xpram.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438
  1. /*
  2. * Xpram.c -- the S/390 expanded memory RAM-disk
  3. *
  4. * significant parts of this code are based on
  5. * the sbull device driver presented in
  6. * A. Rubini: Linux Device Drivers
  7. *
  8. * Author of XPRAM specific coding: Reinhard Buendgen
  9. * buendgen@de.ibm.com
  10. * Rewrite for 2.5: Martin Schwidefsky <schwidefsky@de.ibm.com>
  11. *
  12. * External interfaces:
  13. * Interfaces to linux kernel
  14. * xpram_setup: read kernel parameters
  15. * Device specific file operations
  16. * xpram_iotcl
  17. * xpram_open
  18. *
  19. * "ad-hoc" partitioning:
  20. * the expanded memory can be partitioned among several devices
  21. * (with different minors). The partitioning set up can be
  22. * set by kernel or module parameters (int devs & int sizes[])
  23. *
  24. * Potential future improvements:
  25. * generic hard disk support to replace ad-hoc partitioning
  26. */
  27. #include <linux/module.h>
  28. #include <linux/moduleparam.h>
  29. #include <linux/ctype.h> /* isdigit, isxdigit */
  30. #include <linux/errno.h>
  31. #include <linux/init.h>
  32. #include <linux/slab.h>
  33. #include <linux/blkdev.h>
  34. #include <linux/blkpg.h>
  35. #include <linux/hdreg.h> /* HDIO_GETGEO */
  36. #include <linux/sysdev.h>
  37. #include <linux/bio.h>
  38. #include <asm/uaccess.h>
  39. #define XPRAM_NAME "xpram"
  40. #define XPRAM_DEVS 1 /* one partition */
  41. #define XPRAM_MAX_DEVS 32 /* maximal number of devices (partitions) */
  42. #define PRINT_DEBUG(x...) printk(KERN_DEBUG XPRAM_NAME " debug:" x)
  43. #define PRINT_INFO(x...) printk(KERN_INFO XPRAM_NAME " info:" x)
  44. #define PRINT_WARN(x...) printk(KERN_WARNING XPRAM_NAME " warning:" x)
  45. #define PRINT_ERR(x...) printk(KERN_ERR XPRAM_NAME " error:" x)
  46. typedef struct {
  47. unsigned int size; /* size of xpram segment in pages */
  48. unsigned int offset; /* start page of xpram segment */
  49. } xpram_device_t;
  50. static xpram_device_t xpram_devices[XPRAM_MAX_DEVS];
  51. static unsigned int xpram_sizes[XPRAM_MAX_DEVS];
  52. static struct gendisk *xpram_disks[XPRAM_MAX_DEVS];
  53. static unsigned int xpram_pages;
  54. static int xpram_devs;
  55. /*
  56. * Parameter parsing functions.
  57. */
  58. static int __initdata devs = XPRAM_DEVS;
  59. static char __initdata *sizes[XPRAM_MAX_DEVS];
  60. module_param(devs, int, 0);
  61. module_param_array(sizes, charp, NULL, 0);
  62. MODULE_PARM_DESC(devs, "number of devices (\"partitions\"), " \
  63. "the default is " __MODULE_STRING(XPRAM_DEVS) "\n");
  64. MODULE_PARM_DESC(sizes, "list of device (partition) sizes " \
  65. "the defaults are 0s \n" \
  66. "All devices with size 0 equally partition the "
  67. "remaining space on the expanded strorage not "
  68. "claimed by explicit sizes\n");
  69. MODULE_LICENSE("GPL");
  70. /*
  71. * Copy expanded memory page (4kB) into main memory
  72. * Arguments
  73. * page_addr: address of target page
  74. * xpage_index: index of expandeded memory page
  75. * Return value
  76. * 0: if operation succeeds
  77. * -EIO: if pgin failed
  78. * -ENXIO: if xpram has vanished
  79. */
  80. static int xpram_page_in (unsigned long page_addr, unsigned int xpage_index)
  81. {
  82. int cc = 2; /* return unused cc 2 if pgin traps */
  83. asm volatile(
  84. " .insn rre,0xb22e0000,%1,%2\n" /* pgin %1,%2 */
  85. "0: ipm %0\n"
  86. " srl %0,28\n"
  87. "1:\n"
  88. EX_TABLE(0b,1b)
  89. : "+d" (cc) : "a" (__pa(page_addr)), "d" (xpage_index) : "cc");
  90. if (cc == 3)
  91. return -ENXIO;
  92. if (cc == 2) {
  93. PRINT_ERR("expanded storage lost!\n");
  94. return -ENXIO;
  95. }
  96. if (cc == 1) {
  97. PRINT_ERR("page in failed for page index %u.\n",
  98. xpage_index);
  99. return -EIO;
  100. }
  101. return 0;
  102. }
  103. /*
  104. * Copy a 4kB page of main memory to an expanded memory page
  105. * Arguments
  106. * page_addr: address of source page
  107. * xpage_index: index of expandeded memory page
  108. * Return value
  109. * 0: if operation succeeds
  110. * -EIO: if pgout failed
  111. * -ENXIO: if xpram has vanished
  112. */
  113. static long xpram_page_out (unsigned long page_addr, unsigned int xpage_index)
  114. {
  115. int cc = 2; /* return unused cc 2 if pgin traps */
  116. asm volatile(
  117. " .insn rre,0xb22f0000,%1,%2\n" /* pgout %1,%2 */
  118. "0: ipm %0\n"
  119. " srl %0,28\n"
  120. "1:\n"
  121. EX_TABLE(0b,1b)
  122. : "+d" (cc) : "a" (__pa(page_addr)), "d" (xpage_index) : "cc");
  123. if (cc == 3)
  124. return -ENXIO;
  125. if (cc == 2) {
  126. PRINT_ERR("expanded storage lost!\n");
  127. return -ENXIO;
  128. }
  129. if (cc == 1) {
  130. PRINT_ERR("page out failed for page index %u.\n",
  131. xpage_index);
  132. return -EIO;
  133. }
  134. return 0;
  135. }
  136. /*
  137. * Check if xpram is available.
  138. */
  139. static int __init xpram_present(void)
  140. {
  141. unsigned long mem_page;
  142. int rc;
  143. mem_page = (unsigned long) __get_free_page(GFP_KERNEL);
  144. if (!mem_page)
  145. return -ENOMEM;
  146. rc = xpram_page_in(mem_page, 0);
  147. free_page(mem_page);
  148. return rc ? -ENXIO : 0;
  149. }
  150. /*
  151. * Return index of the last available xpram page.
  152. */
  153. static unsigned long __init xpram_highest_page_index(void)
  154. {
  155. unsigned int page_index, add_bit;
  156. unsigned long mem_page;
  157. mem_page = (unsigned long) __get_free_page(GFP_KERNEL);
  158. if (!mem_page)
  159. return 0;
  160. page_index = 0;
  161. add_bit = 1ULL << (sizeof(unsigned int)*8 - 1);
  162. while (add_bit > 0) {
  163. if (xpram_page_in(mem_page, page_index | add_bit) == 0)
  164. page_index |= add_bit;
  165. add_bit >>= 1;
  166. }
  167. free_page (mem_page);
  168. return page_index;
  169. }
  170. /*
  171. * Block device make request function.
  172. */
  173. static int xpram_make_request(struct request_queue *q, struct bio *bio)
  174. {
  175. xpram_device_t *xdev = bio->bi_bdev->bd_disk->private_data;
  176. struct bio_vec *bvec;
  177. unsigned int index;
  178. unsigned long page_addr;
  179. unsigned long bytes;
  180. int i;
  181. if ((bio->bi_sector & 7) != 0 || (bio->bi_size & 4095) != 0)
  182. /* Request is not page-aligned. */
  183. goto fail;
  184. if ((bio->bi_size >> 12) > xdev->size)
  185. /* Request size is no page-aligned. */
  186. goto fail;
  187. if ((bio->bi_sector >> 3) > 0xffffffffU - xdev->offset)
  188. goto fail;
  189. index = (bio->bi_sector >> 3) + xdev->offset;
  190. bio_for_each_segment(bvec, bio, i) {
  191. page_addr = (unsigned long)
  192. kmap(bvec->bv_page) + bvec->bv_offset;
  193. bytes = bvec->bv_len;
  194. if ((page_addr & 4095) != 0 || (bytes & 4095) != 0)
  195. /* More paranoia. */
  196. goto fail;
  197. while (bytes > 0) {
  198. if (bio_data_dir(bio) == READ) {
  199. if (xpram_page_in(page_addr, index) != 0)
  200. goto fail;
  201. } else {
  202. if (xpram_page_out(page_addr, index) != 0)
  203. goto fail;
  204. }
  205. page_addr += 4096;
  206. bytes -= 4096;
  207. index++;
  208. }
  209. }
  210. set_bit(BIO_UPTODATE, &bio->bi_flags);
  211. bio_endio(bio, 0);
  212. return 0;
  213. fail:
  214. bio_io_error(bio);
  215. return 0;
  216. }
  217. static int xpram_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  218. {
  219. unsigned long size;
  220. /*
  221. * get geometry: we have to fake one... trim the size to a
  222. * multiple of 64 (32k): tell we have 16 sectors, 4 heads,
  223. * whatever cylinders. Tell also that data starts at sector. 4.
  224. */
  225. size = (xpram_pages * 8) & ~0x3f;
  226. geo->cylinders = size >> 6;
  227. geo->heads = 4;
  228. geo->sectors = 16;
  229. geo->start = 4;
  230. return 0;
  231. }
  232. static struct block_device_operations xpram_devops =
  233. {
  234. .owner = THIS_MODULE,
  235. .getgeo = xpram_getgeo,
  236. };
  237. /*
  238. * Setup xpram_sizes array.
  239. */
  240. static int __init xpram_setup_sizes(unsigned long pages)
  241. {
  242. unsigned long mem_needed;
  243. unsigned long mem_auto;
  244. unsigned long long size;
  245. int mem_auto_no;
  246. int i;
  247. /* Check number of devices. */
  248. if (devs <= 0 || devs > XPRAM_MAX_DEVS) {
  249. PRINT_ERR("invalid number %d of devices\n",devs);
  250. return -EINVAL;
  251. }
  252. xpram_devs = devs;
  253. /*
  254. * Copy sizes array to xpram_sizes and align partition
  255. * sizes to page boundary.
  256. */
  257. mem_needed = 0;
  258. mem_auto_no = 0;
  259. for (i = 0; i < xpram_devs; i++) {
  260. if (sizes[i]) {
  261. size = simple_strtoull(sizes[i], &sizes[i], 0);
  262. switch (sizes[i][0]) {
  263. case 'g':
  264. case 'G':
  265. size <<= 20;
  266. break;
  267. case 'm':
  268. case 'M':
  269. size <<= 10;
  270. }
  271. xpram_sizes[i] = (size + 3) & -4UL;
  272. }
  273. if (xpram_sizes[i])
  274. mem_needed += xpram_sizes[i];
  275. else
  276. mem_auto_no++;
  277. }
  278. PRINT_INFO(" number of devices (partitions): %d \n", xpram_devs);
  279. for (i = 0; i < xpram_devs; i++) {
  280. if (xpram_sizes[i])
  281. PRINT_INFO(" size of partition %d: %u kB\n",
  282. i, xpram_sizes[i]);
  283. else
  284. PRINT_INFO(" size of partition %d to be set "
  285. "automatically\n",i);
  286. }
  287. PRINT_DEBUG(" memory needed (for sized partitions): %lu kB\n",
  288. mem_needed);
  289. PRINT_DEBUG(" partitions to be sized automatically: %d\n",
  290. mem_auto_no);
  291. if (mem_needed > pages * 4) {
  292. PRINT_ERR("Not enough expanded memory available\n");
  293. return -EINVAL;
  294. }
  295. /*
  296. * partitioning:
  297. * xpram_sizes[i] != 0; partition i has size xpram_sizes[i] kB
  298. * else: ; all partitions with zero xpram_sizes[i]
  299. * partition equally the remaining space
  300. */
  301. if (mem_auto_no) {
  302. mem_auto = ((pages - mem_needed / 4) / mem_auto_no) * 4;
  303. PRINT_INFO(" automatically determined "
  304. "partition size: %lu kB\n", mem_auto);
  305. for (i = 0; i < xpram_devs; i++)
  306. if (xpram_sizes[i] == 0)
  307. xpram_sizes[i] = mem_auto;
  308. }
  309. return 0;
  310. }
  311. static struct request_queue *xpram_queue;
  312. static int __init xpram_setup_blkdev(void)
  313. {
  314. unsigned long offset;
  315. int i, rc = -ENOMEM;
  316. for (i = 0; i < xpram_devs; i++) {
  317. struct gendisk *disk = alloc_disk(1);
  318. if (!disk)
  319. goto out;
  320. xpram_disks[i] = disk;
  321. }
  322. /*
  323. * Register xpram major.
  324. */
  325. rc = register_blkdev(XPRAM_MAJOR, XPRAM_NAME);
  326. if (rc < 0)
  327. goto out;
  328. /*
  329. * Assign the other needed values: make request function, sizes and
  330. * hardsect size. All the minor devices feature the same value.
  331. */
  332. xpram_queue = blk_alloc_queue(GFP_KERNEL);
  333. if (!xpram_queue) {
  334. rc = -ENOMEM;
  335. goto out_unreg;
  336. }
  337. blk_queue_make_request(xpram_queue, xpram_make_request);
  338. blk_queue_hardsect_size(xpram_queue, 4096);
  339. /*
  340. * Setup device structures.
  341. */
  342. offset = 0;
  343. for (i = 0; i < xpram_devs; i++) {
  344. struct gendisk *disk = xpram_disks[i];
  345. xpram_devices[i].size = xpram_sizes[i] / 4;
  346. xpram_devices[i].offset = offset;
  347. offset += xpram_devices[i].size;
  348. disk->major = XPRAM_MAJOR;
  349. disk->first_minor = i;
  350. disk->fops = &xpram_devops;
  351. disk->private_data = &xpram_devices[i];
  352. disk->queue = xpram_queue;
  353. sprintf(disk->disk_name, "slram%d", i);
  354. set_capacity(disk, xpram_sizes[i] << 1);
  355. add_disk(disk);
  356. }
  357. return 0;
  358. out_unreg:
  359. unregister_blkdev(XPRAM_MAJOR, XPRAM_NAME);
  360. out:
  361. while (i--)
  362. put_disk(xpram_disks[i]);
  363. return rc;
  364. }
  365. /*
  366. * Finally, the init/exit functions.
  367. */
  368. static void __exit xpram_exit(void)
  369. {
  370. int i;
  371. for (i = 0; i < xpram_devs; i++) {
  372. del_gendisk(xpram_disks[i]);
  373. put_disk(xpram_disks[i]);
  374. }
  375. unregister_blkdev(XPRAM_MAJOR, XPRAM_NAME);
  376. blk_cleanup_queue(xpram_queue);
  377. }
  378. static int __init xpram_init(void)
  379. {
  380. int rc;
  381. /* Find out size of expanded memory. */
  382. if (xpram_present() != 0) {
  383. PRINT_WARN("No expanded memory available\n");
  384. return -ENODEV;
  385. }
  386. xpram_pages = xpram_highest_page_index() + 1;
  387. PRINT_INFO(" %u pages expanded memory found (%lu KB).\n",
  388. xpram_pages, (unsigned long) xpram_pages*4);
  389. rc = xpram_setup_sizes(xpram_pages);
  390. if (rc)
  391. return rc;
  392. return xpram_setup_blkdev();
  393. }
  394. module_init(xpram_init);
  395. module_exit(xpram_exit);