io_64.h 7.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276
  1. #ifndef _ASM_IO_H
  2. #define _ASM_IO_H
  3. /*
  4. * This file contains the definitions for the x86 IO instructions
  5. * inb/inw/inl/outb/outw/outl and the "string versions" of the same
  6. * (insb/insw/insl/outsb/outsw/outsl). You can also use "pausing"
  7. * versions of the single-IO instructions (inb_p/inw_p/..).
  8. *
  9. * This file is not meant to be obfuscating: it's just complicated
  10. * to (a) handle it all in a way that makes gcc able to optimize it
  11. * as well as possible and (b) trying to avoid writing the same thing
  12. * over and over again with slight variations and possibly making a
  13. * mistake somewhere.
  14. */
  15. /*
  16. * Thanks to James van Artsdalen for a better timing-fix than
  17. * the two short jumps: using outb's to a nonexistent port seems
  18. * to guarantee better timings even on fast machines.
  19. *
  20. * On the other hand, I'd like to be sure of a non-existent port:
  21. * I feel a bit unsafe about using 0x80 (should be safe, though)
  22. *
  23. * Linus
  24. */
  25. /*
  26. * Bit simplified and optimized by Jan Hubicka
  27. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999.
  28. *
  29. * isa_memset_io, isa_memcpy_fromio, isa_memcpy_toio added,
  30. * isa_read[wl] and isa_write[wl] fixed
  31. * - Arnaldo Carvalho de Melo <acme@conectiva.com.br>
  32. */
  33. #define __SLOW_DOWN_IO "\noutb %%al,$0x80"
  34. #ifdef REALLY_SLOW_IO
  35. #define __FULL_SLOW_DOWN_IO __SLOW_DOWN_IO __SLOW_DOWN_IO __SLOW_DOWN_IO __SLOW_DOWN_IO
  36. #else
  37. #define __FULL_SLOW_DOWN_IO __SLOW_DOWN_IO
  38. #endif
  39. /*
  40. * Talk about misusing macros..
  41. */
  42. #define __OUT1(s,x) \
  43. static inline void out##s(unsigned x value, unsigned short port) {
  44. #define __OUT2(s,s1,s2) \
  45. __asm__ __volatile__ ("out" #s " %" s1 "0,%" s2 "1"
  46. #define __OUT(s,s1,x) \
  47. __OUT1(s,x) __OUT2(s,s1,"w") : : "a" (value), "Nd" (port)); } \
  48. __OUT1(s##_p,x) __OUT2(s,s1,"w") __FULL_SLOW_DOWN_IO : : "a" (value), "Nd" (port));} \
  49. #define __IN1(s) \
  50. static inline RETURN_TYPE in##s(unsigned short port) { RETURN_TYPE _v;
  51. #define __IN2(s,s1,s2) \
  52. __asm__ __volatile__ ("in" #s " %" s2 "1,%" s1 "0"
  53. #define __IN(s,s1,i...) \
  54. __IN1(s) __IN2(s,s1,"w") : "=a" (_v) : "Nd" (port) ,##i ); return _v; } \
  55. __IN1(s##_p) __IN2(s,s1,"w") __FULL_SLOW_DOWN_IO : "=a" (_v) : "Nd" (port) ,##i ); return _v; } \
  56. #define __INS(s) \
  57. static inline void ins##s(unsigned short port, void * addr, unsigned long count) \
  58. { __asm__ __volatile__ ("rep ; ins" #s \
  59. : "=D" (addr), "=c" (count) : "d" (port),"0" (addr),"1" (count)); }
  60. #define __OUTS(s) \
  61. static inline void outs##s(unsigned short port, const void * addr, unsigned long count) \
  62. { __asm__ __volatile__ ("rep ; outs" #s \
  63. : "=S" (addr), "=c" (count) : "d" (port),"0" (addr),"1" (count)); }
  64. #define RETURN_TYPE unsigned char
  65. __IN(b,"")
  66. #undef RETURN_TYPE
  67. #define RETURN_TYPE unsigned short
  68. __IN(w,"")
  69. #undef RETURN_TYPE
  70. #define RETURN_TYPE unsigned int
  71. __IN(l,"")
  72. #undef RETURN_TYPE
  73. __OUT(b,"b",char)
  74. __OUT(w,"w",short)
  75. __OUT(l,,int)
  76. __INS(b)
  77. __INS(w)
  78. __INS(l)
  79. __OUTS(b)
  80. __OUTS(w)
  81. __OUTS(l)
  82. #define IO_SPACE_LIMIT 0xffff
  83. #if defined(__KERNEL__) && defined(__x86_64__)
  84. #include <linux/vmalloc.h>
  85. #ifndef __i386__
  86. /*
  87. * Change virtual addresses to physical addresses and vv.
  88. * These are pretty trivial
  89. */
  90. static inline unsigned long virt_to_phys(volatile void * address)
  91. {
  92. return __pa(address);
  93. }
  94. static inline void * phys_to_virt(unsigned long address)
  95. {
  96. return __va(address);
  97. }
  98. #endif
  99. /*
  100. * Change "struct page" to physical address.
  101. */
  102. #define page_to_phys(page) ((dma_addr_t)page_to_pfn(page) << PAGE_SHIFT)
  103. #include <asm-generic/iomap.h>
  104. extern void __iomem *__ioremap(unsigned long offset, unsigned long size, unsigned long flags);
  105. static inline void __iomem * ioremap (unsigned long offset, unsigned long size)
  106. {
  107. return __ioremap(offset, size, 0);
  108. }
  109. extern void *early_ioremap(unsigned long addr, unsigned long size);
  110. extern void early_iounmap(void *addr, unsigned long size);
  111. /*
  112. * This one maps high address device memory and turns off caching for that area.
  113. * it's useful if some control registers are in such an area and write combining
  114. * or read caching is not desirable:
  115. */
  116. extern void __iomem * ioremap_nocache (unsigned long offset, unsigned long size);
  117. extern void iounmap(volatile void __iomem *addr);
  118. extern void __iomem *fix_ioremap(unsigned idx, unsigned long phys);
  119. /*
  120. * ISA I/O bus memory addresses are 1:1 with the physical address.
  121. */
  122. #define isa_virt_to_bus virt_to_phys
  123. #define isa_page_to_bus page_to_phys
  124. #define isa_bus_to_virt phys_to_virt
  125. /*
  126. * However PCI ones are not necessarily 1:1 and therefore these interfaces
  127. * are forbidden in portable PCI drivers.
  128. *
  129. * Allow them on x86 for legacy drivers, though.
  130. */
  131. #define virt_to_bus virt_to_phys
  132. #define bus_to_virt phys_to_virt
  133. /*
  134. * readX/writeX() are used to access memory mapped devices. On some
  135. * architectures the memory mapped IO stuff needs to be accessed
  136. * differently. On the x86 architecture, we just read/write the
  137. * memory location directly.
  138. */
  139. static inline __u8 __readb(const volatile void __iomem *addr)
  140. {
  141. return *(__force volatile __u8 *)addr;
  142. }
  143. static inline __u16 __readw(const volatile void __iomem *addr)
  144. {
  145. return *(__force volatile __u16 *)addr;
  146. }
  147. static __always_inline __u32 __readl(const volatile void __iomem *addr)
  148. {
  149. return *(__force volatile __u32 *)addr;
  150. }
  151. static inline __u64 __readq(const volatile void __iomem *addr)
  152. {
  153. return *(__force volatile __u64 *)addr;
  154. }
  155. #define readb(x) __readb(x)
  156. #define readw(x) __readw(x)
  157. #define readl(x) __readl(x)
  158. #define readq(x) __readq(x)
  159. #define readb_relaxed(a) readb(a)
  160. #define readw_relaxed(a) readw(a)
  161. #define readl_relaxed(a) readl(a)
  162. #define readq_relaxed(a) readq(a)
  163. #define __raw_readb readb
  164. #define __raw_readw readw
  165. #define __raw_readl readl
  166. #define __raw_readq readq
  167. #define mmiowb()
  168. static inline void __writel(__u32 b, volatile void __iomem *addr)
  169. {
  170. *(__force volatile __u32 *)addr = b;
  171. }
  172. static inline void __writeq(__u64 b, volatile void __iomem *addr)
  173. {
  174. *(__force volatile __u64 *)addr = b;
  175. }
  176. static inline void __writeb(__u8 b, volatile void __iomem *addr)
  177. {
  178. *(__force volatile __u8 *)addr = b;
  179. }
  180. static inline void __writew(__u16 b, volatile void __iomem *addr)
  181. {
  182. *(__force volatile __u16 *)addr = b;
  183. }
  184. #define writeq(val,addr) __writeq((val),(addr))
  185. #define writel(val,addr) __writel((val),(addr))
  186. #define writew(val,addr) __writew((val),(addr))
  187. #define writeb(val,addr) __writeb((val),(addr))
  188. #define __raw_writeb writeb
  189. #define __raw_writew writew
  190. #define __raw_writel writel
  191. #define __raw_writeq writeq
  192. void __memcpy_fromio(void*,unsigned long,unsigned);
  193. void __memcpy_toio(unsigned long,const void*,unsigned);
  194. static inline void memcpy_fromio(void *to, const volatile void __iomem *from, unsigned len)
  195. {
  196. __memcpy_fromio(to,(unsigned long)from,len);
  197. }
  198. static inline void memcpy_toio(volatile void __iomem *to, const void *from, unsigned len)
  199. {
  200. __memcpy_toio((unsigned long)to,from,len);
  201. }
  202. void memset_io(volatile void __iomem *a, int b, size_t c);
  203. /*
  204. * ISA space is 'always mapped' on a typical x86 system, no need to
  205. * explicitly ioremap() it. The fact that the ISA IO space is mapped
  206. * to PAGE_OFFSET is pure coincidence - it does not mean ISA values
  207. * are physical addresses. The following constant pointer can be
  208. * used as the IO-area pointer (it can be iounmapped as well, so the
  209. * analogy with PCI is quite large):
  210. */
  211. #define __ISA_IO_base ((char __iomem *)(PAGE_OFFSET))
  212. /* Nothing to do */
  213. #define dma_cache_inv(_start,_size) do { } while (0)
  214. #define dma_cache_wback(_start,_size) do { } while (0)
  215. #define dma_cache_wback_inv(_start,_size) do { } while (0)
  216. #define flush_write_buffers()
  217. extern int iommu_bio_merge;
  218. #define BIO_VMERGE_BOUNDARY iommu_bio_merge
  219. /*
  220. * Convert a physical pointer to a virtual kernel pointer for /dev/mem
  221. * access
  222. */
  223. #define xlate_dev_mem_ptr(p) __va(p)
  224. /*
  225. * Convert a virtual cached pointer to an uncached pointer
  226. */
  227. #define xlate_dev_kmem_ptr(p) p
  228. #endif /* __KERNEL__ */
  229. #endif