xfs_inode.c 139 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include "xfs_fs.h"
  20. #include "xfs_types.h"
  21. #include "xfs_bit.h"
  22. #include "xfs_log.h"
  23. #include "xfs_inum.h"
  24. #include "xfs_imap.h"
  25. #include "xfs_trans.h"
  26. #include "xfs_trans_priv.h"
  27. #include "xfs_sb.h"
  28. #include "xfs_ag.h"
  29. #include "xfs_dir2.h"
  30. #include "xfs_dmapi.h"
  31. #include "xfs_mount.h"
  32. #include "xfs_bmap_btree.h"
  33. #include "xfs_alloc_btree.h"
  34. #include "xfs_ialloc_btree.h"
  35. #include "xfs_dir2_sf.h"
  36. #include "xfs_attr_sf.h"
  37. #include "xfs_dinode.h"
  38. #include "xfs_inode.h"
  39. #include "xfs_buf_item.h"
  40. #include "xfs_inode_item.h"
  41. #include "xfs_btree.h"
  42. #include "xfs_alloc.h"
  43. #include "xfs_ialloc.h"
  44. #include "xfs_bmap.h"
  45. #include "xfs_rw.h"
  46. #include "xfs_error.h"
  47. #include "xfs_utils.h"
  48. #include "xfs_dir2_trace.h"
  49. #include "xfs_quota.h"
  50. #include "xfs_acl.h"
  51. #include "xfs_filestream.h"
  52. #include <linux/log2.h>
  53. kmem_zone_t *xfs_ifork_zone;
  54. kmem_zone_t *xfs_inode_zone;
  55. kmem_zone_t *xfs_chashlist_zone;
  56. /*
  57. * Used in xfs_itruncate(). This is the maximum number of extents
  58. * freed from a file in a single transaction.
  59. */
  60. #define XFS_ITRUNC_MAX_EXTENTS 2
  61. STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
  62. STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
  63. STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
  64. STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
  65. #ifdef DEBUG
  66. /*
  67. * Make sure that the extents in the given memory buffer
  68. * are valid.
  69. */
  70. STATIC void
  71. xfs_validate_extents(
  72. xfs_ifork_t *ifp,
  73. int nrecs,
  74. int disk,
  75. xfs_exntfmt_t fmt)
  76. {
  77. xfs_bmbt_rec_t *ep;
  78. xfs_bmbt_irec_t irec;
  79. xfs_bmbt_rec_t rec;
  80. int i;
  81. for (i = 0; i < nrecs; i++) {
  82. ep = xfs_iext_get_ext(ifp, i);
  83. rec.l0 = get_unaligned((__uint64_t*)&ep->l0);
  84. rec.l1 = get_unaligned((__uint64_t*)&ep->l1);
  85. if (disk)
  86. xfs_bmbt_disk_get_all(&rec, &irec);
  87. else
  88. xfs_bmbt_get_all(&rec, &irec);
  89. if (fmt == XFS_EXTFMT_NOSTATE)
  90. ASSERT(irec.br_state == XFS_EXT_NORM);
  91. }
  92. }
  93. #else /* DEBUG */
  94. #define xfs_validate_extents(ifp, nrecs, disk, fmt)
  95. #endif /* DEBUG */
  96. /*
  97. * Check that none of the inode's in the buffer have a next
  98. * unlinked field of 0.
  99. */
  100. #if defined(DEBUG)
  101. void
  102. xfs_inobp_check(
  103. xfs_mount_t *mp,
  104. xfs_buf_t *bp)
  105. {
  106. int i;
  107. int j;
  108. xfs_dinode_t *dip;
  109. j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
  110. for (i = 0; i < j; i++) {
  111. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  112. i * mp->m_sb.sb_inodesize);
  113. if (!dip->di_next_unlinked) {
  114. xfs_fs_cmn_err(CE_ALERT, mp,
  115. "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
  116. bp);
  117. ASSERT(dip->di_next_unlinked);
  118. }
  119. }
  120. }
  121. #endif
  122. /*
  123. * This routine is called to map an inode number within a file
  124. * system to the buffer containing the on-disk version of the
  125. * inode. It returns a pointer to the buffer containing the
  126. * on-disk inode in the bpp parameter, and in the dip parameter
  127. * it returns a pointer to the on-disk inode within that buffer.
  128. *
  129. * If a non-zero error is returned, then the contents of bpp and
  130. * dipp are undefined.
  131. *
  132. * Use xfs_imap() to determine the size and location of the
  133. * buffer to read from disk.
  134. */
  135. STATIC int
  136. xfs_inotobp(
  137. xfs_mount_t *mp,
  138. xfs_trans_t *tp,
  139. xfs_ino_t ino,
  140. xfs_dinode_t **dipp,
  141. xfs_buf_t **bpp,
  142. int *offset)
  143. {
  144. int di_ok;
  145. xfs_imap_t imap;
  146. xfs_buf_t *bp;
  147. int error;
  148. xfs_dinode_t *dip;
  149. /*
  150. * Call the space management code to find the location of the
  151. * inode on disk.
  152. */
  153. imap.im_blkno = 0;
  154. error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
  155. if (error != 0) {
  156. cmn_err(CE_WARN,
  157. "xfs_inotobp: xfs_imap() returned an "
  158. "error %d on %s. Returning error.", error, mp->m_fsname);
  159. return error;
  160. }
  161. /*
  162. * If the inode number maps to a block outside the bounds of the
  163. * file system then return NULL rather than calling read_buf
  164. * and panicing when we get an error from the driver.
  165. */
  166. if ((imap.im_blkno + imap.im_len) >
  167. XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
  168. cmn_err(CE_WARN,
  169. "xfs_inotobp: inode number (%llu + %d) maps to a block outside the bounds "
  170. "of the file system %s. Returning EINVAL.",
  171. (unsigned long long)imap.im_blkno,
  172. imap.im_len, mp->m_fsname);
  173. return XFS_ERROR(EINVAL);
  174. }
  175. /*
  176. * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
  177. * default to just a read_buf() call.
  178. */
  179. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
  180. (int)imap.im_len, XFS_BUF_LOCK, &bp);
  181. if (error) {
  182. cmn_err(CE_WARN,
  183. "xfs_inotobp: xfs_trans_read_buf() returned an "
  184. "error %d on %s. Returning error.", error, mp->m_fsname);
  185. return error;
  186. }
  187. dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0);
  188. di_ok =
  189. INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
  190. XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
  191. if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
  192. XFS_RANDOM_ITOBP_INOTOBP))) {
  193. XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip);
  194. xfs_trans_brelse(tp, bp);
  195. cmn_err(CE_WARN,
  196. "xfs_inotobp: XFS_TEST_ERROR() returned an "
  197. "error on %s. Returning EFSCORRUPTED.", mp->m_fsname);
  198. return XFS_ERROR(EFSCORRUPTED);
  199. }
  200. xfs_inobp_check(mp, bp);
  201. /*
  202. * Set *dipp to point to the on-disk inode in the buffer.
  203. */
  204. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
  205. *bpp = bp;
  206. *offset = imap.im_boffset;
  207. return 0;
  208. }
  209. /*
  210. * This routine is called to map an inode to the buffer containing
  211. * the on-disk version of the inode. It returns a pointer to the
  212. * buffer containing the on-disk inode in the bpp parameter, and in
  213. * the dip parameter it returns a pointer to the on-disk inode within
  214. * that buffer.
  215. *
  216. * If a non-zero error is returned, then the contents of bpp and
  217. * dipp are undefined.
  218. *
  219. * If the inode is new and has not yet been initialized, use xfs_imap()
  220. * to determine the size and location of the buffer to read from disk.
  221. * If the inode has already been mapped to its buffer and read in once,
  222. * then use the mapping information stored in the inode rather than
  223. * calling xfs_imap(). This allows us to avoid the overhead of looking
  224. * at the inode btree for small block file systems (see xfs_dilocate()).
  225. * We can tell whether the inode has been mapped in before by comparing
  226. * its disk block address to 0. Only uninitialized inodes will have
  227. * 0 for the disk block address.
  228. */
  229. int
  230. xfs_itobp(
  231. xfs_mount_t *mp,
  232. xfs_trans_t *tp,
  233. xfs_inode_t *ip,
  234. xfs_dinode_t **dipp,
  235. xfs_buf_t **bpp,
  236. xfs_daddr_t bno,
  237. uint imap_flags)
  238. {
  239. xfs_imap_t imap;
  240. xfs_buf_t *bp;
  241. int error;
  242. int i;
  243. int ni;
  244. if (ip->i_blkno == (xfs_daddr_t)0) {
  245. /*
  246. * Call the space management code to find the location of the
  247. * inode on disk.
  248. */
  249. imap.im_blkno = bno;
  250. if ((error = xfs_imap(mp, tp, ip->i_ino, &imap,
  251. XFS_IMAP_LOOKUP | imap_flags)))
  252. return error;
  253. /*
  254. * If the inode number maps to a block outside the bounds
  255. * of the file system then return NULL rather than calling
  256. * read_buf and panicing when we get an error from the
  257. * driver.
  258. */
  259. if ((imap.im_blkno + imap.im_len) >
  260. XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
  261. #ifdef DEBUG
  262. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
  263. "(imap.im_blkno (0x%llx) "
  264. "+ imap.im_len (0x%llx)) > "
  265. " XFS_FSB_TO_BB(mp, "
  266. "mp->m_sb.sb_dblocks) (0x%llx)",
  267. (unsigned long long) imap.im_blkno,
  268. (unsigned long long) imap.im_len,
  269. XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
  270. #endif /* DEBUG */
  271. return XFS_ERROR(EINVAL);
  272. }
  273. /*
  274. * Fill in the fields in the inode that will be used to
  275. * map the inode to its buffer from now on.
  276. */
  277. ip->i_blkno = imap.im_blkno;
  278. ip->i_len = imap.im_len;
  279. ip->i_boffset = imap.im_boffset;
  280. } else {
  281. /*
  282. * We've already mapped the inode once, so just use the
  283. * mapping that we saved the first time.
  284. */
  285. imap.im_blkno = ip->i_blkno;
  286. imap.im_len = ip->i_len;
  287. imap.im_boffset = ip->i_boffset;
  288. }
  289. ASSERT(bno == 0 || bno == imap.im_blkno);
  290. /*
  291. * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
  292. * default to just a read_buf() call.
  293. */
  294. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
  295. (int)imap.im_len, XFS_BUF_LOCK, &bp);
  296. if (error) {
  297. #ifdef DEBUG
  298. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
  299. "xfs_trans_read_buf() returned error %d, "
  300. "imap.im_blkno 0x%llx, imap.im_len 0x%llx",
  301. error, (unsigned long long) imap.im_blkno,
  302. (unsigned long long) imap.im_len);
  303. #endif /* DEBUG */
  304. return error;
  305. }
  306. /*
  307. * Validate the magic number and version of every inode in the buffer
  308. * (if DEBUG kernel) or the first inode in the buffer, otherwise.
  309. * No validation is done here in userspace (xfs_repair).
  310. */
  311. #if !defined(__KERNEL__)
  312. ni = 0;
  313. #elif defined(DEBUG)
  314. ni = BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog;
  315. #else /* usual case */
  316. ni = 1;
  317. #endif
  318. for (i = 0; i < ni; i++) {
  319. int di_ok;
  320. xfs_dinode_t *dip;
  321. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  322. (i << mp->m_sb.sb_inodelog));
  323. di_ok = INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
  324. XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
  325. if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
  326. XFS_ERRTAG_ITOBP_INOTOBP,
  327. XFS_RANDOM_ITOBP_INOTOBP))) {
  328. if (imap_flags & XFS_IMAP_BULKSTAT) {
  329. xfs_trans_brelse(tp, bp);
  330. return XFS_ERROR(EINVAL);
  331. }
  332. #ifdef DEBUG
  333. cmn_err(CE_ALERT,
  334. "Device %s - bad inode magic/vsn "
  335. "daddr %lld #%d (magic=%x)",
  336. XFS_BUFTARG_NAME(mp->m_ddev_targp),
  337. (unsigned long long)imap.im_blkno, i,
  338. INT_GET(dip->di_core.di_magic, ARCH_CONVERT));
  339. #endif
  340. XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH,
  341. mp, dip);
  342. xfs_trans_brelse(tp, bp);
  343. return XFS_ERROR(EFSCORRUPTED);
  344. }
  345. }
  346. xfs_inobp_check(mp, bp);
  347. /*
  348. * Mark the buffer as an inode buffer now that it looks good
  349. */
  350. XFS_BUF_SET_VTYPE(bp, B_FS_INO);
  351. /*
  352. * Set *dipp to point to the on-disk inode in the buffer.
  353. */
  354. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
  355. *bpp = bp;
  356. return 0;
  357. }
  358. /*
  359. * Move inode type and inode format specific information from the
  360. * on-disk inode to the in-core inode. For fifos, devs, and sockets
  361. * this means set if_rdev to the proper value. For files, directories,
  362. * and symlinks this means to bring in the in-line data or extent
  363. * pointers. For a file in B-tree format, only the root is immediately
  364. * brought in-core. The rest will be in-lined in if_extents when it
  365. * is first referenced (see xfs_iread_extents()).
  366. */
  367. STATIC int
  368. xfs_iformat(
  369. xfs_inode_t *ip,
  370. xfs_dinode_t *dip)
  371. {
  372. xfs_attr_shortform_t *atp;
  373. int size;
  374. int error;
  375. xfs_fsize_t di_size;
  376. ip->i_df.if_ext_max =
  377. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  378. error = 0;
  379. if (unlikely(
  380. INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) +
  381. INT_GET(dip->di_core.di_anextents, ARCH_CONVERT) >
  382. INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT))) {
  383. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  384. "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
  385. (unsigned long long)ip->i_ino,
  386. (int)(INT_GET(dip->di_core.di_nextents, ARCH_CONVERT)
  387. + INT_GET(dip->di_core.di_anextents, ARCH_CONVERT)),
  388. (unsigned long long)
  389. INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT));
  390. XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
  391. ip->i_mount, dip);
  392. return XFS_ERROR(EFSCORRUPTED);
  393. }
  394. if (unlikely(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT) > ip->i_mount->m_sb.sb_inodesize)) {
  395. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  396. "corrupt dinode %Lu, forkoff = 0x%x.",
  397. (unsigned long long)ip->i_ino,
  398. (int)(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT)));
  399. XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
  400. ip->i_mount, dip);
  401. return XFS_ERROR(EFSCORRUPTED);
  402. }
  403. switch (ip->i_d.di_mode & S_IFMT) {
  404. case S_IFIFO:
  405. case S_IFCHR:
  406. case S_IFBLK:
  407. case S_IFSOCK:
  408. if (unlikely(INT_GET(dip->di_core.di_format, ARCH_CONVERT) != XFS_DINODE_FMT_DEV)) {
  409. XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
  410. ip->i_mount, dip);
  411. return XFS_ERROR(EFSCORRUPTED);
  412. }
  413. ip->i_d.di_size = 0;
  414. ip->i_size = 0;
  415. ip->i_df.if_u2.if_rdev = INT_GET(dip->di_u.di_dev, ARCH_CONVERT);
  416. break;
  417. case S_IFREG:
  418. case S_IFLNK:
  419. case S_IFDIR:
  420. switch (INT_GET(dip->di_core.di_format, ARCH_CONVERT)) {
  421. case XFS_DINODE_FMT_LOCAL:
  422. /*
  423. * no local regular files yet
  424. */
  425. if (unlikely((INT_GET(dip->di_core.di_mode, ARCH_CONVERT) & S_IFMT) == S_IFREG)) {
  426. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  427. "corrupt inode %Lu "
  428. "(local format for regular file).",
  429. (unsigned long long) ip->i_ino);
  430. XFS_CORRUPTION_ERROR("xfs_iformat(4)",
  431. XFS_ERRLEVEL_LOW,
  432. ip->i_mount, dip);
  433. return XFS_ERROR(EFSCORRUPTED);
  434. }
  435. di_size = INT_GET(dip->di_core.di_size, ARCH_CONVERT);
  436. if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
  437. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  438. "corrupt inode %Lu "
  439. "(bad size %Ld for local inode).",
  440. (unsigned long long) ip->i_ino,
  441. (long long) di_size);
  442. XFS_CORRUPTION_ERROR("xfs_iformat(5)",
  443. XFS_ERRLEVEL_LOW,
  444. ip->i_mount, dip);
  445. return XFS_ERROR(EFSCORRUPTED);
  446. }
  447. size = (int)di_size;
  448. error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
  449. break;
  450. case XFS_DINODE_FMT_EXTENTS:
  451. error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
  452. break;
  453. case XFS_DINODE_FMT_BTREE:
  454. error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
  455. break;
  456. default:
  457. XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
  458. ip->i_mount);
  459. return XFS_ERROR(EFSCORRUPTED);
  460. }
  461. break;
  462. default:
  463. XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
  464. return XFS_ERROR(EFSCORRUPTED);
  465. }
  466. if (error) {
  467. return error;
  468. }
  469. if (!XFS_DFORK_Q(dip))
  470. return 0;
  471. ASSERT(ip->i_afp == NULL);
  472. ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
  473. ip->i_afp->if_ext_max =
  474. XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  475. switch (INT_GET(dip->di_core.di_aformat, ARCH_CONVERT)) {
  476. case XFS_DINODE_FMT_LOCAL:
  477. atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
  478. size = be16_to_cpu(atp->hdr.totsize);
  479. error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
  480. break;
  481. case XFS_DINODE_FMT_EXTENTS:
  482. error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
  483. break;
  484. case XFS_DINODE_FMT_BTREE:
  485. error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
  486. break;
  487. default:
  488. error = XFS_ERROR(EFSCORRUPTED);
  489. break;
  490. }
  491. if (error) {
  492. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  493. ip->i_afp = NULL;
  494. xfs_idestroy_fork(ip, XFS_DATA_FORK);
  495. }
  496. return error;
  497. }
  498. /*
  499. * The file is in-lined in the on-disk inode.
  500. * If it fits into if_inline_data, then copy
  501. * it there, otherwise allocate a buffer for it
  502. * and copy the data there. Either way, set
  503. * if_data to point at the data.
  504. * If we allocate a buffer for the data, make
  505. * sure that its size is a multiple of 4 and
  506. * record the real size in i_real_bytes.
  507. */
  508. STATIC int
  509. xfs_iformat_local(
  510. xfs_inode_t *ip,
  511. xfs_dinode_t *dip,
  512. int whichfork,
  513. int size)
  514. {
  515. xfs_ifork_t *ifp;
  516. int real_size;
  517. /*
  518. * If the size is unreasonable, then something
  519. * is wrong and we just bail out rather than crash in
  520. * kmem_alloc() or memcpy() below.
  521. */
  522. if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  523. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  524. "corrupt inode %Lu "
  525. "(bad size %d for local fork, size = %d).",
  526. (unsigned long long) ip->i_ino, size,
  527. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
  528. XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
  529. ip->i_mount, dip);
  530. return XFS_ERROR(EFSCORRUPTED);
  531. }
  532. ifp = XFS_IFORK_PTR(ip, whichfork);
  533. real_size = 0;
  534. if (size == 0)
  535. ifp->if_u1.if_data = NULL;
  536. else if (size <= sizeof(ifp->if_u2.if_inline_data))
  537. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  538. else {
  539. real_size = roundup(size, 4);
  540. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  541. }
  542. ifp->if_bytes = size;
  543. ifp->if_real_bytes = real_size;
  544. if (size)
  545. memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
  546. ifp->if_flags &= ~XFS_IFEXTENTS;
  547. ifp->if_flags |= XFS_IFINLINE;
  548. return 0;
  549. }
  550. /*
  551. * The file consists of a set of extents all
  552. * of which fit into the on-disk inode.
  553. * If there are few enough extents to fit into
  554. * the if_inline_ext, then copy them there.
  555. * Otherwise allocate a buffer for them and copy
  556. * them into it. Either way, set if_extents
  557. * to point at the extents.
  558. */
  559. STATIC int
  560. xfs_iformat_extents(
  561. xfs_inode_t *ip,
  562. xfs_dinode_t *dip,
  563. int whichfork)
  564. {
  565. xfs_bmbt_rec_t *ep, *dp;
  566. xfs_ifork_t *ifp;
  567. int nex;
  568. int size;
  569. int i;
  570. ifp = XFS_IFORK_PTR(ip, whichfork);
  571. nex = XFS_DFORK_NEXTENTS(dip, whichfork);
  572. size = nex * (uint)sizeof(xfs_bmbt_rec_t);
  573. /*
  574. * If the number of extents is unreasonable, then something
  575. * is wrong and we just bail out rather than crash in
  576. * kmem_alloc() or memcpy() below.
  577. */
  578. if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  579. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  580. "corrupt inode %Lu ((a)extents = %d).",
  581. (unsigned long long) ip->i_ino, nex);
  582. XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
  583. ip->i_mount, dip);
  584. return XFS_ERROR(EFSCORRUPTED);
  585. }
  586. ifp->if_real_bytes = 0;
  587. if (nex == 0)
  588. ifp->if_u1.if_extents = NULL;
  589. else if (nex <= XFS_INLINE_EXTS)
  590. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  591. else
  592. xfs_iext_add(ifp, 0, nex);
  593. ifp->if_bytes = size;
  594. if (size) {
  595. dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
  596. xfs_validate_extents(ifp, nex, 1, XFS_EXTFMT_INODE(ip));
  597. for (i = 0; i < nex; i++, dp++) {
  598. ep = xfs_iext_get_ext(ifp, i);
  599. ep->l0 = INT_GET(get_unaligned((__uint64_t*)&dp->l0),
  600. ARCH_CONVERT);
  601. ep->l1 = INT_GET(get_unaligned((__uint64_t*)&dp->l1),
  602. ARCH_CONVERT);
  603. }
  604. XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
  605. if (whichfork != XFS_DATA_FORK ||
  606. XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
  607. if (unlikely(xfs_check_nostate_extents(
  608. ifp, 0, nex))) {
  609. XFS_ERROR_REPORT("xfs_iformat_extents(2)",
  610. XFS_ERRLEVEL_LOW,
  611. ip->i_mount);
  612. return XFS_ERROR(EFSCORRUPTED);
  613. }
  614. }
  615. ifp->if_flags |= XFS_IFEXTENTS;
  616. return 0;
  617. }
  618. /*
  619. * The file has too many extents to fit into
  620. * the inode, so they are in B-tree format.
  621. * Allocate a buffer for the root of the B-tree
  622. * and copy the root into it. The i_extents
  623. * field will remain NULL until all of the
  624. * extents are read in (when they are needed).
  625. */
  626. STATIC int
  627. xfs_iformat_btree(
  628. xfs_inode_t *ip,
  629. xfs_dinode_t *dip,
  630. int whichfork)
  631. {
  632. xfs_bmdr_block_t *dfp;
  633. xfs_ifork_t *ifp;
  634. /* REFERENCED */
  635. int nrecs;
  636. int size;
  637. ifp = XFS_IFORK_PTR(ip, whichfork);
  638. dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
  639. size = XFS_BMAP_BROOT_SPACE(dfp);
  640. nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
  641. /*
  642. * blow out if -- fork has less extents than can fit in
  643. * fork (fork shouldn't be a btree format), root btree
  644. * block has more records than can fit into the fork,
  645. * or the number of extents is greater than the number of
  646. * blocks.
  647. */
  648. if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
  649. || XFS_BMDR_SPACE_CALC(nrecs) >
  650. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
  651. || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
  652. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  653. "corrupt inode %Lu (btree).",
  654. (unsigned long long) ip->i_ino);
  655. XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
  656. ip->i_mount);
  657. return XFS_ERROR(EFSCORRUPTED);
  658. }
  659. ifp->if_broot_bytes = size;
  660. ifp->if_broot = kmem_alloc(size, KM_SLEEP);
  661. ASSERT(ifp->if_broot != NULL);
  662. /*
  663. * Copy and convert from the on-disk structure
  664. * to the in-memory structure.
  665. */
  666. xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
  667. ifp->if_broot, size);
  668. ifp->if_flags &= ~XFS_IFEXTENTS;
  669. ifp->if_flags |= XFS_IFBROOT;
  670. return 0;
  671. }
  672. /*
  673. * xfs_xlate_dinode_core - translate an xfs_inode_core_t between ondisk
  674. * and native format
  675. *
  676. * buf = on-disk representation
  677. * dip = native representation
  678. * dir = direction - +ve -> disk to native
  679. * -ve -> native to disk
  680. */
  681. void
  682. xfs_xlate_dinode_core(
  683. xfs_caddr_t buf,
  684. xfs_dinode_core_t *dip,
  685. int dir)
  686. {
  687. xfs_dinode_core_t *buf_core = (xfs_dinode_core_t *)buf;
  688. xfs_dinode_core_t *mem_core = (xfs_dinode_core_t *)dip;
  689. xfs_arch_t arch = ARCH_CONVERT;
  690. ASSERT(dir);
  691. INT_XLATE(buf_core->di_magic, mem_core->di_magic, dir, arch);
  692. INT_XLATE(buf_core->di_mode, mem_core->di_mode, dir, arch);
  693. INT_XLATE(buf_core->di_version, mem_core->di_version, dir, arch);
  694. INT_XLATE(buf_core->di_format, mem_core->di_format, dir, arch);
  695. INT_XLATE(buf_core->di_onlink, mem_core->di_onlink, dir, arch);
  696. INT_XLATE(buf_core->di_uid, mem_core->di_uid, dir, arch);
  697. INT_XLATE(buf_core->di_gid, mem_core->di_gid, dir, arch);
  698. INT_XLATE(buf_core->di_nlink, mem_core->di_nlink, dir, arch);
  699. INT_XLATE(buf_core->di_projid, mem_core->di_projid, dir, arch);
  700. if (dir > 0) {
  701. memcpy(mem_core->di_pad, buf_core->di_pad,
  702. sizeof(buf_core->di_pad));
  703. } else {
  704. memcpy(buf_core->di_pad, mem_core->di_pad,
  705. sizeof(buf_core->di_pad));
  706. }
  707. INT_XLATE(buf_core->di_flushiter, mem_core->di_flushiter, dir, arch);
  708. INT_XLATE(buf_core->di_atime.t_sec, mem_core->di_atime.t_sec,
  709. dir, arch);
  710. INT_XLATE(buf_core->di_atime.t_nsec, mem_core->di_atime.t_nsec,
  711. dir, arch);
  712. INT_XLATE(buf_core->di_mtime.t_sec, mem_core->di_mtime.t_sec,
  713. dir, arch);
  714. INT_XLATE(buf_core->di_mtime.t_nsec, mem_core->di_mtime.t_nsec,
  715. dir, arch);
  716. INT_XLATE(buf_core->di_ctime.t_sec, mem_core->di_ctime.t_sec,
  717. dir, arch);
  718. INT_XLATE(buf_core->di_ctime.t_nsec, mem_core->di_ctime.t_nsec,
  719. dir, arch);
  720. INT_XLATE(buf_core->di_size, mem_core->di_size, dir, arch);
  721. INT_XLATE(buf_core->di_nblocks, mem_core->di_nblocks, dir, arch);
  722. INT_XLATE(buf_core->di_extsize, mem_core->di_extsize, dir, arch);
  723. INT_XLATE(buf_core->di_nextents, mem_core->di_nextents, dir, arch);
  724. INT_XLATE(buf_core->di_anextents, mem_core->di_anextents, dir, arch);
  725. INT_XLATE(buf_core->di_forkoff, mem_core->di_forkoff, dir, arch);
  726. INT_XLATE(buf_core->di_aformat, mem_core->di_aformat, dir, arch);
  727. INT_XLATE(buf_core->di_dmevmask, mem_core->di_dmevmask, dir, arch);
  728. INT_XLATE(buf_core->di_dmstate, mem_core->di_dmstate, dir, arch);
  729. INT_XLATE(buf_core->di_flags, mem_core->di_flags, dir, arch);
  730. INT_XLATE(buf_core->di_gen, mem_core->di_gen, dir, arch);
  731. }
  732. STATIC uint
  733. _xfs_dic2xflags(
  734. __uint16_t di_flags)
  735. {
  736. uint flags = 0;
  737. if (di_flags & XFS_DIFLAG_ANY) {
  738. if (di_flags & XFS_DIFLAG_REALTIME)
  739. flags |= XFS_XFLAG_REALTIME;
  740. if (di_flags & XFS_DIFLAG_PREALLOC)
  741. flags |= XFS_XFLAG_PREALLOC;
  742. if (di_flags & XFS_DIFLAG_IMMUTABLE)
  743. flags |= XFS_XFLAG_IMMUTABLE;
  744. if (di_flags & XFS_DIFLAG_APPEND)
  745. flags |= XFS_XFLAG_APPEND;
  746. if (di_flags & XFS_DIFLAG_SYNC)
  747. flags |= XFS_XFLAG_SYNC;
  748. if (di_flags & XFS_DIFLAG_NOATIME)
  749. flags |= XFS_XFLAG_NOATIME;
  750. if (di_flags & XFS_DIFLAG_NODUMP)
  751. flags |= XFS_XFLAG_NODUMP;
  752. if (di_flags & XFS_DIFLAG_RTINHERIT)
  753. flags |= XFS_XFLAG_RTINHERIT;
  754. if (di_flags & XFS_DIFLAG_PROJINHERIT)
  755. flags |= XFS_XFLAG_PROJINHERIT;
  756. if (di_flags & XFS_DIFLAG_NOSYMLINKS)
  757. flags |= XFS_XFLAG_NOSYMLINKS;
  758. if (di_flags & XFS_DIFLAG_EXTSIZE)
  759. flags |= XFS_XFLAG_EXTSIZE;
  760. if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
  761. flags |= XFS_XFLAG_EXTSZINHERIT;
  762. if (di_flags & XFS_DIFLAG_NODEFRAG)
  763. flags |= XFS_XFLAG_NODEFRAG;
  764. if (di_flags & XFS_DIFLAG_FILESTREAM)
  765. flags |= XFS_XFLAG_FILESTREAM;
  766. }
  767. return flags;
  768. }
  769. uint
  770. xfs_ip2xflags(
  771. xfs_inode_t *ip)
  772. {
  773. xfs_dinode_core_t *dic = &ip->i_d;
  774. return _xfs_dic2xflags(dic->di_flags) |
  775. (XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0);
  776. }
  777. uint
  778. xfs_dic2xflags(
  779. xfs_dinode_core_t *dic)
  780. {
  781. return _xfs_dic2xflags(INT_GET(dic->di_flags, ARCH_CONVERT)) |
  782. (XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0);
  783. }
  784. /*
  785. * Given a mount structure and an inode number, return a pointer
  786. * to a newly allocated in-core inode corresponding to the given
  787. * inode number.
  788. *
  789. * Initialize the inode's attributes and extent pointers if it
  790. * already has them (it will not if the inode has no links).
  791. */
  792. int
  793. xfs_iread(
  794. xfs_mount_t *mp,
  795. xfs_trans_t *tp,
  796. xfs_ino_t ino,
  797. xfs_inode_t **ipp,
  798. xfs_daddr_t bno,
  799. uint imap_flags)
  800. {
  801. xfs_buf_t *bp;
  802. xfs_dinode_t *dip;
  803. xfs_inode_t *ip;
  804. int error;
  805. ASSERT(xfs_inode_zone != NULL);
  806. ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
  807. ip->i_ino = ino;
  808. ip->i_mount = mp;
  809. spin_lock_init(&ip->i_flags_lock);
  810. /*
  811. * Get pointer's to the on-disk inode and the buffer containing it.
  812. * If the inode number refers to a block outside the file system
  813. * then xfs_itobp() will return NULL. In this case we should
  814. * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
  815. * know that this is a new incore inode.
  816. */
  817. error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, imap_flags);
  818. if (error) {
  819. kmem_zone_free(xfs_inode_zone, ip);
  820. return error;
  821. }
  822. /*
  823. * Initialize inode's trace buffers.
  824. * Do this before xfs_iformat in case it adds entries.
  825. */
  826. #ifdef XFS_BMAP_TRACE
  827. ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
  828. #endif
  829. #ifdef XFS_BMBT_TRACE
  830. ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
  831. #endif
  832. #ifdef XFS_RW_TRACE
  833. ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
  834. #endif
  835. #ifdef XFS_ILOCK_TRACE
  836. ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
  837. #endif
  838. #ifdef XFS_DIR2_TRACE
  839. ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
  840. #endif
  841. /*
  842. * If we got something that isn't an inode it means someone
  843. * (nfs or dmi) has a stale handle.
  844. */
  845. if (INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC) {
  846. kmem_zone_free(xfs_inode_zone, ip);
  847. xfs_trans_brelse(tp, bp);
  848. #ifdef DEBUG
  849. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
  850. "dip->di_core.di_magic (0x%x) != "
  851. "XFS_DINODE_MAGIC (0x%x)",
  852. INT_GET(dip->di_core.di_magic, ARCH_CONVERT),
  853. XFS_DINODE_MAGIC);
  854. #endif /* DEBUG */
  855. return XFS_ERROR(EINVAL);
  856. }
  857. /*
  858. * If the on-disk inode is already linked to a directory
  859. * entry, copy all of the inode into the in-core inode.
  860. * xfs_iformat() handles copying in the inode format
  861. * specific information.
  862. * Otherwise, just get the truly permanent information.
  863. */
  864. if (dip->di_core.di_mode) {
  865. xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core,
  866. &(ip->i_d), 1);
  867. error = xfs_iformat(ip, dip);
  868. if (error) {
  869. kmem_zone_free(xfs_inode_zone, ip);
  870. xfs_trans_brelse(tp, bp);
  871. #ifdef DEBUG
  872. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
  873. "xfs_iformat() returned error %d",
  874. error);
  875. #endif /* DEBUG */
  876. return error;
  877. }
  878. } else {
  879. ip->i_d.di_magic = INT_GET(dip->di_core.di_magic, ARCH_CONVERT);
  880. ip->i_d.di_version = INT_GET(dip->di_core.di_version, ARCH_CONVERT);
  881. ip->i_d.di_gen = INT_GET(dip->di_core.di_gen, ARCH_CONVERT);
  882. ip->i_d.di_flushiter = INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT);
  883. /*
  884. * Make sure to pull in the mode here as well in
  885. * case the inode is released without being used.
  886. * This ensures that xfs_inactive() will see that
  887. * the inode is already free and not try to mess
  888. * with the uninitialized part of it.
  889. */
  890. ip->i_d.di_mode = 0;
  891. /*
  892. * Initialize the per-fork minima and maxima for a new
  893. * inode here. xfs_iformat will do it for old inodes.
  894. */
  895. ip->i_df.if_ext_max =
  896. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  897. }
  898. INIT_LIST_HEAD(&ip->i_reclaim);
  899. /*
  900. * The inode format changed when we moved the link count and
  901. * made it 32 bits long. If this is an old format inode,
  902. * convert it in memory to look like a new one. If it gets
  903. * flushed to disk we will convert back before flushing or
  904. * logging it. We zero out the new projid field and the old link
  905. * count field. We'll handle clearing the pad field (the remains
  906. * of the old uuid field) when we actually convert the inode to
  907. * the new format. We don't change the version number so that we
  908. * can distinguish this from a real new format inode.
  909. */
  910. if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
  911. ip->i_d.di_nlink = ip->i_d.di_onlink;
  912. ip->i_d.di_onlink = 0;
  913. ip->i_d.di_projid = 0;
  914. }
  915. ip->i_delayed_blks = 0;
  916. ip->i_size = ip->i_d.di_size;
  917. /*
  918. * Mark the buffer containing the inode as something to keep
  919. * around for a while. This helps to keep recently accessed
  920. * meta-data in-core longer.
  921. */
  922. XFS_BUF_SET_REF(bp, XFS_INO_REF);
  923. /*
  924. * Use xfs_trans_brelse() to release the buffer containing the
  925. * on-disk inode, because it was acquired with xfs_trans_read_buf()
  926. * in xfs_itobp() above. If tp is NULL, this is just a normal
  927. * brelse(). If we're within a transaction, then xfs_trans_brelse()
  928. * will only release the buffer if it is not dirty within the
  929. * transaction. It will be OK to release the buffer in this case,
  930. * because inodes on disk are never destroyed and we will be
  931. * locking the new in-core inode before putting it in the hash
  932. * table where other processes can find it. Thus we don't have
  933. * to worry about the inode being changed just because we released
  934. * the buffer.
  935. */
  936. xfs_trans_brelse(tp, bp);
  937. *ipp = ip;
  938. return 0;
  939. }
  940. /*
  941. * Read in extents from a btree-format inode.
  942. * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
  943. */
  944. int
  945. xfs_iread_extents(
  946. xfs_trans_t *tp,
  947. xfs_inode_t *ip,
  948. int whichfork)
  949. {
  950. int error;
  951. xfs_ifork_t *ifp;
  952. xfs_extnum_t nextents;
  953. size_t size;
  954. if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
  955. XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
  956. ip->i_mount);
  957. return XFS_ERROR(EFSCORRUPTED);
  958. }
  959. nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
  960. size = nextents * sizeof(xfs_bmbt_rec_t);
  961. ifp = XFS_IFORK_PTR(ip, whichfork);
  962. /*
  963. * We know that the size is valid (it's checked in iformat_btree)
  964. */
  965. ifp->if_lastex = NULLEXTNUM;
  966. ifp->if_bytes = ifp->if_real_bytes = 0;
  967. ifp->if_flags |= XFS_IFEXTENTS;
  968. xfs_iext_add(ifp, 0, nextents);
  969. error = xfs_bmap_read_extents(tp, ip, whichfork);
  970. if (error) {
  971. xfs_iext_destroy(ifp);
  972. ifp->if_flags &= ~XFS_IFEXTENTS;
  973. return error;
  974. }
  975. xfs_validate_extents(ifp, nextents, 0, XFS_EXTFMT_INODE(ip));
  976. return 0;
  977. }
  978. /*
  979. * Allocate an inode on disk and return a copy of its in-core version.
  980. * The in-core inode is locked exclusively. Set mode, nlink, and rdev
  981. * appropriately within the inode. The uid and gid for the inode are
  982. * set according to the contents of the given cred structure.
  983. *
  984. * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
  985. * has a free inode available, call xfs_iget()
  986. * to obtain the in-core version of the allocated inode. Finally,
  987. * fill in the inode and log its initial contents. In this case,
  988. * ialloc_context would be set to NULL and call_again set to false.
  989. *
  990. * If xfs_dialloc() does not have an available inode,
  991. * it will replenish its supply by doing an allocation. Since we can
  992. * only do one allocation within a transaction without deadlocks, we
  993. * must commit the current transaction before returning the inode itself.
  994. * In this case, therefore, we will set call_again to true and return.
  995. * The caller should then commit the current transaction, start a new
  996. * transaction, and call xfs_ialloc() again to actually get the inode.
  997. *
  998. * To ensure that some other process does not grab the inode that
  999. * was allocated during the first call to xfs_ialloc(), this routine
  1000. * also returns the [locked] bp pointing to the head of the freelist
  1001. * as ialloc_context. The caller should hold this buffer across
  1002. * the commit and pass it back into this routine on the second call.
  1003. *
  1004. * If we are allocating quota inodes, we do not have a parent inode
  1005. * to attach to or associate with (i.e. pip == NULL) because they
  1006. * are not linked into the directory structure - they are attached
  1007. * directly to the superblock - and so have no parent.
  1008. */
  1009. int
  1010. xfs_ialloc(
  1011. xfs_trans_t *tp,
  1012. xfs_inode_t *pip,
  1013. mode_t mode,
  1014. xfs_nlink_t nlink,
  1015. xfs_dev_t rdev,
  1016. cred_t *cr,
  1017. xfs_prid_t prid,
  1018. int okalloc,
  1019. xfs_buf_t **ialloc_context,
  1020. boolean_t *call_again,
  1021. xfs_inode_t **ipp)
  1022. {
  1023. xfs_ino_t ino;
  1024. xfs_inode_t *ip;
  1025. bhv_vnode_t *vp;
  1026. uint flags;
  1027. int error;
  1028. /*
  1029. * Call the space management code to pick
  1030. * the on-disk inode to be allocated.
  1031. */
  1032. error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
  1033. ialloc_context, call_again, &ino);
  1034. if (error != 0) {
  1035. return error;
  1036. }
  1037. if (*call_again || ino == NULLFSINO) {
  1038. *ipp = NULL;
  1039. return 0;
  1040. }
  1041. ASSERT(*ialloc_context == NULL);
  1042. /*
  1043. * Get the in-core inode with the lock held exclusively.
  1044. * This is because we're setting fields here we need
  1045. * to prevent others from looking at until we're done.
  1046. */
  1047. error = xfs_trans_iget(tp->t_mountp, tp, ino,
  1048. XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
  1049. if (error != 0) {
  1050. return error;
  1051. }
  1052. ASSERT(ip != NULL);
  1053. vp = XFS_ITOV(ip);
  1054. ip->i_d.di_mode = (__uint16_t)mode;
  1055. ip->i_d.di_onlink = 0;
  1056. ip->i_d.di_nlink = nlink;
  1057. ASSERT(ip->i_d.di_nlink == nlink);
  1058. ip->i_d.di_uid = current_fsuid(cr);
  1059. ip->i_d.di_gid = current_fsgid(cr);
  1060. ip->i_d.di_projid = prid;
  1061. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  1062. /*
  1063. * If the superblock version is up to where we support new format
  1064. * inodes and this is currently an old format inode, then change
  1065. * the inode version number now. This way we only do the conversion
  1066. * here rather than here and in the flush/logging code.
  1067. */
  1068. if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) &&
  1069. ip->i_d.di_version == XFS_DINODE_VERSION_1) {
  1070. ip->i_d.di_version = XFS_DINODE_VERSION_2;
  1071. /*
  1072. * We've already zeroed the old link count, the projid field,
  1073. * and the pad field.
  1074. */
  1075. }
  1076. /*
  1077. * Project ids won't be stored on disk if we are using a version 1 inode.
  1078. */
  1079. if ((prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
  1080. xfs_bump_ino_vers2(tp, ip);
  1081. if (pip && XFS_INHERIT_GID(pip, vp->v_vfsp)) {
  1082. ip->i_d.di_gid = pip->i_d.di_gid;
  1083. if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
  1084. ip->i_d.di_mode |= S_ISGID;
  1085. }
  1086. }
  1087. /*
  1088. * If the group ID of the new file does not match the effective group
  1089. * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
  1090. * (and only if the irix_sgid_inherit compatibility variable is set).
  1091. */
  1092. if ((irix_sgid_inherit) &&
  1093. (ip->i_d.di_mode & S_ISGID) &&
  1094. (!in_group_p((gid_t)ip->i_d.di_gid))) {
  1095. ip->i_d.di_mode &= ~S_ISGID;
  1096. }
  1097. ip->i_d.di_size = 0;
  1098. ip->i_size = 0;
  1099. ip->i_d.di_nextents = 0;
  1100. ASSERT(ip->i_d.di_nblocks == 0);
  1101. xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
  1102. /*
  1103. * di_gen will have been taken care of in xfs_iread.
  1104. */
  1105. ip->i_d.di_extsize = 0;
  1106. ip->i_d.di_dmevmask = 0;
  1107. ip->i_d.di_dmstate = 0;
  1108. ip->i_d.di_flags = 0;
  1109. flags = XFS_ILOG_CORE;
  1110. switch (mode & S_IFMT) {
  1111. case S_IFIFO:
  1112. case S_IFCHR:
  1113. case S_IFBLK:
  1114. case S_IFSOCK:
  1115. ip->i_d.di_format = XFS_DINODE_FMT_DEV;
  1116. ip->i_df.if_u2.if_rdev = rdev;
  1117. ip->i_df.if_flags = 0;
  1118. flags |= XFS_ILOG_DEV;
  1119. break;
  1120. case S_IFREG:
  1121. if (pip && xfs_inode_is_filestream(pip)) {
  1122. error = xfs_filestream_associate(pip, ip);
  1123. if (error < 0)
  1124. return -error;
  1125. if (!error)
  1126. xfs_iflags_set(ip, XFS_IFILESTREAM);
  1127. }
  1128. /* fall through */
  1129. case S_IFDIR:
  1130. if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
  1131. uint di_flags = 0;
  1132. if ((mode & S_IFMT) == S_IFDIR) {
  1133. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  1134. di_flags |= XFS_DIFLAG_RTINHERIT;
  1135. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1136. di_flags |= XFS_DIFLAG_EXTSZINHERIT;
  1137. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1138. }
  1139. } else if ((mode & S_IFMT) == S_IFREG) {
  1140. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) {
  1141. di_flags |= XFS_DIFLAG_REALTIME;
  1142. ip->i_iocore.io_flags |= XFS_IOCORE_RT;
  1143. }
  1144. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1145. di_flags |= XFS_DIFLAG_EXTSIZE;
  1146. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1147. }
  1148. }
  1149. if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
  1150. xfs_inherit_noatime)
  1151. di_flags |= XFS_DIFLAG_NOATIME;
  1152. if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
  1153. xfs_inherit_nodump)
  1154. di_flags |= XFS_DIFLAG_NODUMP;
  1155. if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
  1156. xfs_inherit_sync)
  1157. di_flags |= XFS_DIFLAG_SYNC;
  1158. if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
  1159. xfs_inherit_nosymlinks)
  1160. di_flags |= XFS_DIFLAG_NOSYMLINKS;
  1161. if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
  1162. di_flags |= XFS_DIFLAG_PROJINHERIT;
  1163. if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
  1164. xfs_inherit_nodefrag)
  1165. di_flags |= XFS_DIFLAG_NODEFRAG;
  1166. if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
  1167. di_flags |= XFS_DIFLAG_FILESTREAM;
  1168. ip->i_d.di_flags |= di_flags;
  1169. }
  1170. /* FALLTHROUGH */
  1171. case S_IFLNK:
  1172. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  1173. ip->i_df.if_flags = XFS_IFEXTENTS;
  1174. ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
  1175. ip->i_df.if_u1.if_extents = NULL;
  1176. break;
  1177. default:
  1178. ASSERT(0);
  1179. }
  1180. /*
  1181. * Attribute fork settings for new inode.
  1182. */
  1183. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  1184. ip->i_d.di_anextents = 0;
  1185. /*
  1186. * Log the new values stuffed into the inode.
  1187. */
  1188. xfs_trans_log_inode(tp, ip, flags);
  1189. /* now that we have an i_mode we can setup inode ops and unlock */
  1190. bhv_vfs_init_vnode(XFS_MTOVFS(tp->t_mountp), vp, XFS_ITOBHV(ip), 1);
  1191. *ipp = ip;
  1192. return 0;
  1193. }
  1194. /*
  1195. * Check to make sure that there are no blocks allocated to the
  1196. * file beyond the size of the file. We don't check this for
  1197. * files with fixed size extents or real time extents, but we
  1198. * at least do it for regular files.
  1199. */
  1200. #ifdef DEBUG
  1201. void
  1202. xfs_isize_check(
  1203. xfs_mount_t *mp,
  1204. xfs_inode_t *ip,
  1205. xfs_fsize_t isize)
  1206. {
  1207. xfs_fileoff_t map_first;
  1208. int nimaps;
  1209. xfs_bmbt_irec_t imaps[2];
  1210. if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
  1211. return;
  1212. if (ip->i_d.di_flags & (XFS_DIFLAG_REALTIME | XFS_DIFLAG_EXTSIZE))
  1213. return;
  1214. nimaps = 2;
  1215. map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
  1216. /*
  1217. * The filesystem could be shutting down, so bmapi may return
  1218. * an error.
  1219. */
  1220. if (xfs_bmapi(NULL, ip, map_first,
  1221. (XFS_B_TO_FSB(mp,
  1222. (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
  1223. map_first),
  1224. XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
  1225. NULL, NULL))
  1226. return;
  1227. ASSERT(nimaps == 1);
  1228. ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
  1229. }
  1230. #endif /* DEBUG */
  1231. /*
  1232. * Calculate the last possible buffered byte in a file. This must
  1233. * include data that was buffered beyond the EOF by the write code.
  1234. * This also needs to deal with overflowing the xfs_fsize_t type
  1235. * which can happen for sizes near the limit.
  1236. *
  1237. * We also need to take into account any blocks beyond the EOF. It
  1238. * may be the case that they were buffered by a write which failed.
  1239. * In that case the pages will still be in memory, but the inode size
  1240. * will never have been updated.
  1241. */
  1242. xfs_fsize_t
  1243. xfs_file_last_byte(
  1244. xfs_inode_t *ip)
  1245. {
  1246. xfs_mount_t *mp;
  1247. xfs_fsize_t last_byte;
  1248. xfs_fileoff_t last_block;
  1249. xfs_fileoff_t size_last_block;
  1250. int error;
  1251. ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS));
  1252. mp = ip->i_mount;
  1253. /*
  1254. * Only check for blocks beyond the EOF if the extents have
  1255. * been read in. This eliminates the need for the inode lock,
  1256. * and it also saves us from looking when it really isn't
  1257. * necessary.
  1258. */
  1259. if (ip->i_df.if_flags & XFS_IFEXTENTS) {
  1260. error = xfs_bmap_last_offset(NULL, ip, &last_block,
  1261. XFS_DATA_FORK);
  1262. if (error) {
  1263. last_block = 0;
  1264. }
  1265. } else {
  1266. last_block = 0;
  1267. }
  1268. size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
  1269. last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
  1270. last_byte = XFS_FSB_TO_B(mp, last_block);
  1271. if (last_byte < 0) {
  1272. return XFS_MAXIOFFSET(mp);
  1273. }
  1274. last_byte += (1 << mp->m_writeio_log);
  1275. if (last_byte < 0) {
  1276. return XFS_MAXIOFFSET(mp);
  1277. }
  1278. return last_byte;
  1279. }
  1280. #if defined(XFS_RW_TRACE)
  1281. STATIC void
  1282. xfs_itrunc_trace(
  1283. int tag,
  1284. xfs_inode_t *ip,
  1285. int flag,
  1286. xfs_fsize_t new_size,
  1287. xfs_off_t toss_start,
  1288. xfs_off_t toss_finish)
  1289. {
  1290. if (ip->i_rwtrace == NULL) {
  1291. return;
  1292. }
  1293. ktrace_enter(ip->i_rwtrace,
  1294. (void*)((long)tag),
  1295. (void*)ip,
  1296. (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
  1297. (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
  1298. (void*)((long)flag),
  1299. (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
  1300. (void*)(unsigned long)(new_size & 0xffffffff),
  1301. (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
  1302. (void*)(unsigned long)(toss_start & 0xffffffff),
  1303. (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
  1304. (void*)(unsigned long)(toss_finish & 0xffffffff),
  1305. (void*)(unsigned long)current_cpu(),
  1306. (void*)(unsigned long)current_pid(),
  1307. (void*)NULL,
  1308. (void*)NULL,
  1309. (void*)NULL);
  1310. }
  1311. #else
  1312. #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
  1313. #endif
  1314. /*
  1315. * Start the truncation of the file to new_size. The new size
  1316. * must be smaller than the current size. This routine will
  1317. * clear the buffer and page caches of file data in the removed
  1318. * range, and xfs_itruncate_finish() will remove the underlying
  1319. * disk blocks.
  1320. *
  1321. * The inode must have its I/O lock locked EXCLUSIVELY, and it
  1322. * must NOT have the inode lock held at all. This is because we're
  1323. * calling into the buffer/page cache code and we can't hold the
  1324. * inode lock when we do so.
  1325. *
  1326. * We need to wait for any direct I/Os in flight to complete before we
  1327. * proceed with the truncate. This is needed to prevent the extents
  1328. * being read or written by the direct I/Os from being removed while the
  1329. * I/O is in flight as there is no other method of synchronising
  1330. * direct I/O with the truncate operation. Also, because we hold
  1331. * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
  1332. * started until the truncate completes and drops the lock. Essentially,
  1333. * the vn_iowait() call forms an I/O barrier that provides strict ordering
  1334. * between direct I/Os and the truncate operation.
  1335. *
  1336. * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
  1337. * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
  1338. * in the case that the caller is locking things out of order and
  1339. * may not be able to call xfs_itruncate_finish() with the inode lock
  1340. * held without dropping the I/O lock. If the caller must drop the
  1341. * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
  1342. * must be called again with all the same restrictions as the initial
  1343. * call.
  1344. */
  1345. int
  1346. xfs_itruncate_start(
  1347. xfs_inode_t *ip,
  1348. uint flags,
  1349. xfs_fsize_t new_size)
  1350. {
  1351. xfs_fsize_t last_byte;
  1352. xfs_off_t toss_start;
  1353. xfs_mount_t *mp;
  1354. bhv_vnode_t *vp;
  1355. int error = 0;
  1356. ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
  1357. ASSERT((new_size == 0) || (new_size <= ip->i_size));
  1358. ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
  1359. (flags == XFS_ITRUNC_MAYBE));
  1360. mp = ip->i_mount;
  1361. vp = XFS_ITOV(ip);
  1362. vn_iowait(vp); /* wait for the completion of any pending DIOs */
  1363. /*
  1364. * Call toss_pages or flushinval_pages to get rid of pages
  1365. * overlapping the region being removed. We have to use
  1366. * the less efficient flushinval_pages in the case that the
  1367. * caller may not be able to finish the truncate without
  1368. * dropping the inode's I/O lock. Make sure
  1369. * to catch any pages brought in by buffers overlapping
  1370. * the EOF by searching out beyond the isize by our
  1371. * block size. We round new_size up to a block boundary
  1372. * so that we don't toss things on the same block as
  1373. * new_size but before it.
  1374. *
  1375. * Before calling toss_page or flushinval_pages, make sure to
  1376. * call remapf() over the same region if the file is mapped.
  1377. * This frees up mapped file references to the pages in the
  1378. * given range and for the flushinval_pages case it ensures
  1379. * that we get the latest mapped changes flushed out.
  1380. */
  1381. toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1382. toss_start = XFS_FSB_TO_B(mp, toss_start);
  1383. if (toss_start < 0) {
  1384. /*
  1385. * The place to start tossing is beyond our maximum
  1386. * file size, so there is no way that the data extended
  1387. * out there.
  1388. */
  1389. return 0;
  1390. }
  1391. last_byte = xfs_file_last_byte(ip);
  1392. xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
  1393. last_byte);
  1394. if (last_byte > toss_start) {
  1395. if (flags & XFS_ITRUNC_DEFINITE) {
  1396. bhv_vop_toss_pages(vp, toss_start, -1, FI_REMAPF_LOCKED);
  1397. } else {
  1398. error = bhv_vop_flushinval_pages(vp, toss_start, -1, FI_REMAPF_LOCKED);
  1399. }
  1400. }
  1401. #ifdef DEBUG
  1402. if (new_size == 0) {
  1403. ASSERT(VN_CACHED(vp) == 0);
  1404. }
  1405. #endif
  1406. return error;
  1407. }
  1408. /*
  1409. * Shrink the file to the given new_size. The new
  1410. * size must be smaller than the current size.
  1411. * This will free up the underlying blocks
  1412. * in the removed range after a call to xfs_itruncate_start()
  1413. * or xfs_atruncate_start().
  1414. *
  1415. * The transaction passed to this routine must have made
  1416. * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
  1417. * This routine may commit the given transaction and
  1418. * start new ones, so make sure everything involved in
  1419. * the transaction is tidy before calling here.
  1420. * Some transaction will be returned to the caller to be
  1421. * committed. The incoming transaction must already include
  1422. * the inode, and both inode locks must be held exclusively.
  1423. * The inode must also be "held" within the transaction. On
  1424. * return the inode will be "held" within the returned transaction.
  1425. * This routine does NOT require any disk space to be reserved
  1426. * for it within the transaction.
  1427. *
  1428. * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
  1429. * and it indicates the fork which is to be truncated. For the
  1430. * attribute fork we only support truncation to size 0.
  1431. *
  1432. * We use the sync parameter to indicate whether or not the first
  1433. * transaction we perform might have to be synchronous. For the attr fork,
  1434. * it needs to be so if the unlink of the inode is not yet known to be
  1435. * permanent in the log. This keeps us from freeing and reusing the
  1436. * blocks of the attribute fork before the unlink of the inode becomes
  1437. * permanent.
  1438. *
  1439. * For the data fork, we normally have to run synchronously if we're
  1440. * being called out of the inactive path or we're being called
  1441. * out of the create path where we're truncating an existing file.
  1442. * Either way, the truncate needs to be sync so blocks don't reappear
  1443. * in the file with altered data in case of a crash. wsync filesystems
  1444. * can run the first case async because anything that shrinks the inode
  1445. * has to run sync so by the time we're called here from inactive, the
  1446. * inode size is permanently set to 0.
  1447. *
  1448. * Calls from the truncate path always need to be sync unless we're
  1449. * in a wsync filesystem and the file has already been unlinked.
  1450. *
  1451. * The caller is responsible for correctly setting the sync parameter.
  1452. * It gets too hard for us to guess here which path we're being called
  1453. * out of just based on inode state.
  1454. */
  1455. int
  1456. xfs_itruncate_finish(
  1457. xfs_trans_t **tp,
  1458. xfs_inode_t *ip,
  1459. xfs_fsize_t new_size,
  1460. int fork,
  1461. int sync)
  1462. {
  1463. xfs_fsblock_t first_block;
  1464. xfs_fileoff_t first_unmap_block;
  1465. xfs_fileoff_t last_block;
  1466. xfs_filblks_t unmap_len=0;
  1467. xfs_mount_t *mp;
  1468. xfs_trans_t *ntp;
  1469. int done;
  1470. int committed;
  1471. xfs_bmap_free_t free_list;
  1472. int error;
  1473. ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
  1474. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
  1475. ASSERT((new_size == 0) || (new_size <= ip->i_size));
  1476. ASSERT(*tp != NULL);
  1477. ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
  1478. ASSERT(ip->i_transp == *tp);
  1479. ASSERT(ip->i_itemp != NULL);
  1480. ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
  1481. ntp = *tp;
  1482. mp = (ntp)->t_mountp;
  1483. ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
  1484. /*
  1485. * We only support truncating the entire attribute fork.
  1486. */
  1487. if (fork == XFS_ATTR_FORK) {
  1488. new_size = 0LL;
  1489. }
  1490. first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1491. xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
  1492. /*
  1493. * The first thing we do is set the size to new_size permanently
  1494. * on disk. This way we don't have to worry about anyone ever
  1495. * being able to look at the data being freed even in the face
  1496. * of a crash. What we're getting around here is the case where
  1497. * we free a block, it is allocated to another file, it is written
  1498. * to, and then we crash. If the new data gets written to the
  1499. * file but the log buffers containing the free and reallocation
  1500. * don't, then we'd end up with garbage in the blocks being freed.
  1501. * As long as we make the new_size permanent before actually
  1502. * freeing any blocks it doesn't matter if they get writtten to.
  1503. *
  1504. * The callers must signal into us whether or not the size
  1505. * setting here must be synchronous. There are a few cases
  1506. * where it doesn't have to be synchronous. Those cases
  1507. * occur if the file is unlinked and we know the unlink is
  1508. * permanent or if the blocks being truncated are guaranteed
  1509. * to be beyond the inode eof (regardless of the link count)
  1510. * and the eof value is permanent. Both of these cases occur
  1511. * only on wsync-mounted filesystems. In those cases, we're
  1512. * guaranteed that no user will ever see the data in the blocks
  1513. * that are being truncated so the truncate can run async.
  1514. * In the free beyond eof case, the file may wind up with
  1515. * more blocks allocated to it than it needs if we crash
  1516. * and that won't get fixed until the next time the file
  1517. * is re-opened and closed but that's ok as that shouldn't
  1518. * be too many blocks.
  1519. *
  1520. * However, we can't just make all wsync xactions run async
  1521. * because there's one call out of the create path that needs
  1522. * to run sync where it's truncating an existing file to size
  1523. * 0 whose size is > 0.
  1524. *
  1525. * It's probably possible to come up with a test in this
  1526. * routine that would correctly distinguish all the above
  1527. * cases from the values of the function parameters and the
  1528. * inode state but for sanity's sake, I've decided to let the
  1529. * layers above just tell us. It's simpler to correctly figure
  1530. * out in the layer above exactly under what conditions we
  1531. * can run async and I think it's easier for others read and
  1532. * follow the logic in case something has to be changed.
  1533. * cscope is your friend -- rcc.
  1534. *
  1535. * The attribute fork is much simpler.
  1536. *
  1537. * For the attribute fork we allow the caller to tell us whether
  1538. * the unlink of the inode that led to this call is yet permanent
  1539. * in the on disk log. If it is not and we will be freeing extents
  1540. * in this inode then we make the first transaction synchronous
  1541. * to make sure that the unlink is permanent by the time we free
  1542. * the blocks.
  1543. */
  1544. if (fork == XFS_DATA_FORK) {
  1545. if (ip->i_d.di_nextents > 0) {
  1546. /*
  1547. * If we are not changing the file size then do
  1548. * not update the on-disk file size - we may be
  1549. * called from xfs_inactive_free_eofblocks(). If we
  1550. * update the on-disk file size and then the system
  1551. * crashes before the contents of the file are
  1552. * flushed to disk then the files may be full of
  1553. * holes (ie NULL files bug).
  1554. */
  1555. if (ip->i_size != new_size) {
  1556. ip->i_d.di_size = new_size;
  1557. ip->i_size = new_size;
  1558. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1559. }
  1560. }
  1561. } else if (sync) {
  1562. ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
  1563. if (ip->i_d.di_anextents > 0)
  1564. xfs_trans_set_sync(ntp);
  1565. }
  1566. ASSERT(fork == XFS_DATA_FORK ||
  1567. (fork == XFS_ATTR_FORK &&
  1568. ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
  1569. (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
  1570. /*
  1571. * Since it is possible for space to become allocated beyond
  1572. * the end of the file (in a crash where the space is allocated
  1573. * but the inode size is not yet updated), simply remove any
  1574. * blocks which show up between the new EOF and the maximum
  1575. * possible file size. If the first block to be removed is
  1576. * beyond the maximum file size (ie it is the same as last_block),
  1577. * then there is nothing to do.
  1578. */
  1579. last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
  1580. ASSERT(first_unmap_block <= last_block);
  1581. done = 0;
  1582. if (last_block == first_unmap_block) {
  1583. done = 1;
  1584. } else {
  1585. unmap_len = last_block - first_unmap_block + 1;
  1586. }
  1587. while (!done) {
  1588. /*
  1589. * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
  1590. * will tell us whether it freed the entire range or
  1591. * not. If this is a synchronous mount (wsync),
  1592. * then we can tell bunmapi to keep all the
  1593. * transactions asynchronous since the unlink
  1594. * transaction that made this inode inactive has
  1595. * already hit the disk. There's no danger of
  1596. * the freed blocks being reused, there being a
  1597. * crash, and the reused blocks suddenly reappearing
  1598. * in this file with garbage in them once recovery
  1599. * runs.
  1600. */
  1601. XFS_BMAP_INIT(&free_list, &first_block);
  1602. error = XFS_BUNMAPI(mp, ntp, &ip->i_iocore,
  1603. first_unmap_block, unmap_len,
  1604. XFS_BMAPI_AFLAG(fork) |
  1605. (sync ? 0 : XFS_BMAPI_ASYNC),
  1606. XFS_ITRUNC_MAX_EXTENTS,
  1607. &first_block, &free_list,
  1608. NULL, &done);
  1609. if (error) {
  1610. /*
  1611. * If the bunmapi call encounters an error,
  1612. * return to the caller where the transaction
  1613. * can be properly aborted. We just need to
  1614. * make sure we're not holding any resources
  1615. * that we were not when we came in.
  1616. */
  1617. xfs_bmap_cancel(&free_list);
  1618. return error;
  1619. }
  1620. /*
  1621. * Duplicate the transaction that has the permanent
  1622. * reservation and commit the old transaction.
  1623. */
  1624. error = xfs_bmap_finish(tp, &free_list, &committed);
  1625. ntp = *tp;
  1626. if (error) {
  1627. /*
  1628. * If the bmap finish call encounters an error,
  1629. * return to the caller where the transaction
  1630. * can be properly aborted. We just need to
  1631. * make sure we're not holding any resources
  1632. * that we were not when we came in.
  1633. *
  1634. * Aborting from this point might lose some
  1635. * blocks in the file system, but oh well.
  1636. */
  1637. xfs_bmap_cancel(&free_list);
  1638. if (committed) {
  1639. /*
  1640. * If the passed in transaction committed
  1641. * in xfs_bmap_finish(), then we want to
  1642. * add the inode to this one before returning.
  1643. * This keeps things simple for the higher
  1644. * level code, because it always knows that
  1645. * the inode is locked and held in the
  1646. * transaction that returns to it whether
  1647. * errors occur or not. We don't mark the
  1648. * inode dirty so that this transaction can
  1649. * be easily aborted if possible.
  1650. */
  1651. xfs_trans_ijoin(ntp, ip,
  1652. XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1653. xfs_trans_ihold(ntp, ip);
  1654. }
  1655. return error;
  1656. }
  1657. if (committed) {
  1658. /*
  1659. * The first xact was committed,
  1660. * so add the inode to the new one.
  1661. * Mark it dirty so it will be logged
  1662. * and moved forward in the log as
  1663. * part of every commit.
  1664. */
  1665. xfs_trans_ijoin(ntp, ip,
  1666. XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1667. xfs_trans_ihold(ntp, ip);
  1668. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1669. }
  1670. ntp = xfs_trans_dup(ntp);
  1671. (void) xfs_trans_commit(*tp, 0);
  1672. *tp = ntp;
  1673. error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0,
  1674. XFS_TRANS_PERM_LOG_RES,
  1675. XFS_ITRUNCATE_LOG_COUNT);
  1676. /*
  1677. * Add the inode being truncated to the next chained
  1678. * transaction.
  1679. */
  1680. xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1681. xfs_trans_ihold(ntp, ip);
  1682. if (error)
  1683. return (error);
  1684. }
  1685. /*
  1686. * Only update the size in the case of the data fork, but
  1687. * always re-log the inode so that our permanent transaction
  1688. * can keep on rolling it forward in the log.
  1689. */
  1690. if (fork == XFS_DATA_FORK) {
  1691. xfs_isize_check(mp, ip, new_size);
  1692. /*
  1693. * If we are not changing the file size then do
  1694. * not update the on-disk file size - we may be
  1695. * called from xfs_inactive_free_eofblocks(). If we
  1696. * update the on-disk file size and then the system
  1697. * crashes before the contents of the file are
  1698. * flushed to disk then the files may be full of
  1699. * holes (ie NULL files bug).
  1700. */
  1701. if (ip->i_size != new_size) {
  1702. ip->i_d.di_size = new_size;
  1703. ip->i_size = new_size;
  1704. }
  1705. }
  1706. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1707. ASSERT((new_size != 0) ||
  1708. (fork == XFS_ATTR_FORK) ||
  1709. (ip->i_delayed_blks == 0));
  1710. ASSERT((new_size != 0) ||
  1711. (fork == XFS_ATTR_FORK) ||
  1712. (ip->i_d.di_nextents == 0));
  1713. xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
  1714. return 0;
  1715. }
  1716. /*
  1717. * xfs_igrow_start
  1718. *
  1719. * Do the first part of growing a file: zero any data in the last
  1720. * block that is beyond the old EOF. We need to do this before
  1721. * the inode is joined to the transaction to modify the i_size.
  1722. * That way we can drop the inode lock and call into the buffer
  1723. * cache to get the buffer mapping the EOF.
  1724. */
  1725. int
  1726. xfs_igrow_start(
  1727. xfs_inode_t *ip,
  1728. xfs_fsize_t new_size,
  1729. cred_t *credp)
  1730. {
  1731. int error;
  1732. ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
  1733. ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
  1734. ASSERT(new_size > ip->i_size);
  1735. /*
  1736. * Zero any pages that may have been created by
  1737. * xfs_write_file() beyond the end of the file
  1738. * and any blocks between the old and new file sizes.
  1739. */
  1740. error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size,
  1741. ip->i_size);
  1742. return error;
  1743. }
  1744. /*
  1745. * xfs_igrow_finish
  1746. *
  1747. * This routine is called to extend the size of a file.
  1748. * The inode must have both the iolock and the ilock locked
  1749. * for update and it must be a part of the current transaction.
  1750. * The xfs_igrow_start() function must have been called previously.
  1751. * If the change_flag is not zero, the inode change timestamp will
  1752. * be updated.
  1753. */
  1754. void
  1755. xfs_igrow_finish(
  1756. xfs_trans_t *tp,
  1757. xfs_inode_t *ip,
  1758. xfs_fsize_t new_size,
  1759. int change_flag)
  1760. {
  1761. ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
  1762. ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
  1763. ASSERT(ip->i_transp == tp);
  1764. ASSERT(new_size > ip->i_size);
  1765. /*
  1766. * Update the file size. Update the inode change timestamp
  1767. * if change_flag set.
  1768. */
  1769. ip->i_d.di_size = new_size;
  1770. ip->i_size = new_size;
  1771. if (change_flag)
  1772. xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
  1773. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  1774. }
  1775. /*
  1776. * This is called when the inode's link count goes to 0.
  1777. * We place the on-disk inode on a list in the AGI. It
  1778. * will be pulled from this list when the inode is freed.
  1779. */
  1780. int
  1781. xfs_iunlink(
  1782. xfs_trans_t *tp,
  1783. xfs_inode_t *ip)
  1784. {
  1785. xfs_mount_t *mp;
  1786. xfs_agi_t *agi;
  1787. xfs_dinode_t *dip;
  1788. xfs_buf_t *agibp;
  1789. xfs_buf_t *ibp;
  1790. xfs_agnumber_t agno;
  1791. xfs_daddr_t agdaddr;
  1792. xfs_agino_t agino;
  1793. short bucket_index;
  1794. int offset;
  1795. int error;
  1796. int agi_ok;
  1797. ASSERT(ip->i_d.di_nlink == 0);
  1798. ASSERT(ip->i_d.di_mode != 0);
  1799. ASSERT(ip->i_transp == tp);
  1800. mp = tp->t_mountp;
  1801. agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
  1802. agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
  1803. /*
  1804. * Get the agi buffer first. It ensures lock ordering
  1805. * on the list.
  1806. */
  1807. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
  1808. XFS_FSS_TO_BB(mp, 1), 0, &agibp);
  1809. if (error) {
  1810. return error;
  1811. }
  1812. /*
  1813. * Validate the magic number of the agi block.
  1814. */
  1815. agi = XFS_BUF_TO_AGI(agibp);
  1816. agi_ok =
  1817. be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
  1818. XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
  1819. if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
  1820. XFS_RANDOM_IUNLINK))) {
  1821. XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
  1822. xfs_trans_brelse(tp, agibp);
  1823. return XFS_ERROR(EFSCORRUPTED);
  1824. }
  1825. /*
  1826. * Get the index into the agi hash table for the
  1827. * list this inode will go on.
  1828. */
  1829. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1830. ASSERT(agino != 0);
  1831. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1832. ASSERT(agi->agi_unlinked[bucket_index]);
  1833. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
  1834. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
  1835. /*
  1836. * There is already another inode in the bucket we need
  1837. * to add ourselves to. Add us at the front of the list.
  1838. * Here we put the head pointer into our next pointer,
  1839. * and then we fall through to point the head at us.
  1840. */
  1841. error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
  1842. if (error) {
  1843. return error;
  1844. }
  1845. ASSERT(INT_GET(dip->di_next_unlinked, ARCH_CONVERT) == NULLAGINO);
  1846. ASSERT(dip->di_next_unlinked);
  1847. /* both on-disk, don't endian flip twice */
  1848. dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
  1849. offset = ip->i_boffset +
  1850. offsetof(xfs_dinode_t, di_next_unlinked);
  1851. xfs_trans_inode_buf(tp, ibp);
  1852. xfs_trans_log_buf(tp, ibp, offset,
  1853. (offset + sizeof(xfs_agino_t) - 1));
  1854. xfs_inobp_check(mp, ibp);
  1855. }
  1856. /*
  1857. * Point the bucket head pointer at the inode being inserted.
  1858. */
  1859. ASSERT(agino != 0);
  1860. agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
  1861. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1862. (sizeof(xfs_agino_t) * bucket_index);
  1863. xfs_trans_log_buf(tp, agibp, offset,
  1864. (offset + sizeof(xfs_agino_t) - 1));
  1865. return 0;
  1866. }
  1867. /*
  1868. * Pull the on-disk inode from the AGI unlinked list.
  1869. */
  1870. STATIC int
  1871. xfs_iunlink_remove(
  1872. xfs_trans_t *tp,
  1873. xfs_inode_t *ip)
  1874. {
  1875. xfs_ino_t next_ino;
  1876. xfs_mount_t *mp;
  1877. xfs_agi_t *agi;
  1878. xfs_dinode_t *dip;
  1879. xfs_buf_t *agibp;
  1880. xfs_buf_t *ibp;
  1881. xfs_agnumber_t agno;
  1882. xfs_daddr_t agdaddr;
  1883. xfs_agino_t agino;
  1884. xfs_agino_t next_agino;
  1885. xfs_buf_t *last_ibp;
  1886. xfs_dinode_t *last_dip = NULL;
  1887. short bucket_index;
  1888. int offset, last_offset = 0;
  1889. int error;
  1890. int agi_ok;
  1891. /*
  1892. * First pull the on-disk inode from the AGI unlinked list.
  1893. */
  1894. mp = tp->t_mountp;
  1895. agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
  1896. agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
  1897. /*
  1898. * Get the agi buffer first. It ensures lock ordering
  1899. * on the list.
  1900. */
  1901. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
  1902. XFS_FSS_TO_BB(mp, 1), 0, &agibp);
  1903. if (error) {
  1904. cmn_err(CE_WARN,
  1905. "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
  1906. error, mp->m_fsname);
  1907. return error;
  1908. }
  1909. /*
  1910. * Validate the magic number of the agi block.
  1911. */
  1912. agi = XFS_BUF_TO_AGI(agibp);
  1913. agi_ok =
  1914. be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
  1915. XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
  1916. if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
  1917. XFS_RANDOM_IUNLINK_REMOVE))) {
  1918. XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
  1919. mp, agi);
  1920. xfs_trans_brelse(tp, agibp);
  1921. cmn_err(CE_WARN,
  1922. "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
  1923. mp->m_fsname);
  1924. return XFS_ERROR(EFSCORRUPTED);
  1925. }
  1926. /*
  1927. * Get the index into the agi hash table for the
  1928. * list this inode will go on.
  1929. */
  1930. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1931. ASSERT(agino != 0);
  1932. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1933. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
  1934. ASSERT(agi->agi_unlinked[bucket_index]);
  1935. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
  1936. /*
  1937. * We're at the head of the list. Get the inode's
  1938. * on-disk buffer to see if there is anyone after us
  1939. * on the list. Only modify our next pointer if it
  1940. * is not already NULLAGINO. This saves us the overhead
  1941. * of dealing with the buffer when there is no need to
  1942. * change it.
  1943. */
  1944. error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
  1945. if (error) {
  1946. cmn_err(CE_WARN,
  1947. "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
  1948. error, mp->m_fsname);
  1949. return error;
  1950. }
  1951. next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
  1952. ASSERT(next_agino != 0);
  1953. if (next_agino != NULLAGINO) {
  1954. INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
  1955. offset = ip->i_boffset +
  1956. offsetof(xfs_dinode_t, di_next_unlinked);
  1957. xfs_trans_inode_buf(tp, ibp);
  1958. xfs_trans_log_buf(tp, ibp, offset,
  1959. (offset + sizeof(xfs_agino_t) - 1));
  1960. xfs_inobp_check(mp, ibp);
  1961. } else {
  1962. xfs_trans_brelse(tp, ibp);
  1963. }
  1964. /*
  1965. * Point the bucket head pointer at the next inode.
  1966. */
  1967. ASSERT(next_agino != 0);
  1968. ASSERT(next_agino != agino);
  1969. agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
  1970. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1971. (sizeof(xfs_agino_t) * bucket_index);
  1972. xfs_trans_log_buf(tp, agibp, offset,
  1973. (offset + sizeof(xfs_agino_t) - 1));
  1974. } else {
  1975. /*
  1976. * We need to search the list for the inode being freed.
  1977. */
  1978. next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
  1979. last_ibp = NULL;
  1980. while (next_agino != agino) {
  1981. /*
  1982. * If the last inode wasn't the one pointing to
  1983. * us, then release its buffer since we're not
  1984. * going to do anything with it.
  1985. */
  1986. if (last_ibp != NULL) {
  1987. xfs_trans_brelse(tp, last_ibp);
  1988. }
  1989. next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
  1990. error = xfs_inotobp(mp, tp, next_ino, &last_dip,
  1991. &last_ibp, &last_offset);
  1992. if (error) {
  1993. cmn_err(CE_WARN,
  1994. "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
  1995. error, mp->m_fsname);
  1996. return error;
  1997. }
  1998. next_agino = INT_GET(last_dip->di_next_unlinked, ARCH_CONVERT);
  1999. ASSERT(next_agino != NULLAGINO);
  2000. ASSERT(next_agino != 0);
  2001. }
  2002. /*
  2003. * Now last_ibp points to the buffer previous to us on
  2004. * the unlinked list. Pull us from the list.
  2005. */
  2006. error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
  2007. if (error) {
  2008. cmn_err(CE_WARN,
  2009. "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
  2010. error, mp->m_fsname);
  2011. return error;
  2012. }
  2013. next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
  2014. ASSERT(next_agino != 0);
  2015. ASSERT(next_agino != agino);
  2016. if (next_agino != NULLAGINO) {
  2017. INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
  2018. offset = ip->i_boffset +
  2019. offsetof(xfs_dinode_t, di_next_unlinked);
  2020. xfs_trans_inode_buf(tp, ibp);
  2021. xfs_trans_log_buf(tp, ibp, offset,
  2022. (offset + sizeof(xfs_agino_t) - 1));
  2023. xfs_inobp_check(mp, ibp);
  2024. } else {
  2025. xfs_trans_brelse(tp, ibp);
  2026. }
  2027. /*
  2028. * Point the previous inode on the list to the next inode.
  2029. */
  2030. INT_SET(last_dip->di_next_unlinked, ARCH_CONVERT, next_agino);
  2031. ASSERT(next_agino != 0);
  2032. offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
  2033. xfs_trans_inode_buf(tp, last_ibp);
  2034. xfs_trans_log_buf(tp, last_ibp, offset,
  2035. (offset + sizeof(xfs_agino_t) - 1));
  2036. xfs_inobp_check(mp, last_ibp);
  2037. }
  2038. return 0;
  2039. }
  2040. STATIC_INLINE int xfs_inode_clean(xfs_inode_t *ip)
  2041. {
  2042. return (((ip->i_itemp == NULL) ||
  2043. !(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
  2044. (ip->i_update_core == 0));
  2045. }
  2046. STATIC void
  2047. xfs_ifree_cluster(
  2048. xfs_inode_t *free_ip,
  2049. xfs_trans_t *tp,
  2050. xfs_ino_t inum)
  2051. {
  2052. xfs_mount_t *mp = free_ip->i_mount;
  2053. int blks_per_cluster;
  2054. int nbufs;
  2055. int ninodes;
  2056. int i, j, found, pre_flushed;
  2057. xfs_daddr_t blkno;
  2058. xfs_buf_t *bp;
  2059. xfs_ihash_t *ih;
  2060. xfs_inode_t *ip, **ip_found;
  2061. xfs_inode_log_item_t *iip;
  2062. xfs_log_item_t *lip;
  2063. SPLDECL(s);
  2064. if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
  2065. blks_per_cluster = 1;
  2066. ninodes = mp->m_sb.sb_inopblock;
  2067. nbufs = XFS_IALLOC_BLOCKS(mp);
  2068. } else {
  2069. blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
  2070. mp->m_sb.sb_blocksize;
  2071. ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
  2072. nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
  2073. }
  2074. ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
  2075. for (j = 0; j < nbufs; j++, inum += ninodes) {
  2076. blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
  2077. XFS_INO_TO_AGBNO(mp, inum));
  2078. /*
  2079. * Look for each inode in memory and attempt to lock it,
  2080. * we can be racing with flush and tail pushing here.
  2081. * any inode we get the locks on, add to an array of
  2082. * inode items to process later.
  2083. *
  2084. * The get the buffer lock, we could beat a flush
  2085. * or tail pushing thread to the lock here, in which
  2086. * case they will go looking for the inode buffer
  2087. * and fail, we need some other form of interlock
  2088. * here.
  2089. */
  2090. found = 0;
  2091. for (i = 0; i < ninodes; i++) {
  2092. ih = XFS_IHASH(mp, inum + i);
  2093. read_lock(&ih->ih_lock);
  2094. for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) {
  2095. if (ip->i_ino == inum + i)
  2096. break;
  2097. }
  2098. /* Inode not in memory or we found it already,
  2099. * nothing to do
  2100. */
  2101. if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
  2102. read_unlock(&ih->ih_lock);
  2103. continue;
  2104. }
  2105. if (xfs_inode_clean(ip)) {
  2106. read_unlock(&ih->ih_lock);
  2107. continue;
  2108. }
  2109. /* If we can get the locks then add it to the
  2110. * list, otherwise by the time we get the bp lock
  2111. * below it will already be attached to the
  2112. * inode buffer.
  2113. */
  2114. /* This inode will already be locked - by us, lets
  2115. * keep it that way.
  2116. */
  2117. if (ip == free_ip) {
  2118. if (xfs_iflock_nowait(ip)) {
  2119. xfs_iflags_set(ip, XFS_ISTALE);
  2120. if (xfs_inode_clean(ip)) {
  2121. xfs_ifunlock(ip);
  2122. } else {
  2123. ip_found[found++] = ip;
  2124. }
  2125. }
  2126. read_unlock(&ih->ih_lock);
  2127. continue;
  2128. }
  2129. if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
  2130. if (xfs_iflock_nowait(ip)) {
  2131. xfs_iflags_set(ip, XFS_ISTALE);
  2132. if (xfs_inode_clean(ip)) {
  2133. xfs_ifunlock(ip);
  2134. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2135. } else {
  2136. ip_found[found++] = ip;
  2137. }
  2138. } else {
  2139. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2140. }
  2141. }
  2142. read_unlock(&ih->ih_lock);
  2143. }
  2144. bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
  2145. mp->m_bsize * blks_per_cluster,
  2146. XFS_BUF_LOCK);
  2147. pre_flushed = 0;
  2148. lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
  2149. while (lip) {
  2150. if (lip->li_type == XFS_LI_INODE) {
  2151. iip = (xfs_inode_log_item_t *)lip;
  2152. ASSERT(iip->ili_logged == 1);
  2153. lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
  2154. AIL_LOCK(mp,s);
  2155. iip->ili_flush_lsn = iip->ili_item.li_lsn;
  2156. AIL_UNLOCK(mp, s);
  2157. xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
  2158. pre_flushed++;
  2159. }
  2160. lip = lip->li_bio_list;
  2161. }
  2162. for (i = 0; i < found; i++) {
  2163. ip = ip_found[i];
  2164. iip = ip->i_itemp;
  2165. if (!iip) {
  2166. ip->i_update_core = 0;
  2167. xfs_ifunlock(ip);
  2168. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2169. continue;
  2170. }
  2171. iip->ili_last_fields = iip->ili_format.ilf_fields;
  2172. iip->ili_format.ilf_fields = 0;
  2173. iip->ili_logged = 1;
  2174. AIL_LOCK(mp,s);
  2175. iip->ili_flush_lsn = iip->ili_item.li_lsn;
  2176. AIL_UNLOCK(mp, s);
  2177. xfs_buf_attach_iodone(bp,
  2178. (void(*)(xfs_buf_t*,xfs_log_item_t*))
  2179. xfs_istale_done, (xfs_log_item_t *)iip);
  2180. if (ip != free_ip) {
  2181. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2182. }
  2183. }
  2184. if (found || pre_flushed)
  2185. xfs_trans_stale_inode_buf(tp, bp);
  2186. xfs_trans_binval(tp, bp);
  2187. }
  2188. kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
  2189. }
  2190. /*
  2191. * This is called to return an inode to the inode free list.
  2192. * The inode should already be truncated to 0 length and have
  2193. * no pages associated with it. This routine also assumes that
  2194. * the inode is already a part of the transaction.
  2195. *
  2196. * The on-disk copy of the inode will have been added to the list
  2197. * of unlinked inodes in the AGI. We need to remove the inode from
  2198. * that list atomically with respect to freeing it here.
  2199. */
  2200. int
  2201. xfs_ifree(
  2202. xfs_trans_t *tp,
  2203. xfs_inode_t *ip,
  2204. xfs_bmap_free_t *flist)
  2205. {
  2206. int error;
  2207. int delete;
  2208. xfs_ino_t first_ino;
  2209. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
  2210. ASSERT(ip->i_transp == tp);
  2211. ASSERT(ip->i_d.di_nlink == 0);
  2212. ASSERT(ip->i_d.di_nextents == 0);
  2213. ASSERT(ip->i_d.di_anextents == 0);
  2214. ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
  2215. ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
  2216. ASSERT(ip->i_d.di_nblocks == 0);
  2217. /*
  2218. * Pull the on-disk inode from the AGI unlinked list.
  2219. */
  2220. error = xfs_iunlink_remove(tp, ip);
  2221. if (error != 0) {
  2222. return error;
  2223. }
  2224. error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
  2225. if (error != 0) {
  2226. return error;
  2227. }
  2228. ip->i_d.di_mode = 0; /* mark incore inode as free */
  2229. ip->i_d.di_flags = 0;
  2230. ip->i_d.di_dmevmask = 0;
  2231. ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
  2232. ip->i_df.if_ext_max =
  2233. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  2234. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  2235. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  2236. /*
  2237. * Bump the generation count so no one will be confused
  2238. * by reincarnations of this inode.
  2239. */
  2240. ip->i_d.di_gen++;
  2241. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  2242. if (delete) {
  2243. xfs_ifree_cluster(ip, tp, first_ino);
  2244. }
  2245. return 0;
  2246. }
  2247. /*
  2248. * Reallocate the space for if_broot based on the number of records
  2249. * being added or deleted as indicated in rec_diff. Move the records
  2250. * and pointers in if_broot to fit the new size. When shrinking this
  2251. * will eliminate holes between the records and pointers created by
  2252. * the caller. When growing this will create holes to be filled in
  2253. * by the caller.
  2254. *
  2255. * The caller must not request to add more records than would fit in
  2256. * the on-disk inode root. If the if_broot is currently NULL, then
  2257. * if we adding records one will be allocated. The caller must also
  2258. * not request that the number of records go below zero, although
  2259. * it can go to zero.
  2260. *
  2261. * ip -- the inode whose if_broot area is changing
  2262. * ext_diff -- the change in the number of records, positive or negative,
  2263. * requested for the if_broot array.
  2264. */
  2265. void
  2266. xfs_iroot_realloc(
  2267. xfs_inode_t *ip,
  2268. int rec_diff,
  2269. int whichfork)
  2270. {
  2271. int cur_max;
  2272. xfs_ifork_t *ifp;
  2273. xfs_bmbt_block_t *new_broot;
  2274. int new_max;
  2275. size_t new_size;
  2276. char *np;
  2277. char *op;
  2278. /*
  2279. * Handle the degenerate case quietly.
  2280. */
  2281. if (rec_diff == 0) {
  2282. return;
  2283. }
  2284. ifp = XFS_IFORK_PTR(ip, whichfork);
  2285. if (rec_diff > 0) {
  2286. /*
  2287. * If there wasn't any memory allocated before, just
  2288. * allocate it now and get out.
  2289. */
  2290. if (ifp->if_broot_bytes == 0) {
  2291. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
  2292. ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
  2293. KM_SLEEP);
  2294. ifp->if_broot_bytes = (int)new_size;
  2295. return;
  2296. }
  2297. /*
  2298. * If there is already an existing if_broot, then we need
  2299. * to realloc() it and shift the pointers to their new
  2300. * location. The records don't change location because
  2301. * they are kept butted up against the btree block header.
  2302. */
  2303. cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
  2304. new_max = cur_max + rec_diff;
  2305. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  2306. ifp->if_broot = (xfs_bmbt_block_t *)
  2307. kmem_realloc(ifp->if_broot,
  2308. new_size,
  2309. (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
  2310. KM_SLEEP);
  2311. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
  2312. ifp->if_broot_bytes);
  2313. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
  2314. (int)new_size);
  2315. ifp->if_broot_bytes = (int)new_size;
  2316. ASSERT(ifp->if_broot_bytes <=
  2317. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  2318. memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
  2319. return;
  2320. }
  2321. /*
  2322. * rec_diff is less than 0. In this case, we are shrinking the
  2323. * if_broot buffer. It must already exist. If we go to zero
  2324. * records, just get rid of the root and clear the status bit.
  2325. */
  2326. ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
  2327. cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
  2328. new_max = cur_max + rec_diff;
  2329. ASSERT(new_max >= 0);
  2330. if (new_max > 0)
  2331. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  2332. else
  2333. new_size = 0;
  2334. if (new_size > 0) {
  2335. new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
  2336. /*
  2337. * First copy over the btree block header.
  2338. */
  2339. memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
  2340. } else {
  2341. new_broot = NULL;
  2342. ifp->if_flags &= ~XFS_IFBROOT;
  2343. }
  2344. /*
  2345. * Only copy the records and pointers if there are any.
  2346. */
  2347. if (new_max > 0) {
  2348. /*
  2349. * First copy the records.
  2350. */
  2351. op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
  2352. ifp->if_broot_bytes);
  2353. np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
  2354. (int)new_size);
  2355. memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
  2356. /*
  2357. * Then copy the pointers.
  2358. */
  2359. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
  2360. ifp->if_broot_bytes);
  2361. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
  2362. (int)new_size);
  2363. memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
  2364. }
  2365. kmem_free(ifp->if_broot, ifp->if_broot_bytes);
  2366. ifp->if_broot = new_broot;
  2367. ifp->if_broot_bytes = (int)new_size;
  2368. ASSERT(ifp->if_broot_bytes <=
  2369. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  2370. return;
  2371. }
  2372. /*
  2373. * This is called when the amount of space needed for if_data
  2374. * is increased or decreased. The change in size is indicated by
  2375. * the number of bytes that need to be added or deleted in the
  2376. * byte_diff parameter.
  2377. *
  2378. * If the amount of space needed has decreased below the size of the
  2379. * inline buffer, then switch to using the inline buffer. Otherwise,
  2380. * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
  2381. * to what is needed.
  2382. *
  2383. * ip -- the inode whose if_data area is changing
  2384. * byte_diff -- the change in the number of bytes, positive or negative,
  2385. * requested for the if_data array.
  2386. */
  2387. void
  2388. xfs_idata_realloc(
  2389. xfs_inode_t *ip,
  2390. int byte_diff,
  2391. int whichfork)
  2392. {
  2393. xfs_ifork_t *ifp;
  2394. int new_size;
  2395. int real_size;
  2396. if (byte_diff == 0) {
  2397. return;
  2398. }
  2399. ifp = XFS_IFORK_PTR(ip, whichfork);
  2400. new_size = (int)ifp->if_bytes + byte_diff;
  2401. ASSERT(new_size >= 0);
  2402. if (new_size == 0) {
  2403. if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2404. kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
  2405. }
  2406. ifp->if_u1.if_data = NULL;
  2407. real_size = 0;
  2408. } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
  2409. /*
  2410. * If the valid extents/data can fit in if_inline_ext/data,
  2411. * copy them from the malloc'd vector and free it.
  2412. */
  2413. if (ifp->if_u1.if_data == NULL) {
  2414. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2415. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2416. ASSERT(ifp->if_real_bytes != 0);
  2417. memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
  2418. new_size);
  2419. kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
  2420. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2421. }
  2422. real_size = 0;
  2423. } else {
  2424. /*
  2425. * Stuck with malloc/realloc.
  2426. * For inline data, the underlying buffer must be
  2427. * a multiple of 4 bytes in size so that it can be
  2428. * logged and stay on word boundaries. We enforce
  2429. * that here.
  2430. */
  2431. real_size = roundup(new_size, 4);
  2432. if (ifp->if_u1.if_data == NULL) {
  2433. ASSERT(ifp->if_real_bytes == 0);
  2434. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  2435. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2436. /*
  2437. * Only do the realloc if the underlying size
  2438. * is really changing.
  2439. */
  2440. if (ifp->if_real_bytes != real_size) {
  2441. ifp->if_u1.if_data =
  2442. kmem_realloc(ifp->if_u1.if_data,
  2443. real_size,
  2444. ifp->if_real_bytes,
  2445. KM_SLEEP);
  2446. }
  2447. } else {
  2448. ASSERT(ifp->if_real_bytes == 0);
  2449. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  2450. memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
  2451. ifp->if_bytes);
  2452. }
  2453. }
  2454. ifp->if_real_bytes = real_size;
  2455. ifp->if_bytes = new_size;
  2456. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2457. }
  2458. /*
  2459. * Map inode to disk block and offset.
  2460. *
  2461. * mp -- the mount point structure for the current file system
  2462. * tp -- the current transaction
  2463. * ino -- the inode number of the inode to be located
  2464. * imap -- this structure is filled in with the information necessary
  2465. * to retrieve the given inode from disk
  2466. * flags -- flags to pass to xfs_dilocate indicating whether or not
  2467. * lookups in the inode btree were OK or not
  2468. */
  2469. int
  2470. xfs_imap(
  2471. xfs_mount_t *mp,
  2472. xfs_trans_t *tp,
  2473. xfs_ino_t ino,
  2474. xfs_imap_t *imap,
  2475. uint flags)
  2476. {
  2477. xfs_fsblock_t fsbno;
  2478. int len;
  2479. int off;
  2480. int error;
  2481. fsbno = imap->im_blkno ?
  2482. XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
  2483. error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
  2484. if (error != 0) {
  2485. return error;
  2486. }
  2487. imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
  2488. imap->im_len = XFS_FSB_TO_BB(mp, len);
  2489. imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
  2490. imap->im_ioffset = (ushort)off;
  2491. imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
  2492. return 0;
  2493. }
  2494. void
  2495. xfs_idestroy_fork(
  2496. xfs_inode_t *ip,
  2497. int whichfork)
  2498. {
  2499. xfs_ifork_t *ifp;
  2500. ifp = XFS_IFORK_PTR(ip, whichfork);
  2501. if (ifp->if_broot != NULL) {
  2502. kmem_free(ifp->if_broot, ifp->if_broot_bytes);
  2503. ifp->if_broot = NULL;
  2504. }
  2505. /*
  2506. * If the format is local, then we can't have an extents
  2507. * array so just look for an inline data array. If we're
  2508. * not local then we may or may not have an extents list,
  2509. * so check and free it up if we do.
  2510. */
  2511. if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
  2512. if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
  2513. (ifp->if_u1.if_data != NULL)) {
  2514. ASSERT(ifp->if_real_bytes != 0);
  2515. kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
  2516. ifp->if_u1.if_data = NULL;
  2517. ifp->if_real_bytes = 0;
  2518. }
  2519. } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
  2520. ((ifp->if_flags & XFS_IFEXTIREC) ||
  2521. ((ifp->if_u1.if_extents != NULL) &&
  2522. (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
  2523. ASSERT(ifp->if_real_bytes != 0);
  2524. xfs_iext_destroy(ifp);
  2525. }
  2526. ASSERT(ifp->if_u1.if_extents == NULL ||
  2527. ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
  2528. ASSERT(ifp->if_real_bytes == 0);
  2529. if (whichfork == XFS_ATTR_FORK) {
  2530. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  2531. ip->i_afp = NULL;
  2532. }
  2533. }
  2534. /*
  2535. * This is called free all the memory associated with an inode.
  2536. * It must free the inode itself and any buffers allocated for
  2537. * if_extents/if_data and if_broot. It must also free the lock
  2538. * associated with the inode.
  2539. */
  2540. void
  2541. xfs_idestroy(
  2542. xfs_inode_t *ip)
  2543. {
  2544. switch (ip->i_d.di_mode & S_IFMT) {
  2545. case S_IFREG:
  2546. case S_IFDIR:
  2547. case S_IFLNK:
  2548. xfs_idestroy_fork(ip, XFS_DATA_FORK);
  2549. break;
  2550. }
  2551. if (ip->i_afp)
  2552. xfs_idestroy_fork(ip, XFS_ATTR_FORK);
  2553. mrfree(&ip->i_lock);
  2554. mrfree(&ip->i_iolock);
  2555. freesema(&ip->i_flock);
  2556. #ifdef XFS_BMAP_TRACE
  2557. ktrace_free(ip->i_xtrace);
  2558. #endif
  2559. #ifdef XFS_BMBT_TRACE
  2560. ktrace_free(ip->i_btrace);
  2561. #endif
  2562. #ifdef XFS_RW_TRACE
  2563. ktrace_free(ip->i_rwtrace);
  2564. #endif
  2565. #ifdef XFS_ILOCK_TRACE
  2566. ktrace_free(ip->i_lock_trace);
  2567. #endif
  2568. #ifdef XFS_DIR2_TRACE
  2569. ktrace_free(ip->i_dir_trace);
  2570. #endif
  2571. if (ip->i_itemp) {
  2572. /*
  2573. * Only if we are shutting down the fs will we see an
  2574. * inode still in the AIL. If it is there, we should remove
  2575. * it to prevent a use-after-free from occurring.
  2576. */
  2577. xfs_mount_t *mp = ip->i_mount;
  2578. xfs_log_item_t *lip = &ip->i_itemp->ili_item;
  2579. int s;
  2580. ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) ||
  2581. XFS_FORCED_SHUTDOWN(ip->i_mount));
  2582. if (lip->li_flags & XFS_LI_IN_AIL) {
  2583. AIL_LOCK(mp, s);
  2584. if (lip->li_flags & XFS_LI_IN_AIL)
  2585. xfs_trans_delete_ail(mp, lip, s);
  2586. else
  2587. AIL_UNLOCK(mp, s);
  2588. }
  2589. xfs_inode_item_destroy(ip);
  2590. }
  2591. kmem_zone_free(xfs_inode_zone, ip);
  2592. }
  2593. /*
  2594. * Increment the pin count of the given buffer.
  2595. * This value is protected by ipinlock spinlock in the mount structure.
  2596. */
  2597. void
  2598. xfs_ipin(
  2599. xfs_inode_t *ip)
  2600. {
  2601. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
  2602. atomic_inc(&ip->i_pincount);
  2603. }
  2604. /*
  2605. * Decrement the pin count of the given inode, and wake up
  2606. * anyone in xfs_iwait_unpin() if the count goes to 0. The
  2607. * inode must have been previously pinned with a call to xfs_ipin().
  2608. */
  2609. void
  2610. xfs_iunpin(
  2611. xfs_inode_t *ip)
  2612. {
  2613. ASSERT(atomic_read(&ip->i_pincount) > 0);
  2614. if (atomic_dec_and_lock(&ip->i_pincount, &ip->i_flags_lock)) {
  2615. /*
  2616. * If the inode is currently being reclaimed, the link between
  2617. * the bhv_vnode and the xfs_inode will be broken after the
  2618. * XFS_IRECLAIM* flag is set. Hence, if these flags are not
  2619. * set, then we can move forward and mark the linux inode dirty
  2620. * knowing that it is still valid as it won't freed until after
  2621. * the bhv_vnode<->xfs_inode link is broken in xfs_reclaim. The
  2622. * i_flags_lock is used to synchronise the setting of the
  2623. * XFS_IRECLAIM* flags and the breaking of the link, and so we
  2624. * can execute atomically w.r.t to reclaim by holding this lock
  2625. * here.
  2626. *
  2627. * However, we still need to issue the unpin wakeup call as the
  2628. * inode reclaim may be blocked waiting for the inode to become
  2629. * unpinned.
  2630. */
  2631. if (!__xfs_iflags_test(ip, XFS_IRECLAIM|XFS_IRECLAIMABLE)) {
  2632. bhv_vnode_t *vp = XFS_ITOV_NULL(ip);
  2633. struct inode *inode = NULL;
  2634. BUG_ON(vp == NULL);
  2635. inode = vn_to_inode(vp);
  2636. BUG_ON(inode->i_state & I_CLEAR);
  2637. /* make sync come back and flush this inode */
  2638. if (!(inode->i_state & (I_NEW|I_FREEING)))
  2639. mark_inode_dirty_sync(inode);
  2640. }
  2641. spin_unlock(&ip->i_flags_lock);
  2642. wake_up(&ip->i_ipin_wait);
  2643. }
  2644. }
  2645. /*
  2646. * This is called to wait for the given inode to be unpinned.
  2647. * It will sleep until this happens. The caller must have the
  2648. * inode locked in at least shared mode so that the buffer cannot
  2649. * be subsequently pinned once someone is waiting for it to be
  2650. * unpinned.
  2651. */
  2652. STATIC void
  2653. xfs_iunpin_wait(
  2654. xfs_inode_t *ip)
  2655. {
  2656. xfs_inode_log_item_t *iip;
  2657. xfs_lsn_t lsn;
  2658. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS));
  2659. if (atomic_read(&ip->i_pincount) == 0) {
  2660. return;
  2661. }
  2662. iip = ip->i_itemp;
  2663. if (iip && iip->ili_last_lsn) {
  2664. lsn = iip->ili_last_lsn;
  2665. } else {
  2666. lsn = (xfs_lsn_t)0;
  2667. }
  2668. /*
  2669. * Give the log a push so we don't wait here too long.
  2670. */
  2671. xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE);
  2672. wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
  2673. }
  2674. /*
  2675. * xfs_iextents_copy()
  2676. *
  2677. * This is called to copy the REAL extents (as opposed to the delayed
  2678. * allocation extents) from the inode into the given buffer. It
  2679. * returns the number of bytes copied into the buffer.
  2680. *
  2681. * If there are no delayed allocation extents, then we can just
  2682. * memcpy() the extents into the buffer. Otherwise, we need to
  2683. * examine each extent in turn and skip those which are delayed.
  2684. */
  2685. int
  2686. xfs_iextents_copy(
  2687. xfs_inode_t *ip,
  2688. xfs_bmbt_rec_t *buffer,
  2689. int whichfork)
  2690. {
  2691. int copied;
  2692. xfs_bmbt_rec_t *dest_ep;
  2693. xfs_bmbt_rec_t *ep;
  2694. int i;
  2695. xfs_ifork_t *ifp;
  2696. int nrecs;
  2697. xfs_fsblock_t start_block;
  2698. ifp = XFS_IFORK_PTR(ip, whichfork);
  2699. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
  2700. ASSERT(ifp->if_bytes > 0);
  2701. nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2702. XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
  2703. ASSERT(nrecs > 0);
  2704. /*
  2705. * There are some delayed allocation extents in the
  2706. * inode, so copy the extents one at a time and skip
  2707. * the delayed ones. There must be at least one
  2708. * non-delayed extent.
  2709. */
  2710. dest_ep = buffer;
  2711. copied = 0;
  2712. for (i = 0; i < nrecs; i++) {
  2713. ep = xfs_iext_get_ext(ifp, i);
  2714. start_block = xfs_bmbt_get_startblock(ep);
  2715. if (ISNULLSTARTBLOCK(start_block)) {
  2716. /*
  2717. * It's a delayed allocation extent, so skip it.
  2718. */
  2719. continue;
  2720. }
  2721. /* Translate to on disk format */
  2722. put_unaligned(INT_GET(ep->l0, ARCH_CONVERT),
  2723. (__uint64_t*)&dest_ep->l0);
  2724. put_unaligned(INT_GET(ep->l1, ARCH_CONVERT),
  2725. (__uint64_t*)&dest_ep->l1);
  2726. dest_ep++;
  2727. copied++;
  2728. }
  2729. ASSERT(copied != 0);
  2730. xfs_validate_extents(ifp, copied, 1, XFS_EXTFMT_INODE(ip));
  2731. return (copied * (uint)sizeof(xfs_bmbt_rec_t));
  2732. }
  2733. /*
  2734. * Each of the following cases stores data into the same region
  2735. * of the on-disk inode, so only one of them can be valid at
  2736. * any given time. While it is possible to have conflicting formats
  2737. * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
  2738. * in EXTENTS format, this can only happen when the fork has
  2739. * changed formats after being modified but before being flushed.
  2740. * In these cases, the format always takes precedence, because the
  2741. * format indicates the current state of the fork.
  2742. */
  2743. /*ARGSUSED*/
  2744. STATIC int
  2745. xfs_iflush_fork(
  2746. xfs_inode_t *ip,
  2747. xfs_dinode_t *dip,
  2748. xfs_inode_log_item_t *iip,
  2749. int whichfork,
  2750. xfs_buf_t *bp)
  2751. {
  2752. char *cp;
  2753. xfs_ifork_t *ifp;
  2754. xfs_mount_t *mp;
  2755. #ifdef XFS_TRANS_DEBUG
  2756. int first;
  2757. #endif
  2758. static const short brootflag[2] =
  2759. { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
  2760. static const short dataflag[2] =
  2761. { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
  2762. static const short extflag[2] =
  2763. { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
  2764. if (iip == NULL)
  2765. return 0;
  2766. ifp = XFS_IFORK_PTR(ip, whichfork);
  2767. /*
  2768. * This can happen if we gave up in iformat in an error path,
  2769. * for the attribute fork.
  2770. */
  2771. if (ifp == NULL) {
  2772. ASSERT(whichfork == XFS_ATTR_FORK);
  2773. return 0;
  2774. }
  2775. cp = XFS_DFORK_PTR(dip, whichfork);
  2776. mp = ip->i_mount;
  2777. switch (XFS_IFORK_FORMAT(ip, whichfork)) {
  2778. case XFS_DINODE_FMT_LOCAL:
  2779. if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
  2780. (ifp->if_bytes > 0)) {
  2781. ASSERT(ifp->if_u1.if_data != NULL);
  2782. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2783. memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
  2784. }
  2785. break;
  2786. case XFS_DINODE_FMT_EXTENTS:
  2787. ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
  2788. !(iip->ili_format.ilf_fields & extflag[whichfork]));
  2789. ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
  2790. (ifp->if_bytes == 0));
  2791. ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
  2792. (ifp->if_bytes > 0));
  2793. if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
  2794. (ifp->if_bytes > 0)) {
  2795. ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
  2796. (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
  2797. whichfork);
  2798. }
  2799. break;
  2800. case XFS_DINODE_FMT_BTREE:
  2801. if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
  2802. (ifp->if_broot_bytes > 0)) {
  2803. ASSERT(ifp->if_broot != NULL);
  2804. ASSERT(ifp->if_broot_bytes <=
  2805. (XFS_IFORK_SIZE(ip, whichfork) +
  2806. XFS_BROOT_SIZE_ADJ));
  2807. xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
  2808. (xfs_bmdr_block_t *)cp,
  2809. XFS_DFORK_SIZE(dip, mp, whichfork));
  2810. }
  2811. break;
  2812. case XFS_DINODE_FMT_DEV:
  2813. if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
  2814. ASSERT(whichfork == XFS_DATA_FORK);
  2815. INT_SET(dip->di_u.di_dev, ARCH_CONVERT, ip->i_df.if_u2.if_rdev);
  2816. }
  2817. break;
  2818. case XFS_DINODE_FMT_UUID:
  2819. if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
  2820. ASSERT(whichfork == XFS_DATA_FORK);
  2821. memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
  2822. sizeof(uuid_t));
  2823. }
  2824. break;
  2825. default:
  2826. ASSERT(0);
  2827. break;
  2828. }
  2829. return 0;
  2830. }
  2831. /*
  2832. * xfs_iflush() will write a modified inode's changes out to the
  2833. * inode's on disk home. The caller must have the inode lock held
  2834. * in at least shared mode and the inode flush semaphore must be
  2835. * held as well. The inode lock will still be held upon return from
  2836. * the call and the caller is free to unlock it.
  2837. * The inode flush lock will be unlocked when the inode reaches the disk.
  2838. * The flags indicate how the inode's buffer should be written out.
  2839. */
  2840. int
  2841. xfs_iflush(
  2842. xfs_inode_t *ip,
  2843. uint flags)
  2844. {
  2845. xfs_inode_log_item_t *iip;
  2846. xfs_buf_t *bp;
  2847. xfs_dinode_t *dip;
  2848. xfs_mount_t *mp;
  2849. int error;
  2850. /* REFERENCED */
  2851. xfs_chash_t *ch;
  2852. xfs_inode_t *iq;
  2853. int clcount; /* count of inodes clustered */
  2854. int bufwasdelwri;
  2855. enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
  2856. SPLDECL(s);
  2857. XFS_STATS_INC(xs_iflush_count);
  2858. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
  2859. ASSERT(issemalocked(&(ip->i_flock)));
  2860. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  2861. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  2862. iip = ip->i_itemp;
  2863. mp = ip->i_mount;
  2864. /*
  2865. * If the inode isn't dirty, then just release the inode
  2866. * flush lock and do nothing.
  2867. */
  2868. if ((ip->i_update_core == 0) &&
  2869. ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
  2870. ASSERT((iip != NULL) ?
  2871. !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
  2872. xfs_ifunlock(ip);
  2873. return 0;
  2874. }
  2875. /*
  2876. * We can't flush the inode until it is unpinned, so
  2877. * wait for it. We know noone new can pin it, because
  2878. * we are holding the inode lock shared and you need
  2879. * to hold it exclusively to pin the inode.
  2880. */
  2881. xfs_iunpin_wait(ip);
  2882. /*
  2883. * This may have been unpinned because the filesystem is shutting
  2884. * down forcibly. If that's the case we must not write this inode
  2885. * to disk, because the log record didn't make it to disk!
  2886. */
  2887. if (XFS_FORCED_SHUTDOWN(mp)) {
  2888. ip->i_update_core = 0;
  2889. if (iip)
  2890. iip->ili_format.ilf_fields = 0;
  2891. xfs_ifunlock(ip);
  2892. return XFS_ERROR(EIO);
  2893. }
  2894. /*
  2895. * Get the buffer containing the on-disk inode.
  2896. */
  2897. error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0);
  2898. if (error) {
  2899. xfs_ifunlock(ip);
  2900. return error;
  2901. }
  2902. /*
  2903. * Decide how buffer will be flushed out. This is done before
  2904. * the call to xfs_iflush_int because this field is zeroed by it.
  2905. */
  2906. if (iip != NULL && iip->ili_format.ilf_fields != 0) {
  2907. /*
  2908. * Flush out the inode buffer according to the directions
  2909. * of the caller. In the cases where the caller has given
  2910. * us a choice choose the non-delwri case. This is because
  2911. * the inode is in the AIL and we need to get it out soon.
  2912. */
  2913. switch (flags) {
  2914. case XFS_IFLUSH_SYNC:
  2915. case XFS_IFLUSH_DELWRI_ELSE_SYNC:
  2916. flags = 0;
  2917. break;
  2918. case XFS_IFLUSH_ASYNC:
  2919. case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
  2920. flags = INT_ASYNC;
  2921. break;
  2922. case XFS_IFLUSH_DELWRI:
  2923. flags = INT_DELWRI;
  2924. break;
  2925. default:
  2926. ASSERT(0);
  2927. flags = 0;
  2928. break;
  2929. }
  2930. } else {
  2931. switch (flags) {
  2932. case XFS_IFLUSH_DELWRI_ELSE_SYNC:
  2933. case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
  2934. case XFS_IFLUSH_DELWRI:
  2935. flags = INT_DELWRI;
  2936. break;
  2937. case XFS_IFLUSH_ASYNC:
  2938. flags = INT_ASYNC;
  2939. break;
  2940. case XFS_IFLUSH_SYNC:
  2941. flags = 0;
  2942. break;
  2943. default:
  2944. ASSERT(0);
  2945. flags = 0;
  2946. break;
  2947. }
  2948. }
  2949. /*
  2950. * First flush out the inode that xfs_iflush was called with.
  2951. */
  2952. error = xfs_iflush_int(ip, bp);
  2953. if (error) {
  2954. goto corrupt_out;
  2955. }
  2956. /*
  2957. * inode clustering:
  2958. * see if other inodes can be gathered into this write
  2959. */
  2960. ip->i_chash->chl_buf = bp;
  2961. ch = XFS_CHASH(mp, ip->i_blkno);
  2962. s = mutex_spinlock(&ch->ch_lock);
  2963. clcount = 0;
  2964. for (iq = ip->i_cnext; iq != ip; iq = iq->i_cnext) {
  2965. /*
  2966. * Do an un-protected check to see if the inode is dirty and
  2967. * is a candidate for flushing. These checks will be repeated
  2968. * later after the appropriate locks are acquired.
  2969. */
  2970. iip = iq->i_itemp;
  2971. if ((iq->i_update_core == 0) &&
  2972. ((iip == NULL) ||
  2973. !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
  2974. xfs_ipincount(iq) == 0) {
  2975. continue;
  2976. }
  2977. /*
  2978. * Try to get locks. If any are unavailable,
  2979. * then this inode cannot be flushed and is skipped.
  2980. */
  2981. /* get inode locks (just i_lock) */
  2982. if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) {
  2983. /* get inode flush lock */
  2984. if (xfs_iflock_nowait(iq)) {
  2985. /* check if pinned */
  2986. if (xfs_ipincount(iq) == 0) {
  2987. /* arriving here means that
  2988. * this inode can be flushed.
  2989. * first re-check that it's
  2990. * dirty
  2991. */
  2992. iip = iq->i_itemp;
  2993. if ((iq->i_update_core != 0)||
  2994. ((iip != NULL) &&
  2995. (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
  2996. clcount++;
  2997. error = xfs_iflush_int(iq, bp);
  2998. if (error) {
  2999. xfs_iunlock(iq,
  3000. XFS_ILOCK_SHARED);
  3001. goto cluster_corrupt_out;
  3002. }
  3003. } else {
  3004. xfs_ifunlock(iq);
  3005. }
  3006. } else {
  3007. xfs_ifunlock(iq);
  3008. }
  3009. }
  3010. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  3011. }
  3012. }
  3013. mutex_spinunlock(&ch->ch_lock, s);
  3014. if (clcount) {
  3015. XFS_STATS_INC(xs_icluster_flushcnt);
  3016. XFS_STATS_ADD(xs_icluster_flushinode, clcount);
  3017. }
  3018. /*
  3019. * If the buffer is pinned then push on the log so we won't
  3020. * get stuck waiting in the write for too long.
  3021. */
  3022. if (XFS_BUF_ISPINNED(bp)){
  3023. xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
  3024. }
  3025. if (flags & INT_DELWRI) {
  3026. xfs_bdwrite(mp, bp);
  3027. } else if (flags & INT_ASYNC) {
  3028. xfs_bawrite(mp, bp);
  3029. } else {
  3030. error = xfs_bwrite(mp, bp);
  3031. }
  3032. return error;
  3033. corrupt_out:
  3034. xfs_buf_relse(bp);
  3035. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  3036. xfs_iflush_abort(ip);
  3037. /*
  3038. * Unlocks the flush lock
  3039. */
  3040. return XFS_ERROR(EFSCORRUPTED);
  3041. cluster_corrupt_out:
  3042. /* Corruption detected in the clustering loop. Invalidate the
  3043. * inode buffer and shut down the filesystem.
  3044. */
  3045. mutex_spinunlock(&ch->ch_lock, s);
  3046. /*
  3047. * Clean up the buffer. If it was B_DELWRI, just release it --
  3048. * brelse can handle it with no problems. If not, shut down the
  3049. * filesystem before releasing the buffer.
  3050. */
  3051. if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) {
  3052. xfs_buf_relse(bp);
  3053. }
  3054. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  3055. if(!bufwasdelwri) {
  3056. /*
  3057. * Just like incore_relse: if we have b_iodone functions,
  3058. * mark the buffer as an error and call them. Otherwise
  3059. * mark it as stale and brelse.
  3060. */
  3061. if (XFS_BUF_IODONE_FUNC(bp)) {
  3062. XFS_BUF_CLR_BDSTRAT_FUNC(bp);
  3063. XFS_BUF_UNDONE(bp);
  3064. XFS_BUF_STALE(bp);
  3065. XFS_BUF_SHUT(bp);
  3066. XFS_BUF_ERROR(bp,EIO);
  3067. xfs_biodone(bp);
  3068. } else {
  3069. XFS_BUF_STALE(bp);
  3070. xfs_buf_relse(bp);
  3071. }
  3072. }
  3073. xfs_iflush_abort(iq);
  3074. /*
  3075. * Unlocks the flush lock
  3076. */
  3077. return XFS_ERROR(EFSCORRUPTED);
  3078. }
  3079. STATIC int
  3080. xfs_iflush_int(
  3081. xfs_inode_t *ip,
  3082. xfs_buf_t *bp)
  3083. {
  3084. xfs_inode_log_item_t *iip;
  3085. xfs_dinode_t *dip;
  3086. xfs_mount_t *mp;
  3087. #ifdef XFS_TRANS_DEBUG
  3088. int first;
  3089. #endif
  3090. SPLDECL(s);
  3091. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
  3092. ASSERT(issemalocked(&(ip->i_flock)));
  3093. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  3094. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  3095. iip = ip->i_itemp;
  3096. mp = ip->i_mount;
  3097. /*
  3098. * If the inode isn't dirty, then just release the inode
  3099. * flush lock and do nothing.
  3100. */
  3101. if ((ip->i_update_core == 0) &&
  3102. ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
  3103. xfs_ifunlock(ip);
  3104. return 0;
  3105. }
  3106. /* set *dip = inode's place in the buffer */
  3107. dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
  3108. /*
  3109. * Clear i_update_core before copying out the data.
  3110. * This is for coordination with our timestamp updates
  3111. * that don't hold the inode lock. They will always
  3112. * update the timestamps BEFORE setting i_update_core,
  3113. * so if we clear i_update_core after they set it we
  3114. * are guaranteed to see their updates to the timestamps.
  3115. * I believe that this depends on strongly ordered memory
  3116. * semantics, but we have that. We use the SYNCHRONIZE
  3117. * macro to make sure that the compiler does not reorder
  3118. * the i_update_core access below the data copy below.
  3119. */
  3120. ip->i_update_core = 0;
  3121. SYNCHRONIZE();
  3122. /*
  3123. * Make sure to get the latest atime from the Linux inode.
  3124. */
  3125. xfs_synchronize_atime(ip);
  3126. if (XFS_TEST_ERROR(INT_GET(dip->di_core.di_magic,ARCH_CONVERT) != XFS_DINODE_MAGIC,
  3127. mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
  3128. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3129. "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
  3130. ip->i_ino, (int) INT_GET(dip->di_core.di_magic, ARCH_CONVERT), dip);
  3131. goto corrupt_out;
  3132. }
  3133. if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
  3134. mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
  3135. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3136. "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
  3137. ip->i_ino, ip, ip->i_d.di_magic);
  3138. goto corrupt_out;
  3139. }
  3140. if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
  3141. if (XFS_TEST_ERROR(
  3142. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  3143. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
  3144. mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
  3145. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3146. "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
  3147. ip->i_ino, ip);
  3148. goto corrupt_out;
  3149. }
  3150. } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
  3151. if (XFS_TEST_ERROR(
  3152. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  3153. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
  3154. (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
  3155. mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
  3156. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3157. "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
  3158. ip->i_ino, ip);
  3159. goto corrupt_out;
  3160. }
  3161. }
  3162. if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
  3163. ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
  3164. XFS_RANDOM_IFLUSH_5)) {
  3165. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3166. "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
  3167. ip->i_ino,
  3168. ip->i_d.di_nextents + ip->i_d.di_anextents,
  3169. ip->i_d.di_nblocks,
  3170. ip);
  3171. goto corrupt_out;
  3172. }
  3173. if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
  3174. mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
  3175. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3176. "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
  3177. ip->i_ino, ip->i_d.di_forkoff, ip);
  3178. goto corrupt_out;
  3179. }
  3180. /*
  3181. * bump the flush iteration count, used to detect flushes which
  3182. * postdate a log record during recovery.
  3183. */
  3184. ip->i_d.di_flushiter++;
  3185. /*
  3186. * Copy the dirty parts of the inode into the on-disk
  3187. * inode. We always copy out the core of the inode,
  3188. * because if the inode is dirty at all the core must
  3189. * be.
  3190. */
  3191. xfs_xlate_dinode_core((xfs_caddr_t)&(dip->di_core), &(ip->i_d), -1);
  3192. /* Wrap, we never let the log put out DI_MAX_FLUSH */
  3193. if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
  3194. ip->i_d.di_flushiter = 0;
  3195. /*
  3196. * If this is really an old format inode and the superblock version
  3197. * has not been updated to support only new format inodes, then
  3198. * convert back to the old inode format. If the superblock version
  3199. * has been updated, then make the conversion permanent.
  3200. */
  3201. ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
  3202. XFS_SB_VERSION_HASNLINK(&mp->m_sb));
  3203. if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
  3204. if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
  3205. /*
  3206. * Convert it back.
  3207. */
  3208. ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
  3209. INT_SET(dip->di_core.di_onlink, ARCH_CONVERT, ip->i_d.di_nlink);
  3210. } else {
  3211. /*
  3212. * The superblock version has already been bumped,
  3213. * so just make the conversion to the new inode
  3214. * format permanent.
  3215. */
  3216. ip->i_d.di_version = XFS_DINODE_VERSION_2;
  3217. INT_SET(dip->di_core.di_version, ARCH_CONVERT, XFS_DINODE_VERSION_2);
  3218. ip->i_d.di_onlink = 0;
  3219. dip->di_core.di_onlink = 0;
  3220. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  3221. memset(&(dip->di_core.di_pad[0]), 0,
  3222. sizeof(dip->di_core.di_pad));
  3223. ASSERT(ip->i_d.di_projid == 0);
  3224. }
  3225. }
  3226. if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) {
  3227. goto corrupt_out;
  3228. }
  3229. if (XFS_IFORK_Q(ip)) {
  3230. /*
  3231. * The only error from xfs_iflush_fork is on the data fork.
  3232. */
  3233. (void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
  3234. }
  3235. xfs_inobp_check(mp, bp);
  3236. /*
  3237. * We've recorded everything logged in the inode, so we'd
  3238. * like to clear the ilf_fields bits so we don't log and
  3239. * flush things unnecessarily. However, we can't stop
  3240. * logging all this information until the data we've copied
  3241. * into the disk buffer is written to disk. If we did we might
  3242. * overwrite the copy of the inode in the log with all the
  3243. * data after re-logging only part of it, and in the face of
  3244. * a crash we wouldn't have all the data we need to recover.
  3245. *
  3246. * What we do is move the bits to the ili_last_fields field.
  3247. * When logging the inode, these bits are moved back to the
  3248. * ilf_fields field. In the xfs_iflush_done() routine we
  3249. * clear ili_last_fields, since we know that the information
  3250. * those bits represent is permanently on disk. As long as
  3251. * the flush completes before the inode is logged again, then
  3252. * both ilf_fields and ili_last_fields will be cleared.
  3253. *
  3254. * We can play with the ilf_fields bits here, because the inode
  3255. * lock must be held exclusively in order to set bits there
  3256. * and the flush lock protects the ili_last_fields bits.
  3257. * Set ili_logged so the flush done
  3258. * routine can tell whether or not to look in the AIL.
  3259. * Also, store the current LSN of the inode so that we can tell
  3260. * whether the item has moved in the AIL from xfs_iflush_done().
  3261. * In order to read the lsn we need the AIL lock, because
  3262. * it is a 64 bit value that cannot be read atomically.
  3263. */
  3264. if (iip != NULL && iip->ili_format.ilf_fields != 0) {
  3265. iip->ili_last_fields = iip->ili_format.ilf_fields;
  3266. iip->ili_format.ilf_fields = 0;
  3267. iip->ili_logged = 1;
  3268. ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */
  3269. AIL_LOCK(mp,s);
  3270. iip->ili_flush_lsn = iip->ili_item.li_lsn;
  3271. AIL_UNLOCK(mp, s);
  3272. /*
  3273. * Attach the function xfs_iflush_done to the inode's
  3274. * buffer. This will remove the inode from the AIL
  3275. * and unlock the inode's flush lock when the inode is
  3276. * completely written to disk.
  3277. */
  3278. xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
  3279. xfs_iflush_done, (xfs_log_item_t *)iip);
  3280. ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
  3281. ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
  3282. } else {
  3283. /*
  3284. * We're flushing an inode which is not in the AIL and has
  3285. * not been logged but has i_update_core set. For this
  3286. * case we can use a B_DELWRI flush and immediately drop
  3287. * the inode flush lock because we can avoid the whole
  3288. * AIL state thing. It's OK to drop the flush lock now,
  3289. * because we've already locked the buffer and to do anything
  3290. * you really need both.
  3291. */
  3292. if (iip != NULL) {
  3293. ASSERT(iip->ili_logged == 0);
  3294. ASSERT(iip->ili_last_fields == 0);
  3295. ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
  3296. }
  3297. xfs_ifunlock(ip);
  3298. }
  3299. return 0;
  3300. corrupt_out:
  3301. return XFS_ERROR(EFSCORRUPTED);
  3302. }
  3303. /*
  3304. * Flush all inactive inodes in mp.
  3305. */
  3306. void
  3307. xfs_iflush_all(
  3308. xfs_mount_t *mp)
  3309. {
  3310. xfs_inode_t *ip;
  3311. bhv_vnode_t *vp;
  3312. again:
  3313. XFS_MOUNT_ILOCK(mp);
  3314. ip = mp->m_inodes;
  3315. if (ip == NULL)
  3316. goto out;
  3317. do {
  3318. /* Make sure we skip markers inserted by sync */
  3319. if (ip->i_mount == NULL) {
  3320. ip = ip->i_mnext;
  3321. continue;
  3322. }
  3323. vp = XFS_ITOV_NULL(ip);
  3324. if (!vp) {
  3325. XFS_MOUNT_IUNLOCK(mp);
  3326. xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
  3327. goto again;
  3328. }
  3329. ASSERT(vn_count(vp) == 0);
  3330. ip = ip->i_mnext;
  3331. } while (ip != mp->m_inodes);
  3332. out:
  3333. XFS_MOUNT_IUNLOCK(mp);
  3334. }
  3335. /*
  3336. * xfs_iaccess: check accessibility of inode for mode.
  3337. */
  3338. int
  3339. xfs_iaccess(
  3340. xfs_inode_t *ip,
  3341. mode_t mode,
  3342. cred_t *cr)
  3343. {
  3344. int error;
  3345. mode_t orgmode = mode;
  3346. struct inode *inode = vn_to_inode(XFS_ITOV(ip));
  3347. if (mode & S_IWUSR) {
  3348. umode_t imode = inode->i_mode;
  3349. if (IS_RDONLY(inode) &&
  3350. (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode)))
  3351. return XFS_ERROR(EROFS);
  3352. if (IS_IMMUTABLE(inode))
  3353. return XFS_ERROR(EACCES);
  3354. }
  3355. /*
  3356. * If there's an Access Control List it's used instead of
  3357. * the mode bits.
  3358. */
  3359. if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1)
  3360. return error ? XFS_ERROR(error) : 0;
  3361. if (current_fsuid(cr) != ip->i_d.di_uid) {
  3362. mode >>= 3;
  3363. if (!in_group_p((gid_t)ip->i_d.di_gid))
  3364. mode >>= 3;
  3365. }
  3366. /*
  3367. * If the DACs are ok we don't need any capability check.
  3368. */
  3369. if ((ip->i_d.di_mode & mode) == mode)
  3370. return 0;
  3371. /*
  3372. * Read/write DACs are always overridable.
  3373. * Executable DACs are overridable if at least one exec bit is set.
  3374. */
  3375. if (!(orgmode & S_IXUSR) ||
  3376. (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
  3377. if (capable_cred(cr, CAP_DAC_OVERRIDE))
  3378. return 0;
  3379. if ((orgmode == S_IRUSR) ||
  3380. (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) {
  3381. if (capable_cred(cr, CAP_DAC_READ_SEARCH))
  3382. return 0;
  3383. #ifdef NOISE
  3384. cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode);
  3385. #endif /* NOISE */
  3386. return XFS_ERROR(EACCES);
  3387. }
  3388. return XFS_ERROR(EACCES);
  3389. }
  3390. /*
  3391. * xfs_iroundup: round up argument to next power of two
  3392. */
  3393. uint
  3394. xfs_iroundup(
  3395. uint v)
  3396. {
  3397. int i;
  3398. uint m;
  3399. if ((v & (v - 1)) == 0)
  3400. return v;
  3401. ASSERT((v & 0x80000000) == 0);
  3402. if ((v & (v + 1)) == 0)
  3403. return v + 1;
  3404. for (i = 0, m = 1; i < 31; i++, m <<= 1) {
  3405. if (v & m)
  3406. continue;
  3407. v |= m;
  3408. if ((v & (v + 1)) == 0)
  3409. return v + 1;
  3410. }
  3411. ASSERT(0);
  3412. return( 0 );
  3413. }
  3414. #ifdef XFS_ILOCK_TRACE
  3415. ktrace_t *xfs_ilock_trace_buf;
  3416. void
  3417. xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
  3418. {
  3419. ktrace_enter(ip->i_lock_trace,
  3420. (void *)ip,
  3421. (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
  3422. (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
  3423. (void *)ra, /* caller of ilock */
  3424. (void *)(unsigned long)current_cpu(),
  3425. (void *)(unsigned long)current_pid(),
  3426. NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
  3427. }
  3428. #endif
  3429. /*
  3430. * Return a pointer to the extent record at file index idx.
  3431. */
  3432. xfs_bmbt_rec_t *
  3433. xfs_iext_get_ext(
  3434. xfs_ifork_t *ifp, /* inode fork pointer */
  3435. xfs_extnum_t idx) /* index of target extent */
  3436. {
  3437. ASSERT(idx >= 0);
  3438. if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
  3439. return ifp->if_u1.if_ext_irec->er_extbuf;
  3440. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  3441. xfs_ext_irec_t *erp; /* irec pointer */
  3442. int erp_idx = 0; /* irec index */
  3443. xfs_extnum_t page_idx = idx; /* ext index in target list */
  3444. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  3445. return &erp->er_extbuf[page_idx];
  3446. } else if (ifp->if_bytes) {
  3447. return &ifp->if_u1.if_extents[idx];
  3448. } else {
  3449. return NULL;
  3450. }
  3451. }
  3452. /*
  3453. * Insert new item(s) into the extent records for incore inode
  3454. * fork 'ifp'. 'count' new items are inserted at index 'idx'.
  3455. */
  3456. void
  3457. xfs_iext_insert(
  3458. xfs_ifork_t *ifp, /* inode fork pointer */
  3459. xfs_extnum_t idx, /* starting index of new items */
  3460. xfs_extnum_t count, /* number of inserted items */
  3461. xfs_bmbt_irec_t *new) /* items to insert */
  3462. {
  3463. xfs_bmbt_rec_t *ep; /* extent record pointer */
  3464. xfs_extnum_t i; /* extent record index */
  3465. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  3466. xfs_iext_add(ifp, idx, count);
  3467. for (i = idx; i < idx + count; i++, new++) {
  3468. ep = xfs_iext_get_ext(ifp, i);
  3469. xfs_bmbt_set_all(ep, new);
  3470. }
  3471. }
  3472. /*
  3473. * This is called when the amount of space required for incore file
  3474. * extents needs to be increased. The ext_diff parameter stores the
  3475. * number of new extents being added and the idx parameter contains
  3476. * the extent index where the new extents will be added. If the new
  3477. * extents are being appended, then we just need to (re)allocate and
  3478. * initialize the space. Otherwise, if the new extents are being
  3479. * inserted into the middle of the existing entries, a bit more work
  3480. * is required to make room for the new extents to be inserted. The
  3481. * caller is responsible for filling in the new extent entries upon
  3482. * return.
  3483. */
  3484. void
  3485. xfs_iext_add(
  3486. xfs_ifork_t *ifp, /* inode fork pointer */
  3487. xfs_extnum_t idx, /* index to begin adding exts */
  3488. int ext_diff) /* number of extents to add */
  3489. {
  3490. int byte_diff; /* new bytes being added */
  3491. int new_size; /* size of extents after adding */
  3492. xfs_extnum_t nextents; /* number of extents in file */
  3493. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3494. ASSERT((idx >= 0) && (idx <= nextents));
  3495. byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
  3496. new_size = ifp->if_bytes + byte_diff;
  3497. /*
  3498. * If the new number of extents (nextents + ext_diff)
  3499. * fits inside the inode, then continue to use the inline
  3500. * extent buffer.
  3501. */
  3502. if (nextents + ext_diff <= XFS_INLINE_EXTS) {
  3503. if (idx < nextents) {
  3504. memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
  3505. &ifp->if_u2.if_inline_ext[idx],
  3506. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  3507. memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
  3508. }
  3509. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  3510. ifp->if_real_bytes = 0;
  3511. ifp->if_lastex = nextents + ext_diff;
  3512. }
  3513. /*
  3514. * Otherwise use a linear (direct) extent list.
  3515. * If the extents are currently inside the inode,
  3516. * xfs_iext_realloc_direct will switch us from
  3517. * inline to direct extent allocation mode.
  3518. */
  3519. else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
  3520. xfs_iext_realloc_direct(ifp, new_size);
  3521. if (idx < nextents) {
  3522. memmove(&ifp->if_u1.if_extents[idx + ext_diff],
  3523. &ifp->if_u1.if_extents[idx],
  3524. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  3525. memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
  3526. }
  3527. }
  3528. /* Indirection array */
  3529. else {
  3530. xfs_ext_irec_t *erp;
  3531. int erp_idx = 0;
  3532. int page_idx = idx;
  3533. ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
  3534. if (ifp->if_flags & XFS_IFEXTIREC) {
  3535. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
  3536. } else {
  3537. xfs_iext_irec_init(ifp);
  3538. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3539. erp = ifp->if_u1.if_ext_irec;
  3540. }
  3541. /* Extents fit in target extent page */
  3542. if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
  3543. if (page_idx < erp->er_extcount) {
  3544. memmove(&erp->er_extbuf[page_idx + ext_diff],
  3545. &erp->er_extbuf[page_idx],
  3546. (erp->er_extcount - page_idx) *
  3547. sizeof(xfs_bmbt_rec_t));
  3548. memset(&erp->er_extbuf[page_idx], 0, byte_diff);
  3549. }
  3550. erp->er_extcount += ext_diff;
  3551. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3552. }
  3553. /* Insert a new extent page */
  3554. else if (erp) {
  3555. xfs_iext_add_indirect_multi(ifp,
  3556. erp_idx, page_idx, ext_diff);
  3557. }
  3558. /*
  3559. * If extent(s) are being appended to the last page in
  3560. * the indirection array and the new extent(s) don't fit
  3561. * in the page, then erp is NULL and erp_idx is set to
  3562. * the next index needed in the indirection array.
  3563. */
  3564. else {
  3565. int count = ext_diff;
  3566. while (count) {
  3567. erp = xfs_iext_irec_new(ifp, erp_idx);
  3568. erp->er_extcount = count;
  3569. count -= MIN(count, (int)XFS_LINEAR_EXTS);
  3570. if (count) {
  3571. erp_idx++;
  3572. }
  3573. }
  3574. }
  3575. }
  3576. ifp->if_bytes = new_size;
  3577. }
  3578. /*
  3579. * This is called when incore extents are being added to the indirection
  3580. * array and the new extents do not fit in the target extent list. The
  3581. * erp_idx parameter contains the irec index for the target extent list
  3582. * in the indirection array, and the idx parameter contains the extent
  3583. * index within the list. The number of extents being added is stored
  3584. * in the count parameter.
  3585. *
  3586. * |-------| |-------|
  3587. * | | | | idx - number of extents before idx
  3588. * | idx | | count |
  3589. * | | | | count - number of extents being inserted at idx
  3590. * |-------| |-------|
  3591. * | count | | nex2 | nex2 - number of extents after idx + count
  3592. * |-------| |-------|
  3593. */
  3594. void
  3595. xfs_iext_add_indirect_multi(
  3596. xfs_ifork_t *ifp, /* inode fork pointer */
  3597. int erp_idx, /* target extent irec index */
  3598. xfs_extnum_t idx, /* index within target list */
  3599. int count) /* new extents being added */
  3600. {
  3601. int byte_diff; /* new bytes being added */
  3602. xfs_ext_irec_t *erp; /* pointer to irec entry */
  3603. xfs_extnum_t ext_diff; /* number of extents to add */
  3604. xfs_extnum_t ext_cnt; /* new extents still needed */
  3605. xfs_extnum_t nex2; /* extents after idx + count */
  3606. xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
  3607. int nlists; /* number of irec's (lists) */
  3608. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3609. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3610. nex2 = erp->er_extcount - idx;
  3611. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3612. /*
  3613. * Save second part of target extent list
  3614. * (all extents past */
  3615. if (nex2) {
  3616. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  3617. nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_SLEEP);
  3618. memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
  3619. erp->er_extcount -= nex2;
  3620. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
  3621. memset(&erp->er_extbuf[idx], 0, byte_diff);
  3622. }
  3623. /*
  3624. * Add the new extents to the end of the target
  3625. * list, then allocate new irec record(s) and
  3626. * extent buffer(s) as needed to store the rest
  3627. * of the new extents.
  3628. */
  3629. ext_cnt = count;
  3630. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
  3631. if (ext_diff) {
  3632. erp->er_extcount += ext_diff;
  3633. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3634. ext_cnt -= ext_diff;
  3635. }
  3636. while (ext_cnt) {
  3637. erp_idx++;
  3638. erp = xfs_iext_irec_new(ifp, erp_idx);
  3639. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
  3640. erp->er_extcount = ext_diff;
  3641. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3642. ext_cnt -= ext_diff;
  3643. }
  3644. /* Add nex2 extents back to indirection array */
  3645. if (nex2) {
  3646. xfs_extnum_t ext_avail;
  3647. int i;
  3648. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  3649. ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
  3650. i = 0;
  3651. /*
  3652. * If nex2 extents fit in the current page, append
  3653. * nex2_ep after the new extents.
  3654. */
  3655. if (nex2 <= ext_avail) {
  3656. i = erp->er_extcount;
  3657. }
  3658. /*
  3659. * Otherwise, check if space is available in the
  3660. * next page.
  3661. */
  3662. else if ((erp_idx < nlists - 1) &&
  3663. (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
  3664. ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
  3665. erp_idx++;
  3666. erp++;
  3667. /* Create a hole for nex2 extents */
  3668. memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
  3669. erp->er_extcount * sizeof(xfs_bmbt_rec_t));
  3670. }
  3671. /*
  3672. * Final choice, create a new extent page for
  3673. * nex2 extents.
  3674. */
  3675. else {
  3676. erp_idx++;
  3677. erp = xfs_iext_irec_new(ifp, erp_idx);
  3678. }
  3679. memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
  3680. kmem_free(nex2_ep, byte_diff);
  3681. erp->er_extcount += nex2;
  3682. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
  3683. }
  3684. }
  3685. /*
  3686. * This is called when the amount of space required for incore file
  3687. * extents needs to be decreased. The ext_diff parameter stores the
  3688. * number of extents to be removed and the idx parameter contains
  3689. * the extent index where the extents will be removed from.
  3690. *
  3691. * If the amount of space needed has decreased below the linear
  3692. * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
  3693. * extent array. Otherwise, use kmem_realloc() to adjust the
  3694. * size to what is needed.
  3695. */
  3696. void
  3697. xfs_iext_remove(
  3698. xfs_ifork_t *ifp, /* inode fork pointer */
  3699. xfs_extnum_t idx, /* index to begin removing exts */
  3700. int ext_diff) /* number of extents to remove */
  3701. {
  3702. xfs_extnum_t nextents; /* number of extents in file */
  3703. int new_size; /* size of extents after removal */
  3704. ASSERT(ext_diff > 0);
  3705. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3706. new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
  3707. if (new_size == 0) {
  3708. xfs_iext_destroy(ifp);
  3709. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  3710. xfs_iext_remove_indirect(ifp, idx, ext_diff);
  3711. } else if (ifp->if_real_bytes) {
  3712. xfs_iext_remove_direct(ifp, idx, ext_diff);
  3713. } else {
  3714. xfs_iext_remove_inline(ifp, idx, ext_diff);
  3715. }
  3716. ifp->if_bytes = new_size;
  3717. }
  3718. /*
  3719. * This removes ext_diff extents from the inline buffer, beginning
  3720. * at extent index idx.
  3721. */
  3722. void
  3723. xfs_iext_remove_inline(
  3724. xfs_ifork_t *ifp, /* inode fork pointer */
  3725. xfs_extnum_t idx, /* index to begin removing exts */
  3726. int ext_diff) /* number of extents to remove */
  3727. {
  3728. int nextents; /* number of extents in file */
  3729. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3730. ASSERT(idx < XFS_INLINE_EXTS);
  3731. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3732. ASSERT(((nextents - ext_diff) > 0) &&
  3733. (nextents - ext_diff) < XFS_INLINE_EXTS);
  3734. if (idx + ext_diff < nextents) {
  3735. memmove(&ifp->if_u2.if_inline_ext[idx],
  3736. &ifp->if_u2.if_inline_ext[idx + ext_diff],
  3737. (nextents - (idx + ext_diff)) *
  3738. sizeof(xfs_bmbt_rec_t));
  3739. memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
  3740. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3741. } else {
  3742. memset(&ifp->if_u2.if_inline_ext[idx], 0,
  3743. ext_diff * sizeof(xfs_bmbt_rec_t));
  3744. }
  3745. }
  3746. /*
  3747. * This removes ext_diff extents from a linear (direct) extent list,
  3748. * beginning at extent index idx. If the extents are being removed
  3749. * from the end of the list (ie. truncate) then we just need to re-
  3750. * allocate the list to remove the extra space. Otherwise, if the
  3751. * extents are being removed from the middle of the existing extent
  3752. * entries, then we first need to move the extent records beginning
  3753. * at idx + ext_diff up in the list to overwrite the records being
  3754. * removed, then remove the extra space via kmem_realloc.
  3755. */
  3756. void
  3757. xfs_iext_remove_direct(
  3758. xfs_ifork_t *ifp, /* inode fork pointer */
  3759. xfs_extnum_t idx, /* index to begin removing exts */
  3760. int ext_diff) /* number of extents to remove */
  3761. {
  3762. xfs_extnum_t nextents; /* number of extents in file */
  3763. int new_size; /* size of extents after removal */
  3764. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3765. new_size = ifp->if_bytes -
  3766. (ext_diff * sizeof(xfs_bmbt_rec_t));
  3767. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3768. if (new_size == 0) {
  3769. xfs_iext_destroy(ifp);
  3770. return;
  3771. }
  3772. /* Move extents up in the list (if needed) */
  3773. if (idx + ext_diff < nextents) {
  3774. memmove(&ifp->if_u1.if_extents[idx],
  3775. &ifp->if_u1.if_extents[idx + ext_diff],
  3776. (nextents - (idx + ext_diff)) *
  3777. sizeof(xfs_bmbt_rec_t));
  3778. }
  3779. memset(&ifp->if_u1.if_extents[nextents - ext_diff],
  3780. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3781. /*
  3782. * Reallocate the direct extent list. If the extents
  3783. * will fit inside the inode then xfs_iext_realloc_direct
  3784. * will switch from direct to inline extent allocation
  3785. * mode for us.
  3786. */
  3787. xfs_iext_realloc_direct(ifp, new_size);
  3788. ifp->if_bytes = new_size;
  3789. }
  3790. /*
  3791. * This is called when incore extents are being removed from the
  3792. * indirection array and the extents being removed span multiple extent
  3793. * buffers. The idx parameter contains the file extent index where we
  3794. * want to begin removing extents, and the count parameter contains
  3795. * how many extents need to be removed.
  3796. *
  3797. * |-------| |-------|
  3798. * | nex1 | | | nex1 - number of extents before idx
  3799. * |-------| | count |
  3800. * | | | | count - number of extents being removed at idx
  3801. * | count | |-------|
  3802. * | | | nex2 | nex2 - number of extents after idx + count
  3803. * |-------| |-------|
  3804. */
  3805. void
  3806. xfs_iext_remove_indirect(
  3807. xfs_ifork_t *ifp, /* inode fork pointer */
  3808. xfs_extnum_t idx, /* index to begin removing extents */
  3809. int count) /* number of extents to remove */
  3810. {
  3811. xfs_ext_irec_t *erp; /* indirection array pointer */
  3812. int erp_idx = 0; /* indirection array index */
  3813. xfs_extnum_t ext_cnt; /* extents left to remove */
  3814. xfs_extnum_t ext_diff; /* extents to remove in current list */
  3815. xfs_extnum_t nex1; /* number of extents before idx */
  3816. xfs_extnum_t nex2; /* extents after idx + count */
  3817. int nlists; /* entries in indirection array */
  3818. int page_idx = idx; /* index in target extent list */
  3819. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3820. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  3821. ASSERT(erp != NULL);
  3822. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3823. nex1 = page_idx;
  3824. ext_cnt = count;
  3825. while (ext_cnt) {
  3826. nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
  3827. ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
  3828. /*
  3829. * Check for deletion of entire list;
  3830. * xfs_iext_irec_remove() updates extent offsets.
  3831. */
  3832. if (ext_diff == erp->er_extcount) {
  3833. xfs_iext_irec_remove(ifp, erp_idx);
  3834. ext_cnt -= ext_diff;
  3835. nex1 = 0;
  3836. if (ext_cnt) {
  3837. ASSERT(erp_idx < ifp->if_real_bytes /
  3838. XFS_IEXT_BUFSZ);
  3839. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3840. nex1 = 0;
  3841. continue;
  3842. } else {
  3843. break;
  3844. }
  3845. }
  3846. /* Move extents up (if needed) */
  3847. if (nex2) {
  3848. memmove(&erp->er_extbuf[nex1],
  3849. &erp->er_extbuf[nex1 + ext_diff],
  3850. nex2 * sizeof(xfs_bmbt_rec_t));
  3851. }
  3852. /* Zero out rest of page */
  3853. memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
  3854. ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
  3855. /* Update remaining counters */
  3856. erp->er_extcount -= ext_diff;
  3857. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
  3858. ext_cnt -= ext_diff;
  3859. nex1 = 0;
  3860. erp_idx++;
  3861. erp++;
  3862. }
  3863. ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
  3864. xfs_iext_irec_compact(ifp);
  3865. }
  3866. /*
  3867. * Create, destroy, or resize a linear (direct) block of extents.
  3868. */
  3869. void
  3870. xfs_iext_realloc_direct(
  3871. xfs_ifork_t *ifp, /* inode fork pointer */
  3872. int new_size) /* new size of extents */
  3873. {
  3874. int rnew_size; /* real new size of extents */
  3875. rnew_size = new_size;
  3876. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
  3877. ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
  3878. (new_size != ifp->if_real_bytes)));
  3879. /* Free extent records */
  3880. if (new_size == 0) {
  3881. xfs_iext_destroy(ifp);
  3882. }
  3883. /* Resize direct extent list and zero any new bytes */
  3884. else if (ifp->if_real_bytes) {
  3885. /* Check if extents will fit inside the inode */
  3886. if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
  3887. xfs_iext_direct_to_inline(ifp, new_size /
  3888. (uint)sizeof(xfs_bmbt_rec_t));
  3889. ifp->if_bytes = new_size;
  3890. return;
  3891. }
  3892. if (!is_power_of_2(new_size)){
  3893. rnew_size = xfs_iroundup(new_size);
  3894. }
  3895. if (rnew_size != ifp->if_real_bytes) {
  3896. ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
  3897. kmem_realloc(ifp->if_u1.if_extents,
  3898. rnew_size,
  3899. ifp->if_real_bytes,
  3900. KM_SLEEP);
  3901. }
  3902. if (rnew_size > ifp->if_real_bytes) {
  3903. memset(&ifp->if_u1.if_extents[ifp->if_bytes /
  3904. (uint)sizeof(xfs_bmbt_rec_t)], 0,
  3905. rnew_size - ifp->if_real_bytes);
  3906. }
  3907. }
  3908. /*
  3909. * Switch from the inline extent buffer to a direct
  3910. * extent list. Be sure to include the inline extent
  3911. * bytes in new_size.
  3912. */
  3913. else {
  3914. new_size += ifp->if_bytes;
  3915. if (!is_power_of_2(new_size)) {
  3916. rnew_size = xfs_iroundup(new_size);
  3917. }
  3918. xfs_iext_inline_to_direct(ifp, rnew_size);
  3919. }
  3920. ifp->if_real_bytes = rnew_size;
  3921. ifp->if_bytes = new_size;
  3922. }
  3923. /*
  3924. * Switch from linear (direct) extent records to inline buffer.
  3925. */
  3926. void
  3927. xfs_iext_direct_to_inline(
  3928. xfs_ifork_t *ifp, /* inode fork pointer */
  3929. xfs_extnum_t nextents) /* number of extents in file */
  3930. {
  3931. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  3932. ASSERT(nextents <= XFS_INLINE_EXTS);
  3933. /*
  3934. * The inline buffer was zeroed when we switched
  3935. * from inline to direct extent allocation mode,
  3936. * so we don't need to clear it here.
  3937. */
  3938. memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
  3939. nextents * sizeof(xfs_bmbt_rec_t));
  3940. kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
  3941. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  3942. ifp->if_real_bytes = 0;
  3943. }
  3944. /*
  3945. * Switch from inline buffer to linear (direct) extent records.
  3946. * new_size should already be rounded up to the next power of 2
  3947. * by the caller (when appropriate), so use new_size as it is.
  3948. * However, since new_size may be rounded up, we can't update
  3949. * if_bytes here. It is the caller's responsibility to update
  3950. * if_bytes upon return.
  3951. */
  3952. void
  3953. xfs_iext_inline_to_direct(
  3954. xfs_ifork_t *ifp, /* inode fork pointer */
  3955. int new_size) /* number of extents in file */
  3956. {
  3957. ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
  3958. kmem_alloc(new_size, KM_SLEEP);
  3959. memset(ifp->if_u1.if_extents, 0, new_size);
  3960. if (ifp->if_bytes) {
  3961. memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
  3962. ifp->if_bytes);
  3963. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3964. sizeof(xfs_bmbt_rec_t));
  3965. }
  3966. ifp->if_real_bytes = new_size;
  3967. }
  3968. /*
  3969. * Resize an extent indirection array to new_size bytes.
  3970. */
  3971. void
  3972. xfs_iext_realloc_indirect(
  3973. xfs_ifork_t *ifp, /* inode fork pointer */
  3974. int new_size) /* new indirection array size */
  3975. {
  3976. int nlists; /* number of irec's (ex lists) */
  3977. int size; /* current indirection array size */
  3978. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3979. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3980. size = nlists * sizeof(xfs_ext_irec_t);
  3981. ASSERT(ifp->if_real_bytes);
  3982. ASSERT((new_size >= 0) && (new_size != size));
  3983. if (new_size == 0) {
  3984. xfs_iext_destroy(ifp);
  3985. } else {
  3986. ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
  3987. kmem_realloc(ifp->if_u1.if_ext_irec,
  3988. new_size, size, KM_SLEEP);
  3989. }
  3990. }
  3991. /*
  3992. * Switch from indirection array to linear (direct) extent allocations.
  3993. */
  3994. void
  3995. xfs_iext_indirect_to_direct(
  3996. xfs_ifork_t *ifp) /* inode fork pointer */
  3997. {
  3998. xfs_bmbt_rec_t *ep; /* extent record pointer */
  3999. xfs_extnum_t nextents; /* number of extents in file */
  4000. int size; /* size of file extents */
  4001. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4002. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  4003. ASSERT(nextents <= XFS_LINEAR_EXTS);
  4004. size = nextents * sizeof(xfs_bmbt_rec_t);
  4005. xfs_iext_irec_compact_full(ifp);
  4006. ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
  4007. ep = ifp->if_u1.if_ext_irec->er_extbuf;
  4008. kmem_free(ifp->if_u1.if_ext_irec, sizeof(xfs_ext_irec_t));
  4009. ifp->if_flags &= ~XFS_IFEXTIREC;
  4010. ifp->if_u1.if_extents = ep;
  4011. ifp->if_bytes = size;
  4012. if (nextents < XFS_LINEAR_EXTS) {
  4013. xfs_iext_realloc_direct(ifp, size);
  4014. }
  4015. }
  4016. /*
  4017. * Free incore file extents.
  4018. */
  4019. void
  4020. xfs_iext_destroy(
  4021. xfs_ifork_t *ifp) /* inode fork pointer */
  4022. {
  4023. if (ifp->if_flags & XFS_IFEXTIREC) {
  4024. int erp_idx;
  4025. int nlists;
  4026. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4027. for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
  4028. xfs_iext_irec_remove(ifp, erp_idx);
  4029. }
  4030. ifp->if_flags &= ~XFS_IFEXTIREC;
  4031. } else if (ifp->if_real_bytes) {
  4032. kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
  4033. } else if (ifp->if_bytes) {
  4034. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  4035. sizeof(xfs_bmbt_rec_t));
  4036. }
  4037. ifp->if_u1.if_extents = NULL;
  4038. ifp->if_real_bytes = 0;
  4039. ifp->if_bytes = 0;
  4040. }
  4041. /*
  4042. * Return a pointer to the extent record for file system block bno.
  4043. */
  4044. xfs_bmbt_rec_t * /* pointer to found extent record */
  4045. xfs_iext_bno_to_ext(
  4046. xfs_ifork_t *ifp, /* inode fork pointer */
  4047. xfs_fileoff_t bno, /* block number to search for */
  4048. xfs_extnum_t *idxp) /* index of target extent */
  4049. {
  4050. xfs_bmbt_rec_t *base; /* pointer to first extent */
  4051. xfs_filblks_t blockcount = 0; /* number of blocks in extent */
  4052. xfs_bmbt_rec_t *ep = NULL; /* pointer to target extent */
  4053. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  4054. int high; /* upper boundary in search */
  4055. xfs_extnum_t idx = 0; /* index of target extent */
  4056. int low; /* lower boundary in search */
  4057. xfs_extnum_t nextents; /* number of file extents */
  4058. xfs_fileoff_t startoff = 0; /* start offset of extent */
  4059. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  4060. if (nextents == 0) {
  4061. *idxp = 0;
  4062. return NULL;
  4063. }
  4064. low = 0;
  4065. if (ifp->if_flags & XFS_IFEXTIREC) {
  4066. /* Find target extent list */
  4067. int erp_idx = 0;
  4068. erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
  4069. base = erp->er_extbuf;
  4070. high = erp->er_extcount - 1;
  4071. } else {
  4072. base = ifp->if_u1.if_extents;
  4073. high = nextents - 1;
  4074. }
  4075. /* Binary search extent records */
  4076. while (low <= high) {
  4077. idx = (low + high) >> 1;
  4078. ep = base + idx;
  4079. startoff = xfs_bmbt_get_startoff(ep);
  4080. blockcount = xfs_bmbt_get_blockcount(ep);
  4081. if (bno < startoff) {
  4082. high = idx - 1;
  4083. } else if (bno >= startoff + blockcount) {
  4084. low = idx + 1;
  4085. } else {
  4086. /* Convert back to file-based extent index */
  4087. if (ifp->if_flags & XFS_IFEXTIREC) {
  4088. idx += erp->er_extoff;
  4089. }
  4090. *idxp = idx;
  4091. return ep;
  4092. }
  4093. }
  4094. /* Convert back to file-based extent index */
  4095. if (ifp->if_flags & XFS_IFEXTIREC) {
  4096. idx += erp->er_extoff;
  4097. }
  4098. if (bno >= startoff + blockcount) {
  4099. if (++idx == nextents) {
  4100. ep = NULL;
  4101. } else {
  4102. ep = xfs_iext_get_ext(ifp, idx);
  4103. }
  4104. }
  4105. *idxp = idx;
  4106. return ep;
  4107. }
  4108. /*
  4109. * Return a pointer to the indirection array entry containing the
  4110. * extent record for filesystem block bno. Store the index of the
  4111. * target irec in *erp_idxp.
  4112. */
  4113. xfs_ext_irec_t * /* pointer to found extent record */
  4114. xfs_iext_bno_to_irec(
  4115. xfs_ifork_t *ifp, /* inode fork pointer */
  4116. xfs_fileoff_t bno, /* block number to search for */
  4117. int *erp_idxp) /* irec index of target ext list */
  4118. {
  4119. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  4120. xfs_ext_irec_t *erp_next; /* next indirection array entry */
  4121. int erp_idx; /* indirection array index */
  4122. int nlists; /* number of extent irec's (lists) */
  4123. int high; /* binary search upper limit */
  4124. int low; /* binary search lower limit */
  4125. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4126. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4127. erp_idx = 0;
  4128. low = 0;
  4129. high = nlists - 1;
  4130. while (low <= high) {
  4131. erp_idx = (low + high) >> 1;
  4132. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4133. erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
  4134. if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
  4135. high = erp_idx - 1;
  4136. } else if (erp_next && bno >=
  4137. xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
  4138. low = erp_idx + 1;
  4139. } else {
  4140. break;
  4141. }
  4142. }
  4143. *erp_idxp = erp_idx;
  4144. return erp;
  4145. }
  4146. /*
  4147. * Return a pointer to the indirection array entry containing the
  4148. * extent record at file extent index *idxp. Store the index of the
  4149. * target irec in *erp_idxp and store the page index of the target
  4150. * extent record in *idxp.
  4151. */
  4152. xfs_ext_irec_t *
  4153. xfs_iext_idx_to_irec(
  4154. xfs_ifork_t *ifp, /* inode fork pointer */
  4155. xfs_extnum_t *idxp, /* extent index (file -> page) */
  4156. int *erp_idxp, /* pointer to target irec */
  4157. int realloc) /* new bytes were just added */
  4158. {
  4159. xfs_ext_irec_t *prev; /* pointer to previous irec */
  4160. xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
  4161. int erp_idx; /* indirection array index */
  4162. int nlists; /* number of irec's (ex lists) */
  4163. int high; /* binary search upper limit */
  4164. int low; /* binary search lower limit */
  4165. xfs_extnum_t page_idx = *idxp; /* extent index in target list */
  4166. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4167. ASSERT(page_idx >= 0 && page_idx <=
  4168. ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
  4169. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4170. erp_idx = 0;
  4171. low = 0;
  4172. high = nlists - 1;
  4173. /* Binary search extent irec's */
  4174. while (low <= high) {
  4175. erp_idx = (low + high) >> 1;
  4176. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4177. prev = erp_idx > 0 ? erp - 1 : NULL;
  4178. if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
  4179. realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
  4180. high = erp_idx - 1;
  4181. } else if (page_idx > erp->er_extoff + erp->er_extcount ||
  4182. (page_idx == erp->er_extoff + erp->er_extcount &&
  4183. !realloc)) {
  4184. low = erp_idx + 1;
  4185. } else if (page_idx == erp->er_extoff + erp->er_extcount &&
  4186. erp->er_extcount == XFS_LINEAR_EXTS) {
  4187. ASSERT(realloc);
  4188. page_idx = 0;
  4189. erp_idx++;
  4190. erp = erp_idx < nlists ? erp + 1 : NULL;
  4191. break;
  4192. } else {
  4193. page_idx -= erp->er_extoff;
  4194. break;
  4195. }
  4196. }
  4197. *idxp = page_idx;
  4198. *erp_idxp = erp_idx;
  4199. return(erp);
  4200. }
  4201. /*
  4202. * Allocate and initialize an indirection array once the space needed
  4203. * for incore extents increases above XFS_IEXT_BUFSZ.
  4204. */
  4205. void
  4206. xfs_iext_irec_init(
  4207. xfs_ifork_t *ifp) /* inode fork pointer */
  4208. {
  4209. xfs_ext_irec_t *erp; /* indirection array pointer */
  4210. xfs_extnum_t nextents; /* number of extents in file */
  4211. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  4212. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  4213. ASSERT(nextents <= XFS_LINEAR_EXTS);
  4214. erp = (xfs_ext_irec_t *)
  4215. kmem_alloc(sizeof(xfs_ext_irec_t), KM_SLEEP);
  4216. if (nextents == 0) {
  4217. ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
  4218. kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
  4219. } else if (!ifp->if_real_bytes) {
  4220. xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
  4221. } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
  4222. xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
  4223. }
  4224. erp->er_extbuf = ifp->if_u1.if_extents;
  4225. erp->er_extcount = nextents;
  4226. erp->er_extoff = 0;
  4227. ifp->if_flags |= XFS_IFEXTIREC;
  4228. ifp->if_real_bytes = XFS_IEXT_BUFSZ;
  4229. ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
  4230. ifp->if_u1.if_ext_irec = erp;
  4231. return;
  4232. }
  4233. /*
  4234. * Allocate and initialize a new entry in the indirection array.
  4235. */
  4236. xfs_ext_irec_t *
  4237. xfs_iext_irec_new(
  4238. xfs_ifork_t *ifp, /* inode fork pointer */
  4239. int erp_idx) /* index for new irec */
  4240. {
  4241. xfs_ext_irec_t *erp; /* indirection array pointer */
  4242. int i; /* loop counter */
  4243. int nlists; /* number of irec's (ex lists) */
  4244. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4245. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4246. /* Resize indirection array */
  4247. xfs_iext_realloc_indirect(ifp, ++nlists *
  4248. sizeof(xfs_ext_irec_t));
  4249. /*
  4250. * Move records down in the array so the
  4251. * new page can use erp_idx.
  4252. */
  4253. erp = ifp->if_u1.if_ext_irec;
  4254. for (i = nlists - 1; i > erp_idx; i--) {
  4255. memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
  4256. }
  4257. ASSERT(i == erp_idx);
  4258. /* Initialize new extent record */
  4259. erp = ifp->if_u1.if_ext_irec;
  4260. erp[erp_idx].er_extbuf = (xfs_bmbt_rec_t *)
  4261. kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
  4262. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  4263. memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
  4264. erp[erp_idx].er_extcount = 0;
  4265. erp[erp_idx].er_extoff = erp_idx > 0 ?
  4266. erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
  4267. return (&erp[erp_idx]);
  4268. }
  4269. /*
  4270. * Remove a record from the indirection array.
  4271. */
  4272. void
  4273. xfs_iext_irec_remove(
  4274. xfs_ifork_t *ifp, /* inode fork pointer */
  4275. int erp_idx) /* irec index to remove */
  4276. {
  4277. xfs_ext_irec_t *erp; /* indirection array pointer */
  4278. int i; /* loop counter */
  4279. int nlists; /* number of irec's (ex lists) */
  4280. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4281. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4282. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4283. if (erp->er_extbuf) {
  4284. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
  4285. -erp->er_extcount);
  4286. kmem_free(erp->er_extbuf, XFS_IEXT_BUFSZ);
  4287. }
  4288. /* Compact extent records */
  4289. erp = ifp->if_u1.if_ext_irec;
  4290. for (i = erp_idx; i < nlists - 1; i++) {
  4291. memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
  4292. }
  4293. /*
  4294. * Manually free the last extent record from the indirection
  4295. * array. A call to xfs_iext_realloc_indirect() with a size
  4296. * of zero would result in a call to xfs_iext_destroy() which
  4297. * would in turn call this function again, creating a nasty
  4298. * infinite loop.
  4299. */
  4300. if (--nlists) {
  4301. xfs_iext_realloc_indirect(ifp,
  4302. nlists * sizeof(xfs_ext_irec_t));
  4303. } else {
  4304. kmem_free(ifp->if_u1.if_ext_irec,
  4305. sizeof(xfs_ext_irec_t));
  4306. }
  4307. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  4308. }
  4309. /*
  4310. * This is called to clean up large amounts of unused memory allocated
  4311. * by the indirection array. Before compacting anything though, verify
  4312. * that the indirection array is still needed and switch back to the
  4313. * linear extent list (or even the inline buffer) if possible. The
  4314. * compaction policy is as follows:
  4315. *
  4316. * Full Compaction: Extents fit into a single page (or inline buffer)
  4317. * Full Compaction: Extents occupy less than 10% of allocated space
  4318. * Partial Compaction: Extents occupy > 10% and < 50% of allocated space
  4319. * No Compaction: Extents occupy at least 50% of allocated space
  4320. */
  4321. void
  4322. xfs_iext_irec_compact(
  4323. xfs_ifork_t *ifp) /* inode fork pointer */
  4324. {
  4325. xfs_extnum_t nextents; /* number of extents in file */
  4326. int nlists; /* number of irec's (ex lists) */
  4327. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4328. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4329. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  4330. if (nextents == 0) {
  4331. xfs_iext_destroy(ifp);
  4332. } else if (nextents <= XFS_INLINE_EXTS) {
  4333. xfs_iext_indirect_to_direct(ifp);
  4334. xfs_iext_direct_to_inline(ifp, nextents);
  4335. } else if (nextents <= XFS_LINEAR_EXTS) {
  4336. xfs_iext_indirect_to_direct(ifp);
  4337. } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 3) {
  4338. xfs_iext_irec_compact_full(ifp);
  4339. } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
  4340. xfs_iext_irec_compact_pages(ifp);
  4341. }
  4342. }
  4343. /*
  4344. * Combine extents from neighboring extent pages.
  4345. */
  4346. void
  4347. xfs_iext_irec_compact_pages(
  4348. xfs_ifork_t *ifp) /* inode fork pointer */
  4349. {
  4350. xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
  4351. int erp_idx = 0; /* indirection array index */
  4352. int nlists; /* number of irec's (ex lists) */
  4353. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4354. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4355. while (erp_idx < nlists - 1) {
  4356. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4357. erp_next = erp + 1;
  4358. if (erp_next->er_extcount <=
  4359. (XFS_LINEAR_EXTS - erp->er_extcount)) {
  4360. memmove(&erp->er_extbuf[erp->er_extcount],
  4361. erp_next->er_extbuf, erp_next->er_extcount *
  4362. sizeof(xfs_bmbt_rec_t));
  4363. erp->er_extcount += erp_next->er_extcount;
  4364. /*
  4365. * Free page before removing extent record
  4366. * so er_extoffs don't get modified in
  4367. * xfs_iext_irec_remove.
  4368. */
  4369. kmem_free(erp_next->er_extbuf, XFS_IEXT_BUFSZ);
  4370. erp_next->er_extbuf = NULL;
  4371. xfs_iext_irec_remove(ifp, erp_idx + 1);
  4372. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4373. } else {
  4374. erp_idx++;
  4375. }
  4376. }
  4377. }
  4378. /*
  4379. * Fully compact the extent records managed by the indirection array.
  4380. */
  4381. void
  4382. xfs_iext_irec_compact_full(
  4383. xfs_ifork_t *ifp) /* inode fork pointer */
  4384. {
  4385. xfs_bmbt_rec_t *ep, *ep_next; /* extent record pointers */
  4386. xfs_ext_irec_t *erp, *erp_next; /* extent irec pointers */
  4387. int erp_idx = 0; /* extent irec index */
  4388. int ext_avail; /* empty entries in ex list */
  4389. int ext_diff; /* number of exts to add */
  4390. int nlists; /* number of irec's (ex lists) */
  4391. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4392. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4393. erp = ifp->if_u1.if_ext_irec;
  4394. ep = &erp->er_extbuf[erp->er_extcount];
  4395. erp_next = erp + 1;
  4396. ep_next = erp_next->er_extbuf;
  4397. while (erp_idx < nlists - 1) {
  4398. ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
  4399. ext_diff = MIN(ext_avail, erp_next->er_extcount);
  4400. memcpy(ep, ep_next, ext_diff * sizeof(xfs_bmbt_rec_t));
  4401. erp->er_extcount += ext_diff;
  4402. erp_next->er_extcount -= ext_diff;
  4403. /* Remove next page */
  4404. if (erp_next->er_extcount == 0) {
  4405. /*
  4406. * Free page before removing extent record
  4407. * so er_extoffs don't get modified in
  4408. * xfs_iext_irec_remove.
  4409. */
  4410. kmem_free(erp_next->er_extbuf,
  4411. erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
  4412. erp_next->er_extbuf = NULL;
  4413. xfs_iext_irec_remove(ifp, erp_idx + 1);
  4414. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4415. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4416. /* Update next page */
  4417. } else {
  4418. /* Move rest of page up to become next new page */
  4419. memmove(erp_next->er_extbuf, ep_next,
  4420. erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
  4421. ep_next = erp_next->er_extbuf;
  4422. memset(&ep_next[erp_next->er_extcount], 0,
  4423. (XFS_LINEAR_EXTS - erp_next->er_extcount) *
  4424. sizeof(xfs_bmbt_rec_t));
  4425. }
  4426. if (erp->er_extcount == XFS_LINEAR_EXTS) {
  4427. erp_idx++;
  4428. if (erp_idx < nlists)
  4429. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4430. else
  4431. break;
  4432. }
  4433. ep = &erp->er_extbuf[erp->er_extcount];
  4434. erp_next = erp + 1;
  4435. ep_next = erp_next->er_extbuf;
  4436. }
  4437. }
  4438. /*
  4439. * This is called to update the er_extoff field in the indirection
  4440. * array when extents have been added or removed from one of the
  4441. * extent lists. erp_idx contains the irec index to begin updating
  4442. * at and ext_diff contains the number of extents that were added
  4443. * or removed.
  4444. */
  4445. void
  4446. xfs_iext_irec_update_extoffs(
  4447. xfs_ifork_t *ifp, /* inode fork pointer */
  4448. int erp_idx, /* irec index to update */
  4449. int ext_diff) /* number of new extents */
  4450. {
  4451. int i; /* loop counter */
  4452. int nlists; /* number of irec's (ex lists */
  4453. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4454. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4455. for (i = erp_idx; i < nlists; i++) {
  4456. ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
  4457. }
  4458. }