super.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541
  1. /* AFS superblock handling
  2. *
  3. * Copyright (c) 2002, 2007 Red Hat, Inc. All rights reserved.
  4. *
  5. * This software may be freely redistributed under the terms of the
  6. * GNU General Public License.
  7. *
  8. * You should have received a copy of the GNU General Public License
  9. * along with this program; if not, write to the Free Software
  10. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  11. *
  12. * Authors: David Howells <dhowells@redhat.com>
  13. * David Woodhouse <dwmw2@redhat.com>
  14. *
  15. */
  16. #include <linux/kernel.h>
  17. #include <linux/module.h>
  18. #include <linux/init.h>
  19. #include <linux/slab.h>
  20. #include <linux/fs.h>
  21. #include <linux/pagemap.h>
  22. #include <linux/parser.h>
  23. #include <linux/statfs.h>
  24. #include <linux/sched.h>
  25. #include "internal.h"
  26. #define AFS_FS_MAGIC 0x6B414653 /* 'kAFS' */
  27. static void afs_i_init_once(void *foo, struct kmem_cache *cachep,
  28. unsigned long flags);
  29. static int afs_get_sb(struct file_system_type *fs_type,
  30. int flags, const char *dev_name,
  31. void *data, struct vfsmount *mnt);
  32. static struct inode *afs_alloc_inode(struct super_block *sb);
  33. static void afs_put_super(struct super_block *sb);
  34. static void afs_destroy_inode(struct inode *inode);
  35. static int afs_statfs(struct dentry *dentry, struct kstatfs *buf);
  36. struct file_system_type afs_fs_type = {
  37. .owner = THIS_MODULE,
  38. .name = "afs",
  39. .get_sb = afs_get_sb,
  40. .kill_sb = kill_anon_super,
  41. .fs_flags = 0,
  42. };
  43. static const struct super_operations afs_super_ops = {
  44. .statfs = afs_statfs,
  45. .alloc_inode = afs_alloc_inode,
  46. .write_inode = afs_write_inode,
  47. .destroy_inode = afs_destroy_inode,
  48. .clear_inode = afs_clear_inode,
  49. .umount_begin = afs_umount_begin,
  50. .put_super = afs_put_super,
  51. };
  52. static struct kmem_cache *afs_inode_cachep;
  53. static atomic_t afs_count_active_inodes;
  54. enum {
  55. afs_no_opt,
  56. afs_opt_cell,
  57. afs_opt_rwpath,
  58. afs_opt_vol,
  59. };
  60. static match_table_t afs_options_list = {
  61. { afs_opt_cell, "cell=%s" },
  62. { afs_opt_rwpath, "rwpath" },
  63. { afs_opt_vol, "vol=%s" },
  64. { afs_no_opt, NULL },
  65. };
  66. /*
  67. * initialise the filesystem
  68. */
  69. int __init afs_fs_init(void)
  70. {
  71. int ret;
  72. _enter("");
  73. /* create ourselves an inode cache */
  74. atomic_set(&afs_count_active_inodes, 0);
  75. ret = -ENOMEM;
  76. afs_inode_cachep = kmem_cache_create("afs_inode_cache",
  77. sizeof(struct afs_vnode),
  78. 0,
  79. SLAB_HWCACHE_ALIGN,
  80. afs_i_init_once);
  81. if (!afs_inode_cachep) {
  82. printk(KERN_NOTICE "kAFS: Failed to allocate inode cache\n");
  83. return ret;
  84. }
  85. /* now export our filesystem to lesser mortals */
  86. ret = register_filesystem(&afs_fs_type);
  87. if (ret < 0) {
  88. kmem_cache_destroy(afs_inode_cachep);
  89. _leave(" = %d", ret);
  90. return ret;
  91. }
  92. _leave(" = 0");
  93. return 0;
  94. }
  95. /*
  96. * clean up the filesystem
  97. */
  98. void __exit afs_fs_exit(void)
  99. {
  100. _enter("");
  101. afs_mntpt_kill_timer();
  102. unregister_filesystem(&afs_fs_type);
  103. if (atomic_read(&afs_count_active_inodes) != 0) {
  104. printk("kAFS: %d active inode objects still present\n",
  105. atomic_read(&afs_count_active_inodes));
  106. BUG();
  107. }
  108. kmem_cache_destroy(afs_inode_cachep);
  109. _leave("");
  110. }
  111. /*
  112. * parse the mount options
  113. * - this function has been shamelessly adapted from the ext3 fs which
  114. * shamelessly adapted it from the msdos fs
  115. */
  116. static int afs_parse_options(struct afs_mount_params *params,
  117. char *options, const char **devname)
  118. {
  119. struct afs_cell *cell;
  120. substring_t args[MAX_OPT_ARGS];
  121. char *p;
  122. int token;
  123. _enter("%s", options);
  124. options[PAGE_SIZE - 1] = 0;
  125. while ((p = strsep(&options, ","))) {
  126. if (!*p)
  127. continue;
  128. token = match_token(p, afs_options_list, args);
  129. switch (token) {
  130. case afs_opt_cell:
  131. cell = afs_cell_lookup(args[0].from,
  132. args[0].to - args[0].from);
  133. if (IS_ERR(cell))
  134. return PTR_ERR(cell);
  135. afs_put_cell(params->cell);
  136. params->cell = cell;
  137. break;
  138. case afs_opt_rwpath:
  139. params->rwpath = 1;
  140. break;
  141. case afs_opt_vol:
  142. *devname = args[0].from;
  143. break;
  144. default:
  145. printk(KERN_ERR "kAFS:"
  146. " Unknown or invalid mount option: '%s'\n", p);
  147. return -EINVAL;
  148. }
  149. }
  150. _leave(" = 0");
  151. return 0;
  152. }
  153. /*
  154. * parse a device name to get cell name, volume name, volume type and R/W
  155. * selector
  156. * - this can be one of the following:
  157. * "%[cell:]volume[.]" R/W volume
  158. * "#[cell:]volume[.]" R/O or R/W volume (rwpath=0),
  159. * or R/W (rwpath=1) volume
  160. * "%[cell:]volume.readonly" R/O volume
  161. * "#[cell:]volume.readonly" R/O volume
  162. * "%[cell:]volume.backup" Backup volume
  163. * "#[cell:]volume.backup" Backup volume
  164. */
  165. static int afs_parse_device_name(struct afs_mount_params *params,
  166. const char *name)
  167. {
  168. struct afs_cell *cell;
  169. const char *cellname, *suffix;
  170. int cellnamesz;
  171. _enter(",%s", name);
  172. if (!name) {
  173. printk(KERN_ERR "kAFS: no volume name specified\n");
  174. return -EINVAL;
  175. }
  176. if ((name[0] != '%' && name[0] != '#') || !name[1]) {
  177. printk(KERN_ERR "kAFS: unparsable volume name\n");
  178. return -EINVAL;
  179. }
  180. /* determine the type of volume we're looking for */
  181. params->type = AFSVL_ROVOL;
  182. params->force = false;
  183. if (params->rwpath || name[0] == '%') {
  184. params->type = AFSVL_RWVOL;
  185. params->force = true;
  186. }
  187. name++;
  188. /* split the cell name out if there is one */
  189. params->volname = strchr(name, ':');
  190. if (params->volname) {
  191. cellname = name;
  192. cellnamesz = params->volname - name;
  193. params->volname++;
  194. } else {
  195. params->volname = name;
  196. cellname = NULL;
  197. cellnamesz = 0;
  198. }
  199. /* the volume type is further affected by a possible suffix */
  200. suffix = strrchr(params->volname, '.');
  201. if (suffix) {
  202. if (strcmp(suffix, ".readonly") == 0) {
  203. params->type = AFSVL_ROVOL;
  204. params->force = true;
  205. } else if (strcmp(suffix, ".backup") == 0) {
  206. params->type = AFSVL_BACKVOL;
  207. params->force = true;
  208. } else if (suffix[1] == 0) {
  209. } else {
  210. suffix = NULL;
  211. }
  212. }
  213. params->volnamesz = suffix ?
  214. suffix - params->volname : strlen(params->volname);
  215. _debug("cell %*.*s [%p]",
  216. cellnamesz, cellnamesz, cellname ?: "", params->cell);
  217. /* lookup the cell record */
  218. if (cellname || !params->cell) {
  219. cell = afs_cell_lookup(cellname, cellnamesz);
  220. if (IS_ERR(cell)) {
  221. printk(KERN_ERR "kAFS: unable to lookup cell '%s'\n",
  222. cellname ?: "");
  223. return PTR_ERR(cell);
  224. }
  225. afs_put_cell(params->cell);
  226. params->cell = cell;
  227. }
  228. _debug("CELL:%s [%p] VOLUME:%*.*s SUFFIX:%s TYPE:%d%s",
  229. params->cell->name, params->cell,
  230. params->volnamesz, params->volnamesz, params->volname,
  231. suffix ?: "-", params->type, params->force ? " FORCE" : "");
  232. return 0;
  233. }
  234. /*
  235. * check a superblock to see if it's the one we're looking for
  236. */
  237. static int afs_test_super(struct super_block *sb, void *data)
  238. {
  239. struct afs_mount_params *params = data;
  240. struct afs_super_info *as = sb->s_fs_info;
  241. return as->volume == params->volume;
  242. }
  243. /*
  244. * fill in the superblock
  245. */
  246. static int afs_fill_super(struct super_block *sb, void *data)
  247. {
  248. struct afs_mount_params *params = data;
  249. struct afs_super_info *as = NULL;
  250. struct afs_fid fid;
  251. struct dentry *root = NULL;
  252. struct inode *inode = NULL;
  253. int ret;
  254. _enter("");
  255. /* allocate a superblock info record */
  256. as = kzalloc(sizeof(struct afs_super_info), GFP_KERNEL);
  257. if (!as) {
  258. _leave(" = -ENOMEM");
  259. return -ENOMEM;
  260. }
  261. afs_get_volume(params->volume);
  262. as->volume = params->volume;
  263. /* fill in the superblock */
  264. sb->s_blocksize = PAGE_CACHE_SIZE;
  265. sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
  266. sb->s_magic = AFS_FS_MAGIC;
  267. sb->s_op = &afs_super_ops;
  268. sb->s_fs_info = as;
  269. /* allocate the root inode and dentry */
  270. fid.vid = as->volume->vid;
  271. fid.vnode = 1;
  272. fid.unique = 1;
  273. inode = afs_iget(sb, params->key, &fid, NULL, NULL);
  274. if (IS_ERR(inode))
  275. goto error_inode;
  276. ret = -ENOMEM;
  277. root = d_alloc_root(inode);
  278. if (!root)
  279. goto error;
  280. sb->s_root = root;
  281. _leave(" = 0");
  282. return 0;
  283. error_inode:
  284. ret = PTR_ERR(inode);
  285. inode = NULL;
  286. error:
  287. iput(inode);
  288. afs_put_volume(as->volume);
  289. kfree(as);
  290. sb->s_fs_info = NULL;
  291. _leave(" = %d", ret);
  292. return ret;
  293. }
  294. /*
  295. * get an AFS superblock
  296. */
  297. static int afs_get_sb(struct file_system_type *fs_type,
  298. int flags,
  299. const char *dev_name,
  300. void *options,
  301. struct vfsmount *mnt)
  302. {
  303. struct afs_mount_params params;
  304. struct super_block *sb;
  305. struct afs_volume *vol;
  306. struct key *key;
  307. int ret;
  308. _enter(",,%s,%p", dev_name, options);
  309. memset(&params, 0, sizeof(params));
  310. /* parse the options and device name */
  311. if (options) {
  312. ret = afs_parse_options(&params, options, &dev_name);
  313. if (ret < 0)
  314. goto error;
  315. }
  316. ret = afs_parse_device_name(&params, dev_name);
  317. if (ret < 0)
  318. goto error;
  319. /* try and do the mount securely */
  320. key = afs_request_key(params.cell);
  321. if (IS_ERR(key)) {
  322. _leave(" = %ld [key]", PTR_ERR(key));
  323. ret = PTR_ERR(key);
  324. goto error;
  325. }
  326. params.key = key;
  327. /* parse the device name */
  328. vol = afs_volume_lookup(&params);
  329. if (IS_ERR(vol)) {
  330. ret = PTR_ERR(vol);
  331. goto error;
  332. }
  333. params.volume = vol;
  334. /* allocate a deviceless superblock */
  335. sb = sget(fs_type, afs_test_super, set_anon_super, &params);
  336. if (IS_ERR(sb)) {
  337. ret = PTR_ERR(sb);
  338. goto error;
  339. }
  340. if (!sb->s_root) {
  341. /* initial superblock/root creation */
  342. _debug("create");
  343. sb->s_flags = flags;
  344. ret = afs_fill_super(sb, &params);
  345. if (ret < 0) {
  346. up_write(&sb->s_umount);
  347. deactivate_super(sb);
  348. goto error;
  349. }
  350. sb->s_flags |= MS_ACTIVE;
  351. } else {
  352. _debug("reuse");
  353. ASSERTCMP(sb->s_flags, &, MS_ACTIVE);
  354. }
  355. simple_set_mnt(mnt, sb);
  356. afs_put_volume(params.volume);
  357. afs_put_cell(params.cell);
  358. _leave(" = 0 [%p]", sb);
  359. return 0;
  360. error:
  361. afs_put_volume(params.volume);
  362. afs_put_cell(params.cell);
  363. key_put(params.key);
  364. _leave(" = %d", ret);
  365. return ret;
  366. }
  367. /*
  368. * finish the unmounting process on the superblock
  369. */
  370. static void afs_put_super(struct super_block *sb)
  371. {
  372. struct afs_super_info *as = sb->s_fs_info;
  373. _enter("");
  374. afs_put_volume(as->volume);
  375. _leave("");
  376. }
  377. /*
  378. * initialise an inode cache slab element prior to any use
  379. */
  380. static void afs_i_init_once(void *_vnode, struct kmem_cache *cachep,
  381. unsigned long flags)
  382. {
  383. struct afs_vnode *vnode = _vnode;
  384. memset(vnode, 0, sizeof(*vnode));
  385. inode_init_once(&vnode->vfs_inode);
  386. init_waitqueue_head(&vnode->update_waitq);
  387. mutex_init(&vnode->permits_lock);
  388. mutex_init(&vnode->validate_lock);
  389. spin_lock_init(&vnode->writeback_lock);
  390. spin_lock_init(&vnode->lock);
  391. INIT_LIST_HEAD(&vnode->writebacks);
  392. INIT_LIST_HEAD(&vnode->pending_locks);
  393. INIT_LIST_HEAD(&vnode->granted_locks);
  394. INIT_DELAYED_WORK(&vnode->lock_work, afs_lock_work);
  395. INIT_WORK(&vnode->cb_broken_work, afs_broken_callback_work);
  396. }
  397. /*
  398. * allocate an AFS inode struct from our slab cache
  399. */
  400. static struct inode *afs_alloc_inode(struct super_block *sb)
  401. {
  402. struct afs_vnode *vnode;
  403. vnode = kmem_cache_alloc(afs_inode_cachep, GFP_KERNEL);
  404. if (!vnode)
  405. return NULL;
  406. atomic_inc(&afs_count_active_inodes);
  407. memset(&vnode->fid, 0, sizeof(vnode->fid));
  408. memset(&vnode->status, 0, sizeof(vnode->status));
  409. vnode->volume = NULL;
  410. vnode->update_cnt = 0;
  411. vnode->flags = 1 << AFS_VNODE_UNSET;
  412. vnode->cb_promised = false;
  413. _leave(" = %p", &vnode->vfs_inode);
  414. return &vnode->vfs_inode;
  415. }
  416. /*
  417. * destroy an AFS inode struct
  418. */
  419. static void afs_destroy_inode(struct inode *inode)
  420. {
  421. struct afs_vnode *vnode = AFS_FS_I(inode);
  422. _enter("%p{%x:%u}", inode, vnode->fid.vid, vnode->fid.vnode);
  423. _debug("DESTROY INODE %p", inode);
  424. ASSERTCMP(vnode->server, ==, NULL);
  425. kmem_cache_free(afs_inode_cachep, vnode);
  426. atomic_dec(&afs_count_active_inodes);
  427. }
  428. /*
  429. * return information about an AFS volume
  430. */
  431. static int afs_statfs(struct dentry *dentry, struct kstatfs *buf)
  432. {
  433. struct afs_volume_status vs;
  434. struct afs_vnode *vnode = AFS_FS_I(dentry->d_inode);
  435. struct key *key;
  436. int ret;
  437. key = afs_request_key(vnode->volume->cell);
  438. if (IS_ERR(key))
  439. return PTR_ERR(key);
  440. ret = afs_vnode_get_volume_status(vnode, key, &vs);
  441. key_put(key);
  442. if (ret < 0) {
  443. _leave(" = %d", ret);
  444. return ret;
  445. }
  446. buf->f_type = dentry->d_sb->s_magic;
  447. buf->f_bsize = AFS_BLOCK_SIZE;
  448. buf->f_namelen = AFSNAMEMAX - 1;
  449. if (vs.max_quota == 0)
  450. buf->f_blocks = vs.part_max_blocks;
  451. else
  452. buf->f_blocks = vs.max_quota;
  453. buf->f_bavail = buf->f_bfree = buf->f_blocks - vs.blocks_in_use;
  454. return 0;
  455. }