  2114. group_min = group;
  2115. min_nr_running = sum_nr_running;
  2116. min_load_per_task = sum_weighted_load /
  2117. sum_nr_running;
  2118. }
  2119. /*
  2120. * Calculate the group which is almost near its
  2121. * capacity but still has some space to pick up some load
  2122. * from other group and save more power
  2123. */
  2124. if (sum_nr_running <= group_capacity - 1) {
  2125. if (sum_nr_running > leader_nr_running ||
  2126. (sum_nr_running == leader_nr_running &&
  2127. first_cpu(group->cpumask) >
  2128. first_cpu(group_leader->cpumask))) {
  2129. group_leader = group;
  2130. leader_nr_running = sum_nr_running;
  2131. }
  2132. }
  2133. group_next:
  2134. #endif
  2135. group = group->next;
  2136. } while (group != sd->groups);
  2137. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2138. goto out_balanced;
  2139. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2140. if (this_load >= avg_load ||
  2141. 100*max_load <= sd->imbalance_pct*this_load)
  2142. goto out_balanced;
  2143. busiest_load_per_task /= busiest_nr_running;
  2144. /*
  2145. * We're trying to get all the cpus to the average_load, so we don't
  2146. * want to push ourselves above the average load, nor do we wish to
  2147. * reduce the max loaded cpu below the average load, as either of these
  2148. * actions would just result in more rebalancing later, and ping-pong
  2149. * tasks around. Thus we look for the minimum possible imbalance.
  2150. * Negative imbalances (*we* are more loaded than anyone else) will
  2151. * be counted as no imbalance for these purposes -- we can't fix that
  2152. * by pulling tasks to us. Be careful of negative numbers as they'll
  2153. * appear as very large values with unsigned longs.
  2154. */
  2155. if (max_load <= busiest_load_per_task)
  2156. goto out_balanced;
  2157. /*
  2158. * In the presence of smp nice balancing, certain scenarios can have
  2159. * max load less than avg load(as we skip the groups at or below
  2160. * its cpu_power, while calculating max_load..)
  2161. */
  2162. if (max_load < avg_load) {
  2163. *imbalance = 0;
  2164. goto small_imbalance;
  2165. }
  2166. /* Don't want to pull so many tasks that a group would go idle */
  2167. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2168. /* How much load to actually move to equalise the imbalance */
  2169. *imbalance = min(max_pull * busiest->__cpu_power,
  2170. (avg_load - this_load) * this->__cpu_power)
  2171. / SCHED_LOAD_SCALE;
  2172. /*
  2173. * if *imbalance is less than the average load per runnable task
  2174. * there is no gaurantee that any tasks will be moved so we'll have
  2175. * a think about bumping its value to force at least one task to be
  2176. * moved
  2177. */
  2178. if (*imbalance < busiest_load_per_task) {
  2179. unsigned long tmp, pwr_now, pwr_move;
  2180. unsigned int imbn;
  2181. small_imbalance:
  2182. pwr_move = pwr_now = 0;
  2183. imbn = 2;
  2184. if (this_nr_running) {
  2185. this_load_per_task /= this_nr_running;
  2186. if (busiest_load_per_task > this_load_per_task)
  2187. imbn = 1;
  2188. } else
  2189. this_load_per_task = SCHED_LOAD_SCALE;
  2190. if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
  2191. busiest_load_per_task * imbn) {
  2192. *imbalance = busiest_load_per_task;
  2193. return busiest;
  2194. }
  2195. /*
  2196. * OK, we don't have enough imbalance to justify moving tasks,
  2197. * however we may be able to increase total CPU power used by
  2198. * moving them.
  2199. */
  2200. pwr_now += busiest->__cpu_power *
  2201. min(busiest_load_per_task, max_load);
  2202. pwr_now += this->__cpu_power *
  2203. min(this_load_per_task, this_load);
  2204. pwr_now /= SCHED_LOAD_SCALE;
  2205. /* Amount of load we'd subtract */
  2206. tmp = sg_div_cpu_power(busiest,
  2207. busiest_load_per_task * SCHED_LOAD_SCALE);
  2208. if (max_load > tmp)
  2209. pwr_move += busiest->__cpu_power *
  2210. min(busiest_load_per_task, max_load - tmp);
  2211. /* Amount of load we'd add */
  2212. if (max_load * busiest->__cpu_power <
  2213. busiest_load_per_task * SCHED_LOAD_SCALE)
  2214. tmp = sg_div_cpu_power(this,
  2215. max_load * busiest->__cpu_power);
  2216. else
  2217. tmp = sg_div_cpu_power(this,
  2218. busiest_load_per_task * SCHED_LOAD_SCALE);
  2219. pwr_move += this->__cpu_power *
  2220. min(this_load_per_task, this_load + tmp);
  2221. pwr_move /= SCHED_LOAD_SCALE;
  2222. /* Move if we gain throughput */
  2223. if (pwr_move > pwr_now)
  2224. *imbalance = busiest_load_per_task;
  2225. }
  2226. return busiest;
  2227. out_balanced:
  2228. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2229. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2230. goto ret;
  2231. if (this == group_leader && group_leader != group_min) {
  2232. *imbalance = min_load_per_task;
  2233. return group_min;
  2234. }
  2235. #endif
  2236. ret:
  2237. *imbalance = 0;
  2238. return NULL;
  2239. }
  2240. /*
  2241. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2242. */
  2243. static struct rq *
  2244. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2245. unsigned long imbalance, cpumask_t *cpus)
  2246. {
  2247. struct rq *busiest = NULL, *rq;
  2248. unsigned long max_load = 0;
  2249. int i;
  2250. for_each_cpu_mask(i, group->cpumask) {
  2251. unsigned long wl;
  2252. if (!cpu_isset(i, *cpus))
  2253. continue;
  2254. rq = cpu_rq(i);
  2255. wl = weighted_cpuload(i);
  2256. if (rq->nr_running == 1 && wl > imbalance)
  2257. continue;
  2258. if (wl > max_load) {
  2259. max_load = wl;
  2260. busiest = rq;
  2261. }
  2262. }
  2263. return busiest;
  2264. }
  2265. /*
  2266. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2267. * so long as it is large enough.
  2268. */
  2269. #define MAX_PINNED_INTERVAL 512
  2270. /*
  2271. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2272. * tasks if there is an imbalance.
  2273. */
  2274. static int load_balance(int this_cpu, struct rq *this_rq,
  2275. struct sched_domain *sd, enum cpu_idle_type idle,
  2276. int *balance)
  2277. {
  2278. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2279. struct sched_group *group;
  2280. unsigned long imbalance;
  2281. struct rq *busiest;
  2282. cpumask_t cpus = CPU_MASK_ALL;
  2283. unsigned long flags;
  2284. /*
  2285. * When power savings policy is enabled for the parent domain, idle
  2286. * sibling can pick up load irrespective of busy siblings. In this case,
  2287. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2288. * portraying it as CPU_NOT_IDLE.
  2289. */
  2290. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2291. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2292. sd_idle = 1;
  2293. schedstat_inc(sd, lb_cnt[idle]);
  2294. redo:
  2295. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2296. &cpus, balance);
  2297. if (*balance == 0)
  2298. goto out_balanced;
  2299. if (!group) {
  2300. schedstat_inc(sd, lb_nobusyg[idle]);
  2301. goto out_balanced;
  2302. }
  2303. busiest = find_busiest_queue(group, idle, imbalance, &cpus);
  2304. if (!busiest) {
  2305. schedstat_inc(sd, lb_nobusyq[idle]);
  2306. goto out_balanced;
  2307. }
  2308. BUG_ON(busiest == this_rq);
  2309. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2310. ld_moved = 0;
  2311. if (busiest->nr_running > 1) {
  2312. /*
  2313. * Attempt to move tasks. If find_busiest_group has found
  2314. * an imbalance but busiest->nr_running <= 1, the group is
  2315. * still unbalanced. ld_moved simply stays zero, so it is
  2316. * correctly treated as an imbalance.
  2317. */
  2318. local_irq_save(flags);
  2319. double_rq_lock(this_rq, busiest);
  2320. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2321. imbalance, sd, idle, &all_pinned);
  2322. double_rq_unlock(this_rq, busiest);
  2323. local_irq_restore(flags);
  2324. /*
  2325. * some other cpu did the load balance for us.
  2326. */
  2327. if (ld_moved && this_cpu != smp_processor_id())
  2328. resched_cpu(this_cpu);
  2329. /* All tasks on this runqueue were pinned by CPU affinity */
  2330. if (unlikely(all_pinned)) {
  2331. cpu_clear(cpu_of(busiest), cpus);
  2332. if (!cpus_empty(cpus))
  2333. goto redo;
  2334. goto out_balanced;
  2335. }
  2336. }
  2337. if (!ld_moved) {
  2338. schedstat_inc(sd, lb_failed[idle]);
  2339. sd->nr_balance_failed++;
  2340. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2341. spin_lock_irqsave(&busiest->lock, flags);
  2342. /* don't kick the migration_thread, if the curr
  2343. * task on busiest cpu can't be moved to this_cpu
  2344. */
  2345. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2346. spin_unlock_irqrestore(&busiest->lock, flags);
  2347. all_pinned = 1;
  2348. goto out_one_pinned;
  2349. }
  2350. if (!busiest->active_balance) {
  2351. busiest->active_balance = 1;
  2352. busiest->push_cpu = this_cpu;
  2353. active_balance = 1;
  2354. }
  2355. spin_unlock_irqrestore(&busiest->lock, flags);
  2356. if (active_balance)
  2357. wake_up_process(busiest->migration_thread);
  2358. /*
  2359. * We've kicked active balancing, reset the failure
  2360. * counter.
  2361. */
  2362. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2363. }
  2364. } else
  2365. sd->nr_balance_failed = 0;
  2366. if (likely(!active_balance)) {
  2367. /* We were unbalanced, so reset the balancing interval */
  2368. sd->balance_interval = sd->min_interval;
  2369. } else {
  2370. /*
  2371. * If we've begun active balancing, start to back off. This
  2372. * case may not be covered by the all_pinned logic if there
  2373. * is only 1 task on the busy runqueue (because we don't call
  2374. * move_tasks).
  2375. */
  2376. if (sd->balance_interval < sd->max_interval)
  2377. sd->balance_interval *= 2;
  2378. }
  2379. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2380. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2381. return -1;
  2382. return ld_moved;
  2383. out_balanced:
  2384. schedstat_inc(sd, lb_balanced[idle]);
  2385. sd->nr_balance_failed = 0;
  2386. out_one_pinned:
  2387. /* tune up the balancing interval */
  2388. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2389. (sd->balance_interval < sd->max_interval))
  2390. sd->balance_interval *= 2;
  2391. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2392. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2393. return -1;
  2394. return 0;
  2395. }
  2396. /*
  2397. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2398. * tasks if there is an imbalance.
  2399. *
  2400. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  2401. * this_rq is locked.
  2402. */
  2403. static int
  2404. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  2405. {
  2406. struct sched_group *group;
  2407. struct rq *busiest = NULL;
  2408. unsigned long imbalance;
  2409. int ld_moved = 0;
  2410. int sd_idle = 0;
  2411. int all_pinned = 0;
  2412. cpumask_t cpus = CPU_MASK_ALL;
  2413. /*
  2414. * When power savings policy is enabled for the parent domain, idle
  2415. * sibling can pick up load irrespective of busy siblings. In this case,
  2416. * let the state of idle sibling percolate up as IDLE, instead of
  2417. * portraying it as CPU_NOT_IDLE.
  2418. */
  2419. if (sd->flags & SD_SHARE_CPUPOWER &&
  2420. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2421. sd_idle = 1;
  2422. schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
  2423. redo:
  2424. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  2425. &sd_idle, &cpus, NULL);
  2426. if (!group) {
  2427. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  2428. goto out_balanced;
  2429. }
  2430. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
  2431. &cpus);
  2432. if (!busiest) {
  2433. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  2434. goto out_balanced;
  2435. }
  2436. BUG_ON(busiest == this_rq);
  2437. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  2438. ld_moved = 0;
  2439. if (busiest->nr_running > 1) {
  2440. /* Attempt to move tasks */
  2441. double_lock_balance(this_rq, busiest);
  2442. /* this_rq->clock is already updated */
  2443. update_rq_clock(busiest);
  2444. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2445. imbalance, sd, CPU_NEWLY_IDLE,
  2446. &all_pinned);
  2447. spin_unlock(&busiest->lock);
  2448. if (unlikely(all_pinned)) {
  2449. cpu_clear(cpu_of(busiest), cpus);
  2450. if (!cpus_empty(cpus))
  2451. goto redo;
  2452. }
  2453. }
  2454. if (!ld_moved) {
  2455. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  2456. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2457. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2458. return -1;
  2459. } else
  2460. sd->nr_balance_failed = 0;
  2461. return ld_moved;
  2462. out_balanced:
  2463. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  2464. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2465. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2466. return -1;
  2467. sd->nr_balance_failed = 0;
  2468. return 0;
  2469. }
  2470. /*
  2471. * idle_balance is called by schedule() if this_cpu is about to become
  2472. * idle. Attempts to pull tasks from other CPUs.
  2473. */
  2474. static void idle_balance(int this_cpu, struct rq *this_rq)
  2475. {
  2476. struct sched_domain *sd;
  2477. int pulled_task = -1;
  2478. unsigned long next_balance = jiffies + HZ;
  2479. for_each_domain(this_cpu, sd) {
  2480. unsigned long interval;
  2481. if (!(sd->flags & SD_LOAD_BALANCE))
  2482. continue;
  2483. if (sd->flags & SD_BALANCE_NEWIDLE)
  2484. /* If we've pulled tasks over stop searching: */
  2485. pulled_task = load_balance_newidle(this_cpu,
  2486. this_rq, sd);
  2487. interval = msecs_to_jiffies(sd->balance_interval);
  2488. if (time_after(next_balance, sd->last_balance + interval))
  2489. next_balance = sd->last_balance + interval;
  2490. if (pulled_task)
  2491. break;
  2492. }
  2493. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2494. /*
  2495. * We are going idle. next_balance may be set based on
  2496. * a busy processor. So reset next_balance.
  2497. */
  2498. this_rq->next_balance = next_balance;
  2499. }
  2500. }
  2501. /*
  2502. * active_load_balance is run by migration threads. It pushes running tasks
  2503. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  2504. * running on each physical CPU where possible, and avoids physical /
  2505. * logical imbalances.
  2506. *
  2507. * Called with busiest_rq locked.
  2508. */
  2509. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  2510. {
  2511. int target_cpu = busiest_rq->push_cpu;
  2512. struct sched_domain *sd;
  2513. struct rq *target_rq;
  2514. /* Is there any task to move? */
  2515. if (busiest_rq->nr_running <= 1)
  2516. return;
  2517. target_rq = cpu_rq(target_cpu);
  2518. /*
  2519. * This condition is "impossible", if it occurs
  2520. * we need to fix it. Originally reported by
  2521. * Bjorn Helgaas on a 128-cpu setup.
  2522. */
  2523. BUG_ON(busiest_rq == target_rq);
  2524. /* move a task from busiest_rq to target_rq */
  2525. double_lock_balance(busiest_rq, target_rq);
  2526. update_rq_clock(busiest_rq);
  2527. update_rq_clock(target_rq);
  2528. /* Search for an sd spanning us and the target CPU. */
  2529. for_each_domain(target_cpu, sd) {
  2530. if ((sd->flags & SD_LOAD_BALANCE) &&
  2531. cpu_isset(busiest_cpu, sd->span))
  2532. break;
  2533. }
  2534. if (likely(sd)) {
  2535. schedstat_inc(sd, alb_cnt);
  2536. if (move_one_task(target_rq, target_cpu, busiest_rq,
  2537. sd, CPU_IDLE))
  2538. schedstat_inc(sd, alb_pushed);
  2539. else
  2540. schedstat_inc(sd, alb_failed);
  2541. }
  2542. spin_unlock(&target_rq->lock);
  2543. }
  2544. #ifdef CONFIG_NO_HZ
  2545. static struct {
  2546. atomic_t load_balancer;
  2547. cpumask_t cpu_mask;
  2548. } nohz ____cacheline_aligned = {
  2549. .load_balancer = ATOMIC_INIT(-1),
  2550. .cpu_mask = CPU_MASK_NONE,
  2551. };
  2552. /*
  2553. * This routine will try to nominate the ilb (idle load balancing)
  2554. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  2555. * load balancing on behalf of all those cpus. If all the cpus in the system
  2556. * go into this tickless mode, then there will be no ilb owner (as there is
  2557. * no need for one) and all the cpus will sleep till the next wakeup event
  2558. * arrives...
  2559. *
  2560. * For the ilb owner, tick is not stopped. And this tick will be used
  2561. * for idle load balancing. ilb owner will still be part of
  2562. * nohz.cpu_mask..
  2563. *
  2564. * While stopping the tick, this cpu will become the ilb owner if there
  2565. * is no other owner. And will be the owner till that cpu becomes busy
  2566. * or if all cpus in the system stop their ticks at which point
  2567. * there is no need for ilb owner.
  2568. *
  2569. * When the ilb owner becomes busy, it nominates another owner, during the
  2570. * next busy scheduler_tick()
  2571. */
  2572. int select_nohz_load_balancer(int stop_tick)
  2573. {
  2574. int cpu = smp_processor_id();
  2575. if (stop_tick) {
  2576. cpu_set(cpu, nohz.cpu_mask);
  2577. cpu_rq(cpu)->in_nohz_recently = 1;
  2578. /*
  2579. * If we are going offline and still the leader, give up!
  2580. */
  2581. if (cpu_is_offline(cpu) &&
  2582. atomic_read(&nohz.load_balancer) == cpu) {
  2583. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2584. BUG();
  2585. return 0;
  2586. }
  2587. /* time for ilb owner also to sleep */
  2588. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2589. if (atomic_read(&nohz.load_balancer) == cpu)
  2590. atomic_set(&nohz.load_balancer, -1);
  2591. return 0;
  2592. }
  2593. if (atomic_read(&nohz.load_balancer) == -1) {
  2594. /* make me the ilb owner */
  2595. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  2596. return 1;
  2597. } else if (atomic_read(&nohz.load_balancer) == cpu)
  2598. return 1;
  2599. } else {
  2600. if (!cpu_isset(cpu, nohz.cpu_mask))
  2601. return 0;
  2602. cpu_clear(cpu, nohz.cpu_mask);
  2603. if (atomic_read(&nohz.load_balancer) == cpu)
  2604. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2605. BUG();
  2606. }
  2607. return 0;
  2608. }
  2609. #endif
  2610. static DEFINE_SPINLOCK(balancing);
  2611. /*
  2612. * It checks each scheduling domain to see if it is due to be balanced,
  2613. * and initiates a balancing operation if so.
  2614. *
  2615. * Balancing parameters are set up in arch_init_sched_domains.
  2616. */
  2617. static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
  2618. {
  2619. int balance = 1;
  2620. struct rq *rq = cpu_rq(cpu);
  2621. unsigned long interval;
  2622. struct sched_domain *sd;
  2623. /* Earliest time when we have to do rebalance again */
  2624. unsigned long next_balance = jiffies + 60*HZ;
  2625. int update_next_balance = 0;
  2626. for_each_domain(cpu, sd) {
  2627. if (!(sd->flags & SD_LOAD_BALANCE))
  2628. continue;
  2629. interval = sd->balance_interval;
  2630. if (idle != CPU_IDLE)
  2631. interval *= sd->busy_factor;
  2632. /* scale ms to jiffies */
  2633. interval = msecs_to_jiffies(interval);
  2634. if (unlikely(!interval))
  2635. interval = 1;
  2636. if (interval > HZ*NR_CPUS/10)
  2637. interval = HZ*NR_CPUS/10;
  2638. if (sd->flags & SD_SERIALIZE) {
  2639. if (!spin_trylock(&balancing))
  2640. goto out;
  2641. }
  2642. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  2643. if (load_balance(cpu, rq, sd, idle, &balance)) {
  2644. /*
  2645. * We've pulled tasks over so either we're no
  2646. * longer idle, or one of our SMT siblings is
  2647. * not idle.
  2648. */
  2649. idle = CPU_NOT_IDLE;
  2650. }
  2651. sd->last_balance = jiffies;
  2652. }
  2653. if (sd->flags & SD_SERIALIZE)
  2654. spin_unlock(&balancing);
  2655. out:
  2656. if (time_after(next_balance, sd->last_balance + interval)) {
  2657. next_balance = sd->last_balance + interval;
  2658. update_next_balance = 1;
  2659. }
  2660. /*
  2661. * Stop the load balance at this level. There is another
  2662. * CPU in our sched group which is doing load balancing more
  2663. * actively.
  2664. */
  2665. if (!balance)
  2666. break;
  2667. }
  2668. /*
  2669. * next_balance will be updated only when there is a need.
  2670. * When the cpu is attached to null domain for ex, it will not be
  2671. * updated.
  2672. */
  2673. if (likely(update_next_balance))
  2674. rq->next_balance = next_balance;
  2675. }
  2676. /*
  2677. * run_rebalance_domains is triggered when needed from the scheduler tick.
  2678. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  2679. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  2680. */
  2681. static void run_rebalance_domains(struct softirq_action *h)
  2682. {
  2683. int this_cpu = smp_processor_id();
  2684. struct rq *this_rq = cpu_rq(this_cpu);
  2685. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  2686. CPU_IDLE : CPU_NOT_IDLE;
  2687. rebalance_domains(this_cpu, idle);
  2688. #ifdef CONFIG_NO_HZ
  2689. /*
  2690. * If this cpu is the owner for idle load balancing, then do the
  2691. * balancing on behalf of the other idle cpus whose ticks are
  2692. * stopped.
  2693. */
  2694. if (this_rq->idle_at_tick &&
  2695. atomic_read(&nohz.load_balancer) == this_cpu) {
  2696. cpumask_t cpus = nohz.cpu_mask;
  2697. struct rq *rq;
  2698. int balance_cpu;
  2699. cpu_clear(this_cpu, cpus);
  2700. for_each_cpu_mask(balance_cpu, cpus) {
  2701. /*
  2702. * If this cpu gets work to do, stop the load balancing
  2703. * work being done for other cpus. Next load
  2704. * balancing owner will pick it up.
  2705. */
  2706. if (need_resched())
  2707. break;
  2708. rebalance_domains(balance_cpu, CPU_IDLE);
  2709. rq = cpu_rq(balance_cpu);
  2710. if (time_after(this_rq->next_balance, rq->next_balance))
  2711. this_rq->next_balance = rq->next_balance;
  2712. }
  2713. }
  2714. #endif
  2715. }
  2716. /*
  2717. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  2718. *
  2719. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  2720. * idle load balancing owner or decide to stop the periodic load balancing,
  2721. * if the whole system is idle.
  2722. */
  2723. static inline void trigger_load_balance(struct rq *rq, int cpu)
  2724. {
  2725. #ifdef CONFIG_NO_HZ
  2726. /*
  2727. * If we were in the nohz mode recently and busy at the current
  2728. * scheduler tick, then check if we need to nominate new idle
  2729. * load balancer.
  2730. */
  2731. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  2732. rq->in_nohz_recently = 0;
  2733. if (atomic_read(&nohz.load_balancer) == cpu) {
  2734. cpu_clear(cpu, nohz.cpu_mask);
  2735. atomic_set(&nohz.load_balancer, -1);
  2736. }
  2737. if (atomic_read(&nohz.load_balancer) == -1) {
  2738. /*
  2739. * simple selection for now: Nominate the
  2740. * first cpu in the nohz list to be the next
  2741. * ilb owner.
  2742. *
  2743. * TBD: Traverse the sched domains and nominate
  2744. * the nearest cpu in the nohz.cpu_mask.
  2745. */
  2746. int ilb = first_cpu(nohz.cpu_mask);
  2747. if (ilb != NR_CPUS)
  2748. resched_cpu(ilb);
  2749. }
  2750. }
  2751. /*
  2752. * If this cpu is idle and doing idle load balancing for all the
  2753. * cpus with ticks stopped, is it time for that to stop?
  2754. */
  2755. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  2756. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2757. resched_cpu(cpu);
  2758. return;
  2759. }
  2760. /*
  2761. * If this cpu is idle and the idle load balancing is done by
  2762. * someone else, then no need raise the SCHED_SOFTIRQ
  2763. */
  2764. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  2765. cpu_isset(cpu, nohz.cpu_mask))
  2766. return;
  2767. #endif
  2768. if (time_after_eq(jiffies, rq->next_balance))
  2769. raise_softirq(SCHED_SOFTIRQ);
  2770. }
  2771. #else /* CONFIG_SMP */
  2772. /*
  2773. * on UP we do not need to balance between CPUs:
  2774. */
  2775. static inline void idle_balance(int cpu, struct rq *rq)
  2776. {
  2777. }
  2778. /* Avoid "used but not defined" warning on UP */
  2779. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2780. unsigned long max_nr_move, unsigned long max_load_move,
  2781. struct sched_domain *sd, enum cpu_idle_type idle,
  2782. int *all_pinned, unsigned long *load_moved,
  2783. int *this_best_prio, struct rq_iterator *iterator)
  2784. {
  2785. *load_moved = 0;
  2786. return 0;
  2787. }
  2788. #endif
  2789. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2790. EXPORT_PER_CPU_SYMBOL(kstat);
  2791. /*
  2792. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  2793. * that have not yet been banked in case the task is currently running.
  2794. */
  2795. unsigned long long task_sched_runtime(struct task_struct *p)
  2796. {
  2797. unsigned long flags;
  2798. u64 ns, delta_exec;
  2799. struct rq *rq;
  2800. rq = task_rq_lock(p, &flags);
  2801. ns = p->se.sum_exec_runtime;
  2802. if (rq->curr == p) {
  2803. update_rq_clock(rq);
  2804. delta_exec = rq->clock - p->se.exec_start;
  2805. if ((s64)delta_exec > 0)
  2806. ns += delta_exec;
  2807. }
  2808. task_rq_unlock(rq, &flags);
  2809. return ns;
  2810. }
  2811. /*
  2812. * Account user cpu time to a process.
  2813. * @p: the process that the cpu time gets accounted to
  2814. * @hardirq_offset: the offset to subtract from hardirq_count()
  2815. * @cputime: the cpu time spent in user space since the last update
  2816. */
  2817. void account_user_time(struct task_struct *p, cputime_t cputime)
  2818. {
  2819. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2820. cputime64_t tmp;
  2821. p->utime = cputime_add(p->utime, cputime);
  2822. /* Add user time to cpustat. */
  2823. tmp = cputime_to_cputime64(cputime);
  2824. if (TASK_NICE(p) > 0)
  2825. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2826. else
  2827. cpustat->user = cputime64_add(cpustat->user, tmp);
  2828. }
  2829. /*
  2830. * Account system cpu time to a process.
  2831. * @p: the process that the cpu time gets accounted to
  2832. * @hardirq_offset: the offset to subtract from hardirq_count()
  2833. * @cputime: the cpu time spent in kernel space since the last update
  2834. */
  2835. void account_system_time(struct task_struct *p, int hardirq_offset,
  2836. cputime_t cputime)
  2837. {
  2838. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2839. struct rq *rq = this_rq();
  2840. cputime64_t tmp;
  2841. p->stime = cputime_add(p->stime, cputime);
  2842. /* Add system time to cpustat. */
  2843. tmp = cputime_to_cputime64(cputime);
  2844. if (hardirq_count() - hardirq_offset)
  2845. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2846. else if (softirq_count())
  2847. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2848. else if (p != rq->idle)
  2849. cpustat->system = cputime64_add(cpustat->system, tmp);
  2850. else if (atomic_read(&rq->nr_iowait) > 0)
  2851. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2852. else
  2853. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2854. /* Account for system time used */
  2855. acct_update_integrals(p);
  2856. }
  2857. /*
  2858. * Account for involuntary wait time.
  2859. * @p: the process from which the cpu time has been stolen
  2860. * @steal: the cpu time spent in involuntary wait
  2861. */
  2862. void account_steal_time(struct task_struct *p, cputime_t steal)
  2863. {
  2864. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2865. cputime64_t tmp = cputime_to_cputime64(steal);
  2866. struct rq *rq = this_rq();
  2867. if (p == rq->idle) {
  2868. p->stime = cputime_add(p->stime, steal);
  2869. if (atomic_read(&rq->nr_iowait) > 0)
  2870. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2871. else
  2872. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2873. } else
  2874. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  2875. }
  2876. /*
  2877. * This function gets called by the timer code, with HZ frequency.
  2878. * We call it with interrupts disabled.
  2879. *
  2880. * It also gets called by the fork code, when changing the parent's
  2881. * timeslices.
  2882. */
  2883. void scheduler_tick(void)
  2884. {
  2885. int cpu = smp_processor_id();
  2886. struct rq *rq = cpu_rq(cpu);
  2887. struct task_struct *curr = rq->curr;
  2888. u64 next_tick = rq->tick_timestamp + TICK_NSEC;
  2889. spin_lock(&rq->lock);
  2890. __update_rq_clock(rq);
  2891. /*
  2892. * Let rq->clock advance by at least TICK_NSEC:
  2893. */
  2894. if (unlikely(rq->clock < next_tick))
  2895. rq->clock = next_tick;
  2896. rq->tick_timestamp = rq->clock;
  2897. update_cpu_load(rq);
  2898. if (curr != rq->idle) /* FIXME: needed? */
  2899. curr->sched_class->task_tick(rq, curr);
  2900. spin_unlock(&rq->lock);
  2901. #ifdef CONFIG_SMP
  2902. rq->idle_at_tick = idle_cpu(cpu);
  2903. trigger_load_balance(rq, cpu);
  2904. #endif
  2905. }
  2906. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  2907. void fastcall add_preempt_count(int val)
  2908. {
  2909. /*
  2910. * Underflow?
  2911. */
  2912. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2913. return;
  2914. preempt_count() += val;
  2915. /*
  2916. * Spinlock count overflowing soon?
  2917. */
  2918. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2919. PREEMPT_MASK - 10);
  2920. }
  2921. EXPORT_SYMBOL(add_preempt_count);
  2922. void fastcall sub_preempt_count(int val)
  2923. {
  2924. /*
  2925. * Underflow?
  2926. */
  2927. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2928. return;
  2929. /*
  2930. * Is the spinlock portion underflowing?
  2931. */
  2932. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2933. !(preempt_count() & PREEMPT_MASK)))
  2934. return;
  2935. preempt_count() -= val;
  2936. }
  2937. EXPORT_SYMBOL(sub_preempt_count);
  2938. #endif
  2939. /*
  2940. * Print scheduling while atomic bug:
  2941. */
  2942. static noinline void __schedule_bug(struct task_struct *prev)
  2943. {
  2944. printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
  2945. prev->comm, preempt_count(), prev->pid);
  2946. debug_show_held_locks(prev);
  2947. if (irqs_disabled())
  2948. print_irqtrace_events(prev);
  2949. dump_stack();
  2950. }
  2951. /*
  2952. * Various schedule()-time debugging checks and statistics:
  2953. */
  2954. static inline void schedule_debug(struct task_struct *prev)
  2955. {
  2956. /*
  2957. * Test if we are atomic. Since do_exit() needs to call into
  2958. * schedule() atomically, we ignore that path for now.
  2959. * Otherwise, whine if we are scheduling when we should not be.
  2960. */
  2961. if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
  2962. __schedule_bug(prev);
  2963. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2964. schedstat_inc(this_rq(), sched_cnt);
  2965. }
  2966. /*
  2967. * Pick up the highest-prio task:
  2968. */
  2969. static inline struct task_struct *
  2970. pick_next_task(struct rq *rq, struct task_struct *prev)
  2971. {
  2972. struct sched_class *class;
  2973. struct task_struct *p;
  2974. /*
  2975. * Optimization: we know that if all tasks are in
  2976. * the fair class we can call that function directly:
  2977. */
  2978. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  2979. p = fair_sched_class.pick_next_task(rq);
  2980. if (likely(p))
  2981. return p;
  2982. }
  2983. class = sched_class_highest;
  2984. for ( ; ; ) {
  2985. p = class->pick_next_task(rq);
  2986. if (p)
  2987. return p;
  2988. /*
  2989. * Will never be NULL as the idle class always
  2990. * returns a non-NULL p:
  2991. */
  2992. class = class->next;
  2993. }
  2994. }
  2995. /*
  2996. * schedule() is the main scheduler function.
  2997. */
  2998. asmlinkage void __sched schedule(void)
  2999. {
  3000. struct task_struct *prev, *next;
  3001. long *switch_count;
  3002. struct rq *rq;
  3003. int cpu;
  3004. need_resched:
  3005. preempt_disable();
  3006. cpu = smp_processor_id();
  3007. rq = cpu_rq(cpu);
  3008. rcu_qsctr_inc(cpu);
  3009. prev = rq->curr;
  3010. switch_count = &prev->nivcsw;
  3011. release_kernel_lock(prev);
  3012. need_resched_nonpreemptible:
  3013. schedule_debug(prev);
  3014. spin_lock_irq(&rq->lock);
  3015. clear_tsk_need_resched(prev);
  3016. __update_rq_clock(rq);
  3017. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3018. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  3019. unlikely(signal_pending(prev)))) {
  3020. prev->state = TASK_RUNNING;
  3021. } else {
  3022. deactivate_task(rq, prev, 1);
  3023. }
  3024. switch_count = &prev->nvcsw;
  3025. }
  3026. if (unlikely(!rq->nr_running))
  3027. idle_balance(cpu, rq);
  3028. prev->sched_class->put_prev_task(rq, prev);
  3029. next = pick_next_task(rq, prev);
  3030. sched_info_switch(prev, next);
  3031. if (likely(prev != next)) {
  3032. rq->nr_switches++;
  3033. rq->curr = next;
  3034. ++*switch_count;
  3035. context_switch(rq, prev, next); /* unlocks the rq */
  3036. } else
  3037. spin_unlock_irq(&rq->lock);
  3038. if (unlikely(reacquire_kernel_lock(current) < 0)) {
  3039. cpu = smp_processor_id();
  3040. rq = cpu_rq(cpu);
  3041. goto need_resched_nonpreemptible;
  3042. }
  3043. preempt_enable_no_resched();
  3044. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3045. goto need_resched;
  3046. }
  3047. EXPORT_SYMBOL(schedule);
  3048. #ifdef CONFIG_PREEMPT
  3049. /*
  3050. * this is the entry point to schedule() from in-kernel preemption
  3051. * off of preempt_enable. Kernel preemptions off return from interrupt
  3052. * occur there and call schedule directly.
  3053. */
  3054. asmlinkage void __sched preempt_schedule(void)
  3055. {
  3056. struct thread_info *ti = current_thread_info();
  3057. #ifdef CONFIG_PREEMPT_BKL
  3058. struct task_struct *task = current;
  3059. int saved_lock_depth;
  3060. #endif
  3061. /*
  3062. * If there is a non-zero preempt_count or interrupts are disabled,
  3063. * we do not want to preempt the current task. Just return..
  3064. */
  3065. if (likely(ti->preempt_count || irqs_disabled()))
  3066. return;
  3067. need_resched:
  3068. add_preempt_count(PREEMPT_ACTIVE);
  3069. /*
  3070. * We keep the big kernel semaphore locked, but we
  3071. * clear ->lock_depth so that schedule() doesnt
  3072. * auto-release the semaphore:
  3073. */
  3074. #ifdef CONFIG_PREEMPT_BKL
  3075. saved_lock_depth = task->lock_depth;
  3076. task->lock_depth = -1;
  3077. #endif
  3078. schedule();
  3079. #ifdef CONFIG_PREEMPT_BKL
  3080. task->lock_depth = saved_lock_depth;
  3081. #endif
  3082. sub_preempt_count(PREEMPT_ACTIVE);
  3083. /* we could miss a preemption opportunity between schedule and now */
  3084. barrier();
  3085. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3086. goto need_resched;
  3087. }
  3088. EXPORT_SYMBOL(preempt_schedule);
  3089. /*
  3090. * this is the entry point to schedule() from kernel preemption
  3091. * off of irq context.
  3092. * Note, that this is called and return with irqs disabled. This will
  3093. * protect us against recursive calling from irq.
  3094. */
  3095. asmlinkage void __sched preempt_schedule_irq(void)
  3096. {
  3097. struct thread_info *ti = current_thread_info();
  3098. #ifdef CONFIG_PREEMPT_BKL
  3099. struct task_struct *task = current;
  3100. int saved_lock_depth;
  3101. #endif
  3102. /* Catch callers which need to be fixed */
  3103. BUG_ON(ti->preempt_count || !irqs_disabled());
  3104. need_resched:
  3105. add_preempt_count(PREEMPT_ACTIVE);
  3106. /*
  3107. * We keep the big kernel semaphore locked, but we
  3108. * clear ->lock_depth so that schedule() doesnt
  3109. * auto-release the semaphore:
  3110. */
  3111. #ifdef CONFIG_PREEMPT_BKL
  3112. saved_lock_depth = task->lock_depth;
  3113. task->lock_depth = -1;
  3114. #endif
  3115. local_irq_enable();
  3116. schedule();
  3117. local_irq_disable();
  3118. #ifdef CONFIG_PREEMPT_BKL
  3119. task->lock_depth = saved_lock_depth;
  3120. #endif
  3121. sub_preempt_count(PREEMPT_ACTIVE);
  3122. /* we could miss a preemption opportunity between schedule and now */
  3123. barrier();
  3124. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3125. goto need_resched;
  3126. }
  3127. #endif /* CONFIG_PREEMPT */
  3128. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3129. void *key)
  3130. {
  3131. return try_to_wake_up(curr->private, mode, sync);
  3132. }
  3133. EXPORT_SYMBOL(default_wake_function);
  3134. /*
  3135. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3136. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3137. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3138. *
  3139. * There are circumstances in which we can try to wake a task which has already
  3140. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3141. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3142. */
  3143. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3144. int nr_exclusive, int sync, void *key)
  3145. {
  3146. struct list_head *tmp, *next;
  3147. list_for_each_safe(tmp, next, &q->task_list) {
  3148. wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
  3149. unsigned flags = curr->flags;
  3150. if (curr->func(curr, mode, sync, key) &&
  3151. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3152. break;
  3153. }
  3154. }
  3155. /**
  3156. * __wake_up - wake up threads blocked on a waitqueue.
  3157. * @q: the waitqueue
  3158. * @mode: which threads
  3159. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3160. * @key: is directly passed to the wakeup function
  3161. */
  3162. void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
  3163. int nr_exclusive, void *key)
  3164. {
  3165. unsigned long flags;
  3166. spin_lock_irqsave(&q->lock, flags);
  3167. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3168. spin_unlock_irqrestore(&q->lock, flags);
  3169. }
  3170. EXPORT_SYMBOL(__wake_up);
  3171. /*
  3172. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3173. */
  3174. void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3175. {
  3176. __wake_up_common(q, mode, 1, 0, NULL);
  3177. }
  3178. /**
  3179. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3180. * @q: the waitqueue
  3181. * @mode: which threads
  3182. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3183. *
  3184. * The sync wakeup differs that the waker knows that it will schedule
  3185. * away soon, so while the target thread will be woken up, it will not
  3186. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3187. * with each other. This can prevent needless bouncing between CPUs.
  3188. *
  3189. * On UP it can prevent extra preemption.
  3190. */
  3191. void fastcall
  3192. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3193. {
  3194. unsigned long flags;
  3195. int sync = 1;
  3196. if (unlikely(!q))
  3197. return;
  3198. if (unlikely(!nr_exclusive))
  3199. sync = 0;
  3200. spin_lock_irqsave(&q->lock, flags);
  3201. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3202. spin_unlock_irqrestore(&q->lock, flags);
  3203. }
  3204. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3205. void fastcall complete(struct completion *x)
  3206. {
  3207. unsigned long flags;
  3208. spin_lock_irqsave(&x->wait.lock, flags);
  3209. x->done++;
  3210. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3211. 1, 0, NULL);
  3212. spin_unlock_irqrestore(&x->wait.lock, flags);
  3213. }
  3214. EXPORT_SYMBOL(complete);
  3215. void fastcall complete_all(struct completion *x)
  3216. {
  3217. unsigned long flags;
  3218. spin_lock_irqsave(&x->wait.lock, flags);
  3219. x->done += UINT_MAX/2;
  3220. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3221. 0, 0, NULL);
  3222. spin_unlock_irqrestore(&x->wait.lock, flags);
  3223. }
  3224. EXPORT_SYMBOL(complete_all);
  3225. void fastcall __sched wait_for_completion(struct completion *x)
  3226. {
  3227. might_sleep();
  3228. spin_lock_irq(&x->wait.lock);
  3229. if (!x->done) {
  3230. DECLARE_WAITQUEUE(wait, current);
  3231. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3232. __add_wait_queue_tail(&x->wait, &wait);
  3233. do {
  3234. __set_current_state(TASK_UNINTERRUPTIBLE);
  3235. spin_unlock_irq(&x->wait.lock);
  3236. schedule();
  3237. spin_lock_irq(&x->wait.lock);
  3238. } while (!x->done);
  3239. __remove_wait_queue(&x->wait, &wait);
  3240. }
  3241. x->done--;
  3242. spin_unlock_irq(&x->wait.lock);
  3243. }
  3244. EXPORT_SYMBOL(wait_for_completion);
  3245. unsigned long fastcall __sched
  3246. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3247. {
  3248. might_sleep();
  3249. spin_lock_irq(&x->wait.lock);
  3250. if (!x->done) {
  3251. DECLARE_WAITQUEUE(wait, current);
  3252. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3253. __add_wait_queue_tail(&x->wait, &wait);
  3254. do {
  3255. __set_current_state(TASK_UNINTERRUPTIBLE);
  3256. spin_unlock_irq(&x->wait.lock);
  3257. timeout = schedule_timeout(timeout);
  3258. spin_lock_irq(&x->wait.lock);
  3259. if (!timeout) {
  3260. __remove_wait_queue(&x->wait, &wait);
  3261. goto out;
  3262. }
  3263. } while (!x->done);
  3264. __remove_wait_queue(&x->wait, &wait);
  3265. }
  3266. x->done--;
  3267. out:
  3268. spin_unlock_irq(&x->wait.lock);
  3269. return timeout;
  3270. }
  3271. EXPORT_SYMBOL(wait_for_completion_timeout);
  3272. int fastcall __sched wait_for_completion_interruptible(struct completion *x)
  3273. {
  3274. int ret = 0;
  3275. might_sleep();
  3276. spin_lock_irq(&x->wait.lock);
  3277. if (!x->done) {
  3278. DECLARE_WAITQUEUE(wait, current);
  3279. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3280. __add_wait_queue_tail(&x->wait, &wait);
  3281. do {
  3282. if (signal_pending(current)) {
  3283. ret = -ERESTARTSYS;
  3284. __remove_wait_queue(&x->wait, &wait);
  3285. goto out;
  3286. }
  3287. __set_current_state(TASK_INTERRUPTIBLE);
  3288. spin_unlock_irq(&x->wait.lock);
  3289. schedule();
  3290. spin_lock_irq(&x->wait.lock);
  3291. } while (!x->done);
  3292. __remove_wait_queue(&x->wait, &wait);
  3293. }
  3294. x->done--;
  3295. out:
  3296. spin_unlock_irq(&x->wait.lock);
  3297. return ret;
  3298. }
  3299. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3300. unsigned long fastcall __sched
  3301. wait_for_completion_interruptible_timeout(struct completion *x,
  3302. unsigned long timeout)
  3303. {
  3304. might_sleep();
  3305. spin_lock_irq(&x->wait.lock);
  3306. if (!x->done) {
  3307. DECLARE_WAITQUEUE(wait, current);
  3308. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3309. __add_wait_queue_tail(&x->wait, &wait);
  3310. do {
  3311. if (signal_pending(current)) {
  3312. timeout = -ERESTARTSYS;
  3313. __remove_wait_queue(&x->wait, &wait);
  3314. goto out;
  3315. }
  3316. __set_current_state(TASK_INTERRUPTIBLE);
  3317. spin_unlock_irq(&x->wait.lock);
  3318. timeout = schedule_timeout(timeout);
  3319. spin_lock_irq(&x->wait.lock);
  3320. if (!timeout) {
  3321. __remove_wait_queue(&x->wait, &wait);
  3322. goto out;
  3323. }
  3324. } while (!x->done);
  3325. __remove_wait_queue(&x->wait, &wait);
  3326. }
  3327. x->done--;
  3328. out:
  3329. spin_unlock_irq(&x->wait.lock);
  3330. return timeout;
  3331. }
  3332. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3333. static inline void
  3334. sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
  3335. {
  3336. spin_lock_irqsave(&q->lock, *flags);
  3337. __add_wait_queue(q, wait);
  3338. spin_unlock(&q->lock);
  3339. }
  3340. static inline void
  3341. sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
  3342. {
  3343. spin_lock_irq(&q->lock);
  3344. __remove_wait_queue(q, wait);
  3345. spin_unlock_irqrestore(&q->lock, *flags);
  3346. }
  3347. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3348. {
  3349. unsigned long flags;
  3350. wait_queue_t wait;
  3351. init_waitqueue_entry(&wait, current);
  3352. current->state = TASK_INTERRUPTIBLE;
  3353. sleep_on_head(q, &wait, &flags);
  3354. schedule();
  3355. sleep_on_tail(q, &wait, &flags);
  3356. }
  3357. EXPORT_SYMBOL(interruptible_sleep_on);
  3358. long __sched
  3359. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3360. {
  3361. unsigned long flags;
  3362. wait_queue_t wait;
  3363. init_waitqueue_entry(&wait, current);
  3364. current->state = TASK_INTERRUPTIBLE;
  3365. sleep_on_head(q, &wait, &flags);
  3366. timeout = schedule_timeout(timeout);
  3367. sleep_on_tail(q, &wait, &flags);
  3368. return timeout;
  3369. }
  3370. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3371. void __sched sleep_on(wait_queue_head_t *q)
  3372. {
  3373. unsigned long flags;
  3374. wait_queue_t wait;
  3375. init_waitqueue_entry(&wait, current);
  3376. current->state = TASK_UNINTERRUPTIBLE;
  3377. sleep_on_head(q, &wait, &flags);
  3378. schedule();
  3379. sleep_on_tail(q, &wait, &flags);
  3380. }
  3381. EXPORT_SYMBOL(sleep_on);
  3382. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3383. {
  3384. unsigned long flags;
  3385. wait_queue_t wait;
  3386. init_waitqueue_entry(&wait, current);
  3387. current->state = TASK_UNINTERRUPTIBLE;
  3388. sleep_on_head(q, &wait, &flags);
  3389. timeout = schedule_timeout(timeout);
  3390. sleep_on_tail(q, &wait, &flags);
  3391. return timeout;
  3392. }
  3393. EXPORT_SYMBOL(sleep_on_timeout);
  3394. #ifdef CONFIG_RT_MUTEXES
  3395. /*
  3396. * rt_mutex_setprio - set the current priority of a task
  3397. * @p: task
  3398. * @prio: prio value (kernel-internal form)
  3399. *
  3400. * This function changes the 'effective' priority of a task. It does
  3401. * not touch ->normal_prio like __setscheduler().
  3402. *
  3403. * Used by the rt_mutex code to implement priority inheritance logic.
  3404. */
  3405. void rt_mutex_setprio(struct task_struct *p, int prio)
  3406. {
  3407. unsigned long flags;
  3408. int oldprio, on_rq;
  3409. struct rq *rq;
  3410. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3411. rq = task_rq_lock(p, &flags);
  3412. update_rq_clock(rq);
  3413. oldprio = p->prio;
  3414. on_rq = p->se.on_rq;
  3415. if (on_rq)
  3416. dequeue_task(rq, p, 0);
  3417. if (rt_prio(prio))
  3418. p->sched_class = &rt_sched_class;
  3419. else
  3420. p->sched_class = &fair_sched_class;
  3421. p->prio = prio;
  3422. if (on_rq) {
  3423. enqueue_task(rq, p, 0);
  3424. /*
  3425. * Reschedule if we are currently running on this runqueue and
  3426. * our priority decreased, or if we are not currently running on
  3427. * this runqueue and our priority is higher than the current's
  3428. */
  3429. if (task_running(rq, p)) {
  3430. if (p->prio > oldprio)
  3431. resched_task(rq->curr);
  3432. } else {
  3433. check_preempt_curr(rq, p);
  3434. }
  3435. }
  3436. task_rq_unlock(rq, &flags);
  3437. }
  3438. #endif
  3439. void set_user_nice(struct task_struct *p, long nice)
  3440. {
  3441. int old_prio, delta, on_rq;
  3442. unsigned long flags;
  3443. struct rq *rq;
  3444. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3445. return;
  3446. /*
  3447. * We have to be careful, if called from sys_setpriority(),
  3448. * the task might be in the middle of scheduling on another CPU.
  3449. */
  3450. rq = task_rq_lock(p, &flags);
  3451. update_rq_clock(rq);
  3452. /*
  3453. * The RT priorities are set via sched_setscheduler(), but we still
  3454. * allow the 'normal' nice value to be set - but as expected
  3455. * it wont have any effect on scheduling until the task is
  3456. * SCHED_FIFO/SCHED_RR:
  3457. */
  3458. if (task_has_rt_policy(p)) {
  3459. p->static_prio = NICE_TO_PRIO(nice);
  3460. goto out_unlock;
  3461. }
  3462. on_rq = p->se.on_rq;
  3463. if (on_rq) {
  3464. dequeue_task(rq, p, 0);
  3465. dec_load(rq, p);
  3466. }
  3467. p->static_prio = NICE_TO_PRIO(nice);
  3468. set_load_weight(p);
  3469. old_prio = p->prio;
  3470. p->prio = effective_prio(p);
  3471. delta = p->prio - old_prio;
  3472. if (on_rq) {
  3473. enqueue_task(rq, p, 0);
  3474. inc_load(rq, p);
  3475. /*
  3476. * If the task increased its priority or is running and
  3477. * lowered its priority, then reschedule its CPU:
  3478. */
  3479. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3480. resched_task(rq->curr);
  3481. }
  3482. out_unlock:
  3483. task_rq_unlock(rq, &flags);
  3484. }
  3485. EXPORT_SYMBOL(set_user_nice);
  3486. /*
  3487. * can_nice - check if a task can reduce its nice value
  3488. * @p: task
  3489. * @nice: nice value
  3490. */
  3491. int can_nice(const struct task_struct *p, const int nice)
  3492. {
  3493. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3494. int nice_rlim = 20 - nice;
  3495. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3496. capable(CAP_SYS_NICE));
  3497. }
  3498. #ifdef __ARCH_WANT_SYS_NICE
  3499. /*
  3500. * sys_nice - change the priority of the current process.
  3501. * @increment: priority increment
  3502. *
  3503. * sys_setpriority is a more generic, but much slower function that
  3504. * does similar things.
  3505. */
  3506. asmlinkage long sys_nice(int increment)
  3507. {
  3508. long nice, retval;
  3509. /*
  3510. * Setpriority might change our priority at the same moment.
  3511. * We don't have to worry. Conceptually one call occurs first
  3512. * and we have a single winner.
  3513. */
  3514. if (increment < -40)
  3515. increment = -40;
  3516. if (increment > 40)
  3517. increment = 40;
  3518. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3519. if (nice < -20)
  3520. nice = -20;
  3521. if (nice > 19)
  3522. nice = 19;
  3523. if (increment < 0 && !can_nice(current, nice))
  3524. return -EPERM;
  3525. retval = security_task_setnice(current, nice);
  3526. if (retval)
  3527. return retval;
  3528. set_user_nice(current, nice);
  3529. return 0;
  3530. }
  3531. #endif
  3532. /**
  3533. * task_prio - return the priority value of a given task.
  3534. * @p: the task in question.
  3535. *
  3536. * This is the priority value as seen by users in /proc.
  3537. * RT tasks are offset by -200. Normal tasks are centered
  3538. * around 0, value goes from -16 to +15.
  3539. */
  3540. int task_prio(const struct task_struct *p)
  3541. {
  3542. return p->prio - MAX_RT_PRIO;
  3543. }
  3544. /**
  3545. * task_nice - return the nice value of a given task.
  3546. * @p: the task in question.
  3547. */
  3548. int task_nice(const struct task_struct *p)
  3549. {
  3550. return TASK_NICE(p);
  3551. }
  3552. EXPORT_SYMBOL_GPL(task_nice);
  3553. /**
  3554. * idle_cpu - is a given cpu idle currently?
  3555. * @cpu: the processor in question.
  3556. */
  3557. int idle_cpu(int cpu)
  3558. {
  3559. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3560. }
  3561. /**
  3562. * idle_task - return the idle task for a given cpu.
  3563. * @cpu: the processor in question.
  3564. */
  3565. struct task_struct *idle_task(int cpu)
  3566. {
  3567. return cpu_rq(cpu)->idle;
  3568. }
  3569. /**
  3570. * find_process_by_pid - find a process with a matching PID value.
  3571. * @pid: the pid in question.
  3572. */
  3573. static inline struct task_struct *find_process_by_pid(pid_t pid)
  3574. {
  3575. return pid ? find_task_by_pid(pid) : current;
  3576. }
  3577. /* Actually do priority change: must hold rq lock. */
  3578. static void
  3579. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3580. {
  3581. BUG_ON(p->se.on_rq);
  3582. p->policy = policy;
  3583. switch (p->policy) {
  3584. case SCHED_NORMAL:
  3585. case SCHED_BATCH:
  3586. case SCHED_IDLE:
  3587. p->sched_class = &fair_sched_class;
  3588. break;
  3589. case SCHED_FIFO:
  3590. case SCHED_RR:
  3591. p->sched_class = &rt_sched_class;
  3592. break;
  3593. }
  3594. p->rt_priority = prio;
  3595. p->normal_prio = normal_prio(p);
  3596. /* we are holding p->pi_lock already */
  3597. p->prio = rt_mutex_getprio(p);
  3598. set_load_weight(p);
  3599. }
  3600. /**
  3601. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3602. * @p: the task in question.
  3603. * @policy: new policy.
  3604. * @param: structure containing the new RT priority.
  3605. *
  3606. * NOTE that the task may be already dead.
  3607. */
  3608. int sched_setscheduler(struct task_struct *p, int policy,
  3609. struct sched_param *param)
  3610. {
  3611. int retval, oldprio, oldpolicy = -1, on_rq;
  3612. unsigned long flags;
  3613. struct rq *rq;
  3614. /* may grab non-irq protected spin_locks */
  3615. BUG_ON(in_interrupt());
  3616. recheck:
  3617. /* double check policy once rq lock held */
  3618. if (policy < 0)
  3619. policy = oldpolicy = p->policy;
  3620. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3621. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3622. policy != SCHED_IDLE)
  3623. return -EINVAL;
  3624. /*
  3625. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3626. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3627. * SCHED_BATCH and SCHED_IDLE is 0.
  3628. */
  3629. if (param->sched_priority < 0 ||
  3630. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3631. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3632. return -EINVAL;
  3633. if (rt_policy(policy) != (param->sched_priority != 0))
  3634. return -EINVAL;
  3635. /*
  3636. * Allow unprivileged RT tasks to decrease priority:
  3637. */
  3638. if (!capable(CAP_SYS_NICE)) {
  3639. if (rt_policy(policy)) {
  3640. unsigned long rlim_rtprio;
  3641. if (!lock_task_sighand(p, &flags))
  3642. return -ESRCH;
  3643. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  3644. unlock_task_sighand(p, &flags);
  3645. /* can't set/change the rt policy */
  3646. if (policy != p->policy && !rlim_rtprio)
  3647. return -EPERM;
  3648. /* can't increase priority */
  3649. if (param->sched_priority > p->rt_priority &&
  3650. param->sched_priority > rlim_rtprio)
  3651. return -EPERM;
  3652. }
  3653. /*
  3654. * Like positive nice levels, dont allow tasks to
  3655. * move out of SCHED_IDLE either:
  3656. */
  3657. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  3658. return -EPERM;
  3659. /* can't change other user's priorities */
  3660. if ((current->euid != p->euid) &&
  3661. (current->euid != p->uid))
  3662. return -EPERM;
  3663. }
  3664. retval = security_task_setscheduler(p, policy, param);
  3665. if (retval)
  3666. return retval;
  3667. /*
  3668. * make sure no PI-waiters arrive (or leave) while we are
  3669. * changing the priority of the task:
  3670. */
  3671. spin_lock_irqsave(&p->pi_lock, flags);
  3672. /*
  3673. * To be able to change p->policy safely, the apropriate
  3674. * runqueue lock must be held.
  3675. */
  3676. rq = __task_rq_lock(p);
  3677. /* recheck policy now with rq lock held */
  3678. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3679. policy = oldpolicy = -1;
  3680. __task_rq_unlock(rq);
  3681. spin_unlock_irqrestore(&p->pi_lock, flags);
  3682. goto recheck;
  3683. }
  3684. update_rq_clock(rq);
  3685. on_rq = p->se.on_rq;
  3686. if (on_rq)
  3687. deactivate_task(rq, p, 0);
  3688. oldprio = p->prio;
  3689. __setscheduler(rq, p, policy, param->sched_priority);
  3690. if (on_rq) {
  3691. activate_task(rq, p, 0);
  3692. /*
  3693. * Reschedule if we are currently running on this runqueue and
  3694. * our priority decreased, or if we are not currently running on
  3695. * this runqueue and our priority is higher than the current's
  3696. */
  3697. if (task_running(rq, p)) {
  3698. if (p->prio > oldprio)
  3699. resched_task(rq->curr);
  3700. } else {
  3701. check_preempt_curr(rq, p);
  3702. }
  3703. }
  3704. __task_rq_unlock(rq);
  3705. spin_unlock_irqrestore(&p->pi_lock, flags);
  3706. rt_mutex_adjust_pi(p);
  3707. return 0;
  3708. }
  3709. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3710. static int
  3711. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3712. {
  3713. struct sched_param lparam;
  3714. struct task_struct *p;
  3715. int retval;
  3716. if (!param || pid < 0)
  3717. return -EINVAL;
  3718. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3719. return -EFAULT;
  3720. rcu_read_lock();
  3721. retval = -ESRCH;
  3722. p = find_process_by_pid(pid);
  3723. if (p != NULL)
  3724. retval = sched_setscheduler(p, policy, &lparam);
  3725. rcu_read_unlock();
  3726. return retval;
  3727. }
  3728. /**
  3729. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3730. * @pid: the pid in question.
  3731. * @policy: new policy.
  3732. * @param: structure containing the new RT priority.
  3733. */
  3734. asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
  3735. struct sched_param __user *param)
  3736. {
  3737. /* negative values for policy are not valid */
  3738. if (policy < 0)
  3739. return -EINVAL;
  3740. return do_sched_setscheduler(pid, policy, param);
  3741. }
  3742. /**
  3743. * sys_sched_setparam - set/change the RT priority of a thread
  3744. * @pid: the pid in question.
  3745. * @param: structure containing the new RT priority.
  3746. */
  3747. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  3748. {
  3749. return do_sched_setscheduler(pid, -1, param);
  3750. }
  3751. /**
  3752. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3753. * @pid: the pid in question.
  3754. */
  3755. asmlinkage long sys_sched_getscheduler(pid_t pid)
  3756. {
  3757. struct task_struct *p;
  3758. int retval = -EINVAL;
  3759. if (pid < 0)
  3760. goto out_nounlock;
  3761. retval = -ESRCH;
  3762. read_lock(&tasklist_lock);
  3763. p = find_process_by_pid(pid);
  3764. if (p) {
  3765. retval = security_task_getscheduler(p);
  3766. if (!retval)
  3767. retval = p->policy;
  3768. }
  3769. read_unlock(&tasklist_lock);
  3770. out_nounlock:
  3771. return retval;
  3772. }
  3773. /**
  3774. * sys_sched_getscheduler - get the RT priority of a thread
  3775. * @pid: the pid in question.
  3776. * @param: structure containing the RT priority.
  3777. */
  3778. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  3779. {
  3780. struct sched_param lp;
  3781. struct task_struct *p;
  3782. int retval = -EINVAL;
  3783. if (!param || pid < 0)
  3784. goto out_nounlock;
  3785. read_lock(&tasklist_lock);
  3786. p = find_process_by_pid(pid);
  3787. retval = -ESRCH;
  3788. if (!p)
  3789. goto out_unlock;
  3790. retval = security_task_getscheduler(p);
  3791. if (retval)
  3792. goto out_unlock;
  3793. lp.sched_priority = p->rt_priority;
  3794. read_unlock(&tasklist_lock);
  3795. /*
  3796. * This one might sleep, we cannot do it with a spinlock held ...
  3797. */
  3798. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3799. out_nounlock:
  3800. return retval;
  3801. out_unlock:
  3802. read_unlock(&tasklist_lock);
  3803. return retval;
  3804. }
  3805. long sched_setaffinity(pid_t pid, cpumask_t new_mask)
  3806. {
  3807. cpumask_t cpus_allowed;
  3808. struct task_struct *p;
  3809. int retval;
  3810. mutex_lock(&sched_hotcpu_mutex);
  3811. read_lock(&tasklist_lock);
  3812. p = find_process_by_pid(pid);
  3813. if (!p) {
  3814. read_unlock(&tasklist_lock);
  3815. mutex_unlock(&sched_hotcpu_mutex);
  3816. return -ESRCH;
  3817. }
  3818. /*
  3819. * It is not safe to call set_cpus_allowed with the
  3820. * tasklist_lock held. We will bump the task_struct's
  3821. * usage count and then drop tasklist_lock.
  3822. */
  3823. get_task_struct(p);
  3824. read_unlock(&tasklist_lock);
  3825. retval = -EPERM;
  3826. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  3827. !capable(CAP_SYS_NICE))
  3828. goto out_unlock;
  3829. retval = security_task_setscheduler(p, 0, NULL);
  3830. if (retval)
  3831. goto out_unlock;
  3832. cpus_allowed = cpuset_cpus_allowed(p);
  3833. cpus_and(new_mask, new_mask, cpus_allowed);
  3834. retval = set_cpus_allowed(p, new_mask);
  3835. out_unlock:
  3836. put_task_struct(p);
  3837. mutex_unlock(&sched_hotcpu_mutex);
  3838. return retval;
  3839. }
  3840. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3841. cpumask_t *new_mask)
  3842. {
  3843. if (len < sizeof(cpumask_t)) {
  3844. memset(new_mask, 0, sizeof(cpumask_t));
  3845. } else if (len > sizeof(cpumask_t)) {
  3846. len = sizeof(cpumask_t);
  3847. }
  3848. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3849. }
  3850. /**
  3851. * sys_sched_setaffinity - set the cpu affinity of a process
  3852. * @pid: pid of the process
  3853. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3854. * @user_mask_ptr: user-space pointer to the new cpu mask
  3855. */
  3856. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  3857. unsigned long __user *user_mask_ptr)
  3858. {
  3859. cpumask_t new_mask;
  3860. int retval;
  3861. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  3862. if (retval)
  3863. return retval;
  3864. return sched_setaffinity(pid, new_mask);
  3865. }
  3866. /*
  3867. * Represents all cpu's present in the system
  3868. * In systems capable of hotplug, this map could dynamically grow
  3869. * as new cpu's are detected in the system via any platform specific
  3870. * method, such as ACPI for e.g.
  3871. */
  3872. cpumask_t cpu_present_map __read_mostly;
  3873. EXPORT_SYMBOL(cpu_present_map);
  3874. #ifndef CONFIG_SMP
  3875. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  3876. EXPORT_SYMBOL(cpu_online_map);
  3877. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  3878. EXPORT_SYMBOL(cpu_possible_map);
  3879. #endif
  3880. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  3881. {
  3882. struct task_struct *p;
  3883. int retval;
  3884. mutex_lock(&sched_hotcpu_mutex);
  3885. read_lock(&tasklist_lock);
  3886. retval = -ESRCH;
  3887. p = find_process_by_pid(pid);
  3888. if (!p)
  3889. goto out_unlock;
  3890. retval = security_task_getscheduler(p);
  3891. if (retval)
  3892. goto out_unlock;
  3893. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  3894. out_unlock:
  3895. read_unlock(&tasklist_lock);
  3896. mutex_unlock(&sched_hotcpu_mutex);
  3897. return retval;
  3898. }
  3899. /**
  3900. * sys_sched_getaffinity - get the cpu affinity of a process
  3901. * @pid: pid of the process
  3902. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3903. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3904. */
  3905. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  3906. unsigned long __user *user_mask_ptr)
  3907. {
  3908. int ret;
  3909. cpumask_t mask;
  3910. if (len < sizeof(cpumask_t))
  3911. return -EINVAL;
  3912. ret = sched_getaffinity(pid, &mask);
  3913. if (ret < 0)
  3914. return ret;
  3915. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  3916. return -EFAULT;
  3917. return sizeof(cpumask_t);
  3918. }
  3919. /**
  3920. * sys_sched_yield - yield the current processor to other threads.
  3921. *
  3922. * This function yields the current CPU to other tasks. If there are no
  3923. * other threads running on this CPU then this function will return.
  3924. */
  3925. asmlinkage long sys_sched_yield(void)
  3926. {
  3927. struct rq *rq = this_rq_lock();
  3928. schedstat_inc(rq, yld_cnt);
  3929. current->sched_class->yield_task(rq, current);
  3930. /*
  3931. * Since we are going to call schedule() anyway, there's
  3932. * no need to preempt or enable interrupts:
  3933. */
  3934. __release(rq->lock);
  3935. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3936. _raw_spin_unlock(&rq->lock);
  3937. preempt_enable_no_resched();
  3938. schedule();
  3939. return 0;
  3940. }
  3941. static void __cond_resched(void)
  3942. {
  3943. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  3944. __might_sleep(__FILE__, __LINE__);
  3945. #endif
  3946. /*
  3947. * The BKS might be reacquired before we have dropped
  3948. * PREEMPT_ACTIVE, which could trigger a second
  3949. * cond_resched() call.
  3950. */
  3951. do {
  3952. add_preempt_count(PREEMPT_ACTIVE);
  3953. schedule();
  3954. sub_preempt_count(PREEMPT_ACTIVE);
  3955. } while (need_resched());
  3956. }
  3957. int __sched cond_resched(void)
  3958. {
  3959. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  3960. system_state == SYSTEM_RUNNING) {
  3961. __cond_resched();
  3962. return 1;
  3963. }
  3964. return 0;
  3965. }
  3966. EXPORT_SYMBOL(cond_resched);
  3967. /*
  3968. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3969. * call schedule, and on return reacquire the lock.
  3970. *
  3971. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3972. * operations here to prevent schedule() from being called twice (once via
  3973. * spin_unlock(), once by hand).
  3974. */
  3975. int cond_resched_lock(spinlock_t *lock)
  3976. {
  3977. int ret = 0;
  3978. if (need_lockbreak(lock)) {
  3979. spin_unlock(lock);
  3980. cpu_relax();
  3981. ret = 1;
  3982. spin_lock(lock);
  3983. }
  3984. if (need_resched() && system_state == SYSTEM_RUNNING) {
  3985. spin_release(&lock->dep_map, 1, _THIS_IP_);
  3986. _raw_spin_unlock(lock);
  3987. preempt_enable_no_resched();
  3988. __cond_resched();
  3989. ret = 1;
  3990. spin_lock(lock);
  3991. }
  3992. return ret;
  3993. }
  3994. EXPORT_SYMBOL(cond_resched_lock);
  3995. int __sched cond_resched_softirq(void)
  3996. {
  3997. BUG_ON(!in_softirq());
  3998. if (need_resched() && system_state == SYSTEM_RUNNING) {
  3999. local_bh_enable();
  4000. __cond_resched();
  4001. local_bh_disable();
  4002. return 1;
  4003. }
  4004. return 0;
  4005. }
  4006. EXPORT_SYMBOL(cond_resched_softirq);
  4007. /**
  4008. * yield - yield the current processor to other threads.
  4009. *
  4010. * This is a shortcut for kernel-space yielding - it marks the
  4011. * thread runnable and calls sys_sched_yield().
  4012. */
  4013. void __sched yield(void)
  4014. {
  4015. set_current_state(TASK_RUNNING);
  4016. sys_sched_yield();
  4017. }
  4018. EXPORT_SYMBOL(yield);
  4019. /*
  4020. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4021. * that process accounting knows that this is a task in IO wait state.
  4022. *
  4023. * But don't do that if it is a deliberate, throttling IO wait (this task
  4024. * has set its backing_dev_info: the queue against which it should throttle)
  4025. */
  4026. void __sched io_schedule(void)
  4027. {
  4028. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4029. delayacct_blkio_start();
  4030. atomic_inc(&rq->nr_iowait);
  4031. schedule();
  4032. atomic_dec(&rq->nr_iowait);
  4033. delayacct_blkio_end();
  4034. }
  4035. EXPORT_SYMBOL(io_schedule);
  4036. long __sched io_schedule_timeout(long timeout)
  4037. {
  4038. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4039. long ret;
  4040. delayacct_blkio_start();
  4041. atomic_inc(&rq->nr_iowait);
  4042. ret = schedule_timeout(timeout);
  4043. atomic_dec(&rq->nr_iowait);
  4044. delayacct_blkio_end();
  4045. return ret;
  4046. }
  4047. /**
  4048. * sys_sched_get_priority_max - return maximum RT priority.
  4049. * @policy: scheduling class.
  4050. *
  4051. * this syscall returns the maximum rt_priority that can be used
  4052. * by a given scheduling class.
  4053. */
  4054. asmlinkage long sys_sched_get_priority_max(int policy)
  4055. {
  4056. int ret = -EINVAL;
  4057. switch (policy) {
  4058. case SCHED_FIFO:
  4059. case SCHED_RR:
  4060. ret = MAX_USER_RT_PRIO-1;
  4061. break;
  4062. case SCHED_NORMAL:
  4063. case SCHED_BATCH:
  4064. case SCHED_IDLE:
  4065. ret = 0;
  4066. break;
  4067. }
  4068. return ret;
  4069. }
  4070. /**
  4071. * sys_sched_get_priority_min - return minimum RT priority.
  4072. * @policy: scheduling class.
  4073. *
  4074. * this syscall returns the minimum rt_priority that can be used
  4075. * by a given scheduling class.
  4076. */
  4077. asmlinkage long sys_sched_get_priority_min(int policy)
  4078. {
  4079. int ret = -EINVAL;
  4080. switch (policy) {
  4081. case SCHED_FIFO:
  4082. case SCHED_RR:
  4083. ret = 1;
  4084. break;
  4085. case SCHED_NORMAL:
  4086. case SCHED_BATCH:
  4087. case SCHED_IDLE:
  4088. ret = 0;
  4089. }
  4090. return ret;
  4091. }
  4092. /**
  4093. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4094. * @pid: pid of the process.
  4095. * @interval: userspace pointer to the timeslice value.
  4096. *
  4097. * this syscall writes the default timeslice value of a given process
  4098. * into the user-space timespec buffer. A value of '0' means infinity.
  4099. */
  4100. asmlinkage
  4101. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4102. {
  4103. struct task_struct *p;
  4104. int retval = -EINVAL;
  4105. struct timespec t;
  4106. if (pid < 0)
  4107. goto out_nounlock;
  4108. retval = -ESRCH;
  4109. read_lock(&tasklist_lock);
  4110. p = find_process_by_pid(pid);
  4111. if (!p)
  4112. goto out_unlock;
  4113. retval = security_task_getscheduler(p);
  4114. if (retval)
  4115. goto out_unlock;
  4116. jiffies_to_timespec(p->policy == SCHED_FIFO ?
  4117. 0 : static_prio_timeslice(p->static_prio), &t);
  4118. read_unlock(&tasklist_lock);
  4119. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4120. out_nounlock:
  4121. return retval;
  4122. out_unlock:
  4123. read_unlock(&tasklist_lock);
  4124. return retval;
  4125. }
  4126. static const char stat_nam[] = "RSDTtZX";
  4127. static void show_task(struct task_struct *p)
  4128. {
  4129. unsigned long free = 0;
  4130. unsigned state;
  4131. state = p->state ? __ffs(p->state) + 1 : 0;
  4132. printk("%-13.13s %c", p->comm,
  4133. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4134. #if BITS_PER_LONG == 32
  4135. if (state == TASK_RUNNING)
  4136. printk(" running ");
  4137. else
  4138. printk(" %08lx ", thread_saved_pc(p));
  4139. #else
  4140. if (state == TASK_RUNNING)
  4141. printk(" running task ");
  4142. else
  4143. printk(" %016lx ", thread_saved_pc(p));
  4144. #endif
  4145. #ifdef CONFIG_DEBUG_STACK_USAGE
  4146. {
  4147. unsigned long *n = end_of_stack(p);
  4148. while (!*n)
  4149. n++;
  4150. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4151. }
  4152. #endif
  4153. printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
  4154. if (state != TASK_RUNNING)
  4155. show_stack(p, NULL);
  4156. }
  4157. void show_state_filter(unsigned long state_filter)
  4158. {
  4159. struct task_struct *g, *p;
  4160. #if BITS_PER_LONG == 32
  4161. printk(KERN_INFO
  4162. " task PC stack pid father\n");
  4163. #else
  4164. printk(KERN_INFO
  4165. " task PC stack pid father\n");
  4166. #endif
  4167. read_lock(&tasklist_lock);
  4168. do_each_thread(g, p) {
  4169. /*
  4170. * reset the NMI-timeout, listing all files on a slow
  4171. * console might take alot of time:
  4172. */
  4173. touch_nmi_watchdog();
  4174. if (!state_filter || (p->state & state_filter))
  4175. show_task(p);
  4176. } while_each_thread(g, p);
  4177. touch_all_softlockup_watchdogs();
  4178. #ifdef CONFIG_SCHED_DEBUG
  4179. sysrq_sched_debug_show();
  4180. #endif
  4181. read_unlock(&tasklist_lock);
  4182. /*
  4183. * Only show locks if all tasks are dumped:
  4184. */
  4185. if (state_filter == -1)
  4186. debug_show_all_locks();
  4187. }
  4188. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4189. {
  4190. idle->sched_class = &idle_sched_class;
  4191. }
  4192. /**
  4193. * init_idle - set up an idle thread for a given CPU
  4194. * @idle: task in question
  4195. * @cpu: cpu the idle task belongs to
  4196. *
  4197. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4198. * flag, to make booting more robust.
  4199. */
  4200. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4201. {
  4202. struct rq *rq = cpu_rq(cpu);
  4203. unsigned long flags;
  4204. __sched_fork(idle);
  4205. idle->se.exec_start = sched_clock();
  4206. idle->prio = idle->normal_prio = MAX_PRIO;
  4207. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4208. __set_task_cpu(idle, cpu);
  4209. spin_lock_irqsave(&rq->lock, flags);
  4210. rq->curr = rq->idle = idle;
  4211. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4212. idle->oncpu = 1;
  4213. #endif
  4214. spin_unlock_irqrestore(&rq->lock, flags);
  4215. /* Set the preempt count _outside_ the spinlocks! */
  4216. #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
  4217. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4218. #else
  4219. task_thread_info(idle)->preempt_count = 0;
  4220. #endif
  4221. /*
  4222. * The idle tasks have their own, simple scheduling class:
  4223. */
  4224. idle->sched_class = &idle_sched_class;
  4225. }
  4226. /*
  4227. * In a system that switches off the HZ timer nohz_cpu_mask
  4228. * indicates which cpus entered this state. This is used
  4229. * in the rcu update to wait only for active cpus. For system
  4230. * which do not switch off the HZ timer nohz_cpu_mask should
  4231. * always be CPU_MASK_NONE.
  4232. */
  4233. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4234. /*
  4235. * Increase the granularity value when there are more CPUs,
  4236. * because with more CPUs the 'effective latency' as visible
  4237. * to users decreases. But the relationship is not linear,
  4238. * so pick a second-best guess by going with the log2 of the
  4239. * number of CPUs.
  4240. *
  4241. * This idea comes from the SD scheduler of Con Kolivas:
  4242. */
  4243. static inline void sched_init_granularity(void)
  4244. {
  4245. unsigned int factor = 1 + ilog2(num_online_cpus());
  4246. const unsigned long limit = 100000000;
  4247. sysctl_sched_min_granularity *= factor;
  4248. if (sysctl_sched_min_granularity > limit)
  4249. sysctl_sched_min_granularity = limit;
  4250. sysctl_sched_latency *= factor;
  4251. if (sysctl_sched_latency > limit)
  4252. sysctl_sched_latency = limit;
  4253. sysctl_sched_runtime_limit = sysctl_sched_latency;
  4254. sysctl_sched_wakeup_granularity = sysctl_sched_min_granularity / 2;
  4255. }
  4256. #ifdef CONFIG_SMP
  4257. /*
  4258. * This is how migration works:
  4259. *
  4260. * 1) we queue a struct migration_req structure in the source CPU's
  4261. * runqueue and wake up that CPU's migration thread.
  4262. * 2) we down() the locked semaphore => thread blocks.
  4263. * 3) migration thread wakes up (implicitly it forces the migrated
  4264. * thread off the CPU)
  4265. * 4) it gets the migration request and checks whether the migrated
  4266. * task is still in the wrong runqueue.
  4267. * 5) if it's in the wrong runqueue then the migration thread removes
  4268. * it and puts it into the right queue.
  4269. * 6) migration thread up()s the semaphore.
  4270. * 7) we wake up and the migration is done.
  4271. */
  4272. /*
  4273. * Change a given task's CPU affinity. Migrate the thread to a
  4274. * proper CPU and schedule it away if the CPU it's executing on
  4275. * is removed from the allowed bitmask.
  4276. *
  4277. * NOTE: the caller must have a valid reference to the task, the
  4278. * task must not exit() & deallocate itself prematurely. The
  4279. * call is not atomic; no spinlocks may be held.
  4280. */
  4281. int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
  4282. {
  4283. struct migration_req req;
  4284. unsigned long flags;
  4285. struct rq *rq;
  4286. int ret = 0;
  4287. rq = task_rq_lock(p, &flags);
  4288. if (!cpus_intersects(new_mask, cpu_online_map)) {
  4289. ret = -EINVAL;
  4290. goto out;
  4291. }
  4292. p->cpus_allowed = new_mask;
  4293. /* Can the task run on the task's current CPU? If so, we're done */
  4294. if (cpu_isset(task_cpu(p), new_mask))
  4295. goto out;
  4296. if (migrate_task(p, any_online_cpu(new_mask), &req)) {
  4297. /* Need help from migration thread: drop lock and wait. */
  4298. task_rq_unlock(rq, &flags);
  4299. wake_up_process(rq->migration_thread);
  4300. wait_for_completion(&req.done);
  4301. tlb_migrate_finish(p->mm);
  4302. return 0;
  4303. }
  4304. out:
  4305. task_rq_unlock(rq, &flags);
  4306. return ret;
  4307. }
  4308. EXPORT_SYMBOL_GPL(set_cpus_allowed);
  4309. /*
  4310. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4311. * this because either it can't run here any more (set_cpus_allowed()
  4312. * away from this CPU, or CPU going down), or because we're
  4313. * attempting to rebalance this task on exec (sched_exec).
  4314. *
  4315. * So we race with normal scheduler movements, but that's OK, as long
  4316. * as the task is no longer on this CPU.
  4317. *
  4318. * Returns non-zero if task was successfully migrated.
  4319. */
  4320. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4321. {
  4322. struct rq *rq_dest, *rq_src;
  4323. int ret = 0, on_rq;
  4324. if (unlikely(cpu_is_offline(dest_cpu)))
  4325. return ret;
  4326. rq_src = cpu_rq(src_cpu);
  4327. rq_dest = cpu_rq(dest_cpu);
  4328. double_rq_lock(rq_src, rq_dest);
  4329. /* Already moved. */
  4330. if (task_cpu(p) != src_cpu)
  4331. goto out;
  4332. /* Affinity changed (again). */
  4333. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4334. goto out;
  4335. on_rq = p->se.on_rq;
  4336. if (on_rq)
  4337. deactivate_task(rq_src, p, 0);
  4338. set_task_cpu(p, dest_cpu);
  4339. if (on_rq) {
  4340. activate_task(rq_dest, p, 0);
  4341. check_preempt_curr(rq_dest, p);
  4342. }
  4343. ret = 1;
  4344. out:
  4345. double_rq_unlock(rq_src, rq_dest);
  4346. return ret;
  4347. }
  4348. /*
  4349. * migration_thread - this is a highprio system thread that performs
  4350. * thread migration by bumping thread off CPU then 'pushing' onto
  4351. * another runqueue.
  4352. */
  4353. static int migration_thread(void *data)
  4354. {
  4355. int cpu = (long)data;
  4356. struct rq *rq;
  4357. rq = cpu_rq(cpu);
  4358. BUG_ON(rq->migration_thread != current);
  4359. set_current_state(TASK_INTERRUPTIBLE);
  4360. while (!kthread_should_stop()) {
  4361. struct migration_req *req;
  4362. struct list_head *head;
  4363. spin_lock_irq(&rq->lock);
  4364. if (cpu_is_offline(cpu)) {
  4365. spin_unlock_irq(&rq->lock);
  4366. goto wait_to_die;
  4367. }
  4368. if (rq->active_balance) {
  4369. active_load_balance(rq, cpu);
  4370. rq->active_balance = 0;
  4371. }
  4372. head = &rq->migration_queue;
  4373. if (list_empty(head)) {
  4374. spin_unlock_irq(&rq->lock);
  4375. schedule();
  4376. set_current_state(TASK_INTERRUPTIBLE);
  4377. continue;
  4378. }
  4379. req = list_entry(head->next, struct migration_req, list);
  4380. list_del_init(head->next);
  4381. spin_unlock(&rq->lock);
  4382. __migrate_task(req->task, cpu, req->dest_cpu);
  4383. local_irq_enable();
  4384. complete(&req->done);
  4385. }
  4386. __set_current_state(TASK_RUNNING);
  4387. return 0;
  4388. wait_to_die:
  4389. /* Wait for kthread_stop */
  4390. set_current_state(TASK_INTERRUPTIBLE);
  4391. while (!kthread_should_stop()) {
  4392. schedule();
  4393. set_current_state(TASK_INTERRUPTIBLE);
  4394. }
  4395. __set_current_state(TASK_RUNNING);
  4396. return 0;
  4397. }
  4398. #ifdef CONFIG_HOTPLUG_CPU
  4399. /*
  4400. * Figure out where task on dead CPU should go, use force if neccessary.
  4401. * NOTE: interrupts should be disabled by the caller
  4402. */
  4403. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4404. {
  4405. unsigned long flags;
  4406. cpumask_t mask;
  4407. struct rq *rq;
  4408. int dest_cpu;
  4409. restart:
  4410. /* On same node? */
  4411. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  4412. cpus_and(mask, mask, p->cpus_allowed);
  4413. dest_cpu = any_online_cpu(mask);
  4414. /* On any allowed CPU? */
  4415. if (dest_cpu == NR_CPUS)
  4416. dest_cpu = any_online_cpu(p->cpus_allowed);
  4417. /* No more Mr. Nice Guy. */
  4418. if (dest_cpu == NR_CPUS) {
  4419. rq = task_rq_lock(p, &flags);
  4420. cpus_setall(p->cpus_allowed);
  4421. dest_cpu = any_online_cpu(p->cpus_allowed);
  4422. task_rq_unlock(rq, &flags);
  4423. /*
  4424. * Don't tell them about moving exiting tasks or
  4425. * kernel threads (both mm NULL), since they never
  4426. * leave kernel.
  4427. */
  4428. if (p->mm && printk_ratelimit())
  4429. printk(KERN_INFO "process %d (%s) no "
  4430. "longer affine to cpu%d\n",
  4431. p->pid, p->comm, dead_cpu);
  4432. }
  4433. if (!__migrate_task(p, dead_cpu, dest_cpu))
  4434. goto restart;
  4435. }
  4436. /*
  4437. * While a dead CPU has no uninterruptible tasks queued at this point,
  4438. * it might still have a nonzero ->nr_uninterruptible counter, because
  4439. * for performance reasons the counter is not stricly tracking tasks to
  4440. * their home CPUs. So we just add the counter to another CPU's counter,
  4441. * to keep the global sum constant after CPU-down:
  4442. */
  4443. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4444. {
  4445. struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
  4446. unsigned long flags;
  4447. local_irq_save(flags);
  4448. double_rq_lock(rq_src, rq_dest);
  4449. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4450. rq_src->nr_uninterruptible = 0;
  4451. double_rq_unlock(rq_src, rq_dest);
  4452. local_irq_restore(flags);
  4453. }
  4454. /* Run through task list and migrate tasks from the dead cpu. */
  4455. static void migrate_live_tasks(int src_cpu)
  4456. {
  4457. struct task_struct *p, *t;
  4458. write_lock_irq(&tasklist_lock);
  4459. do_each_thread(t, p) {
  4460. if (p == current)
  4461. continue;
  4462. if (task_cpu(p) == src_cpu)
  4463. move_task_off_dead_cpu(src_cpu, p);
  4464. } while_each_thread(t, p);
  4465. write_unlock_irq(&tasklist_lock);
  4466. }
  4467. /*
  4468. * Schedules idle task to be the next runnable task on current CPU.
  4469. * It does so by boosting its priority to highest possible and adding it to
  4470. * the _front_ of the runqueue. Used by CPU offline code.
  4471. */
  4472. void sched_idle_next(void)
  4473. {
  4474. int this_cpu = smp_processor_id();
  4475. struct rq *rq = cpu_rq(this_cpu);
  4476. struct task_struct *p = rq->idle;
  4477. unsigned long flags;
  4478. /* cpu has to be offline */
  4479. BUG_ON(cpu_online(this_cpu));
  4480. /*
  4481. * Strictly not necessary since rest of the CPUs are stopped by now
  4482. * and interrupts disabled on the current cpu.
  4483. */
  4484. spin_lock_irqsave(&rq->lock, flags);
  4485. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4486. /* Add idle task to the _front_ of its priority queue: */
  4487. activate_idle_task(p, rq);
  4488. spin_unlock_irqrestore(&rq->lock, flags);
  4489. }
  4490. /*
  4491. * Ensures that the idle task is using init_mm right before its cpu goes
  4492. * offline.
  4493. */
  4494. void idle_task_exit(void)
  4495. {
  4496. struct mm_struct *mm = current->active_mm;
  4497. BUG_ON(cpu_online(smp_processor_id()));
  4498. if (mm != &init_mm)
  4499. switch_mm(mm, &init_mm, current);
  4500. mmdrop(mm);
  4501. }
  4502. /* called under rq->lock with disabled interrupts */
  4503. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4504. {
  4505. struct rq *rq = cpu_rq(dead_cpu);
  4506. /* Must be exiting, otherwise would be on tasklist. */
  4507. BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
  4508. /* Cannot have done final schedule yet: would have vanished. */
  4509. BUG_ON(p->state == TASK_DEAD);
  4510. get_task_struct(p);
  4511. /*
  4512. * Drop lock around migration; if someone else moves it,
  4513. * that's OK. No task can be added to this CPU, so iteration is
  4514. * fine.
  4515. * NOTE: interrupts should be left disabled --dev@
  4516. */
  4517. spin_unlock(&rq->lock);
  4518. move_task_off_dead_cpu(dead_cpu, p);
  4519. spin_lock(&rq->lock);
  4520. put_task_struct(p);
  4521. }
  4522. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4523. static void migrate_dead_tasks(unsigned int dead_cpu)
  4524. {
  4525. struct rq *rq = cpu_rq(dead_cpu);
  4526. struct task_struct *next;
  4527. for ( ; ; ) {
  4528. if (!rq->nr_running)
  4529. break;
  4530. update_rq_clock(rq);
  4531. next = pick_next_task(rq, rq->curr);
  4532. if (!next)
  4533. break;
  4534. migrate_dead(dead_cpu, next);
  4535. }
  4536. }
  4537. #endif /* CONFIG_HOTPLUG_CPU */
  4538. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4539. static struct ctl_table sd_ctl_dir[] = {
  4540. {
  4541. .procname = "sched_domain",
  4542. .mode = 0555,
  4543. },
  4544. {0,},
  4545. };
  4546. static struct ctl_table sd_ctl_root[] = {
  4547. {
  4548. .ctl_name = CTL_KERN,
  4549. .procname = "kernel",
  4550. .mode = 0555,
  4551. .child = sd_ctl_dir,
  4552. },
  4553. {0,},
  4554. };
  4555. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4556. {
  4557. struct ctl_table *entry =
  4558. kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
  4559. BUG_ON(!entry);
  4560. memset(entry, 0, n * sizeof(struct ctl_table));
  4561. return entry;
  4562. }
  4563. static void
  4564. set_table_entry(struct ctl_table *entry,
  4565. const char *procname, void *data, int maxlen,
  4566. mode_t mode, proc_handler *proc_handler)
  4567. {
  4568. entry->procname = procname;
  4569. entry->data = data;
  4570. entry->maxlen = maxlen;
  4571. entry->mode = mode;
  4572. entry->proc_handler = proc_handler;
  4573. }
  4574. static struct ctl_table *
  4575. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4576. {
  4577. struct ctl_table *table = sd_alloc_ctl_entry(14);
  4578. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4579. sizeof(long), 0644, proc_doulongvec_minmax);
  4580. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4581. sizeof(long), 0644, proc_doulongvec_minmax);
  4582. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4583. sizeof(int), 0644, proc_dointvec_minmax);
  4584. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4585. sizeof(int), 0644, proc_dointvec_minmax);
  4586. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4587. sizeof(int), 0644, proc_dointvec_minmax);
  4588. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4589. sizeof(int), 0644, proc_dointvec_minmax);
  4590. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4591. sizeof(int), 0644, proc_dointvec_minmax);
  4592. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4593. sizeof(int), 0644, proc_dointvec_minmax);
  4594. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4595. sizeof(int), 0644, proc_dointvec_minmax);
  4596. set_table_entry(&table[10], "cache_nice_tries",
  4597. &sd->cache_nice_tries,
  4598. sizeof(int), 0644, proc_dointvec_minmax);
  4599. set_table_entry(&table[12], "flags", &sd->flags,
  4600. sizeof(int), 0644, proc_dointvec_minmax);
  4601. return table;
  4602. }
  4603. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4604. {
  4605. struct ctl_table *entry, *table;
  4606. struct sched_domain *sd;
  4607. int domain_num = 0, i;
  4608. char buf[32];
  4609. for_each_domain(cpu, sd)
  4610. domain_num++;
  4611. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4612. i = 0;
  4613. for_each_domain(cpu, sd) {
  4614. snprintf(buf, 32, "domain%d", i);
  4615. entry->procname = kstrdup(buf, GFP_KERNEL);
  4616. entry->mode = 0555;
  4617. entry->child = sd_alloc_ctl_domain_table(sd);
  4618. entry++;
  4619. i++;
  4620. }
  4621. return table;
  4622. }
  4623. static struct ctl_table_header *sd_sysctl_header;
  4624. static void init_sched_domain_sysctl(void)
  4625. {
  4626. int i, cpu_num = num_online_cpus();
  4627. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4628. char buf[32];
  4629. sd_ctl_dir[0].child = entry;
  4630. for (i = 0; i < cpu_num; i++, entry++) {
  4631. snprintf(buf, 32, "cpu%d", i);
  4632. entry->procname = kstrdup(buf, GFP_KERNEL);
  4633. entry->mode = 0555;
  4634. entry->child = sd_alloc_ctl_cpu_table(i);
  4635. }
  4636. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4637. }
  4638. #else
  4639. static void init_sched_domain_sysctl(void)
  4640. {
  4641. }
  4642. #endif
  4643. /*
  4644. * migration_call - callback that gets triggered when a CPU is added.
  4645. * Here we can start up the necessary migration thread for the new CPU.
  4646. */
  4647. static int __cpuinit
  4648. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4649. {
  4650. struct task_struct *p;
  4651. int cpu = (long)hcpu;
  4652. unsigned long flags;
  4653. struct rq *rq;
  4654. switch (action) {
  4655. case CPU_LOCK_ACQUIRE:
  4656. mutex_lock(&sched_hotcpu_mutex);
  4657. break;
  4658. case CPU_UP_PREPARE:
  4659. case CPU_UP_PREPARE_FROZEN:
  4660. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  4661. if (IS_ERR(p))
  4662. return NOTIFY_BAD;
  4663. kthread_bind(p, cpu);
  4664. /* Must be high prio: stop_machine expects to yield to it. */
  4665. rq = task_rq_lock(p, &flags);
  4666. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4667. task_rq_unlock(rq, &flags);
  4668. cpu_rq(cpu)->migration_thread = p;
  4669. break;
  4670. case CPU_ONLINE:
  4671. case CPU_ONLINE_FROZEN:
  4672. /* Strictly unneccessary, as first user will wake it. */
  4673. wake_up_process(cpu_rq(cpu)->migration_thread);
  4674. break;
  4675. #ifdef CONFIG_HOTPLUG_CPU
  4676. case CPU_UP_CANCELED:
  4677. case CPU_UP_CANCELED_FROZEN:
  4678. if (!cpu_rq(cpu)->migration_thread)
  4679. break;
  4680. /* Unbind it from offline cpu so it can run. Fall thru. */
  4681. kthread_bind(cpu_rq(cpu)->migration_thread,
  4682. any_online_cpu(cpu_online_map));
  4683. kthread_stop(cpu_rq(cpu)->migration_thread);
  4684. cpu_rq(cpu)->migration_thread = NULL;
  4685. break;
  4686. case CPU_DEAD:
  4687. case CPU_DEAD_FROZEN:
  4688. migrate_live_tasks(cpu);
  4689. rq = cpu_rq(cpu);
  4690. kthread_stop(rq->migration_thread);
  4691. rq->migration_thread = NULL;
  4692. /* Idle task back to normal (off runqueue, low prio) */
  4693. rq = task_rq_lock(rq->idle, &flags);
  4694. update_rq_clock(rq);
  4695. deactivate_task(rq, rq->idle, 0);
  4696. rq->idle->static_prio = MAX_PRIO;
  4697. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  4698. rq->idle->sched_class = &idle_sched_class;
  4699. migrate_dead_tasks(cpu);
  4700. task_rq_unlock(rq, &flags);
  4701. migrate_nr_uninterruptible(rq);
  4702. BUG_ON(rq->nr_running != 0);
  4703. /* No need to migrate the tasks: it was best-effort if
  4704. * they didn't take sched_hotcpu_mutex. Just wake up
  4705. * the requestors. */
  4706. spin_lock_irq(&rq->lock);
  4707. while (!list_empty(&rq->migration_queue)) {
  4708. struct migration_req *req;
  4709. req = list_entry(rq->migration_queue.next,
  4710. struct migration_req, list);
  4711. list_del_init(&req->list);
  4712. complete(&req->done);
  4713. }
  4714. spin_unlock_irq(&rq->lock);
  4715. break;
  4716. #endif
  4717. case CPU_LOCK_RELEASE:
  4718. mutex_unlock(&sched_hotcpu_mutex);
  4719. break;
  4720. }
  4721. return NOTIFY_OK;
  4722. }
  4723. /* Register at highest priority so that task migration (migrate_all_tasks)
  4724. * happens before everything else.
  4725. */
  4726. static struct notifier_block __cpuinitdata migration_notifier = {
  4727. .notifier_call = migration_call,
  4728. .priority = 10
  4729. };
  4730. int __init migration_init(void)
  4731. {
  4732. void *cpu = (void *)(long)smp_processor_id();
  4733. int err;
  4734. /* Start one for the boot CPU: */
  4735. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4736. BUG_ON(err == NOTIFY_BAD);
  4737. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4738. register_cpu_notifier(&migration_notifier);
  4739. return 0;
  4740. }
  4741. #endif
  4742. #ifdef CONFIG_SMP
  4743. /* Number of possible processor ids */
  4744. int nr_cpu_ids __read_mostly = NR_CPUS;
  4745. EXPORT_SYMBOL(nr_cpu_ids);
  4746. #undef SCHED_DOMAIN_DEBUG
  4747. #ifdef SCHED_DOMAIN_DEBUG
  4748. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4749. {
  4750. int level = 0;
  4751. if (!sd) {
  4752. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4753. return;
  4754. }
  4755. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4756. do {
  4757. int i;
  4758. char str[NR_CPUS];
  4759. struct sched_group *group = sd->groups;
  4760. cpumask_t groupmask;
  4761. cpumask_scnprintf(str, NR_CPUS, sd->span);
  4762. cpus_clear(groupmask);
  4763. printk(KERN_DEBUG);
  4764. for (i = 0; i < level + 1; i++)
  4765. printk(" ");
  4766. printk("domain %d: ", level);
  4767. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4768. printk("does not load-balance\n");
  4769. if (sd->parent)
  4770. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4771. " has parent");
  4772. break;
  4773. }
  4774. printk("span %s\n", str);
  4775. if (!cpu_isset(cpu, sd->span))
  4776. printk(KERN_ERR "ERROR: domain->span does not contain "
  4777. "CPU%d\n", cpu);
  4778. if (!cpu_isset(cpu, group->cpumask))
  4779. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4780. " CPU%d\n", cpu);
  4781. printk(KERN_DEBUG);
  4782. for (i = 0; i < level + 2; i++)
  4783. printk(" ");
  4784. printk("groups:");
  4785. do {
  4786. if (!group) {
  4787. printk("\n");
  4788. printk(KERN_ERR "ERROR: group is NULL\n");
  4789. break;
  4790. }
  4791. if (!group->__cpu_power) {
  4792. printk("\n");
  4793. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4794. "set\n");
  4795. }
  4796. if (!cpus_weight(group->cpumask)) {
  4797. printk("\n");
  4798. printk(KERN_ERR "ERROR: empty group\n");
  4799. }
  4800. if (cpus_intersects(groupmask, group->cpumask)) {
  4801. printk("\n");
  4802. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4803. }
  4804. cpus_or(groupmask, groupmask, group->cpumask);
  4805. cpumask_scnprintf(str, NR_CPUS, group->cpumask);
  4806. printk(" %s", str);
  4807. group = group->next;
  4808. } while (group != sd->groups);
  4809. printk("\n");
  4810. if (!cpus_equal(sd->span, groupmask))
  4811. printk(KERN_ERR "ERROR: groups don't span "
  4812. "domain->span\n");
  4813. level++;
  4814. sd = sd->parent;
  4815. if (!sd)
  4816. continue;
  4817. if (!cpus_subset(groupmask, sd->span))
  4818. printk(KERN_ERR "ERROR: parent span is not a superset "
  4819. "of domain->span\n");
  4820. } while (sd);
  4821. }
  4822. #else
  4823. # define sched_domain_debug(sd, cpu) do { } while (0)
  4824. #endif
  4825. static int sd_degenerate(struct sched_domain *sd)
  4826. {
  4827. if (cpus_weight(sd->span) == 1)
  4828. return 1;
  4829. /* Following flags need at least 2 groups */
  4830. if (sd->flags & (SD_LOAD_BALANCE |
  4831. SD_BALANCE_NEWIDLE |
  4832. SD_BALANCE_FORK |
  4833. SD_BALANCE_EXEC |
  4834. SD_SHARE_CPUPOWER |
  4835. SD_SHARE_PKG_RESOURCES)) {
  4836. if (sd->groups != sd->groups->next)
  4837. return 0;
  4838. }
  4839. /* Following flags don't use groups */
  4840. if (sd->flags & (SD_WAKE_IDLE |
  4841. SD_WAKE_AFFINE |
  4842. SD_WAKE_BALANCE))
  4843. return 0;
  4844. return 1;
  4845. }
  4846. static int
  4847. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4848. {
  4849. unsigned long cflags = sd->flags, pflags = parent->flags;
  4850. if (sd_degenerate(parent))
  4851. return 1;
  4852. if (!cpus_equal(sd->span, parent->span))
  4853. return 0;
  4854. /* Does parent contain flags not in child? */
  4855. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  4856. if (cflags & SD_WAKE_AFFINE)
  4857. pflags &= ~SD_WAKE_BALANCE;
  4858. /* Flags needing groups don't count if only 1 group in parent */
  4859. if (parent->groups == parent->groups->next) {
  4860. pflags &= ~(SD_LOAD_BALANCE |
  4861. SD_BALANCE_NEWIDLE |
  4862. SD_BALANCE_FORK |
  4863. SD_BALANCE_EXEC |
  4864. SD_SHARE_CPUPOWER |
  4865. SD_SHARE_PKG_RESOURCES);
  4866. }
  4867. if (~cflags & pflags)
  4868. return 0;
  4869. return 1;
  4870. }
  4871. /*
  4872. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4873. * hold the hotplug lock.
  4874. */
  4875. static void cpu_attach_domain(struct sched_domain *sd, int cpu)
  4876. {
  4877. struct rq *rq = cpu_rq(cpu);
  4878. struct sched_domain *tmp;
  4879. /* Remove the sched domains which do not contribute to scheduling. */
  4880. for (tmp = sd; tmp; tmp = tmp->parent) {
  4881. struct sched_domain *parent = tmp->parent;
  4882. if (!parent)
  4883. break;
  4884. if (sd_parent_degenerate(tmp, parent)) {
  4885. tmp->parent = parent->parent;
  4886. if (parent->parent)
  4887. parent->parent->child = tmp;
  4888. }
  4889. }
  4890. if (sd && sd_degenerate(sd)) {
  4891. sd = sd->parent;
  4892. if (sd)
  4893. sd->child = NULL;
  4894. }
  4895. sched_domain_debug(sd, cpu);
  4896. rcu_assign_pointer(rq->sd, sd);
  4897. }
  4898. /* cpus with isolated domains */
  4899. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  4900. /* Setup the mask of cpus configured for isolated domains */
  4901. static int __init isolated_cpu_setup(char *str)
  4902. {
  4903. int ints[NR_CPUS], i;
  4904. str = get_options(str, ARRAY_SIZE(ints), ints);
  4905. cpus_clear(cpu_isolated_map);
  4906. for (i = 1; i <= ints[0]; i++)
  4907. if (ints[i] < NR_CPUS)
  4908. cpu_set(ints[i], cpu_isolated_map);
  4909. return 1;
  4910. }
  4911. __setup ("isolcpus=", isolated_cpu_setup);
  4912. /*
  4913. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  4914. * to a function which identifies what group(along with sched group) a CPU
  4915. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  4916. * (due to the fact that we keep track of groups covered with a cpumask_t).
  4917. *
  4918. * init_sched_build_groups will build a circular linked list of the groups
  4919. * covered by the given span, and will set each group's ->cpumask correctly,
  4920. * and ->cpu_power to 0.
  4921. */
  4922. static void
  4923. init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
  4924. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  4925. struct sched_group **sg))
  4926. {
  4927. struct sched_group *first = NULL, *last = NULL;
  4928. cpumask_t covered = CPU_MASK_NONE;
  4929. int i;
  4930. for_each_cpu_mask(i, span) {
  4931. struct sched_group *sg;
  4932. int group = group_fn(i, cpu_map, &sg);
  4933. int j;
  4934. if (cpu_isset(i, covered))
  4935. continue;
  4936. sg->cpumask = CPU_MASK_NONE;
  4937. sg->__cpu_power = 0;
  4938. for_each_cpu_mask(j, span) {
  4939. if (group_fn(j, cpu_map, NULL) != group)
  4940. continue;
  4941. cpu_set(j, covered);
  4942. cpu_set(j, sg->cpumask);
  4943. }
  4944. if (!first)
  4945. first = sg;
  4946. if (last)
  4947. last->next = sg;
  4948. last = sg;
  4949. }
  4950. last->next = first;
  4951. }
  4952. #define SD_NODES_PER_DOMAIN 16
  4953. #ifdef CONFIG_NUMA
  4954. /**
  4955. * find_next_best_node - find the next node to include in a sched_domain
  4956. * @node: node whose sched_domain we're building
  4957. * @used_nodes: nodes already in the sched_domain
  4958. *
  4959. * Find the next node to include in a given scheduling domain. Simply
  4960. * finds the closest node not already in the @used_nodes map.
  4961. *
  4962. * Should use nodemask_t.
  4963. */
  4964. static int find_next_best_node(int node, unsigned long *used_nodes)
  4965. {
  4966. int i, n, val, min_val, best_node = 0;
  4967. min_val = INT_MAX;
  4968. for (i = 0; i < MAX_NUMNODES; i++) {
  4969. /* Start at @node */
  4970. n = (node + i) % MAX_NUMNODES;
  4971. if (!nr_cpus_node(n))
  4972. continue;
  4973. /* Skip already used nodes */
  4974. if (test_bit(n, used_nodes))
  4975. continue;
  4976. /* Simple min distance search */
  4977. val = node_distance(node, n);
  4978. if (val < min_val) {
  4979. min_val = val;
  4980. best_node = n;
  4981. }
  4982. }
  4983. set_bit(best_node, used_nodes);
  4984. return best_node;
  4985. }
  4986. /**
  4987. * sched_domain_node_span - get a cpumask for a node's sched_domain
  4988. * @node: node whose cpumask we're constructing
  4989. * @size: number of nodes to include in this span
  4990. *
  4991. * Given a node, construct a good cpumask for its sched_domain to span. It
  4992. * should be one that prevents unnecessary balancing, but also spreads tasks
  4993. * out optimally.
  4994. */
  4995. static cpumask_t sched_domain_node_span(int node)
  4996. {
  4997. DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
  4998. cpumask_t span, nodemask;
  4999. int i;
  5000. cpus_clear(span);
  5001. bitmap_zero(used_nodes, MAX_NUMNODES);
  5002. nodemask = node_to_cpumask(node);
  5003. cpus_or(span, span, nodemask);
  5004. set_bit(node, used_nodes);
  5005. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5006. int next_node = find_next_best_node(node, used_nodes);
  5007. nodemask = node_to_cpumask(next_node);
  5008. cpus_or(span, span, nodemask);
  5009. }
  5010. return span;
  5011. }
  5012. #endif
  5013. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5014. /*
  5015. * SMT sched-domains:
  5016. */
  5017. #ifdef CONFIG_SCHED_SMT
  5018. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5019. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  5020. static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
  5021. struct sched_group **sg)
  5022. {
  5023. if (sg)
  5024. *sg = &per_cpu(sched_group_cpus, cpu);
  5025. return cpu;
  5026. }
  5027. #endif
  5028. /*
  5029. * multi-core sched-domains:
  5030. */
  5031. #ifdef CONFIG_SCHED_MC
  5032. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5033. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5034. #endif
  5035. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5036. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
  5037. struct sched_group **sg)
  5038. {
  5039. int group;
  5040. cpumask_t mask = cpu_sibling_map[cpu];
  5041. cpus_and(mask, mask, *cpu_map);
  5042. group = first_cpu(mask);
  5043. if (sg)
  5044. *sg = &per_cpu(sched_group_core, group);
  5045. return group;
  5046. }
  5047. #elif defined(CONFIG_SCHED_MC)
  5048. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
  5049. struct sched_group **sg)
  5050. {
  5051. if (sg)
  5052. *sg = &per_cpu(sched_group_core, cpu);
  5053. return cpu;
  5054. }
  5055. #endif
  5056. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5057. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5058. static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
  5059. struct sched_group **sg)
  5060. {
  5061. int group;
  5062. #ifdef CONFIG_SCHED_MC
  5063. cpumask_t mask = cpu_coregroup_map(cpu);
  5064. cpus_and(mask, mask, *cpu_map);
  5065. group = first_cpu(mask);
  5066. #elif defined(CONFIG_SCHED_SMT)
  5067. cpumask_t mask = cpu_sibling_map[cpu];
  5068. cpus_and(mask, mask, *cpu_map);
  5069. group = first_cpu(mask);
  5070. #else
  5071. group = cpu;
  5072. #endif
  5073. if (sg)
  5074. *sg = &per_cpu(sched_group_phys, group);
  5075. return group;
  5076. }
  5077. #ifdef CONFIG_NUMA
  5078. /*
  5079. * The init_sched_build_groups can't handle what we want to do with node
  5080. * groups, so roll our own. Now each node has its own list of groups which
  5081. * gets dynamically allocated.
  5082. */
  5083. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5084. static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
  5085. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5086. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5087. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5088. struct sched_group **sg)
  5089. {
  5090. cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
  5091. int group;
  5092. cpus_and(nodemask, nodemask, *cpu_map);
  5093. group = first_cpu(nodemask);
  5094. if (sg)
  5095. *sg = &per_cpu(sched_group_allnodes, group);
  5096. return group;
  5097. }
  5098. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5099. {
  5100. struct sched_group *sg = group_head;
  5101. int j;
  5102. if (!sg)
  5103. return;
  5104. next_sg:
  5105. for_each_cpu_mask(j, sg->cpumask) {
  5106. struct sched_domain *sd;
  5107. sd = &per_cpu(phys_domains, j);
  5108. if (j != first_cpu(sd->groups->cpumask)) {
  5109. /*
  5110. * Only add "power" once for each
  5111. * physical package.
  5112. */
  5113. continue;
  5114. }
  5115. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  5116. }
  5117. sg = sg->next;
  5118. if (sg != group_head)
  5119. goto next_sg;
  5120. }
  5121. #endif
  5122. #ifdef CONFIG_NUMA
  5123. /* Free memory allocated for various sched_group structures */
  5124. static void free_sched_groups(const cpumask_t *cpu_map)
  5125. {
  5126. int cpu, i;
  5127. for_each_cpu_mask(cpu, *cpu_map) {
  5128. struct sched_group **sched_group_nodes
  5129. = sched_group_nodes_bycpu[cpu];
  5130. if (!sched_group_nodes)
  5131. continue;
  5132. for (i = 0; i < MAX_NUMNODES; i++) {
  5133. cpumask_t nodemask = node_to_cpumask(i);
  5134. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5135. cpus_and(nodemask, nodemask, *cpu_map);
  5136. if (cpus_empty(nodemask))
  5137. continue;
  5138. if (sg == NULL)
  5139. continue;
  5140. sg = sg->next;
  5141. next_sg:
  5142. oldsg = sg;
  5143. sg = sg->next;
  5144. kfree(oldsg);
  5145. if (oldsg != sched_group_nodes[i])
  5146. goto next_sg;
  5147. }
  5148. kfree(sched_group_nodes);
  5149. sched_group_nodes_bycpu[cpu] = NULL;
  5150. }
  5151. }
  5152. #else
  5153. static void free_sched_groups(const cpumask_t *cpu_map)
  5154. {
  5155. }
  5156. #endif
  5157. /*
  5158. * Initialize sched groups cpu_power.
  5159. *
  5160. * cpu_power indicates the capacity of sched group, which is used while
  5161. * distributing the load between different sched groups in a sched domain.
  5162. * Typically cpu_power for all the groups in a sched domain will be same unless
  5163. * there are asymmetries in the topology. If there are asymmetries, group
  5164. * having more cpu_power will pickup more load compared to the group having
  5165. * less cpu_power.
  5166. *
  5167. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  5168. * the maximum number of tasks a group can handle in the presence of other idle
  5169. * or lightly loaded groups in the same sched domain.
  5170. */
  5171. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5172. {
  5173. struct sched_domain *child;
  5174. struct sched_group *group;
  5175. WARN_ON(!sd || !sd->groups);
  5176. if (cpu != first_cpu(sd->groups->cpumask))
  5177. return;
  5178. child = sd->child;
  5179. sd->groups->__cpu_power = 0;
  5180. /*
  5181. * For perf policy, if the groups in child domain share resources
  5182. * (for example cores sharing some portions of the cache hierarchy
  5183. * or SMT), then set this domain groups cpu_power such that each group
  5184. * can handle only one task, when there are other idle groups in the
  5185. * same sched domain.
  5186. */
  5187. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  5188. (child->flags &
  5189. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  5190. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  5191. return;
  5192. }
  5193. /*
  5194. * add cpu_power of each child group to this groups cpu_power
  5195. */
  5196. group = child->groups;
  5197. do {
  5198. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  5199. group = group->next;
  5200. } while (group != child->groups);
  5201. }
  5202. /*
  5203. * Build sched domains for a given set of cpus and attach the sched domains
  5204. * to the individual cpus
  5205. */
  5206. static int build_sched_domains(const cpumask_t *cpu_map)
  5207. {
  5208. int i;
  5209. #ifdef CONFIG_NUMA
  5210. struct sched_group **sched_group_nodes = NULL;
  5211. int sd_allnodes = 0;
  5212. /*
  5213. * Allocate the per-node list of sched groups
  5214. */
  5215. sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
  5216. GFP_KERNEL);
  5217. if (!sched_group_nodes) {
  5218. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5219. return -ENOMEM;
  5220. }
  5221. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  5222. #endif
  5223. /*
  5224. * Set up domains for cpus specified by the cpu_map.
  5225. */
  5226. for_each_cpu_mask(i, *cpu_map) {
  5227. struct sched_domain *sd = NULL, *p;
  5228. cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
  5229. cpus_and(nodemask, nodemask, *cpu_map);
  5230. #ifdef CONFIG_NUMA
  5231. if (cpus_weight(*cpu_map) >
  5232. SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
  5233. sd = &per_cpu(allnodes_domains, i);
  5234. *sd = SD_ALLNODES_INIT;
  5235. sd->span = *cpu_map;
  5236. cpu_to_allnodes_group(i, cpu_map, &sd->groups);
  5237. p = sd;
  5238. sd_allnodes = 1;
  5239. } else
  5240. p = NULL;
  5241. sd = &per_cpu(node_domains, i);
  5242. *sd = SD_NODE_INIT;
  5243. sd->span = sched_domain_node_span(cpu_to_node(i));
  5244. sd->parent = p;
  5245. if (p)
  5246. p->child = sd;
  5247. cpus_and(sd->span, sd->span, *cpu_map);
  5248. #endif
  5249. p = sd;
  5250. sd = &per_cpu(phys_domains, i);
  5251. *sd = SD_CPU_INIT;
  5252. sd->span = nodemask;
  5253. sd->parent = p;
  5254. if (p)
  5255. p->child = sd;
  5256. cpu_to_phys_group(i, cpu_map, &sd->groups);
  5257. #ifdef CONFIG_SCHED_MC
  5258. p = sd;
  5259. sd = &per_cpu(core_domains, i);
  5260. *sd = SD_MC_INIT;
  5261. sd->span = cpu_coregroup_map(i);
  5262. cpus_and(sd->span, sd->span, *cpu_map);
  5263. sd->parent = p;
  5264. p->child = sd;
  5265. cpu_to_core_group(i, cpu_map, &sd->groups);
  5266. #endif
  5267. #ifdef CONFIG_SCHED_SMT
  5268. p = sd;
  5269. sd = &per_cpu(cpu_domains, i);
  5270. *sd = SD_SIBLING_INIT;
  5271. sd->span = cpu_sibling_map[i];
  5272. cpus_and(sd->span, sd->span, *cpu_map);
  5273. sd->parent = p;
  5274. p->child = sd;
  5275. cpu_to_cpu_group(i, cpu_map, &sd->groups);
  5276. #endif
  5277. }
  5278. #ifdef CONFIG_SCHED_SMT
  5279. /* Set up CPU (sibling) groups */
  5280. for_each_cpu_mask(i, *cpu_map) {
  5281. cpumask_t this_sibling_map = cpu_sibling_map[i];
  5282. cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
  5283. if (i != first_cpu(this_sibling_map))
  5284. continue;
  5285. init_sched_build_groups(this_sibling_map, cpu_map,
  5286. &cpu_to_cpu_group);
  5287. }
  5288. #endif
  5289. #ifdef CONFIG_SCHED_MC
  5290. /* Set up multi-core groups */
  5291. for_each_cpu_mask(i, *cpu_map) {
  5292. cpumask_t this_core_map = cpu_coregroup_map(i);
  5293. cpus_and(this_core_map, this_core_map, *cpu_map);
  5294. if (i != first_cpu(this_core_map))
  5295. continue;
  5296. init_sched_build_groups(this_core_map, cpu_map,
  5297. &cpu_to_core_group);
  5298. }
  5299. #endif
  5300. /* Set up physical groups */
  5301. for (i = 0; i < MAX_NUMNODES; i++) {
  5302. cpumask_t nodemask = node_to_cpumask(i);
  5303. cpus_and(nodemask, nodemask, *cpu_map);
  5304. if (cpus_empty(nodemask))
  5305. continue;
  5306. init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
  5307. }
  5308. #ifdef CONFIG_NUMA
  5309. /* Set up node groups */
  5310. if (sd_allnodes)
  5311. init_sched_build_groups(*cpu_map, cpu_map,
  5312. &cpu_to_allnodes_group);
  5313. for (i = 0; i < MAX_NUMNODES; i++) {
  5314. /* Set up node groups */
  5315. struct sched_group *sg, *prev;
  5316. cpumask_t nodemask = node_to_cpumask(i);
  5317. cpumask_t domainspan;
  5318. cpumask_t covered = CPU_MASK_NONE;
  5319. int j;
  5320. cpus_and(nodemask, nodemask, *cpu_map);
  5321. if (cpus_empty(nodemask)) {
  5322. sched_group_nodes[i] = NULL;
  5323. continue;
  5324. }
  5325. domainspan = sched_domain_node_span(i);
  5326. cpus_and(domainspan, domainspan, *cpu_map);
  5327. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  5328. if (!sg) {
  5329. printk(KERN_WARNING "Can not alloc domain group for "
  5330. "node %d\n", i);
  5331. goto error;
  5332. }
  5333. sched_group_nodes[i] = sg;
  5334. for_each_cpu_mask(j, nodemask) {
  5335. struct sched_domain *sd;
  5336. sd = &per_cpu(node_domains, j);
  5337. sd->groups = sg;
  5338. }
  5339. sg->__cpu_power = 0;
  5340. sg->cpumask = nodemask;
  5341. sg->next = sg;
  5342. cpus_or(covered, covered, nodemask);
  5343. prev = sg;
  5344. for (j = 0; j < MAX_NUMNODES; j++) {
  5345. cpumask_t tmp, notcovered;
  5346. int n = (i + j) % MAX_NUMNODES;
  5347. cpus_complement(notcovered, covered);
  5348. cpus_and(tmp, notcovered, *cpu_map);
  5349. cpus_and(tmp, tmp, domainspan);
  5350. if (cpus_empty(tmp))
  5351. break;
  5352. nodemask = node_to_cpumask(n);
  5353. cpus_and(tmp, tmp, nodemask);
  5354. if (cpus_empty(tmp))
  5355. continue;
  5356. sg = kmalloc_node(sizeof(struct sched_group),
  5357. GFP_KERNEL, i);
  5358. if (!sg) {
  5359. printk(KERN_WARNING
  5360. "Can not alloc domain group for node %d\n", j);
  5361. goto error;
  5362. }
  5363. sg->__cpu_power = 0;
  5364. sg->cpumask = tmp;
  5365. sg->next = prev->next;
  5366. cpus_or(covered, covered, tmp);
  5367. prev->next = sg;
  5368. prev = sg;
  5369. }
  5370. }
  5371. #endif
  5372. /* Calculate CPU power for physical packages and nodes */
  5373. #ifdef CONFIG_SCHED_SMT
  5374. for_each_cpu_mask(i, *cpu_map) {
  5375. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  5376. init_sched_groups_power(i, sd);
  5377. }
  5378. #endif
  5379. #ifdef CONFIG_SCHED_MC
  5380. for_each_cpu_mask(i, *cpu_map) {
  5381. struct sched_domain *sd = &per_cpu(core_domains, i);
  5382. init_sched_groups_power(i, sd);
  5383. }
  5384. #endif
  5385. for_each_cpu_mask(i, *cpu_map) {
  5386. struct sched_domain *sd = &per_cpu(phys_domains, i);
  5387. init_sched_groups_power(i, sd);
  5388. }
  5389. #ifdef CONFIG_NUMA
  5390. for (i = 0; i < MAX_NUMNODES; i++)
  5391. init_numa_sched_groups_power(sched_group_nodes[i]);
  5392. if (sd_allnodes) {
  5393. struct sched_group *sg;
  5394. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
  5395. init_numa_sched_groups_power(sg);
  5396. }
  5397. #endif
  5398. /* Attach the domains */
  5399. for_each_cpu_mask(i, *cpu_map) {
  5400. struct sched_domain *sd;
  5401. #ifdef CONFIG_SCHED_SMT
  5402. sd = &per_cpu(cpu_domains, i);
  5403. #elif defined(CONFIG_SCHED_MC)
  5404. sd = &per_cpu(core_domains, i);
  5405. #else
  5406. sd = &per_cpu(phys_domains, i);
  5407. #endif
  5408. cpu_attach_domain(sd, i);
  5409. }
  5410. return 0;
  5411. #ifdef CONFIG_NUMA
  5412. error:
  5413. free_sched_groups(cpu_map);
  5414. return -ENOMEM;
  5415. #endif
  5416. }
  5417. /*
  5418. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5419. */
  5420. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  5421. {
  5422. cpumask_t cpu_default_map;
  5423. int err;
  5424. /*
  5425. * Setup mask for cpus without special case scheduling requirements.
  5426. * For now this just excludes isolated cpus, but could be used to
  5427. * exclude other special cases in the future.
  5428. */
  5429. cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
  5430. err = build_sched_domains(&cpu_default_map);
  5431. return err;
  5432. }
  5433. static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
  5434. {
  5435. free_sched_groups(cpu_map);
  5436. }
  5437. /*
  5438. * Detach sched domains from a group of cpus specified in cpu_map
  5439. * These cpus will now be attached to the NULL domain
  5440. */
  5441. static void detach_destroy_domains(const cpumask_t *cpu_map)
  5442. {
  5443. int i;
  5444. for_each_cpu_mask(i, *cpu_map)
  5445. cpu_attach_domain(NULL, i);
  5446. synchronize_sched();
  5447. arch_destroy_sched_domains(cpu_map);
  5448. }
  5449. /*
  5450. * Partition sched domains as specified by the cpumasks below.
  5451. * This attaches all cpus from the cpumasks to the NULL domain,
  5452. * waits for a RCU quiescent period, recalculates sched
  5453. * domain information and then attaches them back to the
  5454. * correct sched domains
  5455. * Call with hotplug lock held
  5456. */
  5457. int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
  5458. {
  5459. cpumask_t change_map;
  5460. int err = 0;
  5461. cpus_and(*partition1, *partition1, cpu_online_map);
  5462. cpus_and(*partition2, *partition2, cpu_online_map);
  5463. cpus_or(change_map, *partition1, *partition2);
  5464. /* Detach sched domains from all of the affected cpus */
  5465. detach_destroy_domains(&change_map);
  5466. if (!cpus_empty(*partition1))
  5467. err = build_sched_domains(partition1);
  5468. if (!err && !cpus_empty(*partition2))
  5469. err = build_sched_domains(partition2);
  5470. return err;
  5471. }
  5472. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  5473. static int arch_reinit_sched_domains(void)
  5474. {
  5475. int err;
  5476. mutex_lock(&sched_hotcpu_mutex);
  5477. detach_destroy_domains(&cpu_online_map);
  5478. err = arch_init_sched_domains(&cpu_online_map);
  5479. mutex_unlock(&sched_hotcpu_mutex);
  5480. return err;
  5481. }
  5482. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  5483. {
  5484. int ret;
  5485. if (buf[0] != '0' && buf[0] != '1')
  5486. return -EINVAL;
  5487. if (smt)
  5488. sched_smt_power_savings = (buf[0] == '1');
  5489. else
  5490. sched_mc_power_savings = (buf[0] == '1');
  5491. ret = arch_reinit_sched_domains();
  5492. return ret ? ret : count;
  5493. }
  5494. #ifdef CONFIG_SCHED_MC
  5495. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  5496. {
  5497. return sprintf(page, "%u\n", sched_mc_power_savings);
  5498. }
  5499. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  5500. const char *buf, size_t count)
  5501. {
  5502. return sched_power_savings_store(buf, count, 0);
  5503. }
  5504. static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  5505. sched_mc_power_savings_store);
  5506. #endif
  5507. #ifdef CONFIG_SCHED_SMT
  5508. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  5509. {
  5510. return sprintf(page, "%u\n", sched_smt_power_savings);
  5511. }
  5512. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  5513. const char *buf, size_t count)
  5514. {
  5515. return sched_power_savings_store(buf, count, 1);
  5516. }
  5517. static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  5518. sched_smt_power_savings_store);
  5519. #endif
  5520. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  5521. {
  5522. int err = 0;
  5523. #ifdef CONFIG_SCHED_SMT
  5524. if (smt_capable())
  5525. err = sysfs_create_file(&cls->kset.kobj,
  5526. &attr_sched_smt_power_savings.attr);
  5527. #endif
  5528. #ifdef CONFIG_SCHED_MC
  5529. if (!err && mc_capable())
  5530. err = sysfs_create_file(&cls->kset.kobj,
  5531. &attr_sched_mc_power_savings.attr);
  5532. #endif
  5533. return err;
  5534. }
  5535. #endif
  5536. /*
  5537. * Force a reinitialization of the sched domains hierarchy. The domains
  5538. * and groups cannot be updated in place without racing with the balancing
  5539. * code, so we temporarily attach all running cpus to the NULL domain
  5540. * which will prevent rebalancing while the sched domains are recalculated.
  5541. */
  5542. static int update_sched_domains(struct notifier_block *nfb,
  5543. unsigned long action, void *hcpu)
  5544. {
  5545. switch (action) {
  5546. case CPU_UP_PREPARE:
  5547. case CPU_UP_PREPARE_FROZEN:
  5548. case CPU_DOWN_PREPARE:
  5549. case CPU_DOWN_PREPARE_FROZEN:
  5550. detach_destroy_domains(&cpu_online_map);
  5551. return NOTIFY_OK;
  5552. case CPU_UP_CANCELED:
  5553. case CPU_UP_CANCELED_FROZEN:
  5554. case CPU_DOWN_FAILED:
  5555. case CPU_DOWN_FAILED_FROZEN:
  5556. case CPU_ONLINE:
  5557. case CPU_ONLINE_FROZEN:
  5558. case CPU_DEAD:
  5559. case CPU_DEAD_FROZEN:
  5560. /*
  5561. * Fall through and re-initialise the domains.
  5562. */
  5563. break;
  5564. default:
  5565. return NOTIFY_DONE;
  5566. }
  5567. /* The hotplug lock is already held by cpu_up/cpu_down */
  5568. arch_init_sched_domains(&cpu_online_map);
  5569. return NOTIFY_OK;
  5570. }
  5571. void __init sched_init_smp(void)
  5572. {
  5573. cpumask_t non_isolated_cpus;
  5574. mutex_lock(&sched_hotcpu_mutex);
  5575. arch_init_sched_domains(&cpu_online_map);
  5576. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  5577. if (cpus_empty(non_isolated_cpus))
  5578. cpu_set(smp_processor_id(), non_isolated_cpus);
  5579. mutex_unlock(&sched_hotcpu_mutex);
  5580. /* XXX: Theoretical race here - CPU may be hotplugged now */
  5581. hotcpu_notifier(update_sched_domains, 0);
  5582. init_sched_domain_sysctl();
  5583. /* Move init over to a non-isolated CPU */
  5584. if (set_cpus_allowed(current, non_isolated_cpus) < 0)
  5585. BUG();
  5586. sched_init_granularity();
  5587. }
  5588. #else
  5589. void __init sched_init_smp(void)
  5590. {
  5591. sched_init_granularity();
  5592. }
  5593. #endif /* CONFIG_SMP */
  5594. int in_sched_functions(unsigned long addr)
  5595. {
  5596. /* Linker adds these: start and end of __sched functions */
  5597. extern char __sched_text_start[], __sched_text_end[];
  5598. return in_lock_functions(addr) ||
  5599. (addr >= (unsigned long)__sched_text_start
  5600. && addr < (unsigned long)__sched_text_end);
  5601. }
  5602. static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  5603. {
  5604. cfs_rq->tasks_timeline = RB_ROOT;
  5605. cfs_rq->fair_clock = 1;
  5606. #ifdef CONFIG_FAIR_GROUP_SCHED
  5607. cfs_rq->rq = rq;
  5608. #endif
  5609. }
  5610. void __init sched_init(void)
  5611. {
  5612. u64 now = sched_clock();
  5613. int highest_cpu = 0;
  5614. int i, j;
  5615. /*
  5616. * Link up the scheduling class hierarchy:
  5617. */
  5618. rt_sched_class.next = &fair_sched_class;
  5619. fair_sched_class.next = &idle_sched_class;
  5620. idle_sched_class.next = NULL;
  5621. for_each_possible_cpu(i) {
  5622. struct rt_prio_array *array;
  5623. struct rq *rq;
  5624. rq = cpu_rq(i);
  5625. spin_lock_init(&rq->lock);
  5626. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  5627. rq->nr_running = 0;
  5628. rq->clock = 1;
  5629. init_cfs_rq(&rq->cfs, rq);
  5630. #ifdef CONFIG_FAIR_GROUP_SCHED
  5631. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5632. list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  5633. #endif
  5634. rq->ls.load_update_last = now;
  5635. rq->ls.load_update_start = now;
  5636. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5637. rq->cpu_load[j] = 0;
  5638. #ifdef CONFIG_SMP
  5639. rq->sd = NULL;
  5640. rq->active_balance = 0;
  5641. rq->next_balance = jiffies;
  5642. rq->push_cpu = 0;
  5643. rq->cpu = i;
  5644. rq->migration_thread = NULL;
  5645. INIT_LIST_HEAD(&rq->migration_queue);
  5646. #endif
  5647. atomic_set(&rq->nr_iowait, 0);
  5648. array = &rq->rt.active;
  5649. for (j = 0; j < MAX_RT_PRIO; j++) {
  5650. INIT_LIST_HEAD(array->queue + j);
  5651. __clear_bit(j, array->bitmap);
  5652. }
  5653. highest_cpu = i;
  5654. /* delimiter for bitsearch: */
  5655. __set_bit(MAX_RT_PRIO, array->bitmap);
  5656. }
  5657. set_load_weight(&init_task);
  5658. #ifdef CONFIG_PREEMPT_NOTIFIERS
  5659. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  5660. #endif
  5661. #ifdef CONFIG_SMP
  5662. nr_cpu_ids = highest_cpu + 1;
  5663. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  5664. #endif
  5665. #ifdef CONFIG_RT_MUTEXES
  5666. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  5667. #endif
  5668. /*
  5669. * The boot idle thread does lazy MMU switching as well:
  5670. */
  5671. atomic_inc(&init_mm.mm_count);
  5672. enter_lazy_tlb(&init_mm, current);
  5673. /*
  5674. * Make us the idle thread. Technically, schedule() should not be
  5675. * called from this thread, however somewhere below it might be,
  5676. * but because we are the idle thread, we just pick up running again
  5677. * when this runqueue becomes "idle".
  5678. */
  5679. init_idle(current, smp_processor_id());
  5680. /*
  5681. * During early bootup we pretend to be a normal task:
  5682. */
  5683. current->sched_class = &fair_sched_class;
  5684. }
  5685. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  5686. void __might_sleep(char *file, int line)
  5687. {
  5688. #ifdef in_atomic
  5689. static unsigned long prev_jiffy; /* ratelimiting */
  5690. if ((in_atomic() || irqs_disabled()) &&
  5691. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  5692. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5693. return;
  5694. prev_jiffy = jiffies;
  5695. printk(KERN_ERR "BUG: sleeping function called from invalid"
  5696. " context at %s:%d\n", file, line);
  5697. printk("in_atomic():%d, irqs_disabled():%d\n",
  5698. in_atomic(), irqs_disabled());
  5699. debug_show_held_locks(current);
  5700. if (irqs_disabled())
  5701. print_irqtrace_events(current);
  5702. dump_stack();
  5703. }
  5704. #endif
  5705. }
  5706. EXPORT_SYMBOL(__might_sleep);
  5707. #endif
  5708. #ifdef CONFIG_MAGIC_SYSRQ
  5709. void normalize_rt_tasks(void)
  5710. {
  5711. struct task_struct *g, *p;
  5712. unsigned long flags;
  5713. struct rq *rq;
  5714. int on_rq;
  5715. read_lock_irq(&tasklist_lock);
  5716. do_each_thread(g, p) {
  5717. p->se.fair_key = 0;
  5718. p->se.wait_runtime = 0;
  5719. p->se.exec_start = 0;
  5720. p->se.wait_start_fair = 0;
  5721. p->se.sleep_start_fair = 0;
  5722. #ifdef CONFIG_SCHEDSTATS
  5723. p->se.wait_start = 0;
  5724. p->se.sleep_start = 0;
  5725. p->se.block_start = 0;
  5726. #endif
  5727. task_rq(p)->cfs.fair_clock = 0;
  5728. task_rq(p)->clock = 0;
  5729. if (!rt_task(p)) {
  5730. /*
  5731. * Renice negative nice level userspace
  5732. * tasks back to 0:
  5733. */
  5734. if (TASK_NICE(p) < 0 && p->mm)
  5735. set_user_nice(p, 0);
  5736. continue;
  5737. }
  5738. spin_lock_irqsave(&p->pi_lock, flags);
  5739. rq = __task_rq_lock(p);
  5740. #ifdef CONFIG_SMP
  5741. /*
  5742. * Do not touch the migration thread:
  5743. */
  5744. if (p == rq->migration_thread)
  5745. goto out_unlock;
  5746. #endif
  5747. update_rq_clock(rq);
  5748. on_rq = p->se.on_rq;
  5749. if (on_rq)
  5750. deactivate_task(rq, p, 0);
  5751. __setscheduler(rq, p, SCHED_NORMAL, 0);
  5752. if (on_rq) {
  5753. activate_task(rq, p, 0);
  5754. resched_task(rq->curr);
  5755. }
  5756. #ifdef CONFIG_SMP
  5757. out_unlock:
  5758. #endif
  5759. __task_rq_unlock(rq);
  5760. spin_unlock_irqrestore(&p->pi_lock, flags);
  5761. } while_each_thread(g, p);
  5762. read_unlock_irq(&tasklist_lock);
  5763. }
  5764. #endif /* CONFIG_MAGIC_SYSRQ */
  5765. #ifdef CONFIG_IA64
  5766. /*
  5767. * These functions are only useful for the IA64 MCA handling.
  5768. *
  5769. * They can only be called when the whole system has been
  5770. * stopped - every CPU needs to be quiescent, and no scheduling
  5771. * activity can take place. Using them for anything else would
  5772. * be a serious bug, and as a result, they aren't even visible
  5773. * under any other configuration.
  5774. */
  5775. /**
  5776. * curr_task - return the current task for a given cpu.
  5777. * @cpu: the processor in question.
  5778. *
  5779. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5780. */
  5781. struct task_struct *curr_task(int cpu)
  5782. {
  5783. return cpu_curr(cpu);
  5784. }
  5785. /**
  5786. * set_curr_task - set the current task for a given cpu.
  5787. * @cpu: the processor in question.
  5788. * @p: the task pointer to set.
  5789. *
  5790. * Description: This function must only be used when non-maskable interrupts
  5791. * are serviced on a separate stack. It allows the architecture to switch the
  5792. * notion of the current task on a cpu in a non-blocking manner. This function
  5793. * must be called with all CPU's synchronized, and interrupts disabled, the
  5794. * and caller must save the original value of the current task (see
  5795. * curr_task() above) and restore that value before reenabling interrupts and
  5796. * re-starting the system.
  5797. *
  5798. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5799. */
  5800. void set_curr_task(int cpu, struct task_struct *p)
  5801. {
  5802. cpu_curr(cpu) = p;
  5803. }
  5804. #endif