dir.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652
  1. /*
  2. * linux/fs/ufs/ufs_dir.c
  3. *
  4. * Copyright (C) 1996
  5. * Adrian Rodriguez (adrian@franklins-tower.rutgers.edu)
  6. * Laboratory for Computer Science Research Computing Facility
  7. * Rutgers, The State University of New Jersey
  8. *
  9. * swab support by Francois-Rene Rideau <fare@tunes.org> 19970406
  10. *
  11. * 4.4BSD (FreeBSD) support added on February 1st 1998 by
  12. * Niels Kristian Bech Jensen <nkbj@image.dk> partially based
  13. * on code by Martin von Loewis <martin@mira.isdn.cs.tu-berlin.de>.
  14. *
  15. * Migration to usage of "page cache" on May 2006 by
  16. * Evgeniy Dushistov <dushistov@mail.ru> based on ext2 code base.
  17. */
  18. #include <linux/time.h>
  19. #include <linux/fs.h>
  20. #include <linux/ufs_fs.h>
  21. #include "swab.h"
  22. #include "util.h"
  23. /*
  24. * NOTE! unlike strncmp, ufs_match returns 1 for success, 0 for failure.
  25. *
  26. * len <= UFS_MAXNAMLEN and de != NULL are guaranteed by caller.
  27. */
  28. static inline int ufs_match(struct super_block *sb, int len,
  29. const char * const name, struct ufs_dir_entry * de)
  30. {
  31. if (len != ufs_get_de_namlen(sb, de))
  32. return 0;
  33. if (!de->d_ino)
  34. return 0;
  35. return !memcmp(name, de->d_name, len);
  36. }
  37. static int ufs_commit_chunk(struct page *page, unsigned from, unsigned to)
  38. {
  39. struct inode *dir = page->mapping->host;
  40. int err = 0;
  41. dir->i_version++;
  42. page->mapping->a_ops->commit_write(NULL, page, from, to);
  43. if (IS_DIRSYNC(dir))
  44. err = write_one_page(page, 1);
  45. else
  46. unlock_page(page);
  47. return err;
  48. }
  49. static inline void ufs_put_page(struct page *page)
  50. {
  51. kunmap(page);
  52. page_cache_release(page);
  53. }
  54. static inline unsigned long ufs_dir_pages(struct inode *inode)
  55. {
  56. return (inode->i_size+PAGE_CACHE_SIZE-1)>>PAGE_CACHE_SHIFT;
  57. }
  58. ino_t ufs_inode_by_name(struct inode *dir, struct dentry *dentry)
  59. {
  60. ino_t res = 0;
  61. struct ufs_dir_entry *de;
  62. struct page *page;
  63. de = ufs_find_entry(dir, dentry, &page);
  64. if (de) {
  65. res = fs32_to_cpu(dir->i_sb, de->d_ino);
  66. ufs_put_page(page);
  67. }
  68. return res;
  69. }
  70. /* Releases the page */
  71. void ufs_set_link(struct inode *dir, struct ufs_dir_entry *de,
  72. struct page *page, struct inode *inode)
  73. {
  74. unsigned from = (char *) de - (char *) page_address(page);
  75. unsigned to = from + fs16_to_cpu(dir->i_sb, de->d_reclen);
  76. int err;
  77. lock_page(page);
  78. err = page->mapping->a_ops->prepare_write(NULL, page, from, to);
  79. BUG_ON(err);
  80. de->d_ino = cpu_to_fs32(dir->i_sb, inode->i_ino);
  81. ufs_set_de_type(dir->i_sb, de, inode->i_mode);
  82. err = ufs_commit_chunk(page, from, to);
  83. ufs_put_page(page);
  84. dir->i_mtime = dir->i_ctime = CURRENT_TIME_SEC;
  85. mark_inode_dirty(dir);
  86. }
  87. static void ufs_check_page(struct page *page)
  88. {
  89. struct inode *dir = page->mapping->host;
  90. struct super_block *sb = dir->i_sb;
  91. char *kaddr = page_address(page);
  92. unsigned offs, rec_len;
  93. unsigned limit = PAGE_CACHE_SIZE;
  94. const unsigned chunk_mask = UFS_SB(sb)->s_uspi->s_dirblksize - 1;
  95. struct ufs_dir_entry *p;
  96. char *error;
  97. if ((dir->i_size >> PAGE_CACHE_SHIFT) == page->index) {
  98. limit = dir->i_size & ~PAGE_CACHE_MASK;
  99. if (limit & chunk_mask)
  100. goto Ebadsize;
  101. if (!limit)
  102. goto out;
  103. }
  104. for (offs = 0; offs <= limit - UFS_DIR_REC_LEN(1); offs += rec_len) {
  105. p = (struct ufs_dir_entry *)(kaddr + offs);
  106. rec_len = fs16_to_cpu(sb, p->d_reclen);
  107. if (rec_len < UFS_DIR_REC_LEN(1))
  108. goto Eshort;
  109. if (rec_len & 3)
  110. goto Ealign;
  111. if (rec_len < UFS_DIR_REC_LEN(ufs_get_de_namlen(sb, p)))
  112. goto Enamelen;
  113. if (((offs + rec_len - 1) ^ offs) & ~chunk_mask)
  114. goto Espan;
  115. if (fs32_to_cpu(sb, p->d_ino) > (UFS_SB(sb)->s_uspi->s_ipg *
  116. UFS_SB(sb)->s_uspi->s_ncg))
  117. goto Einumber;
  118. }
  119. if (offs != limit)
  120. goto Eend;
  121. out:
  122. SetPageChecked(page);
  123. return;
  124. /* Too bad, we had an error */
  125. Ebadsize:
  126. ufs_error(sb, "ufs_check_page",
  127. "size of directory #%lu is not a multiple of chunk size",
  128. dir->i_ino
  129. );
  130. goto fail;
  131. Eshort:
  132. error = "rec_len is smaller than minimal";
  133. goto bad_entry;
  134. Ealign:
  135. error = "unaligned directory entry";
  136. goto bad_entry;
  137. Enamelen:
  138. error = "rec_len is too small for name_len";
  139. goto bad_entry;
  140. Espan:
  141. error = "directory entry across blocks";
  142. goto bad_entry;
  143. Einumber:
  144. error = "inode out of bounds";
  145. bad_entry:
  146. ufs_error (sb, "ufs_check_page", "bad entry in directory #%lu: %s - "
  147. "offset=%lu, rec_len=%d, name_len=%d",
  148. dir->i_ino, error, (page->index<<PAGE_CACHE_SHIFT)+offs,
  149. rec_len, ufs_get_de_namlen(sb, p));
  150. goto fail;
  151. Eend:
  152. p = (struct ufs_dir_entry *)(kaddr + offs);
  153. ufs_error (sb, "ext2_check_page",
  154. "entry in directory #%lu spans the page boundary"
  155. "offset=%lu",
  156. dir->i_ino, (page->index<<PAGE_CACHE_SHIFT)+offs);
  157. fail:
  158. SetPageChecked(page);
  159. SetPageError(page);
  160. }
  161. static struct page *ufs_get_page(struct inode *dir, unsigned long n)
  162. {
  163. struct address_space *mapping = dir->i_mapping;
  164. struct page *page = read_mapping_page(mapping, n, NULL);
  165. if (!IS_ERR(page)) {
  166. kmap(page);
  167. if (!PageChecked(page))
  168. ufs_check_page(page);
  169. if (PageError(page))
  170. goto fail;
  171. }
  172. return page;
  173. fail:
  174. ufs_put_page(page);
  175. return ERR_PTR(-EIO);
  176. }
  177. /*
  178. * Return the offset into page `page_nr' of the last valid
  179. * byte in that page, plus one.
  180. */
  181. static unsigned
  182. ufs_last_byte(struct inode *inode, unsigned long page_nr)
  183. {
  184. unsigned last_byte = inode->i_size;
  185. last_byte -= page_nr << PAGE_CACHE_SHIFT;
  186. if (last_byte > PAGE_CACHE_SIZE)
  187. last_byte = PAGE_CACHE_SIZE;
  188. return last_byte;
  189. }
  190. static inline struct ufs_dir_entry *
  191. ufs_next_entry(struct super_block *sb, struct ufs_dir_entry *p)
  192. {
  193. return (struct ufs_dir_entry *)((char *)p +
  194. fs16_to_cpu(sb, p->d_reclen));
  195. }
  196. struct ufs_dir_entry *ufs_dotdot(struct inode *dir, struct page **p)
  197. {
  198. struct page *page = ufs_get_page(dir, 0);
  199. struct ufs_dir_entry *de = NULL;
  200. if (!IS_ERR(page)) {
  201. de = ufs_next_entry(dir->i_sb,
  202. (struct ufs_dir_entry *)page_address(page));
  203. *p = page;
  204. }
  205. return de;
  206. }
  207. /*
  208. * ufs_find_entry()
  209. *
  210. * finds an entry in the specified directory with the wanted name. It
  211. * returns the page in which the entry was found, and the entry itself
  212. * (as a parameter - res_dir). Page is returned mapped and unlocked.
  213. * Entry is guaranteed to be valid.
  214. */
  215. struct ufs_dir_entry *ufs_find_entry(struct inode *dir, struct dentry *dentry,
  216. struct page **res_page)
  217. {
  218. struct super_block *sb = dir->i_sb;
  219. const char *name = dentry->d_name.name;
  220. int namelen = dentry->d_name.len;
  221. unsigned reclen = UFS_DIR_REC_LEN(namelen);
  222. unsigned long start, n;
  223. unsigned long npages = ufs_dir_pages(dir);
  224. struct page *page = NULL;
  225. struct ufs_inode_info *ui = UFS_I(dir);
  226. struct ufs_dir_entry *de;
  227. UFSD("ENTER, dir_ino %lu, name %s, namlen %u\n", dir->i_ino, name, namelen);
  228. if (npages == 0 || namelen > UFS_MAXNAMLEN)
  229. goto out;
  230. /* OFFSET_CACHE */
  231. *res_page = NULL;
  232. start = ui->i_dir_start_lookup;
  233. if (start >= npages)
  234. start = 0;
  235. n = start;
  236. do {
  237. char *kaddr;
  238. page = ufs_get_page(dir, n);
  239. if (!IS_ERR(page)) {
  240. kaddr = page_address(page);
  241. de = (struct ufs_dir_entry *) kaddr;
  242. kaddr += ufs_last_byte(dir, n) - reclen;
  243. while ((char *) de <= kaddr) {
  244. if (de->d_reclen == 0) {
  245. ufs_error(dir->i_sb, __FUNCTION__,
  246. "zero-length directory entry");
  247. ufs_put_page(page);
  248. goto out;
  249. }
  250. if (ufs_match(sb, namelen, name, de))
  251. goto found;
  252. de = ufs_next_entry(sb, de);
  253. }
  254. ufs_put_page(page);
  255. }
  256. if (++n >= npages)
  257. n = 0;
  258. } while (n != start);
  259. out:
  260. return NULL;
  261. found:
  262. *res_page = page;
  263. ui->i_dir_start_lookup = n;
  264. return de;
  265. }
  266. /*
  267. * Parent is locked.
  268. */
  269. int ufs_add_link(struct dentry *dentry, struct inode *inode)
  270. {
  271. struct inode *dir = dentry->d_parent->d_inode;
  272. const char *name = dentry->d_name.name;
  273. int namelen = dentry->d_name.len;
  274. struct super_block *sb = dir->i_sb;
  275. unsigned reclen = UFS_DIR_REC_LEN(namelen);
  276. const unsigned int chunk_size = UFS_SB(sb)->s_uspi->s_dirblksize;
  277. unsigned short rec_len, name_len;
  278. struct page *page = NULL;
  279. struct ufs_dir_entry *de;
  280. unsigned long npages = ufs_dir_pages(dir);
  281. unsigned long n;
  282. char *kaddr;
  283. unsigned from, to;
  284. int err;
  285. UFSD("ENTER, name %s, namelen %u\n", name, namelen);
  286. /*
  287. * We take care of directory expansion in the same loop.
  288. * This code plays outside i_size, so it locks the page
  289. * to protect that region.
  290. */
  291. for (n = 0; n <= npages; n++) {
  292. char *dir_end;
  293. page = ufs_get_page(dir, n);
  294. err = PTR_ERR(page);
  295. if (IS_ERR(page))
  296. goto out;
  297. lock_page(page);
  298. kaddr = page_address(page);
  299. dir_end = kaddr + ufs_last_byte(dir, n);
  300. de = (struct ufs_dir_entry *)kaddr;
  301. kaddr += PAGE_CACHE_SIZE - reclen;
  302. while ((char *)de <= kaddr) {
  303. if ((char *)de == dir_end) {
  304. /* We hit i_size */
  305. name_len = 0;
  306. rec_len = chunk_size;
  307. de->d_reclen = cpu_to_fs16(sb, chunk_size);
  308. de->d_ino = 0;
  309. goto got_it;
  310. }
  311. if (de->d_reclen == 0) {
  312. ufs_error(dir->i_sb, __FUNCTION__,
  313. "zero-length directory entry");
  314. err = -EIO;
  315. goto out_unlock;
  316. }
  317. err = -EEXIST;
  318. if (ufs_match(sb, namelen, name, de))
  319. goto out_unlock;
  320. name_len = UFS_DIR_REC_LEN(ufs_get_de_namlen(sb, de));
  321. rec_len = fs16_to_cpu(sb, de->d_reclen);
  322. if (!de->d_ino && rec_len >= reclen)
  323. goto got_it;
  324. if (rec_len >= name_len + reclen)
  325. goto got_it;
  326. de = (struct ufs_dir_entry *) ((char *) de + rec_len);
  327. }
  328. unlock_page(page);
  329. ufs_put_page(page);
  330. }
  331. BUG();
  332. return -EINVAL;
  333. got_it:
  334. from = (char*)de - (char*)page_address(page);
  335. to = from + rec_len;
  336. err = page->mapping->a_ops->prepare_write(NULL, page, from, to);
  337. if (err)
  338. goto out_unlock;
  339. if (de->d_ino) {
  340. struct ufs_dir_entry *de1 =
  341. (struct ufs_dir_entry *) ((char *) de + name_len);
  342. de1->d_reclen = cpu_to_fs16(sb, rec_len - name_len);
  343. de->d_reclen = cpu_to_fs16(sb, name_len);
  344. de = de1;
  345. }
  346. ufs_set_de_namlen(sb, de, namelen);
  347. memcpy(de->d_name, name, namelen + 1);
  348. de->d_ino = cpu_to_fs32(sb, inode->i_ino);
  349. ufs_set_de_type(sb, de, inode->i_mode);
  350. err = ufs_commit_chunk(page, from, to);
  351. dir->i_mtime = dir->i_ctime = CURRENT_TIME_SEC;
  352. mark_inode_dirty(dir);
  353. /* OFFSET_CACHE */
  354. out_put:
  355. ufs_put_page(page);
  356. out:
  357. return err;
  358. out_unlock:
  359. unlock_page(page);
  360. goto out_put;
  361. }
  362. static inline unsigned
  363. ufs_validate_entry(struct super_block *sb, char *base,
  364. unsigned offset, unsigned mask)
  365. {
  366. struct ufs_dir_entry *de = (struct ufs_dir_entry*)(base + offset);
  367. struct ufs_dir_entry *p = (struct ufs_dir_entry*)(base + (offset&mask));
  368. while ((char*)p < (char*)de) {
  369. if (p->d_reclen == 0)
  370. break;
  371. p = ufs_next_entry(sb, p);
  372. }
  373. return (char *)p - base;
  374. }
  375. /*
  376. * This is blatantly stolen from ext2fs
  377. */
  378. static int
  379. ufs_readdir(struct file *filp, void *dirent, filldir_t filldir)
  380. {
  381. loff_t pos = filp->f_pos;
  382. struct inode *inode = filp->f_path.dentry->d_inode;
  383. struct super_block *sb = inode->i_sb;
  384. unsigned int offset = pos & ~PAGE_CACHE_MASK;
  385. unsigned long n = pos >> PAGE_CACHE_SHIFT;
  386. unsigned long npages = ufs_dir_pages(inode);
  387. unsigned chunk_mask = ~(UFS_SB(sb)->s_uspi->s_dirblksize - 1);
  388. int need_revalidate = filp->f_version != inode->i_version;
  389. unsigned flags = UFS_SB(sb)->s_flags;
  390. UFSD("BEGIN\n");
  391. if (pos > inode->i_size - UFS_DIR_REC_LEN(1))
  392. return 0;
  393. for ( ; n < npages; n++, offset = 0) {
  394. char *kaddr, *limit;
  395. struct ufs_dir_entry *de;
  396. struct page *page = ufs_get_page(inode, n);
  397. if (IS_ERR(page)) {
  398. ufs_error(sb, __FUNCTION__,
  399. "bad page in #%lu",
  400. inode->i_ino);
  401. filp->f_pos += PAGE_CACHE_SIZE - offset;
  402. return -EIO;
  403. }
  404. kaddr = page_address(page);
  405. if (unlikely(need_revalidate)) {
  406. if (offset) {
  407. offset = ufs_validate_entry(sb, kaddr, offset, chunk_mask);
  408. filp->f_pos = (n<<PAGE_CACHE_SHIFT) + offset;
  409. }
  410. filp->f_version = inode->i_version;
  411. need_revalidate = 0;
  412. }
  413. de = (struct ufs_dir_entry *)(kaddr+offset);
  414. limit = kaddr + ufs_last_byte(inode, n) - UFS_DIR_REC_LEN(1);
  415. for ( ;(char*)de <= limit; de = ufs_next_entry(sb, de)) {
  416. if (de->d_reclen == 0) {
  417. ufs_error(sb, __FUNCTION__,
  418. "zero-length directory entry");
  419. ufs_put_page(page);
  420. return -EIO;
  421. }
  422. if (de->d_ino) {
  423. int over;
  424. unsigned char d_type = DT_UNKNOWN;
  425. offset = (char *)de - kaddr;
  426. UFSD("filldir(%s,%u)\n", de->d_name,
  427. fs32_to_cpu(sb, de->d_ino));
  428. UFSD("namlen %u\n", ufs_get_de_namlen(sb, de));
  429. if ((flags & UFS_DE_MASK) == UFS_DE_44BSD)
  430. d_type = de->d_u.d_44.d_type;
  431. over = filldir(dirent, de->d_name,
  432. ufs_get_de_namlen(sb, de),
  433. (n<<PAGE_CACHE_SHIFT) | offset,
  434. fs32_to_cpu(sb, de->d_ino), d_type);
  435. if (over) {
  436. ufs_put_page(page);
  437. return 0;
  438. }
  439. }
  440. filp->f_pos += fs16_to_cpu(sb, de->d_reclen);
  441. }
  442. ufs_put_page(page);
  443. }
  444. return 0;
  445. }
  446. /*
  447. * ufs_delete_entry deletes a directory entry by merging it with the
  448. * previous entry.
  449. */
  450. int ufs_delete_entry(struct inode *inode, struct ufs_dir_entry *dir,
  451. struct page * page)
  452. {
  453. struct super_block *sb = inode->i_sb;
  454. struct address_space *mapping = page->mapping;
  455. char *kaddr = page_address(page);
  456. unsigned from = ((char*)dir - kaddr) & ~(UFS_SB(sb)->s_uspi->s_dirblksize - 1);
  457. unsigned to = ((char*)dir - kaddr) + fs16_to_cpu(sb, dir->d_reclen);
  458. struct ufs_dir_entry *pde = NULL;
  459. struct ufs_dir_entry *de = (struct ufs_dir_entry *) (kaddr + from);
  460. int err;
  461. UFSD("ENTER\n");
  462. UFSD("ino %u, reclen %u, namlen %u, name %s\n",
  463. fs32_to_cpu(sb, de->d_ino),
  464. fs16_to_cpu(sb, de->d_reclen),
  465. ufs_get_de_namlen(sb, de), de->d_name);
  466. while ((char*)de < (char*)dir) {
  467. if (de->d_reclen == 0) {
  468. ufs_error(inode->i_sb, __FUNCTION__,
  469. "zero-length directory entry");
  470. err = -EIO;
  471. goto out;
  472. }
  473. pde = de;
  474. de = ufs_next_entry(sb, de);
  475. }
  476. if (pde)
  477. from = (char*)pde - (char*)page_address(page);
  478. lock_page(page);
  479. err = mapping->a_ops->prepare_write(NULL, page, from, to);
  480. BUG_ON(err);
  481. if (pde)
  482. pde->d_reclen = cpu_to_fs16(sb, to-from);
  483. dir->d_ino = 0;
  484. err = ufs_commit_chunk(page, from, to);
  485. inode->i_ctime = inode->i_mtime = CURRENT_TIME_SEC;
  486. mark_inode_dirty(inode);
  487. out:
  488. ufs_put_page(page);
  489. UFSD("EXIT\n");
  490. return err;
  491. }
  492. int ufs_make_empty(struct inode * inode, struct inode *dir)
  493. {
  494. struct super_block * sb = dir->i_sb;
  495. struct address_space *mapping = inode->i_mapping;
  496. struct page *page = grab_cache_page(mapping, 0);
  497. const unsigned int chunk_size = UFS_SB(sb)->s_uspi->s_dirblksize;
  498. struct ufs_dir_entry * de;
  499. char *base;
  500. int err;
  501. if (!page)
  502. return -ENOMEM;
  503. kmap(page);
  504. err = mapping->a_ops->prepare_write(NULL, page, 0, chunk_size);
  505. if (err) {
  506. unlock_page(page);
  507. goto fail;
  508. }
  509. base = (char*)page_address(page);
  510. memset(base, 0, PAGE_CACHE_SIZE);
  511. de = (struct ufs_dir_entry *) base;
  512. de->d_ino = cpu_to_fs32(sb, inode->i_ino);
  513. ufs_set_de_type(sb, de, inode->i_mode);
  514. ufs_set_de_namlen(sb, de, 1);
  515. de->d_reclen = cpu_to_fs16(sb, UFS_DIR_REC_LEN(1));
  516. strcpy (de->d_name, ".");
  517. de = (struct ufs_dir_entry *)
  518. ((char *)de + fs16_to_cpu(sb, de->d_reclen));
  519. de->d_ino = cpu_to_fs32(sb, dir->i_ino);
  520. ufs_set_de_type(sb, de, dir->i_mode);
  521. de->d_reclen = cpu_to_fs16(sb, chunk_size - UFS_DIR_REC_LEN(1));
  522. ufs_set_de_namlen(sb, de, 2);
  523. strcpy (de->d_name, "..");
  524. err = ufs_commit_chunk(page, 0, chunk_size);
  525. fail:
  526. kunmap(page);
  527. page_cache_release(page);
  528. return err;
  529. }
  530. /*
  531. * routine to check that the specified directory is empty (for rmdir)
  532. */
  533. int ufs_empty_dir(struct inode * inode)
  534. {
  535. struct super_block *sb = inode->i_sb;
  536. struct page *page = NULL;
  537. unsigned long i, npages = ufs_dir_pages(inode);
  538. for (i = 0; i < npages; i++) {
  539. char *kaddr;
  540. struct ufs_dir_entry *de;
  541. page = ufs_get_page(inode, i);
  542. if (IS_ERR(page))
  543. continue;
  544. kaddr = page_address(page);
  545. de = (struct ufs_dir_entry *)kaddr;
  546. kaddr += ufs_last_byte(inode, i) - UFS_DIR_REC_LEN(1);
  547. while ((char *)de <= kaddr) {
  548. if (de->d_reclen == 0) {
  549. ufs_error(inode->i_sb, __FUNCTION__,
  550. "zero-length directory entry: "
  551. "kaddr=%p, de=%p\n", kaddr, de);
  552. goto not_empty;
  553. }
  554. if (de->d_ino) {
  555. u16 namelen=ufs_get_de_namlen(sb, de);
  556. /* check for . and .. */
  557. if (de->d_name[0] != '.')
  558. goto not_empty;
  559. if (namelen > 2)
  560. goto not_empty;
  561. if (namelen < 2) {
  562. if (inode->i_ino !=
  563. fs32_to_cpu(sb, de->d_ino))
  564. goto not_empty;
  565. } else if (de->d_name[1] != '.')
  566. goto not_empty;
  567. }
  568. de = ufs_next_entry(sb, de);
  569. }
  570. ufs_put_page(page);
  571. }
  572. return 1;
  573. not_empty:
  574. ufs_put_page(page);
  575. return 0;
  576. }
  577. const struct file_operations ufs_dir_operations = {
  578. .read = generic_read_dir,
  579. .readdir = ufs_readdir,
  580. .fsync = file_fsync,
  581. };