niu.c 175 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939
  1. /* niu.c: Neptune ethernet driver.
  2. *
  3. * Copyright (C) 2007 David S. Miller (davem@davemloft.net)
  4. */
  5. #include <linux/module.h>
  6. #include <linux/init.h>
  7. #include <linux/pci.h>
  8. #include <linux/dma-mapping.h>
  9. #include <linux/netdevice.h>
  10. #include <linux/ethtool.h>
  11. #include <linux/etherdevice.h>
  12. #include <linux/platform_device.h>
  13. #include <linux/delay.h>
  14. #include <linux/bitops.h>
  15. #include <linux/mii.h>
  16. #include <linux/if_ether.h>
  17. #include <linux/if_vlan.h>
  18. #include <linux/ip.h>
  19. #include <linux/in.h>
  20. #include <linux/ipv6.h>
  21. #include <linux/log2.h>
  22. #include <linux/jiffies.h>
  23. #include <linux/crc32.h>
  24. #include <linux/io.h>
  25. #ifdef CONFIG_SPARC64
  26. #include <linux/of_device.h>
  27. #endif
  28. #include "niu.h"
  29. #define DRV_MODULE_NAME "niu"
  30. #define PFX DRV_MODULE_NAME ": "
  31. #define DRV_MODULE_VERSION "0.5"
  32. #define DRV_MODULE_RELDATE "October 5, 2007"
  33. static char version[] __devinitdata =
  34. DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  35. MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
  36. MODULE_DESCRIPTION("NIU ethernet driver");
  37. MODULE_LICENSE("GPL");
  38. MODULE_VERSION(DRV_MODULE_VERSION);
  39. #ifndef DMA_44BIT_MASK
  40. #define DMA_44BIT_MASK 0x00000fffffffffffULL
  41. #endif
  42. #ifndef readq
  43. static u64 readq(void __iomem *reg)
  44. {
  45. return (((u64)readl(reg + 0x4UL) << 32) |
  46. (u64)readl(reg));
  47. }
  48. static void writeq(u64 val, void __iomem *reg)
  49. {
  50. writel(val & 0xffffffff, reg);
  51. writel(val >> 32, reg + 0x4UL);
  52. }
  53. #endif
  54. static struct pci_device_id niu_pci_tbl[] = {
  55. {PCI_DEVICE(PCI_VENDOR_ID_SUN, 0xabcd)},
  56. {}
  57. };
  58. MODULE_DEVICE_TABLE(pci, niu_pci_tbl);
  59. #define NIU_TX_TIMEOUT (5 * HZ)
  60. #define nr64(reg) readq(np->regs + (reg))
  61. #define nw64(reg, val) writeq((val), np->regs + (reg))
  62. #define nr64_mac(reg) readq(np->mac_regs + (reg))
  63. #define nw64_mac(reg, val) writeq((val), np->mac_regs + (reg))
  64. #define nr64_ipp(reg) readq(np->regs + np->ipp_off + (reg))
  65. #define nw64_ipp(reg, val) writeq((val), np->regs + np->ipp_off + (reg))
  66. #define nr64_pcs(reg) readq(np->regs + np->pcs_off + (reg))
  67. #define nw64_pcs(reg, val) writeq((val), np->regs + np->pcs_off + (reg))
  68. #define nr64_xpcs(reg) readq(np->regs + np->xpcs_off + (reg))
  69. #define nw64_xpcs(reg, val) writeq((val), np->regs + np->xpcs_off + (reg))
  70. #define NIU_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
  71. static int niu_debug;
  72. static int debug = -1;
  73. module_param(debug, int, 0);
  74. MODULE_PARM_DESC(debug, "NIU debug level");
  75. #define niudbg(TYPE, f, a...) \
  76. do { if ((np)->msg_enable & NETIF_MSG_##TYPE) \
  77. printk(KERN_DEBUG PFX f, ## a); \
  78. } while (0)
  79. #define niuinfo(TYPE, f, a...) \
  80. do { if ((np)->msg_enable & NETIF_MSG_##TYPE) \
  81. printk(KERN_INFO PFX f, ## a); \
  82. } while (0)
  83. #define niuwarn(TYPE, f, a...) \
  84. do { if ((np)->msg_enable & NETIF_MSG_##TYPE) \
  85. printk(KERN_WARNING PFX f, ## a); \
  86. } while (0)
  87. #define niu_lock_parent(np, flags) \
  88. spin_lock_irqsave(&np->parent->lock, flags)
  89. #define niu_unlock_parent(np, flags) \
  90. spin_unlock_irqrestore(&np->parent->lock, flags)
  91. static int __niu_wait_bits_clear_mac(struct niu *np, unsigned long reg,
  92. u64 bits, int limit, int delay)
  93. {
  94. while (--limit >= 0) {
  95. u64 val = nr64_mac(reg);
  96. if (!(val & bits))
  97. break;
  98. udelay(delay);
  99. }
  100. if (limit < 0)
  101. return -ENODEV;
  102. return 0;
  103. }
  104. static int __niu_set_and_wait_clear_mac(struct niu *np, unsigned long reg,
  105. u64 bits, int limit, int delay,
  106. const char *reg_name)
  107. {
  108. int err;
  109. nw64_mac(reg, bits);
  110. err = __niu_wait_bits_clear_mac(np, reg, bits, limit, delay);
  111. if (err)
  112. dev_err(np->device, PFX "%s: bits (%llx) of register %s "
  113. "would not clear, val[%llx]\n",
  114. np->dev->name, (unsigned long long) bits, reg_name,
  115. (unsigned long long) nr64_mac(reg));
  116. return err;
  117. }
  118. #define niu_set_and_wait_clear_mac(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
  119. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  120. __niu_set_and_wait_clear_mac(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
  121. })
  122. static int __niu_wait_bits_clear_ipp(struct niu *np, unsigned long reg,
  123. u64 bits, int limit, int delay)
  124. {
  125. while (--limit >= 0) {
  126. u64 val = nr64_ipp(reg);
  127. if (!(val & bits))
  128. break;
  129. udelay(delay);
  130. }
  131. if (limit < 0)
  132. return -ENODEV;
  133. return 0;
  134. }
  135. static int __niu_set_and_wait_clear_ipp(struct niu *np, unsigned long reg,
  136. u64 bits, int limit, int delay,
  137. const char *reg_name)
  138. {
  139. int err;
  140. u64 val;
  141. val = nr64_ipp(reg);
  142. val |= bits;
  143. nw64_ipp(reg, val);
  144. err = __niu_wait_bits_clear_ipp(np, reg, bits, limit, delay);
  145. if (err)
  146. dev_err(np->device, PFX "%s: bits (%llx) of register %s "
  147. "would not clear, val[%llx]\n",
  148. np->dev->name, (unsigned long long) bits, reg_name,
  149. (unsigned long long) nr64_ipp(reg));
  150. return err;
  151. }
  152. #define niu_set_and_wait_clear_ipp(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
  153. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  154. __niu_set_and_wait_clear_ipp(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
  155. })
  156. static int __niu_wait_bits_clear(struct niu *np, unsigned long reg,
  157. u64 bits, int limit, int delay)
  158. {
  159. while (--limit >= 0) {
  160. u64 val = nr64(reg);
  161. if (!(val & bits))
  162. break;
  163. udelay(delay);
  164. }
  165. if (limit < 0)
  166. return -ENODEV;
  167. return 0;
  168. }
  169. #define niu_wait_bits_clear(NP, REG, BITS, LIMIT, DELAY) \
  170. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  171. __niu_wait_bits_clear(NP, REG, BITS, LIMIT, DELAY); \
  172. })
  173. static int __niu_set_and_wait_clear(struct niu *np, unsigned long reg,
  174. u64 bits, int limit, int delay,
  175. const char *reg_name)
  176. {
  177. int err;
  178. nw64(reg, bits);
  179. err = __niu_wait_bits_clear(np, reg, bits, limit, delay);
  180. if (err)
  181. dev_err(np->device, PFX "%s: bits (%llx) of register %s "
  182. "would not clear, val[%llx]\n",
  183. np->dev->name, (unsigned long long) bits, reg_name,
  184. (unsigned long long) nr64(reg));
  185. return err;
  186. }
  187. #define niu_set_and_wait_clear(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
  188. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  189. __niu_set_and_wait_clear(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
  190. })
  191. static void niu_ldg_rearm(struct niu *np, struct niu_ldg *lp, int on)
  192. {
  193. u64 val = (u64) lp->timer;
  194. if (on)
  195. val |= LDG_IMGMT_ARM;
  196. nw64(LDG_IMGMT(lp->ldg_num), val);
  197. }
  198. static int niu_ldn_irq_enable(struct niu *np, int ldn, int on)
  199. {
  200. unsigned long mask_reg, bits;
  201. u64 val;
  202. if (ldn < 0 || ldn > LDN_MAX)
  203. return -EINVAL;
  204. if (ldn < 64) {
  205. mask_reg = LD_IM0(ldn);
  206. bits = LD_IM0_MASK;
  207. } else {
  208. mask_reg = LD_IM1(ldn - 64);
  209. bits = LD_IM1_MASK;
  210. }
  211. val = nr64(mask_reg);
  212. if (on)
  213. val &= ~bits;
  214. else
  215. val |= bits;
  216. nw64(mask_reg, val);
  217. return 0;
  218. }
  219. static int niu_enable_ldn_in_ldg(struct niu *np, struct niu_ldg *lp, int on)
  220. {
  221. struct niu_parent *parent = np->parent;
  222. int i;
  223. for (i = 0; i <= LDN_MAX; i++) {
  224. int err;
  225. if (parent->ldg_map[i] != lp->ldg_num)
  226. continue;
  227. err = niu_ldn_irq_enable(np, i, on);
  228. if (err)
  229. return err;
  230. }
  231. return 0;
  232. }
  233. static int niu_enable_interrupts(struct niu *np, int on)
  234. {
  235. int i;
  236. for (i = 0; i < np->num_ldg; i++) {
  237. struct niu_ldg *lp = &np->ldg[i];
  238. int err;
  239. err = niu_enable_ldn_in_ldg(np, lp, on);
  240. if (err)
  241. return err;
  242. }
  243. for (i = 0; i < np->num_ldg; i++)
  244. niu_ldg_rearm(np, &np->ldg[i], on);
  245. return 0;
  246. }
  247. static u32 phy_encode(u32 type, int port)
  248. {
  249. return (type << (port * 2));
  250. }
  251. static u32 phy_decode(u32 val, int port)
  252. {
  253. return (val >> (port * 2)) & PORT_TYPE_MASK;
  254. }
  255. static int mdio_wait(struct niu *np)
  256. {
  257. int limit = 1000;
  258. u64 val;
  259. while (--limit > 0) {
  260. val = nr64(MIF_FRAME_OUTPUT);
  261. if ((val >> MIF_FRAME_OUTPUT_TA_SHIFT) & 0x1)
  262. return val & MIF_FRAME_OUTPUT_DATA;
  263. udelay(10);
  264. }
  265. return -ENODEV;
  266. }
  267. static int mdio_read(struct niu *np, int port, int dev, int reg)
  268. {
  269. int err;
  270. nw64(MIF_FRAME_OUTPUT, MDIO_ADDR_OP(port, dev, reg));
  271. err = mdio_wait(np);
  272. if (err < 0)
  273. return err;
  274. nw64(MIF_FRAME_OUTPUT, MDIO_READ_OP(port, dev));
  275. return mdio_wait(np);
  276. }
  277. static int mdio_write(struct niu *np, int port, int dev, int reg, int data)
  278. {
  279. int err;
  280. nw64(MIF_FRAME_OUTPUT, MDIO_ADDR_OP(port, dev, reg));
  281. err = mdio_wait(np);
  282. if (err < 0)
  283. return err;
  284. nw64(MIF_FRAME_OUTPUT, MDIO_WRITE_OP(port, dev, data));
  285. err = mdio_wait(np);
  286. if (err < 0)
  287. return err;
  288. return 0;
  289. }
  290. static int mii_read(struct niu *np, int port, int reg)
  291. {
  292. nw64(MIF_FRAME_OUTPUT, MII_READ_OP(port, reg));
  293. return mdio_wait(np);
  294. }
  295. static int mii_write(struct niu *np, int port, int reg, int data)
  296. {
  297. int err;
  298. nw64(MIF_FRAME_OUTPUT, MII_WRITE_OP(port, reg, data));
  299. err = mdio_wait(np);
  300. if (err < 0)
  301. return err;
  302. return 0;
  303. }
  304. static int esr2_set_tx_cfg(struct niu *np, unsigned long channel, u32 val)
  305. {
  306. int err;
  307. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  308. ESR2_TI_PLL_TX_CFG_L(channel),
  309. val & 0xffff);
  310. if (!err)
  311. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  312. ESR2_TI_PLL_TX_CFG_H(channel),
  313. val >> 16);
  314. return err;
  315. }
  316. static int esr2_set_rx_cfg(struct niu *np, unsigned long channel, u32 val)
  317. {
  318. int err;
  319. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  320. ESR2_TI_PLL_RX_CFG_L(channel),
  321. val & 0xffff);
  322. if (!err)
  323. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  324. ESR2_TI_PLL_RX_CFG_H(channel),
  325. val >> 16);
  326. return err;
  327. }
  328. /* Mode is always 10G fiber. */
  329. static int serdes_init_niu(struct niu *np)
  330. {
  331. struct niu_link_config *lp = &np->link_config;
  332. u32 tx_cfg, rx_cfg;
  333. unsigned long i;
  334. tx_cfg = (PLL_TX_CFG_ENTX | PLL_TX_CFG_SWING_1375MV);
  335. rx_cfg = (PLL_RX_CFG_ENRX | PLL_RX_CFG_TERM_0P8VDDT |
  336. PLL_RX_CFG_ALIGN_ENA | PLL_RX_CFG_LOS_LTHRESH |
  337. PLL_RX_CFG_EQ_LP_ADAPTIVE);
  338. if (lp->loopback_mode == LOOPBACK_PHY) {
  339. u16 test_cfg = PLL_TEST_CFG_LOOPBACK_CML_DIS;
  340. mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  341. ESR2_TI_PLL_TEST_CFG_L, test_cfg);
  342. tx_cfg |= PLL_TX_CFG_ENTEST;
  343. rx_cfg |= PLL_RX_CFG_ENTEST;
  344. }
  345. /* Initialize all 4 lanes of the SERDES. */
  346. for (i = 0; i < 4; i++) {
  347. int err = esr2_set_tx_cfg(np, i, tx_cfg);
  348. if (err)
  349. return err;
  350. }
  351. for (i = 0; i < 4; i++) {
  352. int err = esr2_set_rx_cfg(np, i, rx_cfg);
  353. if (err)
  354. return err;
  355. }
  356. return 0;
  357. }
  358. static int esr_read_rxtx_ctrl(struct niu *np, unsigned long chan, u32 *val)
  359. {
  360. int err;
  361. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR, ESR_RXTX_CTRL_L(chan));
  362. if (err >= 0) {
  363. *val = (err & 0xffff);
  364. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  365. ESR_RXTX_CTRL_H(chan));
  366. if (err >= 0)
  367. *val |= ((err & 0xffff) << 16);
  368. err = 0;
  369. }
  370. return err;
  371. }
  372. static int esr_read_glue0(struct niu *np, unsigned long chan, u32 *val)
  373. {
  374. int err;
  375. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  376. ESR_GLUE_CTRL0_L(chan));
  377. if (err >= 0) {
  378. *val = (err & 0xffff);
  379. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  380. ESR_GLUE_CTRL0_H(chan));
  381. if (err >= 0) {
  382. *val |= ((err & 0xffff) << 16);
  383. err = 0;
  384. }
  385. }
  386. return err;
  387. }
  388. static int esr_read_reset(struct niu *np, u32 *val)
  389. {
  390. int err;
  391. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  392. ESR_RXTX_RESET_CTRL_L);
  393. if (err >= 0) {
  394. *val = (err & 0xffff);
  395. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  396. ESR_RXTX_RESET_CTRL_H);
  397. if (err >= 0) {
  398. *val |= ((err & 0xffff) << 16);
  399. err = 0;
  400. }
  401. }
  402. return err;
  403. }
  404. static int esr_write_rxtx_ctrl(struct niu *np, unsigned long chan, u32 val)
  405. {
  406. int err;
  407. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  408. ESR_RXTX_CTRL_L(chan), val & 0xffff);
  409. if (!err)
  410. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  411. ESR_RXTX_CTRL_H(chan), (val >> 16));
  412. return err;
  413. }
  414. static int esr_write_glue0(struct niu *np, unsigned long chan, u32 val)
  415. {
  416. int err;
  417. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  418. ESR_GLUE_CTRL0_L(chan), val & 0xffff);
  419. if (!err)
  420. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  421. ESR_GLUE_CTRL0_H(chan), (val >> 16));
  422. return err;
  423. }
  424. static int esr_reset(struct niu *np)
  425. {
  426. u32 reset;
  427. int err;
  428. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  429. ESR_RXTX_RESET_CTRL_L, 0x0000);
  430. if (err)
  431. return err;
  432. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  433. ESR_RXTX_RESET_CTRL_H, 0xffff);
  434. if (err)
  435. return err;
  436. udelay(200);
  437. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  438. ESR_RXTX_RESET_CTRL_L, 0xffff);
  439. if (err)
  440. return err;
  441. udelay(200);
  442. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  443. ESR_RXTX_RESET_CTRL_H, 0x0000);
  444. if (err)
  445. return err;
  446. udelay(200);
  447. err = esr_read_reset(np, &reset);
  448. if (err)
  449. return err;
  450. if (reset != 0) {
  451. dev_err(np->device, PFX "Port %u ESR_RESET "
  452. "did not clear [%08x]\n",
  453. np->port, reset);
  454. return -ENODEV;
  455. }
  456. return 0;
  457. }
  458. static int serdes_init_10g(struct niu *np)
  459. {
  460. struct niu_link_config *lp = &np->link_config;
  461. unsigned long ctrl_reg, test_cfg_reg, i;
  462. u64 ctrl_val, test_cfg_val, sig, mask, val;
  463. int err;
  464. switch (np->port) {
  465. case 0:
  466. ctrl_reg = ENET_SERDES_0_CTRL_CFG;
  467. test_cfg_reg = ENET_SERDES_0_TEST_CFG;
  468. break;
  469. case 1:
  470. ctrl_reg = ENET_SERDES_1_CTRL_CFG;
  471. test_cfg_reg = ENET_SERDES_1_TEST_CFG;
  472. break;
  473. default:
  474. return -EINVAL;
  475. }
  476. ctrl_val = (ENET_SERDES_CTRL_SDET_0 |
  477. ENET_SERDES_CTRL_SDET_1 |
  478. ENET_SERDES_CTRL_SDET_2 |
  479. ENET_SERDES_CTRL_SDET_3 |
  480. (0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) |
  481. (0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) |
  482. (0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) |
  483. (0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) |
  484. (0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) |
  485. (0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) |
  486. (0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) |
  487. (0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT));
  488. test_cfg_val = 0;
  489. if (lp->loopback_mode == LOOPBACK_PHY) {
  490. test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK <<
  491. ENET_SERDES_TEST_MD_0_SHIFT) |
  492. (ENET_TEST_MD_PAD_LOOPBACK <<
  493. ENET_SERDES_TEST_MD_1_SHIFT) |
  494. (ENET_TEST_MD_PAD_LOOPBACK <<
  495. ENET_SERDES_TEST_MD_2_SHIFT) |
  496. (ENET_TEST_MD_PAD_LOOPBACK <<
  497. ENET_SERDES_TEST_MD_3_SHIFT));
  498. }
  499. nw64(ctrl_reg, ctrl_val);
  500. nw64(test_cfg_reg, test_cfg_val);
  501. /* Initialize all 4 lanes of the SERDES. */
  502. for (i = 0; i < 4; i++) {
  503. u32 rxtx_ctrl, glue0;
  504. err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl);
  505. if (err)
  506. return err;
  507. err = esr_read_glue0(np, i, &glue0);
  508. if (err)
  509. return err;
  510. rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO);
  511. rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH |
  512. (2 << ESR_RXTX_CTRL_VMUXLO_SHIFT));
  513. glue0 &= ~(ESR_GLUE_CTRL0_SRATE |
  514. ESR_GLUE_CTRL0_THCNT |
  515. ESR_GLUE_CTRL0_BLTIME);
  516. glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB |
  517. (0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) |
  518. (0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) |
  519. (BLTIME_300_CYCLES <<
  520. ESR_GLUE_CTRL0_BLTIME_SHIFT));
  521. err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl);
  522. if (err)
  523. return err;
  524. err = esr_write_glue0(np, i, glue0);
  525. if (err)
  526. return err;
  527. }
  528. err = esr_reset(np);
  529. if (err)
  530. return err;
  531. sig = nr64(ESR_INT_SIGNALS);
  532. switch (np->port) {
  533. case 0:
  534. mask = ESR_INT_SIGNALS_P0_BITS;
  535. val = (ESR_INT_SRDY0_P0 |
  536. ESR_INT_DET0_P0 |
  537. ESR_INT_XSRDY_P0 |
  538. ESR_INT_XDP_P0_CH3 |
  539. ESR_INT_XDP_P0_CH2 |
  540. ESR_INT_XDP_P0_CH1 |
  541. ESR_INT_XDP_P0_CH0);
  542. break;
  543. case 1:
  544. mask = ESR_INT_SIGNALS_P1_BITS;
  545. val = (ESR_INT_SRDY0_P1 |
  546. ESR_INT_DET0_P1 |
  547. ESR_INT_XSRDY_P1 |
  548. ESR_INT_XDP_P1_CH3 |
  549. ESR_INT_XDP_P1_CH2 |
  550. ESR_INT_XDP_P1_CH1 |
  551. ESR_INT_XDP_P1_CH0);
  552. break;
  553. default:
  554. return -EINVAL;
  555. }
  556. if ((sig & mask) != val) {
  557. dev_err(np->device, PFX "Port %u signal bits [%08x] are not "
  558. "[%08x]\n", np->port, (int) (sig & mask), (int) val);
  559. return -ENODEV;
  560. }
  561. return 0;
  562. }
  563. static int serdes_init_1g(struct niu *np)
  564. {
  565. u64 val;
  566. val = nr64(ENET_SERDES_1_PLL_CFG);
  567. val &= ~ENET_SERDES_PLL_FBDIV2;
  568. switch (np->port) {
  569. case 0:
  570. val |= ENET_SERDES_PLL_HRATE0;
  571. break;
  572. case 1:
  573. val |= ENET_SERDES_PLL_HRATE1;
  574. break;
  575. case 2:
  576. val |= ENET_SERDES_PLL_HRATE2;
  577. break;
  578. case 3:
  579. val |= ENET_SERDES_PLL_HRATE3;
  580. break;
  581. default:
  582. return -EINVAL;
  583. }
  584. nw64(ENET_SERDES_1_PLL_CFG, val);
  585. return 0;
  586. }
  587. static int bcm8704_reset(struct niu *np)
  588. {
  589. int err, limit;
  590. err = mdio_read(np, np->phy_addr,
  591. BCM8704_PHYXS_DEV_ADDR, MII_BMCR);
  592. if (err < 0)
  593. return err;
  594. err |= BMCR_RESET;
  595. err = mdio_write(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  596. MII_BMCR, err);
  597. if (err)
  598. return err;
  599. limit = 1000;
  600. while (--limit >= 0) {
  601. err = mdio_read(np, np->phy_addr,
  602. BCM8704_PHYXS_DEV_ADDR, MII_BMCR);
  603. if (err < 0)
  604. return err;
  605. if (!(err & BMCR_RESET))
  606. break;
  607. }
  608. if (limit < 0) {
  609. dev_err(np->device, PFX "Port %u PHY will not reset "
  610. "(bmcr=%04x)\n", np->port, (err & 0xffff));
  611. return -ENODEV;
  612. }
  613. return 0;
  614. }
  615. /* When written, certain PHY registers need to be read back twice
  616. * in order for the bits to settle properly.
  617. */
  618. static int bcm8704_user_dev3_readback(struct niu *np, int reg)
  619. {
  620. int err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, reg);
  621. if (err < 0)
  622. return err;
  623. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, reg);
  624. if (err < 0)
  625. return err;
  626. return 0;
  627. }
  628. static int bcm8704_init_user_dev3(struct niu *np)
  629. {
  630. int err;
  631. err = mdio_write(np, np->phy_addr,
  632. BCM8704_USER_DEV3_ADDR, BCM8704_USER_CONTROL,
  633. (USER_CONTROL_OPTXRST_LVL |
  634. USER_CONTROL_OPBIASFLT_LVL |
  635. USER_CONTROL_OBTMPFLT_LVL |
  636. USER_CONTROL_OPPRFLT_LVL |
  637. USER_CONTROL_OPTXFLT_LVL |
  638. USER_CONTROL_OPRXLOS_LVL |
  639. USER_CONTROL_OPRXFLT_LVL |
  640. USER_CONTROL_OPTXON_LVL |
  641. (0x3f << USER_CONTROL_RES1_SHIFT)));
  642. if (err)
  643. return err;
  644. err = mdio_write(np, np->phy_addr,
  645. BCM8704_USER_DEV3_ADDR, BCM8704_USER_PMD_TX_CONTROL,
  646. (USER_PMD_TX_CTL_XFP_CLKEN |
  647. (1 << USER_PMD_TX_CTL_TX_DAC_TXD_SH) |
  648. (2 << USER_PMD_TX_CTL_TX_DAC_TXCK_SH) |
  649. USER_PMD_TX_CTL_TSCK_LPWREN));
  650. if (err)
  651. return err;
  652. err = bcm8704_user_dev3_readback(np, BCM8704_USER_CONTROL);
  653. if (err)
  654. return err;
  655. err = bcm8704_user_dev3_readback(np, BCM8704_USER_PMD_TX_CONTROL);
  656. if (err)
  657. return err;
  658. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  659. BCM8704_USER_OPT_DIGITAL_CTRL);
  660. if (err < 0)
  661. return err;
  662. err &= ~USER_ODIG_CTRL_GPIOS;
  663. err |= (0x3 << USER_ODIG_CTRL_GPIOS_SHIFT);
  664. err = mdio_write(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  665. BCM8704_USER_OPT_DIGITAL_CTRL, err);
  666. if (err)
  667. return err;
  668. mdelay(1000);
  669. return 0;
  670. }
  671. static int xcvr_init_10g(struct niu *np)
  672. {
  673. struct niu_link_config *lp = &np->link_config;
  674. u16 analog_stat0, tx_alarm_status;
  675. int err;
  676. u64 val;
  677. val = nr64_mac(XMAC_CONFIG);
  678. val &= ~XMAC_CONFIG_LED_POLARITY;
  679. val |= XMAC_CONFIG_FORCE_LED_ON;
  680. nw64_mac(XMAC_CONFIG, val);
  681. /* XXX shared resource, lock parent XXX */
  682. val = nr64(MIF_CONFIG);
  683. val |= MIF_CONFIG_INDIRECT_MODE;
  684. nw64(MIF_CONFIG, val);
  685. err = bcm8704_reset(np);
  686. if (err)
  687. return err;
  688. err = bcm8704_init_user_dev3(np);
  689. if (err)
  690. return err;
  691. err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  692. MII_BMCR);
  693. if (err < 0)
  694. return err;
  695. err &= ~BMCR_LOOPBACK;
  696. if (lp->loopback_mode == LOOPBACK_MAC)
  697. err |= BMCR_LOOPBACK;
  698. err = mdio_write(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  699. MII_BMCR, err);
  700. if (err)
  701. return err;
  702. #if 1
  703. err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
  704. MII_STAT1000);
  705. if (err < 0)
  706. return err;
  707. pr_info(PFX "Port %u PMA_PMD(MII_STAT1000) [%04x]\n",
  708. np->port, err);
  709. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, 0x20);
  710. if (err < 0)
  711. return err;
  712. pr_info(PFX "Port %u USER_DEV3(0x20) [%04x]\n",
  713. np->port, err);
  714. err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  715. MII_NWAYTEST);
  716. if (err < 0)
  717. return err;
  718. pr_info(PFX "Port %u PHYXS(MII_NWAYTEST) [%04x]\n",
  719. np->port, err);
  720. #endif
  721. /* XXX dig this out it might not be so useful XXX */
  722. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  723. BCM8704_USER_ANALOG_STATUS0);
  724. if (err < 0)
  725. return err;
  726. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  727. BCM8704_USER_ANALOG_STATUS0);
  728. if (err < 0)
  729. return err;
  730. analog_stat0 = err;
  731. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  732. BCM8704_USER_TX_ALARM_STATUS);
  733. if (err < 0)
  734. return err;
  735. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  736. BCM8704_USER_TX_ALARM_STATUS);
  737. if (err < 0)
  738. return err;
  739. tx_alarm_status = err;
  740. if (analog_stat0 != 0x03fc) {
  741. if ((analog_stat0 == 0x43bc) && (tx_alarm_status != 0)) {
  742. pr_info(PFX "Port %u cable not connected "
  743. "or bad cable.\n", np->port);
  744. } else if (analog_stat0 == 0x639c) {
  745. pr_info(PFX "Port %u optical module is bad "
  746. "or missing.\n", np->port);
  747. }
  748. }
  749. return 0;
  750. }
  751. static int mii_reset(struct niu *np)
  752. {
  753. int limit, err;
  754. err = mii_write(np, np->phy_addr, MII_BMCR, BMCR_RESET);
  755. if (err)
  756. return err;
  757. limit = 1000;
  758. while (--limit >= 0) {
  759. udelay(500);
  760. err = mii_read(np, np->phy_addr, MII_BMCR);
  761. if (err < 0)
  762. return err;
  763. if (!(err & BMCR_RESET))
  764. break;
  765. }
  766. if (limit < 0) {
  767. dev_err(np->device, PFX "Port %u MII would not reset, "
  768. "bmcr[%04x]\n", np->port, err);
  769. return -ENODEV;
  770. }
  771. return 0;
  772. }
  773. static int mii_init_common(struct niu *np)
  774. {
  775. struct niu_link_config *lp = &np->link_config;
  776. u16 bmcr, bmsr, adv, estat;
  777. int err;
  778. err = mii_reset(np);
  779. if (err)
  780. return err;
  781. err = mii_read(np, np->phy_addr, MII_BMSR);
  782. if (err < 0)
  783. return err;
  784. bmsr = err;
  785. estat = 0;
  786. if (bmsr & BMSR_ESTATEN) {
  787. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  788. if (err < 0)
  789. return err;
  790. estat = err;
  791. }
  792. bmcr = 0;
  793. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  794. if (err)
  795. return err;
  796. if (lp->loopback_mode == LOOPBACK_MAC) {
  797. bmcr |= BMCR_LOOPBACK;
  798. if (lp->active_speed == SPEED_1000)
  799. bmcr |= BMCR_SPEED1000;
  800. if (lp->active_duplex == DUPLEX_FULL)
  801. bmcr |= BMCR_FULLDPLX;
  802. }
  803. if (lp->loopback_mode == LOOPBACK_PHY) {
  804. u16 aux;
  805. aux = (BCM5464R_AUX_CTL_EXT_LB |
  806. BCM5464R_AUX_CTL_WRITE_1);
  807. err = mii_write(np, np->phy_addr, BCM5464R_AUX_CTL, aux);
  808. if (err)
  809. return err;
  810. }
  811. /* XXX configurable XXX */
  812. /* XXX for now don't advertise half-duplex or asym pause... XXX */
  813. adv = ADVERTISE_CSMA | ADVERTISE_PAUSE_CAP;
  814. if (bmsr & BMSR_10FULL)
  815. adv |= ADVERTISE_10FULL;
  816. if (bmsr & BMSR_100FULL)
  817. adv |= ADVERTISE_100FULL;
  818. err = mii_write(np, np->phy_addr, MII_ADVERTISE, adv);
  819. if (err)
  820. return err;
  821. if (bmsr & BMSR_ESTATEN) {
  822. u16 ctrl1000 = 0;
  823. if (estat & ESTATUS_1000_TFULL)
  824. ctrl1000 |= ADVERTISE_1000FULL;
  825. err = mii_write(np, np->phy_addr, MII_CTRL1000, ctrl1000);
  826. if (err)
  827. return err;
  828. }
  829. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  830. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  831. if (err)
  832. return err;
  833. err = mii_read(np, np->phy_addr, MII_BMCR);
  834. if (err < 0)
  835. return err;
  836. err = mii_read(np, np->phy_addr, MII_BMSR);
  837. if (err < 0)
  838. return err;
  839. #if 0
  840. pr_info(PFX "Port %u after MII init bmcr[%04x] bmsr[%04x]\n",
  841. np->port, bmcr, bmsr);
  842. #endif
  843. return 0;
  844. }
  845. static int xcvr_init_1g(struct niu *np)
  846. {
  847. u64 val;
  848. /* XXX shared resource, lock parent XXX */
  849. val = nr64(MIF_CONFIG);
  850. val &= ~MIF_CONFIG_INDIRECT_MODE;
  851. nw64(MIF_CONFIG, val);
  852. return mii_init_common(np);
  853. }
  854. static int niu_xcvr_init(struct niu *np)
  855. {
  856. const struct niu_phy_ops *ops = np->phy_ops;
  857. int err;
  858. err = 0;
  859. if (ops->xcvr_init)
  860. err = ops->xcvr_init(np);
  861. return err;
  862. }
  863. static int niu_serdes_init(struct niu *np)
  864. {
  865. const struct niu_phy_ops *ops = np->phy_ops;
  866. int err;
  867. err = 0;
  868. if (ops->serdes_init)
  869. err = ops->serdes_init(np);
  870. return err;
  871. }
  872. static void niu_init_xif(struct niu *);
  873. static int niu_link_status_common(struct niu *np, int link_up)
  874. {
  875. struct niu_link_config *lp = &np->link_config;
  876. struct net_device *dev = np->dev;
  877. unsigned long flags;
  878. if (!netif_carrier_ok(dev) && link_up) {
  879. niuinfo(LINK, "%s: Link is up at %s, %s duplex\n",
  880. dev->name,
  881. (lp->active_speed == SPEED_10000 ?
  882. "10Gb/sec" :
  883. (lp->active_speed == SPEED_1000 ?
  884. "1Gb/sec" :
  885. (lp->active_speed == SPEED_100 ?
  886. "100Mbit/sec" : "10Mbit/sec"))),
  887. (lp->active_duplex == DUPLEX_FULL ?
  888. "full" : "half"));
  889. spin_lock_irqsave(&np->lock, flags);
  890. niu_init_xif(np);
  891. spin_unlock_irqrestore(&np->lock, flags);
  892. netif_carrier_on(dev);
  893. } else if (netif_carrier_ok(dev) && !link_up) {
  894. niuwarn(LINK, "%s: Link is down\n", dev->name);
  895. netif_carrier_off(dev);
  896. }
  897. return 0;
  898. }
  899. static int link_status_10g(struct niu *np, int *link_up_p)
  900. {
  901. unsigned long flags;
  902. int err, link_up;
  903. link_up = 0;
  904. spin_lock_irqsave(&np->lock, flags);
  905. err = -EINVAL;
  906. if (np->link_config.loopback_mode != LOOPBACK_DISABLED)
  907. goto out;
  908. err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
  909. BCM8704_PMD_RCV_SIGDET);
  910. if (err < 0)
  911. goto out;
  912. if (!(err & PMD_RCV_SIGDET_GLOBAL)) {
  913. err = 0;
  914. goto out;
  915. }
  916. err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  917. BCM8704_PCS_10G_R_STATUS);
  918. if (err < 0)
  919. goto out;
  920. if (!(err & PCS_10G_R_STATUS_BLK_LOCK)) {
  921. err = 0;
  922. goto out;
  923. }
  924. err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  925. BCM8704_PHYXS_XGXS_LANE_STAT);
  926. if (err < 0)
  927. goto out;
  928. if (err != (PHYXS_XGXS_LANE_STAT_ALINGED |
  929. PHYXS_XGXS_LANE_STAT_MAGIC |
  930. PHYXS_XGXS_LANE_STAT_LANE3 |
  931. PHYXS_XGXS_LANE_STAT_LANE2 |
  932. PHYXS_XGXS_LANE_STAT_LANE1 |
  933. PHYXS_XGXS_LANE_STAT_LANE0)) {
  934. err = 0;
  935. goto out;
  936. }
  937. link_up = 1;
  938. np->link_config.active_speed = SPEED_10000;
  939. np->link_config.active_duplex = DUPLEX_FULL;
  940. err = 0;
  941. out:
  942. spin_unlock_irqrestore(&np->lock, flags);
  943. *link_up_p = link_up;
  944. return err;
  945. }
  946. static int link_status_1g(struct niu *np, int *link_up_p)
  947. {
  948. u16 current_speed, bmsr;
  949. unsigned long flags;
  950. u8 current_duplex;
  951. int err, link_up;
  952. link_up = 0;
  953. current_speed = SPEED_INVALID;
  954. current_duplex = DUPLEX_INVALID;
  955. spin_lock_irqsave(&np->lock, flags);
  956. err = -EINVAL;
  957. if (np->link_config.loopback_mode != LOOPBACK_DISABLED)
  958. goto out;
  959. err = mii_read(np, np->phy_addr, MII_BMSR);
  960. if (err < 0)
  961. goto out;
  962. bmsr = err;
  963. if (bmsr & BMSR_LSTATUS) {
  964. u16 adv, lpa, common, estat;
  965. err = mii_read(np, np->phy_addr, MII_ADVERTISE);
  966. if (err < 0)
  967. goto out;
  968. adv = err;
  969. err = mii_read(np, np->phy_addr, MII_LPA);
  970. if (err < 0)
  971. goto out;
  972. lpa = err;
  973. common = adv & lpa;
  974. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  975. if (err < 0)
  976. goto out;
  977. estat = err;
  978. link_up = 1;
  979. if (estat & (ESTATUS_1000_TFULL | ESTATUS_1000_THALF)) {
  980. current_speed = SPEED_1000;
  981. if (estat & ESTATUS_1000_TFULL)
  982. current_duplex = DUPLEX_FULL;
  983. else
  984. current_duplex = DUPLEX_HALF;
  985. } else {
  986. if (common & ADVERTISE_100BASE4) {
  987. current_speed = SPEED_100;
  988. current_duplex = DUPLEX_HALF;
  989. } else if (common & ADVERTISE_100FULL) {
  990. current_speed = SPEED_100;
  991. current_duplex = DUPLEX_FULL;
  992. } else if (common & ADVERTISE_100HALF) {
  993. current_speed = SPEED_100;
  994. current_duplex = DUPLEX_HALF;
  995. } else if (common & ADVERTISE_10FULL) {
  996. current_speed = SPEED_10;
  997. current_duplex = DUPLEX_FULL;
  998. } else if (common & ADVERTISE_10HALF) {
  999. current_speed = SPEED_10;
  1000. current_duplex = DUPLEX_HALF;
  1001. } else
  1002. link_up = 0;
  1003. }
  1004. }
  1005. err = 0;
  1006. out:
  1007. spin_unlock_irqrestore(&np->lock, flags);
  1008. *link_up_p = link_up;
  1009. return err;
  1010. }
  1011. static int niu_link_status(struct niu *np, int *link_up_p)
  1012. {
  1013. const struct niu_phy_ops *ops = np->phy_ops;
  1014. int err;
  1015. err = 0;
  1016. if (ops->link_status)
  1017. err = ops->link_status(np, link_up_p);
  1018. return err;
  1019. }
  1020. static void niu_timer(unsigned long __opaque)
  1021. {
  1022. struct niu *np = (struct niu *) __opaque;
  1023. unsigned long off;
  1024. int err, link_up;
  1025. err = niu_link_status(np, &link_up);
  1026. if (!err)
  1027. niu_link_status_common(np, link_up);
  1028. if (netif_carrier_ok(np->dev))
  1029. off = 5 * HZ;
  1030. else
  1031. off = 1 * HZ;
  1032. np->timer.expires = jiffies + off;
  1033. add_timer(&np->timer);
  1034. }
  1035. static const struct niu_phy_ops phy_ops_10g_fiber_niu = {
  1036. .serdes_init = serdes_init_niu,
  1037. .xcvr_init = xcvr_init_10g,
  1038. .link_status = link_status_10g,
  1039. };
  1040. static const struct niu_phy_ops phy_ops_10g_fiber = {
  1041. .serdes_init = serdes_init_10g,
  1042. .xcvr_init = xcvr_init_10g,
  1043. .link_status = link_status_10g,
  1044. };
  1045. static const struct niu_phy_ops phy_ops_10g_copper = {
  1046. .serdes_init = serdes_init_10g,
  1047. .link_status = link_status_10g, /* XXX */
  1048. };
  1049. static const struct niu_phy_ops phy_ops_1g_fiber = {
  1050. .serdes_init = serdes_init_1g,
  1051. .xcvr_init = xcvr_init_1g,
  1052. .link_status = link_status_1g,
  1053. };
  1054. static const struct niu_phy_ops phy_ops_1g_copper = {
  1055. .xcvr_init = xcvr_init_1g,
  1056. .link_status = link_status_1g,
  1057. };
  1058. struct niu_phy_template {
  1059. const struct niu_phy_ops *ops;
  1060. u32 phy_addr_base;
  1061. };
  1062. static const struct niu_phy_template phy_template_niu = {
  1063. .ops = &phy_ops_10g_fiber_niu,
  1064. .phy_addr_base = 16,
  1065. };
  1066. static const struct niu_phy_template phy_template_10g_fiber = {
  1067. .ops = &phy_ops_10g_fiber,
  1068. .phy_addr_base = 8,
  1069. };
  1070. static const struct niu_phy_template phy_template_10g_copper = {
  1071. .ops = &phy_ops_10g_copper,
  1072. .phy_addr_base = 10,
  1073. };
  1074. static const struct niu_phy_template phy_template_1g_fiber = {
  1075. .ops = &phy_ops_1g_fiber,
  1076. .phy_addr_base = 0,
  1077. };
  1078. static const struct niu_phy_template phy_template_1g_copper = {
  1079. .ops = &phy_ops_1g_copper,
  1080. .phy_addr_base = 0,
  1081. };
  1082. static int niu_determine_phy_disposition(struct niu *np)
  1083. {
  1084. struct niu_parent *parent = np->parent;
  1085. u8 plat_type = parent->plat_type;
  1086. const struct niu_phy_template *tp;
  1087. u32 phy_addr_off = 0;
  1088. if (plat_type == PLAT_TYPE_NIU) {
  1089. tp = &phy_template_niu;
  1090. phy_addr_off += np->port;
  1091. } else {
  1092. switch (np->flags & (NIU_FLAGS_10G | NIU_FLAGS_FIBER)) {
  1093. case 0:
  1094. /* 1G copper */
  1095. tp = &phy_template_1g_copper;
  1096. if (plat_type == PLAT_TYPE_VF_P0)
  1097. phy_addr_off = 10;
  1098. else if (plat_type == PLAT_TYPE_VF_P1)
  1099. phy_addr_off = 26;
  1100. phy_addr_off += (np->port ^ 0x3);
  1101. break;
  1102. case NIU_FLAGS_10G:
  1103. /* 10G copper */
  1104. tp = &phy_template_1g_copper;
  1105. break;
  1106. case NIU_FLAGS_FIBER:
  1107. /* 1G fiber */
  1108. tp = &phy_template_1g_fiber;
  1109. break;
  1110. case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
  1111. /* 10G fiber */
  1112. tp = &phy_template_10g_fiber;
  1113. if (plat_type == PLAT_TYPE_VF_P0 ||
  1114. plat_type == PLAT_TYPE_VF_P1)
  1115. phy_addr_off = 8;
  1116. phy_addr_off += np->port;
  1117. break;
  1118. default:
  1119. return -EINVAL;
  1120. }
  1121. }
  1122. np->phy_ops = tp->ops;
  1123. np->phy_addr = tp->phy_addr_base + phy_addr_off;
  1124. return 0;
  1125. }
  1126. static int niu_init_link(struct niu *np)
  1127. {
  1128. struct niu_parent *parent = np->parent;
  1129. int err, ignore;
  1130. if (parent->plat_type == PLAT_TYPE_NIU) {
  1131. err = niu_xcvr_init(np);
  1132. if (err)
  1133. return err;
  1134. msleep(200);
  1135. }
  1136. err = niu_serdes_init(np);
  1137. if (err)
  1138. return err;
  1139. msleep(200);
  1140. err = niu_xcvr_init(np);
  1141. if (!err)
  1142. niu_link_status(np, &ignore);
  1143. return 0;
  1144. }
  1145. static void niu_set_primary_mac(struct niu *np, unsigned char *addr)
  1146. {
  1147. u16 reg0 = addr[4] << 8 | addr[5];
  1148. u16 reg1 = addr[2] << 8 | addr[3];
  1149. u16 reg2 = addr[0] << 8 | addr[1];
  1150. if (np->flags & NIU_FLAGS_XMAC) {
  1151. nw64_mac(XMAC_ADDR0, reg0);
  1152. nw64_mac(XMAC_ADDR1, reg1);
  1153. nw64_mac(XMAC_ADDR2, reg2);
  1154. } else {
  1155. nw64_mac(BMAC_ADDR0, reg0);
  1156. nw64_mac(BMAC_ADDR1, reg1);
  1157. nw64_mac(BMAC_ADDR2, reg2);
  1158. }
  1159. }
  1160. static int niu_num_alt_addr(struct niu *np)
  1161. {
  1162. if (np->flags & NIU_FLAGS_XMAC)
  1163. return XMAC_NUM_ALT_ADDR;
  1164. else
  1165. return BMAC_NUM_ALT_ADDR;
  1166. }
  1167. static int niu_set_alt_mac(struct niu *np, int index, unsigned char *addr)
  1168. {
  1169. u16 reg0 = addr[4] << 8 | addr[5];
  1170. u16 reg1 = addr[2] << 8 | addr[3];
  1171. u16 reg2 = addr[0] << 8 | addr[1];
  1172. if (index >= niu_num_alt_addr(np))
  1173. return -EINVAL;
  1174. if (np->flags & NIU_FLAGS_XMAC) {
  1175. nw64_mac(XMAC_ALT_ADDR0(index), reg0);
  1176. nw64_mac(XMAC_ALT_ADDR1(index), reg1);
  1177. nw64_mac(XMAC_ALT_ADDR2(index), reg2);
  1178. } else {
  1179. nw64_mac(BMAC_ALT_ADDR0(index), reg0);
  1180. nw64_mac(BMAC_ALT_ADDR1(index), reg1);
  1181. nw64_mac(BMAC_ALT_ADDR2(index), reg2);
  1182. }
  1183. return 0;
  1184. }
  1185. static int niu_enable_alt_mac(struct niu *np, int index, int on)
  1186. {
  1187. unsigned long reg;
  1188. u64 val, mask;
  1189. if (index >= niu_num_alt_addr(np))
  1190. return -EINVAL;
  1191. if (np->flags & NIU_FLAGS_XMAC)
  1192. reg = XMAC_ADDR_CMPEN;
  1193. else
  1194. reg = BMAC_ADDR_CMPEN;
  1195. mask = 1 << index;
  1196. val = nr64_mac(reg);
  1197. if (on)
  1198. val |= mask;
  1199. else
  1200. val &= ~mask;
  1201. nw64_mac(reg, val);
  1202. return 0;
  1203. }
  1204. static void __set_rdc_table_num_hw(struct niu *np, unsigned long reg,
  1205. int num, int mac_pref)
  1206. {
  1207. u64 val = nr64_mac(reg);
  1208. val &= ~(HOST_INFO_MACRDCTBLN | HOST_INFO_MPR);
  1209. val |= num;
  1210. if (mac_pref)
  1211. val |= HOST_INFO_MPR;
  1212. nw64_mac(reg, val);
  1213. }
  1214. static int __set_rdc_table_num(struct niu *np,
  1215. int xmac_index, int bmac_index,
  1216. int rdc_table_num, int mac_pref)
  1217. {
  1218. unsigned long reg;
  1219. if (rdc_table_num & ~HOST_INFO_MACRDCTBLN)
  1220. return -EINVAL;
  1221. if (np->flags & NIU_FLAGS_XMAC)
  1222. reg = XMAC_HOST_INFO(xmac_index);
  1223. else
  1224. reg = BMAC_HOST_INFO(bmac_index);
  1225. __set_rdc_table_num_hw(np, reg, rdc_table_num, mac_pref);
  1226. return 0;
  1227. }
  1228. static int niu_set_primary_mac_rdc_table(struct niu *np, int table_num,
  1229. int mac_pref)
  1230. {
  1231. return __set_rdc_table_num(np, 17, 0, table_num, mac_pref);
  1232. }
  1233. static int niu_set_multicast_mac_rdc_table(struct niu *np, int table_num,
  1234. int mac_pref)
  1235. {
  1236. return __set_rdc_table_num(np, 16, 8, table_num, mac_pref);
  1237. }
  1238. static int niu_set_alt_mac_rdc_table(struct niu *np, int idx,
  1239. int table_num, int mac_pref)
  1240. {
  1241. if (idx >= niu_num_alt_addr(np))
  1242. return -EINVAL;
  1243. return __set_rdc_table_num(np, idx, idx + 1, table_num, mac_pref);
  1244. }
  1245. static u64 vlan_entry_set_parity(u64 reg_val)
  1246. {
  1247. u64 port01_mask;
  1248. u64 port23_mask;
  1249. port01_mask = 0x00ff;
  1250. port23_mask = 0xff00;
  1251. if (hweight64(reg_val & port01_mask) & 1)
  1252. reg_val |= ENET_VLAN_TBL_PARITY0;
  1253. else
  1254. reg_val &= ~ENET_VLAN_TBL_PARITY0;
  1255. if (hweight64(reg_val & port23_mask) & 1)
  1256. reg_val |= ENET_VLAN_TBL_PARITY1;
  1257. else
  1258. reg_val &= ~ENET_VLAN_TBL_PARITY1;
  1259. return reg_val;
  1260. }
  1261. static void vlan_tbl_write(struct niu *np, unsigned long index,
  1262. int port, int vpr, int rdc_table)
  1263. {
  1264. u64 reg_val = nr64(ENET_VLAN_TBL(index));
  1265. reg_val &= ~((ENET_VLAN_TBL_VPR |
  1266. ENET_VLAN_TBL_VLANRDCTBLN) <<
  1267. ENET_VLAN_TBL_SHIFT(port));
  1268. if (vpr)
  1269. reg_val |= (ENET_VLAN_TBL_VPR <<
  1270. ENET_VLAN_TBL_SHIFT(port));
  1271. reg_val |= (rdc_table << ENET_VLAN_TBL_SHIFT(port));
  1272. reg_val = vlan_entry_set_parity(reg_val);
  1273. nw64(ENET_VLAN_TBL(index), reg_val);
  1274. }
  1275. static void vlan_tbl_clear(struct niu *np)
  1276. {
  1277. int i;
  1278. for (i = 0; i < ENET_VLAN_TBL_NUM_ENTRIES; i++)
  1279. nw64(ENET_VLAN_TBL(i), 0);
  1280. }
  1281. static int tcam_wait_bit(struct niu *np, u64 bit)
  1282. {
  1283. int limit = 1000;
  1284. while (--limit > 0) {
  1285. if (nr64(TCAM_CTL) & bit)
  1286. break;
  1287. udelay(1);
  1288. }
  1289. if (limit < 0)
  1290. return -ENODEV;
  1291. return 0;
  1292. }
  1293. static int tcam_flush(struct niu *np, int index)
  1294. {
  1295. nw64(TCAM_KEY_0, 0x00);
  1296. nw64(TCAM_KEY_MASK_0, 0xff);
  1297. nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_WRITE | index));
  1298. return tcam_wait_bit(np, TCAM_CTL_STAT);
  1299. }
  1300. #if 0
  1301. static int tcam_read(struct niu *np, int index,
  1302. u64 *key, u64 *mask)
  1303. {
  1304. int err;
  1305. nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_READ | index));
  1306. err = tcam_wait_bit(np, TCAM_CTL_STAT);
  1307. if (!err) {
  1308. key[0] = nr64(TCAM_KEY_0);
  1309. key[1] = nr64(TCAM_KEY_1);
  1310. key[2] = nr64(TCAM_KEY_2);
  1311. key[3] = nr64(TCAM_KEY_3);
  1312. mask[0] = nr64(TCAM_KEY_MASK_0);
  1313. mask[1] = nr64(TCAM_KEY_MASK_1);
  1314. mask[2] = nr64(TCAM_KEY_MASK_2);
  1315. mask[3] = nr64(TCAM_KEY_MASK_3);
  1316. }
  1317. return err;
  1318. }
  1319. #endif
  1320. static int tcam_write(struct niu *np, int index,
  1321. u64 *key, u64 *mask)
  1322. {
  1323. nw64(TCAM_KEY_0, key[0]);
  1324. nw64(TCAM_KEY_1, key[1]);
  1325. nw64(TCAM_KEY_2, key[2]);
  1326. nw64(TCAM_KEY_3, key[3]);
  1327. nw64(TCAM_KEY_MASK_0, mask[0]);
  1328. nw64(TCAM_KEY_MASK_1, mask[1]);
  1329. nw64(TCAM_KEY_MASK_2, mask[2]);
  1330. nw64(TCAM_KEY_MASK_3, mask[3]);
  1331. nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_WRITE | index));
  1332. return tcam_wait_bit(np, TCAM_CTL_STAT);
  1333. }
  1334. #if 0
  1335. static int tcam_assoc_read(struct niu *np, int index, u64 *data)
  1336. {
  1337. int err;
  1338. nw64(TCAM_CTL, (TCAM_CTL_RWC_RAM_READ | index));
  1339. err = tcam_wait_bit(np, TCAM_CTL_STAT);
  1340. if (!err)
  1341. *data = nr64(TCAM_KEY_1);
  1342. return err;
  1343. }
  1344. #endif
  1345. static int tcam_assoc_write(struct niu *np, int index, u64 assoc_data)
  1346. {
  1347. nw64(TCAM_KEY_1, assoc_data);
  1348. nw64(TCAM_CTL, (TCAM_CTL_RWC_RAM_WRITE | index));
  1349. return tcam_wait_bit(np, TCAM_CTL_STAT);
  1350. }
  1351. static void tcam_enable(struct niu *np, int on)
  1352. {
  1353. u64 val = nr64(FFLP_CFG_1);
  1354. if (on)
  1355. val &= ~FFLP_CFG_1_TCAM_DIS;
  1356. else
  1357. val |= FFLP_CFG_1_TCAM_DIS;
  1358. nw64(FFLP_CFG_1, val);
  1359. }
  1360. static void tcam_set_lat_and_ratio(struct niu *np, u64 latency, u64 ratio)
  1361. {
  1362. u64 val = nr64(FFLP_CFG_1);
  1363. val &= ~(FFLP_CFG_1_FFLPINITDONE |
  1364. FFLP_CFG_1_CAMLAT |
  1365. FFLP_CFG_1_CAMRATIO);
  1366. val |= (latency << FFLP_CFG_1_CAMLAT_SHIFT);
  1367. val |= (ratio << FFLP_CFG_1_CAMRATIO_SHIFT);
  1368. nw64(FFLP_CFG_1, val);
  1369. val = nr64(FFLP_CFG_1);
  1370. val |= FFLP_CFG_1_FFLPINITDONE;
  1371. nw64(FFLP_CFG_1, val);
  1372. }
  1373. static int tcam_user_eth_class_enable(struct niu *np, unsigned long class,
  1374. int on)
  1375. {
  1376. unsigned long reg;
  1377. u64 val;
  1378. if (class < CLASS_CODE_ETHERTYPE1 ||
  1379. class > CLASS_CODE_ETHERTYPE2)
  1380. return -EINVAL;
  1381. reg = L2_CLS(class - CLASS_CODE_ETHERTYPE1);
  1382. val = nr64(reg);
  1383. if (on)
  1384. val |= L2_CLS_VLD;
  1385. else
  1386. val &= ~L2_CLS_VLD;
  1387. nw64(reg, val);
  1388. return 0;
  1389. }
  1390. #if 0
  1391. static int tcam_user_eth_class_set(struct niu *np, unsigned long class,
  1392. u64 ether_type)
  1393. {
  1394. unsigned long reg;
  1395. u64 val;
  1396. if (class < CLASS_CODE_ETHERTYPE1 ||
  1397. class > CLASS_CODE_ETHERTYPE2 ||
  1398. (ether_type & ~(u64)0xffff) != 0)
  1399. return -EINVAL;
  1400. reg = L2_CLS(class - CLASS_CODE_ETHERTYPE1);
  1401. val = nr64(reg);
  1402. val &= ~L2_CLS_ETYPE;
  1403. val |= (ether_type << L2_CLS_ETYPE_SHIFT);
  1404. nw64(reg, val);
  1405. return 0;
  1406. }
  1407. #endif
  1408. static int tcam_user_ip_class_enable(struct niu *np, unsigned long class,
  1409. int on)
  1410. {
  1411. unsigned long reg;
  1412. u64 val;
  1413. if (class < CLASS_CODE_USER_PROG1 ||
  1414. class > CLASS_CODE_USER_PROG4)
  1415. return -EINVAL;
  1416. reg = L3_CLS(class - CLASS_CODE_USER_PROG1);
  1417. val = nr64(reg);
  1418. if (on)
  1419. val |= L3_CLS_VALID;
  1420. else
  1421. val &= ~L3_CLS_VALID;
  1422. nw64(reg, val);
  1423. return 0;
  1424. }
  1425. #if 0
  1426. static int tcam_user_ip_class_set(struct niu *np, unsigned long class,
  1427. int ipv6, u64 protocol_id,
  1428. u64 tos_mask, u64 tos_val)
  1429. {
  1430. unsigned long reg;
  1431. u64 val;
  1432. if (class < CLASS_CODE_USER_PROG1 ||
  1433. class > CLASS_CODE_USER_PROG4 ||
  1434. (protocol_id & ~(u64)0xff) != 0 ||
  1435. (tos_mask & ~(u64)0xff) != 0 ||
  1436. (tos_val & ~(u64)0xff) != 0)
  1437. return -EINVAL;
  1438. reg = L3_CLS(class - CLASS_CODE_USER_PROG1);
  1439. val = nr64(reg);
  1440. val &= ~(L3_CLS_IPVER | L3_CLS_PID |
  1441. L3_CLS_TOSMASK | L3_CLS_TOS);
  1442. if (ipv6)
  1443. val |= L3_CLS_IPVER;
  1444. val |= (protocol_id << L3_CLS_PID_SHIFT);
  1445. val |= (tos_mask << L3_CLS_TOSMASK_SHIFT);
  1446. val |= (tos_val << L3_CLS_TOS_SHIFT);
  1447. nw64(reg, val);
  1448. return 0;
  1449. }
  1450. #endif
  1451. static int tcam_early_init(struct niu *np)
  1452. {
  1453. unsigned long i;
  1454. int err;
  1455. tcam_enable(np, 0);
  1456. tcam_set_lat_and_ratio(np,
  1457. DEFAULT_TCAM_LATENCY,
  1458. DEFAULT_TCAM_ACCESS_RATIO);
  1459. for (i = CLASS_CODE_ETHERTYPE1; i <= CLASS_CODE_ETHERTYPE2; i++) {
  1460. err = tcam_user_eth_class_enable(np, i, 0);
  1461. if (err)
  1462. return err;
  1463. }
  1464. for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_USER_PROG4; i++) {
  1465. err = tcam_user_ip_class_enable(np, i, 0);
  1466. if (err)
  1467. return err;
  1468. }
  1469. return 0;
  1470. }
  1471. static int tcam_flush_all(struct niu *np)
  1472. {
  1473. unsigned long i;
  1474. for (i = 0; i < np->parent->tcam_num_entries; i++) {
  1475. int err = tcam_flush(np, i);
  1476. if (err)
  1477. return err;
  1478. }
  1479. return 0;
  1480. }
  1481. static u64 hash_addr_regval(unsigned long index, unsigned long num_entries)
  1482. {
  1483. return ((u64)index | (num_entries == 1 ?
  1484. HASH_TBL_ADDR_AUTOINC : 0));
  1485. }
  1486. #if 0
  1487. static int hash_read(struct niu *np, unsigned long partition,
  1488. unsigned long index, unsigned long num_entries,
  1489. u64 *data)
  1490. {
  1491. u64 val = hash_addr_regval(index, num_entries);
  1492. unsigned long i;
  1493. if (partition >= FCRAM_NUM_PARTITIONS ||
  1494. index + num_entries > FCRAM_SIZE)
  1495. return -EINVAL;
  1496. nw64(HASH_TBL_ADDR(partition), val);
  1497. for (i = 0; i < num_entries; i++)
  1498. data[i] = nr64(HASH_TBL_DATA(partition));
  1499. return 0;
  1500. }
  1501. #endif
  1502. static int hash_write(struct niu *np, unsigned long partition,
  1503. unsigned long index, unsigned long num_entries,
  1504. u64 *data)
  1505. {
  1506. u64 val = hash_addr_regval(index, num_entries);
  1507. unsigned long i;
  1508. if (partition >= FCRAM_NUM_PARTITIONS ||
  1509. index + (num_entries * 8) > FCRAM_SIZE)
  1510. return -EINVAL;
  1511. nw64(HASH_TBL_ADDR(partition), val);
  1512. for (i = 0; i < num_entries; i++)
  1513. nw64(HASH_TBL_DATA(partition), data[i]);
  1514. return 0;
  1515. }
  1516. static void fflp_reset(struct niu *np)
  1517. {
  1518. u64 val;
  1519. nw64(FFLP_CFG_1, FFLP_CFG_1_PIO_FIO_RST);
  1520. udelay(10);
  1521. nw64(FFLP_CFG_1, 0);
  1522. val = FFLP_CFG_1_FCRAMOUTDR_NORMAL | FFLP_CFG_1_FFLPINITDONE;
  1523. nw64(FFLP_CFG_1, val);
  1524. }
  1525. static void fflp_set_timings(struct niu *np)
  1526. {
  1527. u64 val = nr64(FFLP_CFG_1);
  1528. val &= ~FFLP_CFG_1_FFLPINITDONE;
  1529. val |= (DEFAULT_FCRAMRATIO << FFLP_CFG_1_FCRAMRATIO_SHIFT);
  1530. nw64(FFLP_CFG_1, val);
  1531. val = nr64(FFLP_CFG_1);
  1532. val |= FFLP_CFG_1_FFLPINITDONE;
  1533. nw64(FFLP_CFG_1, val);
  1534. val = nr64(FCRAM_REF_TMR);
  1535. val &= ~(FCRAM_REF_TMR_MAX | FCRAM_REF_TMR_MIN);
  1536. val |= (DEFAULT_FCRAM_REFRESH_MAX << FCRAM_REF_TMR_MAX_SHIFT);
  1537. val |= (DEFAULT_FCRAM_REFRESH_MIN << FCRAM_REF_TMR_MIN_SHIFT);
  1538. nw64(FCRAM_REF_TMR, val);
  1539. }
  1540. static int fflp_set_partition(struct niu *np, u64 partition,
  1541. u64 mask, u64 base, int enable)
  1542. {
  1543. unsigned long reg;
  1544. u64 val;
  1545. if (partition >= FCRAM_NUM_PARTITIONS ||
  1546. (mask & ~(u64)0x1f) != 0 ||
  1547. (base & ~(u64)0x1f) != 0)
  1548. return -EINVAL;
  1549. reg = FLW_PRT_SEL(partition);
  1550. val = nr64(reg);
  1551. val &= ~(FLW_PRT_SEL_EXT | FLW_PRT_SEL_MASK | FLW_PRT_SEL_BASE);
  1552. val |= (mask << FLW_PRT_SEL_MASK_SHIFT);
  1553. val |= (base << FLW_PRT_SEL_BASE_SHIFT);
  1554. if (enable)
  1555. val |= FLW_PRT_SEL_EXT;
  1556. nw64(reg, val);
  1557. return 0;
  1558. }
  1559. static int fflp_disable_all_partitions(struct niu *np)
  1560. {
  1561. unsigned long i;
  1562. for (i = 0; i < FCRAM_NUM_PARTITIONS; i++) {
  1563. int err = fflp_set_partition(np, 0, 0, 0, 0);
  1564. if (err)
  1565. return err;
  1566. }
  1567. return 0;
  1568. }
  1569. static void fflp_llcsnap_enable(struct niu *np, int on)
  1570. {
  1571. u64 val = nr64(FFLP_CFG_1);
  1572. if (on)
  1573. val |= FFLP_CFG_1_LLCSNAP;
  1574. else
  1575. val &= ~FFLP_CFG_1_LLCSNAP;
  1576. nw64(FFLP_CFG_1, val);
  1577. }
  1578. static void fflp_errors_enable(struct niu *np, int on)
  1579. {
  1580. u64 val = nr64(FFLP_CFG_1);
  1581. if (on)
  1582. val &= ~FFLP_CFG_1_ERRORDIS;
  1583. else
  1584. val |= FFLP_CFG_1_ERRORDIS;
  1585. nw64(FFLP_CFG_1, val);
  1586. }
  1587. static int fflp_hash_clear(struct niu *np)
  1588. {
  1589. struct fcram_hash_ipv4 ent;
  1590. unsigned long i;
  1591. /* IPV4 hash entry with valid bit clear, rest is don't care. */
  1592. memset(&ent, 0, sizeof(ent));
  1593. ent.header = HASH_HEADER_EXT;
  1594. for (i = 0; i < FCRAM_SIZE; i += sizeof(ent)) {
  1595. int err = hash_write(np, 0, i, 1, (u64 *) &ent);
  1596. if (err)
  1597. return err;
  1598. }
  1599. return 0;
  1600. }
  1601. static int fflp_early_init(struct niu *np)
  1602. {
  1603. struct niu_parent *parent;
  1604. unsigned long flags;
  1605. int err;
  1606. niu_lock_parent(np, flags);
  1607. parent = np->parent;
  1608. err = 0;
  1609. if (!(parent->flags & PARENT_FLGS_CLS_HWINIT)) {
  1610. niudbg(PROBE, "fflp_early_init: Initting hw on port %u\n",
  1611. np->port);
  1612. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  1613. fflp_reset(np);
  1614. fflp_set_timings(np);
  1615. err = fflp_disable_all_partitions(np);
  1616. if (err) {
  1617. niudbg(PROBE, "fflp_disable_all_partitions "
  1618. "failed, err=%d\n", err);
  1619. goto out;
  1620. }
  1621. }
  1622. err = tcam_early_init(np);
  1623. if (err) {
  1624. niudbg(PROBE, "tcam_early_init failed, err=%d\n",
  1625. err);
  1626. goto out;
  1627. }
  1628. fflp_llcsnap_enable(np, 1);
  1629. fflp_errors_enable(np, 0);
  1630. nw64(H1POLY, 0);
  1631. nw64(H2POLY, 0);
  1632. err = tcam_flush_all(np);
  1633. if (err) {
  1634. niudbg(PROBE, "tcam_flush_all failed, err=%d\n",
  1635. err);
  1636. goto out;
  1637. }
  1638. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  1639. err = fflp_hash_clear(np);
  1640. if (err) {
  1641. niudbg(PROBE, "fflp_hash_clear failed, "
  1642. "err=%d\n", err);
  1643. goto out;
  1644. }
  1645. }
  1646. vlan_tbl_clear(np);
  1647. niudbg(PROBE, "fflp_early_init: Success\n");
  1648. parent->flags |= PARENT_FLGS_CLS_HWINIT;
  1649. }
  1650. out:
  1651. niu_unlock_parent(np, flags);
  1652. return err;
  1653. }
  1654. static int niu_set_flow_key(struct niu *np, unsigned long class_code, u64 key)
  1655. {
  1656. if (class_code < CLASS_CODE_USER_PROG1 ||
  1657. class_code > CLASS_CODE_SCTP_IPV6)
  1658. return -EINVAL;
  1659. nw64(FLOW_KEY(class_code - CLASS_CODE_USER_PROG1), key);
  1660. return 0;
  1661. }
  1662. static int niu_set_tcam_key(struct niu *np, unsigned long class_code, u64 key)
  1663. {
  1664. if (class_code < CLASS_CODE_USER_PROG1 ||
  1665. class_code > CLASS_CODE_SCTP_IPV6)
  1666. return -EINVAL;
  1667. nw64(TCAM_KEY(class_code - CLASS_CODE_USER_PROG1), key);
  1668. return 0;
  1669. }
  1670. static void niu_rx_skb_append(struct sk_buff *skb, struct page *page,
  1671. u32 offset, u32 size)
  1672. {
  1673. int i = skb_shinfo(skb)->nr_frags;
  1674. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1675. frag->page = page;
  1676. frag->page_offset = offset;
  1677. frag->size = size;
  1678. skb->len += size;
  1679. skb->data_len += size;
  1680. skb->truesize += size;
  1681. skb_shinfo(skb)->nr_frags = i + 1;
  1682. }
  1683. static unsigned int niu_hash_rxaddr(struct rx_ring_info *rp, u64 a)
  1684. {
  1685. a >>= PAGE_SHIFT;
  1686. a ^= (a >> ilog2(MAX_RBR_RING_SIZE));
  1687. return (a & (MAX_RBR_RING_SIZE - 1));
  1688. }
  1689. static struct page *niu_find_rxpage(struct rx_ring_info *rp, u64 addr,
  1690. struct page ***link)
  1691. {
  1692. unsigned int h = niu_hash_rxaddr(rp, addr);
  1693. struct page *p, **pp;
  1694. addr &= PAGE_MASK;
  1695. pp = &rp->rxhash[h];
  1696. for (; (p = *pp) != NULL; pp = (struct page **) &p->mapping) {
  1697. if (p->index == addr) {
  1698. *link = pp;
  1699. break;
  1700. }
  1701. }
  1702. return p;
  1703. }
  1704. static void niu_hash_page(struct rx_ring_info *rp, struct page *page, u64 base)
  1705. {
  1706. unsigned int h = niu_hash_rxaddr(rp, base);
  1707. page->index = base;
  1708. page->mapping = (struct address_space *) rp->rxhash[h];
  1709. rp->rxhash[h] = page;
  1710. }
  1711. static int niu_rbr_add_page(struct niu *np, struct rx_ring_info *rp,
  1712. gfp_t mask, int start_index)
  1713. {
  1714. struct page *page;
  1715. u64 addr;
  1716. int i;
  1717. page = alloc_page(mask);
  1718. if (!page)
  1719. return -ENOMEM;
  1720. addr = np->ops->map_page(np->device, page, 0,
  1721. PAGE_SIZE, DMA_FROM_DEVICE);
  1722. niu_hash_page(rp, page, addr);
  1723. if (rp->rbr_blocks_per_page > 1)
  1724. atomic_add(rp->rbr_blocks_per_page - 1,
  1725. &compound_head(page)->_count);
  1726. for (i = 0; i < rp->rbr_blocks_per_page; i++) {
  1727. __le32 *rbr = &rp->rbr[start_index + i];
  1728. *rbr = cpu_to_le32(addr >> RBR_DESCR_ADDR_SHIFT);
  1729. addr += rp->rbr_block_size;
  1730. }
  1731. return 0;
  1732. }
  1733. static void niu_rbr_refill(struct niu *np, struct rx_ring_info *rp, gfp_t mask)
  1734. {
  1735. int index = rp->rbr_index;
  1736. rp->rbr_pending++;
  1737. if ((rp->rbr_pending % rp->rbr_blocks_per_page) == 0) {
  1738. int err = niu_rbr_add_page(np, rp, mask, index);
  1739. if (unlikely(err)) {
  1740. rp->rbr_pending--;
  1741. return;
  1742. }
  1743. rp->rbr_index += rp->rbr_blocks_per_page;
  1744. BUG_ON(rp->rbr_index > rp->rbr_table_size);
  1745. if (rp->rbr_index == rp->rbr_table_size)
  1746. rp->rbr_index = 0;
  1747. if (rp->rbr_pending >= rp->rbr_kick_thresh) {
  1748. nw64(RBR_KICK(rp->rx_channel), rp->rbr_pending);
  1749. rp->rbr_pending = 0;
  1750. }
  1751. }
  1752. }
  1753. static int niu_rx_pkt_ignore(struct niu *np, struct rx_ring_info *rp)
  1754. {
  1755. unsigned int index = rp->rcr_index;
  1756. int num_rcr = 0;
  1757. rp->rx_dropped++;
  1758. while (1) {
  1759. struct page *page, **link;
  1760. u64 addr, val;
  1761. u32 rcr_size;
  1762. num_rcr++;
  1763. val = le64_to_cpup(&rp->rcr[index]);
  1764. addr = (val & RCR_ENTRY_PKT_BUF_ADDR) <<
  1765. RCR_ENTRY_PKT_BUF_ADDR_SHIFT;
  1766. page = niu_find_rxpage(rp, addr, &link);
  1767. rcr_size = rp->rbr_sizes[(val & RCR_ENTRY_PKTBUFSZ) >>
  1768. RCR_ENTRY_PKTBUFSZ_SHIFT];
  1769. if ((page->index + PAGE_SIZE) - rcr_size == addr) {
  1770. *link = (struct page *) page->mapping;
  1771. np->ops->unmap_page(np->device, page->index,
  1772. PAGE_SIZE, DMA_FROM_DEVICE);
  1773. page->index = 0;
  1774. page->mapping = NULL;
  1775. __free_page(page);
  1776. rp->rbr_refill_pending++;
  1777. }
  1778. index = NEXT_RCR(rp, index);
  1779. if (!(val & RCR_ENTRY_MULTI))
  1780. break;
  1781. }
  1782. rp->rcr_index = index;
  1783. return num_rcr;
  1784. }
  1785. static int niu_process_rx_pkt(struct niu *np, struct rx_ring_info *rp)
  1786. {
  1787. unsigned int index = rp->rcr_index;
  1788. struct sk_buff *skb;
  1789. int len, num_rcr;
  1790. skb = netdev_alloc_skb(np->dev, RX_SKB_ALLOC_SIZE);
  1791. if (unlikely(!skb))
  1792. return niu_rx_pkt_ignore(np, rp);
  1793. num_rcr = 0;
  1794. while (1) {
  1795. struct page *page, **link;
  1796. u32 rcr_size, append_size;
  1797. u64 addr, val, off;
  1798. num_rcr++;
  1799. val = le64_to_cpup(&rp->rcr[index]);
  1800. len = (val & RCR_ENTRY_L2_LEN) >>
  1801. RCR_ENTRY_L2_LEN_SHIFT;
  1802. len -= ETH_FCS_LEN;
  1803. addr = (val & RCR_ENTRY_PKT_BUF_ADDR) <<
  1804. RCR_ENTRY_PKT_BUF_ADDR_SHIFT;
  1805. page = niu_find_rxpage(rp, addr, &link);
  1806. rcr_size = rp->rbr_sizes[(val & RCR_ENTRY_PKTBUFSZ) >>
  1807. RCR_ENTRY_PKTBUFSZ_SHIFT];
  1808. off = addr & ~PAGE_MASK;
  1809. append_size = rcr_size;
  1810. if (num_rcr == 1) {
  1811. int ptype;
  1812. off += 2;
  1813. append_size -= 2;
  1814. ptype = (val >> RCR_ENTRY_PKT_TYPE_SHIFT);
  1815. if ((ptype == RCR_PKT_TYPE_TCP ||
  1816. ptype == RCR_PKT_TYPE_UDP) &&
  1817. !(val & (RCR_ENTRY_NOPORT |
  1818. RCR_ENTRY_ERROR)))
  1819. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1820. else
  1821. skb->ip_summed = CHECKSUM_NONE;
  1822. }
  1823. if (!(val & RCR_ENTRY_MULTI))
  1824. append_size = len - skb->len;
  1825. niu_rx_skb_append(skb, page, off, append_size);
  1826. if ((page->index + rp->rbr_block_size) - rcr_size == addr) {
  1827. *link = (struct page *) page->mapping;
  1828. np->ops->unmap_page(np->device, page->index,
  1829. PAGE_SIZE, DMA_FROM_DEVICE);
  1830. page->index = 0;
  1831. page->mapping = NULL;
  1832. rp->rbr_refill_pending++;
  1833. } else
  1834. get_page(page);
  1835. index = NEXT_RCR(rp, index);
  1836. if (!(val & RCR_ENTRY_MULTI))
  1837. break;
  1838. }
  1839. rp->rcr_index = index;
  1840. skb_reserve(skb, NET_IP_ALIGN);
  1841. __pskb_pull_tail(skb, min(len, NIU_RXPULL_MAX));
  1842. rp->rx_packets++;
  1843. rp->rx_bytes += skb->len;
  1844. skb->protocol = eth_type_trans(skb, np->dev);
  1845. netif_receive_skb(skb);
  1846. return num_rcr;
  1847. }
  1848. static int niu_rbr_fill(struct niu *np, struct rx_ring_info *rp, gfp_t mask)
  1849. {
  1850. int blocks_per_page = rp->rbr_blocks_per_page;
  1851. int err, index = rp->rbr_index;
  1852. err = 0;
  1853. while (index < (rp->rbr_table_size - blocks_per_page)) {
  1854. err = niu_rbr_add_page(np, rp, mask, index);
  1855. if (err)
  1856. break;
  1857. index += blocks_per_page;
  1858. }
  1859. rp->rbr_index = index;
  1860. return err;
  1861. }
  1862. static void niu_rbr_free(struct niu *np, struct rx_ring_info *rp)
  1863. {
  1864. int i;
  1865. for (i = 0; i < MAX_RBR_RING_SIZE; i++) {
  1866. struct page *page;
  1867. page = rp->rxhash[i];
  1868. while (page) {
  1869. struct page *next = (struct page *) page->mapping;
  1870. u64 base = page->index;
  1871. np->ops->unmap_page(np->device, base, PAGE_SIZE,
  1872. DMA_FROM_DEVICE);
  1873. page->index = 0;
  1874. page->mapping = NULL;
  1875. __free_page(page);
  1876. page = next;
  1877. }
  1878. }
  1879. for (i = 0; i < rp->rbr_table_size; i++)
  1880. rp->rbr[i] = cpu_to_le32(0);
  1881. rp->rbr_index = 0;
  1882. }
  1883. static int release_tx_packet(struct niu *np, struct tx_ring_info *rp, int idx)
  1884. {
  1885. struct tx_buff_info *tb = &rp->tx_buffs[idx];
  1886. struct sk_buff *skb = tb->skb;
  1887. struct tx_pkt_hdr *tp;
  1888. u64 tx_flags;
  1889. int i, len;
  1890. tp = (struct tx_pkt_hdr *) skb->data;
  1891. tx_flags = le64_to_cpup(&tp->flags);
  1892. rp->tx_packets++;
  1893. rp->tx_bytes += (((tx_flags & TXHDR_LEN) >> TXHDR_LEN_SHIFT) -
  1894. ((tx_flags & TXHDR_PAD) / 2));
  1895. len = skb_headlen(skb);
  1896. np->ops->unmap_single(np->device, tb->mapping,
  1897. len, DMA_TO_DEVICE);
  1898. if (le64_to_cpu(rp->descr[idx]) & TX_DESC_MARK)
  1899. rp->mark_pending--;
  1900. tb->skb = NULL;
  1901. do {
  1902. idx = NEXT_TX(rp, idx);
  1903. len -= MAX_TX_DESC_LEN;
  1904. } while (len > 0);
  1905. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  1906. tb = &rp->tx_buffs[idx];
  1907. BUG_ON(tb->skb != NULL);
  1908. np->ops->unmap_page(np->device, tb->mapping,
  1909. skb_shinfo(skb)->frags[i].size,
  1910. DMA_TO_DEVICE);
  1911. idx = NEXT_TX(rp, idx);
  1912. }
  1913. dev_kfree_skb(skb);
  1914. return idx;
  1915. }
  1916. #define NIU_TX_WAKEUP_THRESH(rp) ((rp)->pending / 4)
  1917. static void niu_tx_work(struct niu *np, struct tx_ring_info *rp)
  1918. {
  1919. u16 pkt_cnt, tmp;
  1920. int cons;
  1921. u64 cs;
  1922. cs = rp->tx_cs;
  1923. if (unlikely(!(cs & (TX_CS_MK | TX_CS_MMK))))
  1924. goto out;
  1925. tmp = pkt_cnt = (cs & TX_CS_PKT_CNT) >> TX_CS_PKT_CNT_SHIFT;
  1926. pkt_cnt = (pkt_cnt - rp->last_pkt_cnt) &
  1927. (TX_CS_PKT_CNT >> TX_CS_PKT_CNT_SHIFT);
  1928. rp->last_pkt_cnt = tmp;
  1929. cons = rp->cons;
  1930. niudbg(TX_DONE, "%s: niu_tx_work() pkt_cnt[%u] cons[%d]\n",
  1931. np->dev->name, pkt_cnt, cons);
  1932. while (pkt_cnt--)
  1933. cons = release_tx_packet(np, rp, cons);
  1934. rp->cons = cons;
  1935. smp_mb();
  1936. out:
  1937. if (unlikely(netif_queue_stopped(np->dev) &&
  1938. (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp)))) {
  1939. netif_tx_lock(np->dev);
  1940. if (netif_queue_stopped(np->dev) &&
  1941. (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp)))
  1942. netif_wake_queue(np->dev);
  1943. netif_tx_unlock(np->dev);
  1944. }
  1945. }
  1946. static int niu_rx_work(struct niu *np, struct rx_ring_info *rp, int budget)
  1947. {
  1948. int qlen, rcr_done = 0, work_done = 0;
  1949. struct rxdma_mailbox *mbox = rp->mbox;
  1950. u64 stat;
  1951. #if 1
  1952. stat = nr64(RX_DMA_CTL_STAT(rp->rx_channel));
  1953. qlen = nr64(RCRSTAT_A(rp->rx_channel)) & RCRSTAT_A_QLEN;
  1954. #else
  1955. stat = le64_to_cpup(&mbox->rx_dma_ctl_stat);
  1956. qlen = (le64_to_cpup(&mbox->rcrstat_a) & RCRSTAT_A_QLEN);
  1957. #endif
  1958. mbox->rx_dma_ctl_stat = 0;
  1959. mbox->rcrstat_a = 0;
  1960. niudbg(RX_STATUS, "%s: niu_rx_work(chan[%d]), stat[%llx] qlen=%d\n",
  1961. np->dev->name, rp->rx_channel, (unsigned long long) stat, qlen);
  1962. rcr_done = work_done = 0;
  1963. qlen = min(qlen, budget);
  1964. while (work_done < qlen) {
  1965. rcr_done += niu_process_rx_pkt(np, rp);
  1966. work_done++;
  1967. }
  1968. if (rp->rbr_refill_pending >= rp->rbr_kick_thresh) {
  1969. unsigned int i;
  1970. for (i = 0; i < rp->rbr_refill_pending; i++)
  1971. niu_rbr_refill(np, rp, GFP_ATOMIC);
  1972. rp->rbr_refill_pending = 0;
  1973. }
  1974. stat = (RX_DMA_CTL_STAT_MEX |
  1975. ((u64)work_done << RX_DMA_CTL_STAT_PKTREAD_SHIFT) |
  1976. ((u64)rcr_done << RX_DMA_CTL_STAT_PTRREAD_SHIFT));
  1977. nw64(RX_DMA_CTL_STAT(rp->rx_channel), stat);
  1978. return work_done;
  1979. }
  1980. static int niu_poll_core(struct niu *np, struct niu_ldg *lp, int budget)
  1981. {
  1982. u64 v0 = lp->v0;
  1983. u32 tx_vec = (v0 >> 32);
  1984. u32 rx_vec = (v0 & 0xffffffff);
  1985. int i, work_done = 0;
  1986. niudbg(INTR, "%s: niu_poll_core() v0[%016llx]\n",
  1987. np->dev->name, (unsigned long long) v0);
  1988. for (i = 0; i < np->num_tx_rings; i++) {
  1989. struct tx_ring_info *rp = &np->tx_rings[i];
  1990. if (tx_vec & (1 << rp->tx_channel))
  1991. niu_tx_work(np, rp);
  1992. nw64(LD_IM0(LDN_TXDMA(rp->tx_channel)), 0);
  1993. }
  1994. for (i = 0; i < np->num_rx_rings; i++) {
  1995. struct rx_ring_info *rp = &np->rx_rings[i];
  1996. if (rx_vec & (1 << rp->rx_channel)) {
  1997. int this_work_done;
  1998. this_work_done = niu_rx_work(np, rp,
  1999. budget);
  2000. budget -= this_work_done;
  2001. work_done += this_work_done;
  2002. }
  2003. nw64(LD_IM0(LDN_RXDMA(rp->rx_channel)), 0);
  2004. }
  2005. return work_done;
  2006. }
  2007. static int niu_poll(struct napi_struct *napi, int budget)
  2008. {
  2009. struct niu_ldg *lp = container_of(napi, struct niu_ldg, napi);
  2010. struct niu *np = lp->np;
  2011. int work_done;
  2012. work_done = niu_poll_core(np, lp, budget);
  2013. if (work_done < budget) {
  2014. netif_rx_complete(np->dev, napi);
  2015. niu_ldg_rearm(np, lp, 1);
  2016. }
  2017. return work_done;
  2018. }
  2019. static void niu_log_rxchan_errors(struct niu *np, struct rx_ring_info *rp,
  2020. u64 stat)
  2021. {
  2022. dev_err(np->device, PFX "%s: RX channel %u errors ( ",
  2023. np->dev->name, rp->rx_channel);
  2024. if (stat & RX_DMA_CTL_STAT_RBR_TMOUT)
  2025. printk("RBR_TMOUT ");
  2026. if (stat & RX_DMA_CTL_STAT_RSP_CNT_ERR)
  2027. printk("RSP_CNT ");
  2028. if (stat & RX_DMA_CTL_STAT_BYTE_EN_BUS)
  2029. printk("BYTE_EN_BUS ");
  2030. if (stat & RX_DMA_CTL_STAT_RSP_DAT_ERR)
  2031. printk("RSP_DAT ");
  2032. if (stat & RX_DMA_CTL_STAT_RCR_ACK_ERR)
  2033. printk("RCR_ACK ");
  2034. if (stat & RX_DMA_CTL_STAT_RCR_SHA_PAR)
  2035. printk("RCR_SHA_PAR ");
  2036. if (stat & RX_DMA_CTL_STAT_RBR_PRE_PAR)
  2037. printk("RBR_PRE_PAR ");
  2038. if (stat & RX_DMA_CTL_STAT_CONFIG_ERR)
  2039. printk("CONFIG ");
  2040. if (stat & RX_DMA_CTL_STAT_RCRINCON)
  2041. printk("RCRINCON ");
  2042. if (stat & RX_DMA_CTL_STAT_RCRFULL)
  2043. printk("RCRFULL ");
  2044. if (stat & RX_DMA_CTL_STAT_RBRFULL)
  2045. printk("RBRFULL ");
  2046. if (stat & RX_DMA_CTL_STAT_RBRLOGPAGE)
  2047. printk("RBRLOGPAGE ");
  2048. if (stat & RX_DMA_CTL_STAT_CFIGLOGPAGE)
  2049. printk("CFIGLOGPAGE ");
  2050. if (stat & RX_DMA_CTL_STAT_DC_FIFO_ERR)
  2051. printk("DC_FIDO ");
  2052. printk(")\n");
  2053. }
  2054. static int niu_rx_error(struct niu *np, struct rx_ring_info *rp)
  2055. {
  2056. u64 stat = nr64(RX_DMA_CTL_STAT(rp->rx_channel));
  2057. int err = 0;
  2058. dev_err(np->device, PFX "%s: RX channel %u error, stat[%llx]\n",
  2059. np->dev->name, rp->rx_channel, (unsigned long long) stat);
  2060. niu_log_rxchan_errors(np, rp, stat);
  2061. if (stat & (RX_DMA_CTL_STAT_CHAN_FATAL |
  2062. RX_DMA_CTL_STAT_PORT_FATAL))
  2063. err = -EINVAL;
  2064. nw64(RX_DMA_CTL_STAT(rp->rx_channel),
  2065. stat & RX_DMA_CTL_WRITE_CLEAR_ERRS);
  2066. return err;
  2067. }
  2068. static void niu_log_txchan_errors(struct niu *np, struct tx_ring_info *rp,
  2069. u64 cs)
  2070. {
  2071. dev_err(np->device, PFX "%s: TX channel %u errors ( ",
  2072. np->dev->name, rp->tx_channel);
  2073. if (cs & TX_CS_MBOX_ERR)
  2074. printk("MBOX ");
  2075. if (cs & TX_CS_PKT_SIZE_ERR)
  2076. printk("PKT_SIZE ");
  2077. if (cs & TX_CS_TX_RING_OFLOW)
  2078. printk("TX_RING_OFLOW ");
  2079. if (cs & TX_CS_PREF_BUF_PAR_ERR)
  2080. printk("PREF_BUF_PAR ");
  2081. if (cs & TX_CS_NACK_PREF)
  2082. printk("NACK_PREF ");
  2083. if (cs & TX_CS_NACK_PKT_RD)
  2084. printk("NACK_PKT_RD ");
  2085. if (cs & TX_CS_CONF_PART_ERR)
  2086. printk("CONF_PART ");
  2087. if (cs & TX_CS_PKT_PRT_ERR)
  2088. printk("PKT_PTR ");
  2089. printk(")\n");
  2090. }
  2091. static int niu_tx_error(struct niu *np, struct tx_ring_info *rp)
  2092. {
  2093. u64 cs, logh, logl;
  2094. cs = nr64(TX_CS(rp->tx_channel));
  2095. logh = nr64(TX_RNG_ERR_LOGH(rp->tx_channel));
  2096. logl = nr64(TX_RNG_ERR_LOGL(rp->tx_channel));
  2097. dev_err(np->device, PFX "%s: TX channel %u error, "
  2098. "cs[%llx] logh[%llx] logl[%llx]\n",
  2099. np->dev->name, rp->tx_channel,
  2100. (unsigned long long) cs,
  2101. (unsigned long long) logh,
  2102. (unsigned long long) logl);
  2103. niu_log_txchan_errors(np, rp, cs);
  2104. return -ENODEV;
  2105. }
  2106. static int niu_mif_interrupt(struct niu *np)
  2107. {
  2108. u64 mif_status = nr64(MIF_STATUS);
  2109. int phy_mdint = 0;
  2110. if (np->flags & NIU_FLAGS_XMAC) {
  2111. u64 xrxmac_stat = nr64_mac(XRXMAC_STATUS);
  2112. if (xrxmac_stat & XRXMAC_STATUS_PHY_MDINT)
  2113. phy_mdint = 1;
  2114. }
  2115. dev_err(np->device, PFX "%s: MIF interrupt, "
  2116. "stat[%llx] phy_mdint(%d)\n",
  2117. np->dev->name, (unsigned long long) mif_status, phy_mdint);
  2118. return -ENODEV;
  2119. }
  2120. static void niu_xmac_interrupt(struct niu *np)
  2121. {
  2122. struct niu_xmac_stats *mp = &np->mac_stats.xmac;
  2123. u64 val;
  2124. val = nr64_mac(XTXMAC_STATUS);
  2125. if (val & XTXMAC_STATUS_FRAME_CNT_EXP)
  2126. mp->tx_frames += TXMAC_FRM_CNT_COUNT;
  2127. if (val & XTXMAC_STATUS_BYTE_CNT_EXP)
  2128. mp->tx_bytes += TXMAC_BYTE_CNT_COUNT;
  2129. if (val & XTXMAC_STATUS_TXFIFO_XFR_ERR)
  2130. mp->tx_fifo_errors++;
  2131. if (val & XTXMAC_STATUS_TXMAC_OFLOW)
  2132. mp->tx_overflow_errors++;
  2133. if (val & XTXMAC_STATUS_MAX_PSIZE_ERR)
  2134. mp->tx_max_pkt_size_errors++;
  2135. if (val & XTXMAC_STATUS_TXMAC_UFLOW)
  2136. mp->tx_underflow_errors++;
  2137. val = nr64_mac(XRXMAC_STATUS);
  2138. if (val & XRXMAC_STATUS_LCL_FLT_STATUS)
  2139. mp->rx_local_faults++;
  2140. if (val & XRXMAC_STATUS_RFLT_DET)
  2141. mp->rx_remote_faults++;
  2142. if (val & XRXMAC_STATUS_LFLT_CNT_EXP)
  2143. mp->rx_link_faults += LINK_FAULT_CNT_COUNT;
  2144. if (val & XRXMAC_STATUS_ALIGNERR_CNT_EXP)
  2145. mp->rx_align_errors += RXMAC_ALIGN_ERR_CNT_COUNT;
  2146. if (val & XRXMAC_STATUS_RXFRAG_CNT_EXP)
  2147. mp->rx_frags += RXMAC_FRAG_CNT_COUNT;
  2148. if (val & XRXMAC_STATUS_RXMULTF_CNT_EXP)
  2149. mp->rx_mcasts += RXMAC_MC_FRM_CNT_COUNT;
  2150. if (val & XRXMAC_STATUS_RXBCAST_CNT_EXP)
  2151. mp->rx_bcasts += RXMAC_BC_FRM_CNT_COUNT;
  2152. if (val & XRXMAC_STATUS_RXBCAST_CNT_EXP)
  2153. mp->rx_bcasts += RXMAC_BC_FRM_CNT_COUNT;
  2154. if (val & XRXMAC_STATUS_RXHIST1_CNT_EXP)
  2155. mp->rx_hist_cnt1 += RXMAC_HIST_CNT1_COUNT;
  2156. if (val & XRXMAC_STATUS_RXHIST2_CNT_EXP)
  2157. mp->rx_hist_cnt2 += RXMAC_HIST_CNT2_COUNT;
  2158. if (val & XRXMAC_STATUS_RXHIST3_CNT_EXP)
  2159. mp->rx_hist_cnt3 += RXMAC_HIST_CNT3_COUNT;
  2160. if (val & XRXMAC_STATUS_RXHIST4_CNT_EXP)
  2161. mp->rx_hist_cnt4 += RXMAC_HIST_CNT4_COUNT;
  2162. if (val & XRXMAC_STATUS_RXHIST5_CNT_EXP)
  2163. mp->rx_hist_cnt5 += RXMAC_HIST_CNT5_COUNT;
  2164. if (val & XRXMAC_STATUS_RXHIST6_CNT_EXP)
  2165. mp->rx_hist_cnt6 += RXMAC_HIST_CNT6_COUNT;
  2166. if (val & XRXMAC_STATUS_RXHIST7_CNT_EXP)
  2167. mp->rx_hist_cnt7 += RXMAC_HIST_CNT7_COUNT;
  2168. if (val & XRXMAC_STAT_MSK_RXOCTET_CNT_EXP)
  2169. mp->rx_octets += RXMAC_BT_CNT_COUNT;
  2170. if (val & XRXMAC_STATUS_CVIOLERR_CNT_EXP)
  2171. mp->rx_code_violations += RXMAC_CD_VIO_CNT_COUNT;
  2172. if (val & XRXMAC_STATUS_LENERR_CNT_EXP)
  2173. mp->rx_len_errors += RXMAC_MPSZER_CNT_COUNT;
  2174. if (val & XRXMAC_STATUS_CRCERR_CNT_EXP)
  2175. mp->rx_crc_errors += RXMAC_CRC_ER_CNT_COUNT;
  2176. if (val & XRXMAC_STATUS_RXUFLOW)
  2177. mp->rx_underflows++;
  2178. if (val & XRXMAC_STATUS_RXOFLOW)
  2179. mp->rx_overflows++;
  2180. val = nr64_mac(XMAC_FC_STAT);
  2181. if (val & XMAC_FC_STAT_TX_MAC_NPAUSE)
  2182. mp->pause_off_state++;
  2183. if (val & XMAC_FC_STAT_TX_MAC_PAUSE)
  2184. mp->pause_on_state++;
  2185. if (val & XMAC_FC_STAT_RX_MAC_RPAUSE)
  2186. mp->pause_received++;
  2187. }
  2188. static void niu_bmac_interrupt(struct niu *np)
  2189. {
  2190. struct niu_bmac_stats *mp = &np->mac_stats.bmac;
  2191. u64 val;
  2192. val = nr64_mac(BTXMAC_STATUS);
  2193. if (val & BTXMAC_STATUS_UNDERRUN)
  2194. mp->tx_underflow_errors++;
  2195. if (val & BTXMAC_STATUS_MAX_PKT_ERR)
  2196. mp->tx_max_pkt_size_errors++;
  2197. if (val & BTXMAC_STATUS_BYTE_CNT_EXP)
  2198. mp->tx_bytes += BTXMAC_BYTE_CNT_COUNT;
  2199. if (val & BTXMAC_STATUS_FRAME_CNT_EXP)
  2200. mp->tx_frames += BTXMAC_FRM_CNT_COUNT;
  2201. val = nr64_mac(BRXMAC_STATUS);
  2202. if (val & BRXMAC_STATUS_OVERFLOW)
  2203. mp->rx_overflows++;
  2204. if (val & BRXMAC_STATUS_FRAME_CNT_EXP)
  2205. mp->rx_frames += BRXMAC_FRAME_CNT_COUNT;
  2206. if (val & BRXMAC_STATUS_ALIGN_ERR_EXP)
  2207. mp->rx_align_errors += BRXMAC_ALIGN_ERR_CNT_COUNT;
  2208. if (val & BRXMAC_STATUS_CRC_ERR_EXP)
  2209. mp->rx_crc_errors += BRXMAC_ALIGN_ERR_CNT_COUNT;
  2210. if (val & BRXMAC_STATUS_LEN_ERR_EXP)
  2211. mp->rx_len_errors += BRXMAC_CODE_VIOL_ERR_CNT_COUNT;
  2212. val = nr64_mac(BMAC_CTRL_STATUS);
  2213. if (val & BMAC_CTRL_STATUS_NOPAUSE)
  2214. mp->pause_off_state++;
  2215. if (val & BMAC_CTRL_STATUS_PAUSE)
  2216. mp->pause_on_state++;
  2217. if (val & BMAC_CTRL_STATUS_PAUSE_RECV)
  2218. mp->pause_received++;
  2219. }
  2220. static int niu_mac_interrupt(struct niu *np)
  2221. {
  2222. if (np->flags & NIU_FLAGS_XMAC)
  2223. niu_xmac_interrupt(np);
  2224. else
  2225. niu_bmac_interrupt(np);
  2226. return 0;
  2227. }
  2228. static void niu_log_device_error(struct niu *np, u64 stat)
  2229. {
  2230. dev_err(np->device, PFX "%s: Core device errors ( ",
  2231. np->dev->name);
  2232. if (stat & SYS_ERR_MASK_META2)
  2233. printk("META2 ");
  2234. if (stat & SYS_ERR_MASK_META1)
  2235. printk("META1 ");
  2236. if (stat & SYS_ERR_MASK_PEU)
  2237. printk("PEU ");
  2238. if (stat & SYS_ERR_MASK_TXC)
  2239. printk("TXC ");
  2240. if (stat & SYS_ERR_MASK_RDMC)
  2241. printk("RDMC ");
  2242. if (stat & SYS_ERR_MASK_TDMC)
  2243. printk("TDMC ");
  2244. if (stat & SYS_ERR_MASK_ZCP)
  2245. printk("ZCP ");
  2246. if (stat & SYS_ERR_MASK_FFLP)
  2247. printk("FFLP ");
  2248. if (stat & SYS_ERR_MASK_IPP)
  2249. printk("IPP ");
  2250. if (stat & SYS_ERR_MASK_MAC)
  2251. printk("MAC ");
  2252. if (stat & SYS_ERR_MASK_SMX)
  2253. printk("SMX ");
  2254. printk(")\n");
  2255. }
  2256. static int niu_device_error(struct niu *np)
  2257. {
  2258. u64 stat = nr64(SYS_ERR_STAT);
  2259. dev_err(np->device, PFX "%s: Core device error, stat[%llx]\n",
  2260. np->dev->name, (unsigned long long) stat);
  2261. niu_log_device_error(np, stat);
  2262. return -ENODEV;
  2263. }
  2264. static int niu_slowpath_interrupt(struct niu *np, struct niu_ldg *lp)
  2265. {
  2266. u64 v0 = lp->v0;
  2267. u64 v1 = lp->v1;
  2268. u64 v2 = lp->v2;
  2269. int i, err = 0;
  2270. if (v1 & 0x00000000ffffffffULL) {
  2271. u32 rx_vec = (v1 & 0xffffffff);
  2272. for (i = 0; i < np->num_rx_rings; i++) {
  2273. struct rx_ring_info *rp = &np->rx_rings[i];
  2274. if (rx_vec & (1 << rp->rx_channel)) {
  2275. int r = niu_rx_error(np, rp);
  2276. if (r)
  2277. err = r;
  2278. }
  2279. }
  2280. }
  2281. if (v1 & 0x7fffffff00000000ULL) {
  2282. u32 tx_vec = (v1 >> 32) & 0x7fffffff;
  2283. for (i = 0; i < np->num_tx_rings; i++) {
  2284. struct tx_ring_info *rp = &np->tx_rings[i];
  2285. if (tx_vec & (1 << rp->tx_channel)) {
  2286. int r = niu_tx_error(np, rp);
  2287. if (r)
  2288. err = r;
  2289. }
  2290. }
  2291. }
  2292. if ((v0 | v1) & 0x8000000000000000ULL) {
  2293. int r = niu_mif_interrupt(np);
  2294. if (r)
  2295. err = r;
  2296. }
  2297. if (v2) {
  2298. if (v2 & 0x01ef) {
  2299. int r = niu_mac_interrupt(np);
  2300. if (r)
  2301. err = r;
  2302. }
  2303. if (v2 & 0x0210) {
  2304. int r = niu_device_error(np);
  2305. if (r)
  2306. err = r;
  2307. }
  2308. }
  2309. if (err)
  2310. niu_enable_interrupts(np, 0);
  2311. return -EINVAL;
  2312. }
  2313. static void niu_rxchan_intr(struct niu *np, struct rx_ring_info *rp,
  2314. int ldn)
  2315. {
  2316. struct rxdma_mailbox *mbox = rp->mbox;
  2317. u64 stat_write, stat = le64_to_cpup(&mbox->rx_dma_ctl_stat);
  2318. stat_write = (RX_DMA_CTL_STAT_RCRTHRES |
  2319. RX_DMA_CTL_STAT_RCRTO);
  2320. nw64(RX_DMA_CTL_STAT(rp->rx_channel), stat_write);
  2321. niudbg(INTR, "%s: rxchan_intr stat[%llx]\n",
  2322. np->dev->name, (unsigned long long) stat);
  2323. }
  2324. static void niu_txchan_intr(struct niu *np, struct tx_ring_info *rp,
  2325. int ldn)
  2326. {
  2327. rp->tx_cs = nr64(TX_CS(rp->tx_channel));
  2328. niudbg(INTR, "%s: txchan_intr cs[%llx]\n",
  2329. np->dev->name, (unsigned long long) rp->tx_cs);
  2330. }
  2331. static void __niu_fastpath_interrupt(struct niu *np, int ldg, u64 v0)
  2332. {
  2333. struct niu_parent *parent = np->parent;
  2334. u32 rx_vec, tx_vec;
  2335. int i;
  2336. tx_vec = (v0 >> 32);
  2337. rx_vec = (v0 & 0xffffffff);
  2338. for (i = 0; i < np->num_rx_rings; i++) {
  2339. struct rx_ring_info *rp = &np->rx_rings[i];
  2340. int ldn = LDN_RXDMA(rp->rx_channel);
  2341. if (parent->ldg_map[ldn] != ldg)
  2342. continue;
  2343. nw64(LD_IM0(ldn), LD_IM0_MASK);
  2344. if (rx_vec & (1 << rp->rx_channel))
  2345. niu_rxchan_intr(np, rp, ldn);
  2346. }
  2347. for (i = 0; i < np->num_tx_rings; i++) {
  2348. struct tx_ring_info *rp = &np->tx_rings[i];
  2349. int ldn = LDN_TXDMA(rp->tx_channel);
  2350. if (parent->ldg_map[ldn] != ldg)
  2351. continue;
  2352. nw64(LD_IM0(ldn), LD_IM0_MASK);
  2353. if (tx_vec & (1 << rp->tx_channel))
  2354. niu_txchan_intr(np, rp, ldn);
  2355. }
  2356. }
  2357. static void niu_schedule_napi(struct niu *np, struct niu_ldg *lp,
  2358. u64 v0, u64 v1, u64 v2)
  2359. {
  2360. if (likely(netif_rx_schedule_prep(np->dev, &lp->napi))) {
  2361. lp->v0 = v0;
  2362. lp->v1 = v1;
  2363. lp->v2 = v2;
  2364. __niu_fastpath_interrupt(np, lp->ldg_num, v0);
  2365. __netif_rx_schedule(np->dev, &lp->napi);
  2366. }
  2367. }
  2368. static irqreturn_t niu_interrupt(int irq, void *dev_id)
  2369. {
  2370. struct niu_ldg *lp = dev_id;
  2371. struct niu *np = lp->np;
  2372. int ldg = lp->ldg_num;
  2373. unsigned long flags;
  2374. u64 v0, v1, v2;
  2375. if (netif_msg_intr(np))
  2376. printk(KERN_DEBUG PFX "niu_interrupt() ldg[%p](%d) ",
  2377. lp, ldg);
  2378. spin_lock_irqsave(&np->lock, flags);
  2379. v0 = nr64(LDSV0(ldg));
  2380. v1 = nr64(LDSV1(ldg));
  2381. v2 = nr64(LDSV2(ldg));
  2382. if (netif_msg_intr(np))
  2383. printk("v0[%llx] v1[%llx] v2[%llx]\n",
  2384. (unsigned long long) v0,
  2385. (unsigned long long) v1,
  2386. (unsigned long long) v2);
  2387. if (unlikely(!v0 && !v1 && !v2)) {
  2388. spin_unlock_irqrestore(&np->lock, flags);
  2389. return IRQ_NONE;
  2390. }
  2391. if (unlikely((v0 & ((u64)1 << LDN_MIF)) || v1 || v2)) {
  2392. int err = niu_slowpath_interrupt(np, lp);
  2393. if (err)
  2394. goto out;
  2395. }
  2396. if (likely(v0 & ~((u64)1 << LDN_MIF)))
  2397. niu_schedule_napi(np, lp, v0, v1, v2);
  2398. else
  2399. niu_ldg_rearm(np, lp, 1);
  2400. out:
  2401. spin_unlock_irqrestore(&np->lock, flags);
  2402. return IRQ_HANDLED;
  2403. }
  2404. static void niu_free_rx_ring_info(struct niu *np, struct rx_ring_info *rp)
  2405. {
  2406. if (rp->mbox) {
  2407. np->ops->free_coherent(np->device,
  2408. sizeof(struct rxdma_mailbox),
  2409. rp->mbox, rp->mbox_dma);
  2410. rp->mbox = NULL;
  2411. }
  2412. if (rp->rcr) {
  2413. np->ops->free_coherent(np->device,
  2414. MAX_RCR_RING_SIZE * sizeof(__le64),
  2415. rp->rcr, rp->rcr_dma);
  2416. rp->rcr = NULL;
  2417. rp->rcr_table_size = 0;
  2418. rp->rcr_index = 0;
  2419. }
  2420. if (rp->rbr) {
  2421. niu_rbr_free(np, rp);
  2422. np->ops->free_coherent(np->device,
  2423. MAX_RBR_RING_SIZE * sizeof(__le32),
  2424. rp->rbr, rp->rbr_dma);
  2425. rp->rbr = NULL;
  2426. rp->rbr_table_size = 0;
  2427. rp->rbr_index = 0;
  2428. }
  2429. kfree(rp->rxhash);
  2430. rp->rxhash = NULL;
  2431. }
  2432. static void niu_free_tx_ring_info(struct niu *np, struct tx_ring_info *rp)
  2433. {
  2434. if (rp->mbox) {
  2435. np->ops->free_coherent(np->device,
  2436. sizeof(struct txdma_mailbox),
  2437. rp->mbox, rp->mbox_dma);
  2438. rp->mbox = NULL;
  2439. }
  2440. if (rp->descr) {
  2441. int i;
  2442. for (i = 0; i < MAX_TX_RING_SIZE; i++) {
  2443. if (rp->tx_buffs[i].skb)
  2444. (void) release_tx_packet(np, rp, i);
  2445. }
  2446. np->ops->free_coherent(np->device,
  2447. MAX_TX_RING_SIZE * sizeof(__le64),
  2448. rp->descr, rp->descr_dma);
  2449. rp->descr = NULL;
  2450. rp->pending = 0;
  2451. rp->prod = 0;
  2452. rp->cons = 0;
  2453. rp->wrap_bit = 0;
  2454. }
  2455. }
  2456. static void niu_free_channels(struct niu *np)
  2457. {
  2458. int i;
  2459. if (np->rx_rings) {
  2460. for (i = 0; i < np->num_rx_rings; i++) {
  2461. struct rx_ring_info *rp = &np->rx_rings[i];
  2462. niu_free_rx_ring_info(np, rp);
  2463. }
  2464. kfree(np->rx_rings);
  2465. np->rx_rings = NULL;
  2466. np->num_rx_rings = 0;
  2467. }
  2468. if (np->tx_rings) {
  2469. for (i = 0; i < np->num_tx_rings; i++) {
  2470. struct tx_ring_info *rp = &np->tx_rings[i];
  2471. niu_free_tx_ring_info(np, rp);
  2472. }
  2473. kfree(np->tx_rings);
  2474. np->tx_rings = NULL;
  2475. np->num_tx_rings = 0;
  2476. }
  2477. }
  2478. static int niu_alloc_rx_ring_info(struct niu *np,
  2479. struct rx_ring_info *rp)
  2480. {
  2481. BUILD_BUG_ON(sizeof(struct rxdma_mailbox) != 64);
  2482. rp->rxhash = kzalloc(MAX_RBR_RING_SIZE * sizeof(struct page *),
  2483. GFP_KERNEL);
  2484. if (!rp->rxhash)
  2485. return -ENOMEM;
  2486. rp->mbox = np->ops->alloc_coherent(np->device,
  2487. sizeof(struct rxdma_mailbox),
  2488. &rp->mbox_dma, GFP_KERNEL);
  2489. if (!rp->mbox)
  2490. return -ENOMEM;
  2491. if ((unsigned long)rp->mbox & (64UL - 1)) {
  2492. dev_err(np->device, PFX "%s: Coherent alloc gives misaligned "
  2493. "RXDMA mailbox %p\n", np->dev->name, rp->mbox);
  2494. return -EINVAL;
  2495. }
  2496. rp->rcr = np->ops->alloc_coherent(np->device,
  2497. MAX_RCR_RING_SIZE * sizeof(__le64),
  2498. &rp->rcr_dma, GFP_KERNEL);
  2499. if (!rp->rcr)
  2500. return -ENOMEM;
  2501. if ((unsigned long)rp->rcr & (64UL - 1)) {
  2502. dev_err(np->device, PFX "%s: Coherent alloc gives misaligned "
  2503. "RXDMA RCR table %p\n", np->dev->name, rp->rcr);
  2504. return -EINVAL;
  2505. }
  2506. rp->rcr_table_size = MAX_RCR_RING_SIZE;
  2507. rp->rcr_index = 0;
  2508. rp->rbr = np->ops->alloc_coherent(np->device,
  2509. MAX_RBR_RING_SIZE * sizeof(__le32),
  2510. &rp->rbr_dma, GFP_KERNEL);
  2511. if (!rp->rbr)
  2512. return -ENOMEM;
  2513. if ((unsigned long)rp->rbr & (64UL - 1)) {
  2514. dev_err(np->device, PFX "%s: Coherent alloc gives misaligned "
  2515. "RXDMA RBR table %p\n", np->dev->name, rp->rbr);
  2516. return -EINVAL;
  2517. }
  2518. rp->rbr_table_size = MAX_RBR_RING_SIZE;
  2519. rp->rbr_index = 0;
  2520. rp->rbr_pending = 0;
  2521. return 0;
  2522. }
  2523. static void niu_set_max_burst(struct niu *np, struct tx_ring_info *rp)
  2524. {
  2525. int mtu = np->dev->mtu;
  2526. /* These values are recommended by the HW designers for fair
  2527. * utilization of DRR amongst the rings.
  2528. */
  2529. rp->max_burst = mtu + 32;
  2530. if (rp->max_burst > 4096)
  2531. rp->max_burst = 4096;
  2532. }
  2533. static int niu_alloc_tx_ring_info(struct niu *np,
  2534. struct tx_ring_info *rp)
  2535. {
  2536. BUILD_BUG_ON(sizeof(struct txdma_mailbox) != 64);
  2537. rp->mbox = np->ops->alloc_coherent(np->device,
  2538. sizeof(struct txdma_mailbox),
  2539. &rp->mbox_dma, GFP_KERNEL);
  2540. if (!rp->mbox)
  2541. return -ENOMEM;
  2542. if ((unsigned long)rp->mbox & (64UL - 1)) {
  2543. dev_err(np->device, PFX "%s: Coherent alloc gives misaligned "
  2544. "TXDMA mailbox %p\n", np->dev->name, rp->mbox);
  2545. return -EINVAL;
  2546. }
  2547. rp->descr = np->ops->alloc_coherent(np->device,
  2548. MAX_TX_RING_SIZE * sizeof(__le64),
  2549. &rp->descr_dma, GFP_KERNEL);
  2550. if (!rp->descr)
  2551. return -ENOMEM;
  2552. if ((unsigned long)rp->descr & (64UL - 1)) {
  2553. dev_err(np->device, PFX "%s: Coherent alloc gives misaligned "
  2554. "TXDMA descr table %p\n", np->dev->name, rp->descr);
  2555. return -EINVAL;
  2556. }
  2557. rp->pending = MAX_TX_RING_SIZE;
  2558. rp->prod = 0;
  2559. rp->cons = 0;
  2560. rp->wrap_bit = 0;
  2561. /* XXX make these configurable... XXX */
  2562. rp->mark_freq = rp->pending / 4;
  2563. niu_set_max_burst(np, rp);
  2564. return 0;
  2565. }
  2566. static void niu_size_rbr(struct niu *np, struct rx_ring_info *rp)
  2567. {
  2568. u16 bs;
  2569. switch (PAGE_SIZE) {
  2570. case 4 * 1024:
  2571. case 8 * 1024:
  2572. case 16 * 1024:
  2573. case 32 * 1024:
  2574. rp->rbr_block_size = PAGE_SIZE;
  2575. rp->rbr_blocks_per_page = 1;
  2576. break;
  2577. default:
  2578. if (PAGE_SIZE % (32 * 1024) == 0)
  2579. bs = 32 * 1024;
  2580. else if (PAGE_SIZE % (16 * 1024) == 0)
  2581. bs = 16 * 1024;
  2582. else if (PAGE_SIZE % (8 * 1024) == 0)
  2583. bs = 8 * 1024;
  2584. else if (PAGE_SIZE % (4 * 1024) == 0)
  2585. bs = 4 * 1024;
  2586. else
  2587. BUG();
  2588. rp->rbr_block_size = bs;
  2589. rp->rbr_blocks_per_page = PAGE_SIZE / bs;
  2590. }
  2591. rp->rbr_sizes[0] = 256;
  2592. rp->rbr_sizes[1] = 1024;
  2593. if (np->dev->mtu > ETH_DATA_LEN) {
  2594. switch (PAGE_SIZE) {
  2595. case 4 * 1024:
  2596. rp->rbr_sizes[2] = 4096;
  2597. break;
  2598. default:
  2599. rp->rbr_sizes[2] = 8192;
  2600. break;
  2601. }
  2602. } else {
  2603. rp->rbr_sizes[2] = 2048;
  2604. }
  2605. rp->rbr_sizes[3] = rp->rbr_block_size;
  2606. }
  2607. static int niu_alloc_channels(struct niu *np)
  2608. {
  2609. struct niu_parent *parent = np->parent;
  2610. int first_rx_channel, first_tx_channel;
  2611. int i, port, err;
  2612. port = np->port;
  2613. first_rx_channel = first_tx_channel = 0;
  2614. for (i = 0; i < port; i++) {
  2615. first_rx_channel += parent->rxchan_per_port[i];
  2616. first_tx_channel += parent->txchan_per_port[i];
  2617. }
  2618. np->num_rx_rings = parent->rxchan_per_port[port];
  2619. np->num_tx_rings = parent->txchan_per_port[port];
  2620. np->rx_rings = kzalloc(np->num_rx_rings * sizeof(struct rx_ring_info),
  2621. GFP_KERNEL);
  2622. err = -ENOMEM;
  2623. if (!np->rx_rings)
  2624. goto out_err;
  2625. for (i = 0; i < np->num_rx_rings; i++) {
  2626. struct rx_ring_info *rp = &np->rx_rings[i];
  2627. rp->np = np;
  2628. rp->rx_channel = first_rx_channel + i;
  2629. err = niu_alloc_rx_ring_info(np, rp);
  2630. if (err)
  2631. goto out_err;
  2632. niu_size_rbr(np, rp);
  2633. /* XXX better defaults, configurable, etc... XXX */
  2634. rp->nonsyn_window = 64;
  2635. rp->nonsyn_threshold = rp->rcr_table_size - 64;
  2636. rp->syn_window = 64;
  2637. rp->syn_threshold = rp->rcr_table_size - 64;
  2638. rp->rcr_pkt_threshold = 16;
  2639. rp->rcr_timeout = 8;
  2640. rp->rbr_kick_thresh = RBR_REFILL_MIN;
  2641. if (rp->rbr_kick_thresh < rp->rbr_blocks_per_page)
  2642. rp->rbr_kick_thresh = rp->rbr_blocks_per_page;
  2643. err = niu_rbr_fill(np, rp, GFP_KERNEL);
  2644. if (err)
  2645. return err;
  2646. }
  2647. np->tx_rings = kzalloc(np->num_tx_rings * sizeof(struct tx_ring_info),
  2648. GFP_KERNEL);
  2649. err = -ENOMEM;
  2650. if (!np->tx_rings)
  2651. goto out_err;
  2652. for (i = 0; i < np->num_tx_rings; i++) {
  2653. struct tx_ring_info *rp = &np->tx_rings[i];
  2654. rp->np = np;
  2655. rp->tx_channel = first_tx_channel + i;
  2656. err = niu_alloc_tx_ring_info(np, rp);
  2657. if (err)
  2658. goto out_err;
  2659. }
  2660. return 0;
  2661. out_err:
  2662. niu_free_channels(np);
  2663. return err;
  2664. }
  2665. static int niu_tx_cs_sng_poll(struct niu *np, int channel)
  2666. {
  2667. int limit = 1000;
  2668. while (--limit > 0) {
  2669. u64 val = nr64(TX_CS(channel));
  2670. if (val & TX_CS_SNG_STATE)
  2671. return 0;
  2672. }
  2673. return -ENODEV;
  2674. }
  2675. static int niu_tx_channel_stop(struct niu *np, int channel)
  2676. {
  2677. u64 val = nr64(TX_CS(channel));
  2678. val |= TX_CS_STOP_N_GO;
  2679. nw64(TX_CS(channel), val);
  2680. return niu_tx_cs_sng_poll(np, channel);
  2681. }
  2682. static int niu_tx_cs_reset_poll(struct niu *np, int channel)
  2683. {
  2684. int limit = 1000;
  2685. while (--limit > 0) {
  2686. u64 val = nr64(TX_CS(channel));
  2687. if (!(val & TX_CS_RST))
  2688. return 0;
  2689. }
  2690. return -ENODEV;
  2691. }
  2692. static int niu_tx_channel_reset(struct niu *np, int channel)
  2693. {
  2694. u64 val = nr64(TX_CS(channel));
  2695. int err;
  2696. val |= TX_CS_RST;
  2697. nw64(TX_CS(channel), val);
  2698. err = niu_tx_cs_reset_poll(np, channel);
  2699. if (!err)
  2700. nw64(TX_RING_KICK(channel), 0);
  2701. return err;
  2702. }
  2703. static int niu_tx_channel_lpage_init(struct niu *np, int channel)
  2704. {
  2705. u64 val;
  2706. nw64(TX_LOG_MASK1(channel), 0);
  2707. nw64(TX_LOG_VAL1(channel), 0);
  2708. nw64(TX_LOG_MASK2(channel), 0);
  2709. nw64(TX_LOG_VAL2(channel), 0);
  2710. nw64(TX_LOG_PAGE_RELO1(channel), 0);
  2711. nw64(TX_LOG_PAGE_RELO2(channel), 0);
  2712. nw64(TX_LOG_PAGE_HDL(channel), 0);
  2713. val = (u64)np->port << TX_LOG_PAGE_VLD_FUNC_SHIFT;
  2714. val |= (TX_LOG_PAGE_VLD_PAGE0 | TX_LOG_PAGE_VLD_PAGE1);
  2715. nw64(TX_LOG_PAGE_VLD(channel), val);
  2716. /* XXX TXDMA 32bit mode? XXX */
  2717. return 0;
  2718. }
  2719. static void niu_txc_enable_port(struct niu *np, int on)
  2720. {
  2721. unsigned long flags;
  2722. u64 val, mask;
  2723. niu_lock_parent(np, flags);
  2724. val = nr64(TXC_CONTROL);
  2725. mask = (u64)1 << np->port;
  2726. if (on) {
  2727. val |= TXC_CONTROL_ENABLE | mask;
  2728. } else {
  2729. val &= ~mask;
  2730. if ((val & ~TXC_CONTROL_ENABLE) == 0)
  2731. val &= ~TXC_CONTROL_ENABLE;
  2732. }
  2733. nw64(TXC_CONTROL, val);
  2734. niu_unlock_parent(np, flags);
  2735. }
  2736. static void niu_txc_set_imask(struct niu *np, u64 imask)
  2737. {
  2738. unsigned long flags;
  2739. u64 val;
  2740. niu_lock_parent(np, flags);
  2741. val = nr64(TXC_INT_MASK);
  2742. val &= ~TXC_INT_MASK_VAL(np->port);
  2743. val |= (imask << TXC_INT_MASK_VAL_SHIFT(np->port));
  2744. niu_unlock_parent(np, flags);
  2745. }
  2746. static void niu_txc_port_dma_enable(struct niu *np, int on)
  2747. {
  2748. u64 val = 0;
  2749. if (on) {
  2750. int i;
  2751. for (i = 0; i < np->num_tx_rings; i++)
  2752. val |= (1 << np->tx_rings[i].tx_channel);
  2753. }
  2754. nw64(TXC_PORT_DMA(np->port), val);
  2755. }
  2756. static int niu_init_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
  2757. {
  2758. int err, channel = rp->tx_channel;
  2759. u64 val, ring_len;
  2760. err = niu_tx_channel_stop(np, channel);
  2761. if (err)
  2762. return err;
  2763. err = niu_tx_channel_reset(np, channel);
  2764. if (err)
  2765. return err;
  2766. err = niu_tx_channel_lpage_init(np, channel);
  2767. if (err)
  2768. return err;
  2769. nw64(TXC_DMA_MAX(channel), rp->max_burst);
  2770. nw64(TX_ENT_MSK(channel), 0);
  2771. if (rp->descr_dma & ~(TX_RNG_CFIG_STADDR_BASE |
  2772. TX_RNG_CFIG_STADDR)) {
  2773. dev_err(np->device, PFX "%s: TX ring channel %d "
  2774. "DMA addr (%llx) is not aligned.\n",
  2775. np->dev->name, channel,
  2776. (unsigned long long) rp->descr_dma);
  2777. return -EINVAL;
  2778. }
  2779. /* The length field in TX_RNG_CFIG is measured in 64-byte
  2780. * blocks. rp->pending is the number of TX descriptors in
  2781. * our ring, 8 bytes each, thus we divide by 8 bytes more
  2782. * to get the proper value the chip wants.
  2783. */
  2784. ring_len = (rp->pending / 8);
  2785. val = ((ring_len << TX_RNG_CFIG_LEN_SHIFT) |
  2786. rp->descr_dma);
  2787. nw64(TX_RNG_CFIG(channel), val);
  2788. if (((rp->mbox_dma >> 32) & ~TXDMA_MBH_MBADDR) ||
  2789. ((u32)rp->mbox_dma & ~TXDMA_MBL_MBADDR)) {
  2790. dev_err(np->device, PFX "%s: TX ring channel %d "
  2791. "MBOX addr (%llx) is has illegal bits.\n",
  2792. np->dev->name, channel,
  2793. (unsigned long long) rp->mbox_dma);
  2794. return -EINVAL;
  2795. }
  2796. nw64(TXDMA_MBH(channel), rp->mbox_dma >> 32);
  2797. nw64(TXDMA_MBL(channel), rp->mbox_dma & TXDMA_MBL_MBADDR);
  2798. nw64(TX_CS(channel), 0);
  2799. rp->last_pkt_cnt = 0;
  2800. return 0;
  2801. }
  2802. static void niu_init_rdc_groups(struct niu *np)
  2803. {
  2804. struct niu_rdc_tables *tp = &np->parent->rdc_group_cfg[np->port];
  2805. int i, first_table_num = tp->first_table_num;
  2806. for (i = 0; i < tp->num_tables; i++) {
  2807. struct rdc_table *tbl = &tp->tables[i];
  2808. int this_table = first_table_num + i;
  2809. int slot;
  2810. for (slot = 0; slot < NIU_RDC_TABLE_SLOTS; slot++)
  2811. nw64(RDC_TBL(this_table, slot),
  2812. tbl->rxdma_channel[slot]);
  2813. }
  2814. nw64(DEF_RDC(np->port), np->parent->rdc_default[np->port]);
  2815. }
  2816. static void niu_init_drr_weight(struct niu *np)
  2817. {
  2818. int type = phy_decode(np->parent->port_phy, np->port);
  2819. u64 val;
  2820. switch (type) {
  2821. case PORT_TYPE_10G:
  2822. val = PT_DRR_WEIGHT_DEFAULT_10G;
  2823. break;
  2824. case PORT_TYPE_1G:
  2825. default:
  2826. val = PT_DRR_WEIGHT_DEFAULT_1G;
  2827. break;
  2828. }
  2829. nw64(PT_DRR_WT(np->port), val);
  2830. }
  2831. static int niu_init_hostinfo(struct niu *np)
  2832. {
  2833. struct niu_parent *parent = np->parent;
  2834. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
  2835. int i, err, num_alt = niu_num_alt_addr(np);
  2836. int first_rdc_table = tp->first_table_num;
  2837. err = niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
  2838. if (err)
  2839. return err;
  2840. err = niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
  2841. if (err)
  2842. return err;
  2843. for (i = 0; i < num_alt; i++) {
  2844. err = niu_set_alt_mac_rdc_table(np, i, first_rdc_table, 1);
  2845. if (err)
  2846. return err;
  2847. }
  2848. return 0;
  2849. }
  2850. static int niu_rx_channel_reset(struct niu *np, int channel)
  2851. {
  2852. return niu_set_and_wait_clear(np, RXDMA_CFIG1(channel),
  2853. RXDMA_CFIG1_RST, 1000, 10,
  2854. "RXDMA_CFIG1");
  2855. }
  2856. static int niu_rx_channel_lpage_init(struct niu *np, int channel)
  2857. {
  2858. u64 val;
  2859. nw64(RX_LOG_MASK1(channel), 0);
  2860. nw64(RX_LOG_VAL1(channel), 0);
  2861. nw64(RX_LOG_MASK2(channel), 0);
  2862. nw64(RX_LOG_VAL2(channel), 0);
  2863. nw64(RX_LOG_PAGE_RELO1(channel), 0);
  2864. nw64(RX_LOG_PAGE_RELO2(channel), 0);
  2865. nw64(RX_LOG_PAGE_HDL(channel), 0);
  2866. val = (u64)np->port << RX_LOG_PAGE_VLD_FUNC_SHIFT;
  2867. val |= (RX_LOG_PAGE_VLD_PAGE0 | RX_LOG_PAGE_VLD_PAGE1);
  2868. nw64(RX_LOG_PAGE_VLD(channel), val);
  2869. return 0;
  2870. }
  2871. static void niu_rx_channel_wred_init(struct niu *np, struct rx_ring_info *rp)
  2872. {
  2873. u64 val;
  2874. val = (((u64)rp->nonsyn_window << RDC_RED_PARA_WIN_SHIFT) |
  2875. ((u64)rp->nonsyn_threshold << RDC_RED_PARA_THRE_SHIFT) |
  2876. ((u64)rp->syn_window << RDC_RED_PARA_WIN_SYN_SHIFT) |
  2877. ((u64)rp->syn_threshold << RDC_RED_PARA_THRE_SYN_SHIFT));
  2878. nw64(RDC_RED_PARA(rp->rx_channel), val);
  2879. }
  2880. static int niu_compute_rbr_cfig_b(struct rx_ring_info *rp, u64 *ret)
  2881. {
  2882. u64 val = 0;
  2883. switch (rp->rbr_block_size) {
  2884. case 4 * 1024:
  2885. val |= (RBR_BLKSIZE_4K << RBR_CFIG_B_BLKSIZE_SHIFT);
  2886. break;
  2887. case 8 * 1024:
  2888. val |= (RBR_BLKSIZE_8K << RBR_CFIG_B_BLKSIZE_SHIFT);
  2889. break;
  2890. case 16 * 1024:
  2891. val |= (RBR_BLKSIZE_16K << RBR_CFIG_B_BLKSIZE_SHIFT);
  2892. break;
  2893. case 32 * 1024:
  2894. val |= (RBR_BLKSIZE_32K << RBR_CFIG_B_BLKSIZE_SHIFT);
  2895. break;
  2896. default:
  2897. return -EINVAL;
  2898. }
  2899. val |= RBR_CFIG_B_VLD2;
  2900. switch (rp->rbr_sizes[2]) {
  2901. case 2 * 1024:
  2902. val |= (RBR_BUFSZ2_2K << RBR_CFIG_B_BUFSZ2_SHIFT);
  2903. break;
  2904. case 4 * 1024:
  2905. val |= (RBR_BUFSZ2_4K << RBR_CFIG_B_BUFSZ2_SHIFT);
  2906. break;
  2907. case 8 * 1024:
  2908. val |= (RBR_BUFSZ2_8K << RBR_CFIG_B_BUFSZ2_SHIFT);
  2909. break;
  2910. case 16 * 1024:
  2911. val |= (RBR_BUFSZ2_16K << RBR_CFIG_B_BUFSZ2_SHIFT);
  2912. break;
  2913. default:
  2914. return -EINVAL;
  2915. }
  2916. val |= RBR_CFIG_B_VLD1;
  2917. switch (rp->rbr_sizes[1]) {
  2918. case 1 * 1024:
  2919. val |= (RBR_BUFSZ1_1K << RBR_CFIG_B_BUFSZ1_SHIFT);
  2920. break;
  2921. case 2 * 1024:
  2922. val |= (RBR_BUFSZ1_2K << RBR_CFIG_B_BUFSZ1_SHIFT);
  2923. break;
  2924. case 4 * 1024:
  2925. val |= (RBR_BUFSZ1_4K << RBR_CFIG_B_BUFSZ1_SHIFT);
  2926. break;
  2927. case 8 * 1024:
  2928. val |= (RBR_BUFSZ1_8K << RBR_CFIG_B_BUFSZ1_SHIFT);
  2929. break;
  2930. default:
  2931. return -EINVAL;
  2932. }
  2933. val |= RBR_CFIG_B_VLD0;
  2934. switch (rp->rbr_sizes[0]) {
  2935. case 256:
  2936. val |= (RBR_BUFSZ0_256 << RBR_CFIG_B_BUFSZ0_SHIFT);
  2937. break;
  2938. case 512:
  2939. val |= (RBR_BUFSZ0_512 << RBR_CFIG_B_BUFSZ0_SHIFT);
  2940. break;
  2941. case 1 * 1024:
  2942. val |= (RBR_BUFSZ0_1K << RBR_CFIG_B_BUFSZ0_SHIFT);
  2943. break;
  2944. case 2 * 1024:
  2945. val |= (RBR_BUFSZ0_2K << RBR_CFIG_B_BUFSZ0_SHIFT);
  2946. break;
  2947. default:
  2948. return -EINVAL;
  2949. }
  2950. *ret = val;
  2951. return 0;
  2952. }
  2953. static int niu_enable_rx_channel(struct niu *np, int channel, int on)
  2954. {
  2955. u64 val = nr64(RXDMA_CFIG1(channel));
  2956. int limit;
  2957. if (on)
  2958. val |= RXDMA_CFIG1_EN;
  2959. else
  2960. val &= ~RXDMA_CFIG1_EN;
  2961. nw64(RXDMA_CFIG1(channel), val);
  2962. limit = 1000;
  2963. while (--limit > 0) {
  2964. if (nr64(RXDMA_CFIG1(channel)) & RXDMA_CFIG1_QST)
  2965. break;
  2966. udelay(10);
  2967. }
  2968. if (limit <= 0)
  2969. return -ENODEV;
  2970. return 0;
  2971. }
  2972. static int niu_init_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
  2973. {
  2974. int err, channel = rp->rx_channel;
  2975. u64 val;
  2976. err = niu_rx_channel_reset(np, channel);
  2977. if (err)
  2978. return err;
  2979. err = niu_rx_channel_lpage_init(np, channel);
  2980. if (err)
  2981. return err;
  2982. niu_rx_channel_wred_init(np, rp);
  2983. nw64(RX_DMA_ENT_MSK(channel), RX_DMA_ENT_MSK_RBR_EMPTY);
  2984. nw64(RX_DMA_CTL_STAT(channel),
  2985. (RX_DMA_CTL_STAT_MEX |
  2986. RX_DMA_CTL_STAT_RCRTHRES |
  2987. RX_DMA_CTL_STAT_RCRTO |
  2988. RX_DMA_CTL_STAT_RBR_EMPTY));
  2989. nw64(RXDMA_CFIG1(channel), rp->mbox_dma >> 32);
  2990. nw64(RXDMA_CFIG2(channel), (rp->mbox_dma & 0x00000000ffffffc0));
  2991. nw64(RBR_CFIG_A(channel),
  2992. ((u64)rp->rbr_table_size << RBR_CFIG_A_LEN_SHIFT) |
  2993. (rp->rbr_dma & (RBR_CFIG_A_STADDR_BASE | RBR_CFIG_A_STADDR)));
  2994. err = niu_compute_rbr_cfig_b(rp, &val);
  2995. if (err)
  2996. return err;
  2997. nw64(RBR_CFIG_B(channel), val);
  2998. nw64(RCRCFIG_A(channel),
  2999. ((u64)rp->rcr_table_size << RCRCFIG_A_LEN_SHIFT) |
  3000. (rp->rcr_dma & (RCRCFIG_A_STADDR_BASE | RCRCFIG_A_STADDR)));
  3001. nw64(RCRCFIG_B(channel),
  3002. ((u64)rp->rcr_pkt_threshold << RCRCFIG_B_PTHRES_SHIFT) |
  3003. RCRCFIG_B_ENTOUT |
  3004. ((u64)rp->rcr_timeout << RCRCFIG_B_TIMEOUT_SHIFT));
  3005. err = niu_enable_rx_channel(np, channel, 1);
  3006. if (err)
  3007. return err;
  3008. nw64(RBR_KICK(channel), rp->rbr_index);
  3009. val = nr64(RX_DMA_CTL_STAT(channel));
  3010. val |= RX_DMA_CTL_STAT_RBR_EMPTY;
  3011. nw64(RX_DMA_CTL_STAT(channel), val);
  3012. return 0;
  3013. }
  3014. static int niu_init_rx_channels(struct niu *np)
  3015. {
  3016. unsigned long flags;
  3017. u64 seed = jiffies_64;
  3018. int err, i;
  3019. niu_lock_parent(np, flags);
  3020. nw64(RX_DMA_CK_DIV, np->parent->rxdma_clock_divider);
  3021. nw64(RED_RAN_INIT, RED_RAN_INIT_OPMODE | (seed & RED_RAN_INIT_VAL));
  3022. niu_unlock_parent(np, flags);
  3023. /* XXX RXDMA 32bit mode? XXX */
  3024. niu_init_rdc_groups(np);
  3025. niu_init_drr_weight(np);
  3026. err = niu_init_hostinfo(np);
  3027. if (err)
  3028. return err;
  3029. for (i = 0; i < np->num_rx_rings; i++) {
  3030. struct rx_ring_info *rp = &np->rx_rings[i];
  3031. err = niu_init_one_rx_channel(np, rp);
  3032. if (err)
  3033. return err;
  3034. }
  3035. return 0;
  3036. }
  3037. static int niu_set_ip_frag_rule(struct niu *np)
  3038. {
  3039. struct niu_parent *parent = np->parent;
  3040. struct niu_classifier *cp = &np->clas;
  3041. struct niu_tcam_entry *tp;
  3042. int index, err;
  3043. /* XXX fix this allocation scheme XXX */
  3044. index = cp->tcam_index;
  3045. tp = &parent->tcam[index];
  3046. /* Note that the noport bit is the same in both ipv4 and
  3047. * ipv6 format TCAM entries.
  3048. */
  3049. memset(tp, 0, sizeof(*tp));
  3050. tp->key[1] = TCAM_V4KEY1_NOPORT;
  3051. tp->key_mask[1] = TCAM_V4KEY1_NOPORT;
  3052. tp->assoc_data = (TCAM_ASSOCDATA_TRES_USE_OFFSET |
  3053. ((u64)0 << TCAM_ASSOCDATA_OFFSET_SHIFT));
  3054. err = tcam_write(np, index, tp->key, tp->key_mask);
  3055. if (err)
  3056. return err;
  3057. err = tcam_assoc_write(np, index, tp->assoc_data);
  3058. if (err)
  3059. return err;
  3060. return 0;
  3061. }
  3062. static int niu_init_classifier_hw(struct niu *np)
  3063. {
  3064. struct niu_parent *parent = np->parent;
  3065. struct niu_classifier *cp = &np->clas;
  3066. int i, err;
  3067. nw64(H1POLY, cp->h1_init);
  3068. nw64(H2POLY, cp->h2_init);
  3069. err = niu_init_hostinfo(np);
  3070. if (err)
  3071. return err;
  3072. for (i = 0; i < ENET_VLAN_TBL_NUM_ENTRIES; i++) {
  3073. struct niu_vlan_rdc *vp = &cp->vlan_mappings[i];
  3074. vlan_tbl_write(np, i, np->port,
  3075. vp->vlan_pref, vp->rdc_num);
  3076. }
  3077. for (i = 0; i < cp->num_alt_mac_mappings; i++) {
  3078. struct niu_altmac_rdc *ap = &cp->alt_mac_mappings[i];
  3079. err = niu_set_alt_mac_rdc_table(np, ap->alt_mac_num,
  3080. ap->rdc_num, ap->mac_pref);
  3081. if (err)
  3082. return err;
  3083. }
  3084. for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_SCTP_IPV6; i++) {
  3085. int index = i - CLASS_CODE_USER_PROG1;
  3086. err = niu_set_tcam_key(np, i, parent->tcam_key[index]);
  3087. if (err)
  3088. return err;
  3089. err = niu_set_flow_key(np, i, parent->flow_key[index]);
  3090. if (err)
  3091. return err;
  3092. }
  3093. err = niu_set_ip_frag_rule(np);
  3094. if (err)
  3095. return err;
  3096. tcam_enable(np, 1);
  3097. return 0;
  3098. }
  3099. static int niu_zcp_write(struct niu *np, int index, u64 *data)
  3100. {
  3101. nw64(ZCP_RAM_DATA0, data[0]);
  3102. nw64(ZCP_RAM_DATA1, data[1]);
  3103. nw64(ZCP_RAM_DATA2, data[2]);
  3104. nw64(ZCP_RAM_DATA3, data[3]);
  3105. nw64(ZCP_RAM_DATA4, data[4]);
  3106. nw64(ZCP_RAM_BE, ZCP_RAM_BE_VAL);
  3107. nw64(ZCP_RAM_ACC,
  3108. (ZCP_RAM_ACC_WRITE |
  3109. (0 << ZCP_RAM_ACC_ZFCID_SHIFT) |
  3110. (ZCP_RAM_SEL_CFIFO(np->port) << ZCP_RAM_ACC_RAM_SEL_SHIFT)));
  3111. return niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
  3112. 1000, 100);
  3113. }
  3114. static int niu_zcp_read(struct niu *np, int index, u64 *data)
  3115. {
  3116. int err;
  3117. err = niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
  3118. 1000, 100);
  3119. if (err) {
  3120. dev_err(np->device, PFX "%s: ZCP read busy won't clear, "
  3121. "ZCP_RAM_ACC[%llx]\n", np->dev->name,
  3122. (unsigned long long) nr64(ZCP_RAM_ACC));
  3123. return err;
  3124. }
  3125. nw64(ZCP_RAM_ACC,
  3126. (ZCP_RAM_ACC_READ |
  3127. (0 << ZCP_RAM_ACC_ZFCID_SHIFT) |
  3128. (ZCP_RAM_SEL_CFIFO(np->port) << ZCP_RAM_ACC_RAM_SEL_SHIFT)));
  3129. err = niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
  3130. 1000, 100);
  3131. if (err) {
  3132. dev_err(np->device, PFX "%s: ZCP read busy2 won't clear, "
  3133. "ZCP_RAM_ACC[%llx]\n", np->dev->name,
  3134. (unsigned long long) nr64(ZCP_RAM_ACC));
  3135. return err;
  3136. }
  3137. data[0] = nr64(ZCP_RAM_DATA0);
  3138. data[1] = nr64(ZCP_RAM_DATA1);
  3139. data[2] = nr64(ZCP_RAM_DATA2);
  3140. data[3] = nr64(ZCP_RAM_DATA3);
  3141. data[4] = nr64(ZCP_RAM_DATA4);
  3142. return 0;
  3143. }
  3144. static void niu_zcp_cfifo_reset(struct niu *np)
  3145. {
  3146. u64 val = nr64(RESET_CFIFO);
  3147. val |= RESET_CFIFO_RST(np->port);
  3148. nw64(RESET_CFIFO, val);
  3149. udelay(10);
  3150. val &= ~RESET_CFIFO_RST(np->port);
  3151. nw64(RESET_CFIFO, val);
  3152. }
  3153. static int niu_init_zcp(struct niu *np)
  3154. {
  3155. u64 data[5], rbuf[5];
  3156. int i, max, err;
  3157. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  3158. if (np->port == 0 || np->port == 1)
  3159. max = ATLAS_P0_P1_CFIFO_ENTRIES;
  3160. else
  3161. max = ATLAS_P2_P3_CFIFO_ENTRIES;
  3162. } else
  3163. max = NIU_CFIFO_ENTRIES;
  3164. data[0] = 0;
  3165. data[1] = 0;
  3166. data[2] = 0;
  3167. data[3] = 0;
  3168. data[4] = 0;
  3169. for (i = 0; i < max; i++) {
  3170. err = niu_zcp_write(np, i, data);
  3171. if (err)
  3172. return err;
  3173. err = niu_zcp_read(np, i, rbuf);
  3174. if (err)
  3175. return err;
  3176. }
  3177. niu_zcp_cfifo_reset(np);
  3178. nw64(CFIFO_ECC(np->port), 0);
  3179. nw64(ZCP_INT_STAT, ZCP_INT_STAT_ALL);
  3180. (void) nr64(ZCP_INT_STAT);
  3181. nw64(ZCP_INT_MASK, ZCP_INT_MASK_ALL);
  3182. return 0;
  3183. }
  3184. static void niu_ipp_write(struct niu *np, int index, u64 *data)
  3185. {
  3186. u64 val = nr64_ipp(IPP_CFIG);
  3187. nw64_ipp(IPP_CFIG, val | IPP_CFIG_DFIFO_PIO_W);
  3188. nw64_ipp(IPP_DFIFO_WR_PTR, index);
  3189. nw64_ipp(IPP_DFIFO_WR0, data[0]);
  3190. nw64_ipp(IPP_DFIFO_WR1, data[1]);
  3191. nw64_ipp(IPP_DFIFO_WR2, data[2]);
  3192. nw64_ipp(IPP_DFIFO_WR3, data[3]);
  3193. nw64_ipp(IPP_DFIFO_WR4, data[4]);
  3194. nw64_ipp(IPP_CFIG, val & ~IPP_CFIG_DFIFO_PIO_W);
  3195. }
  3196. static void niu_ipp_read(struct niu *np, int index, u64 *data)
  3197. {
  3198. nw64_ipp(IPP_DFIFO_RD_PTR, index);
  3199. data[0] = nr64_ipp(IPP_DFIFO_RD0);
  3200. data[1] = nr64_ipp(IPP_DFIFO_RD1);
  3201. data[2] = nr64_ipp(IPP_DFIFO_RD2);
  3202. data[3] = nr64_ipp(IPP_DFIFO_RD3);
  3203. data[4] = nr64_ipp(IPP_DFIFO_RD4);
  3204. }
  3205. static int niu_ipp_reset(struct niu *np)
  3206. {
  3207. return niu_set_and_wait_clear_ipp(np, IPP_CFIG, IPP_CFIG_SOFT_RST,
  3208. 1000, 100, "IPP_CFIG");
  3209. }
  3210. static int niu_init_ipp(struct niu *np)
  3211. {
  3212. u64 data[5], rbuf[5], val;
  3213. int i, max, err;
  3214. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  3215. if (np->port == 0 || np->port == 1)
  3216. max = ATLAS_P0_P1_DFIFO_ENTRIES;
  3217. else
  3218. max = ATLAS_P2_P3_DFIFO_ENTRIES;
  3219. } else
  3220. max = NIU_DFIFO_ENTRIES;
  3221. data[0] = 0;
  3222. data[1] = 0;
  3223. data[2] = 0;
  3224. data[3] = 0;
  3225. data[4] = 0;
  3226. for (i = 0; i < max; i++) {
  3227. niu_ipp_write(np, i, data);
  3228. niu_ipp_read(np, i, rbuf);
  3229. }
  3230. (void) nr64_ipp(IPP_INT_STAT);
  3231. (void) nr64_ipp(IPP_INT_STAT);
  3232. err = niu_ipp_reset(np);
  3233. if (err)
  3234. return err;
  3235. (void) nr64_ipp(IPP_PKT_DIS);
  3236. (void) nr64_ipp(IPP_BAD_CS_CNT);
  3237. (void) nr64_ipp(IPP_ECC);
  3238. (void) nr64_ipp(IPP_INT_STAT);
  3239. nw64_ipp(IPP_MSK, ~IPP_MSK_ALL);
  3240. val = nr64_ipp(IPP_CFIG);
  3241. val &= ~IPP_CFIG_IP_MAX_PKT;
  3242. val |= (IPP_CFIG_IPP_ENABLE |
  3243. IPP_CFIG_DFIFO_ECC_EN |
  3244. IPP_CFIG_DROP_BAD_CRC |
  3245. IPP_CFIG_CKSUM_EN |
  3246. (0x1ffff << IPP_CFIG_IP_MAX_PKT_SHIFT));
  3247. nw64_ipp(IPP_CFIG, val);
  3248. return 0;
  3249. }
  3250. static void niu_init_xif_xmac(struct niu *np)
  3251. {
  3252. struct niu_link_config *lp = &np->link_config;
  3253. u64 val;
  3254. val = nr64_mac(XMAC_CONFIG);
  3255. if ((np->flags & NIU_FLAGS_10G) != 0 &&
  3256. (np->flags & NIU_FLAGS_FIBER) != 0) {
  3257. if (netif_carrier_ok(np->dev)) {
  3258. val |= XMAC_CONFIG_LED_POLARITY;
  3259. val &= ~XMAC_CONFIG_FORCE_LED_ON;
  3260. } else {
  3261. val |= XMAC_CONFIG_FORCE_LED_ON;
  3262. val &= ~XMAC_CONFIG_LED_POLARITY;
  3263. }
  3264. }
  3265. val &= ~XMAC_CONFIG_SEL_POR_CLK_SRC;
  3266. val |= XMAC_CONFIG_TX_OUTPUT_EN;
  3267. if (lp->loopback_mode == LOOPBACK_MAC) {
  3268. val &= ~XMAC_CONFIG_SEL_POR_CLK_SRC;
  3269. val |= XMAC_CONFIG_LOOPBACK;
  3270. } else {
  3271. val &= ~XMAC_CONFIG_LOOPBACK;
  3272. }
  3273. if (np->flags & NIU_FLAGS_10G) {
  3274. val &= ~XMAC_CONFIG_LFS_DISABLE;
  3275. } else {
  3276. val |= XMAC_CONFIG_LFS_DISABLE;
  3277. if (!(np->flags & NIU_FLAGS_FIBER))
  3278. val |= XMAC_CONFIG_1G_PCS_BYPASS;
  3279. else
  3280. val &= ~XMAC_CONFIG_1G_PCS_BYPASS;
  3281. }
  3282. val &= ~XMAC_CONFIG_10G_XPCS_BYPASS;
  3283. if (lp->active_speed == SPEED_100)
  3284. val |= XMAC_CONFIG_SEL_CLK_25MHZ;
  3285. else
  3286. val &= ~XMAC_CONFIG_SEL_CLK_25MHZ;
  3287. nw64_mac(XMAC_CONFIG, val);
  3288. val = nr64_mac(XMAC_CONFIG);
  3289. val &= ~XMAC_CONFIG_MODE_MASK;
  3290. if (np->flags & NIU_FLAGS_10G) {
  3291. val |= XMAC_CONFIG_MODE_XGMII;
  3292. } else {
  3293. if (lp->active_speed == SPEED_100)
  3294. val |= XMAC_CONFIG_MODE_MII;
  3295. else
  3296. val |= XMAC_CONFIG_MODE_GMII;
  3297. }
  3298. nw64_mac(XMAC_CONFIG, val);
  3299. }
  3300. static void niu_init_xif_bmac(struct niu *np)
  3301. {
  3302. struct niu_link_config *lp = &np->link_config;
  3303. u64 val;
  3304. val = BMAC_XIF_CONFIG_TX_OUTPUT_EN;
  3305. if (lp->loopback_mode == LOOPBACK_MAC)
  3306. val |= BMAC_XIF_CONFIG_MII_LOOPBACK;
  3307. else
  3308. val &= ~BMAC_XIF_CONFIG_MII_LOOPBACK;
  3309. if (lp->active_speed == SPEED_1000)
  3310. val |= BMAC_XIF_CONFIG_GMII_MODE;
  3311. else
  3312. val &= ~BMAC_XIF_CONFIG_GMII_MODE;
  3313. val &= ~(BMAC_XIF_CONFIG_LINK_LED |
  3314. BMAC_XIF_CONFIG_LED_POLARITY);
  3315. if (!(np->flags & NIU_FLAGS_10G) &&
  3316. !(np->flags & NIU_FLAGS_FIBER) &&
  3317. lp->active_speed == SPEED_100)
  3318. val |= BMAC_XIF_CONFIG_25MHZ_CLOCK;
  3319. else
  3320. val &= ~BMAC_XIF_CONFIG_25MHZ_CLOCK;
  3321. nw64_mac(BMAC_XIF_CONFIG, val);
  3322. }
  3323. static void niu_init_xif(struct niu *np)
  3324. {
  3325. if (np->flags & NIU_FLAGS_XMAC)
  3326. niu_init_xif_xmac(np);
  3327. else
  3328. niu_init_xif_bmac(np);
  3329. }
  3330. static void niu_pcs_mii_reset(struct niu *np)
  3331. {
  3332. u64 val = nr64_pcs(PCS_MII_CTL);
  3333. val |= PCS_MII_CTL_RST;
  3334. nw64_pcs(PCS_MII_CTL, val);
  3335. }
  3336. static void niu_xpcs_reset(struct niu *np)
  3337. {
  3338. u64 val = nr64_xpcs(XPCS_CONTROL1);
  3339. val |= XPCS_CONTROL1_RESET;
  3340. nw64_xpcs(XPCS_CONTROL1, val);
  3341. }
  3342. static int niu_init_pcs(struct niu *np)
  3343. {
  3344. struct niu_link_config *lp = &np->link_config;
  3345. u64 val;
  3346. switch (np->flags & (NIU_FLAGS_10G | NIU_FLAGS_FIBER)) {
  3347. case NIU_FLAGS_FIBER:
  3348. /* 1G fiber */
  3349. nw64_pcs(PCS_CONF, PCS_CONF_MASK | PCS_CONF_ENABLE);
  3350. nw64_pcs(PCS_DPATH_MODE, 0);
  3351. niu_pcs_mii_reset(np);
  3352. break;
  3353. case NIU_FLAGS_10G:
  3354. case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
  3355. if (!(np->flags & NIU_FLAGS_XMAC))
  3356. return -EINVAL;
  3357. /* 10G copper or fiber */
  3358. val = nr64_mac(XMAC_CONFIG);
  3359. val &= ~XMAC_CONFIG_10G_XPCS_BYPASS;
  3360. nw64_mac(XMAC_CONFIG, val);
  3361. niu_xpcs_reset(np);
  3362. val = nr64_xpcs(XPCS_CONTROL1);
  3363. if (lp->loopback_mode == LOOPBACK_PHY)
  3364. val |= XPCS_CONTROL1_LOOPBACK;
  3365. else
  3366. val &= ~XPCS_CONTROL1_LOOPBACK;
  3367. nw64_xpcs(XPCS_CONTROL1, val);
  3368. nw64_xpcs(XPCS_DESKEW_ERR_CNT, 0);
  3369. (void) nr64_xpcs(XPCS_SYMERR_CNT01);
  3370. (void) nr64_xpcs(XPCS_SYMERR_CNT23);
  3371. break;
  3372. case 0:
  3373. /* 1G copper */
  3374. nw64_pcs(PCS_DPATH_MODE, PCS_DPATH_MODE_MII);
  3375. niu_pcs_mii_reset(np);
  3376. break;
  3377. default:
  3378. return -EINVAL;
  3379. }
  3380. return 0;
  3381. }
  3382. static int niu_reset_tx_xmac(struct niu *np)
  3383. {
  3384. return niu_set_and_wait_clear_mac(np, XTXMAC_SW_RST,
  3385. (XTXMAC_SW_RST_REG_RS |
  3386. XTXMAC_SW_RST_SOFT_RST),
  3387. 1000, 100, "XTXMAC_SW_RST");
  3388. }
  3389. static int niu_reset_tx_bmac(struct niu *np)
  3390. {
  3391. int limit;
  3392. nw64_mac(BTXMAC_SW_RST, BTXMAC_SW_RST_RESET);
  3393. limit = 1000;
  3394. while (--limit >= 0) {
  3395. if (!(nr64_mac(BTXMAC_SW_RST) & BTXMAC_SW_RST_RESET))
  3396. break;
  3397. udelay(100);
  3398. }
  3399. if (limit < 0) {
  3400. dev_err(np->device, PFX "Port %u TX BMAC would not reset, "
  3401. "BTXMAC_SW_RST[%llx]\n",
  3402. np->port,
  3403. (unsigned long long) nr64_mac(BTXMAC_SW_RST));
  3404. return -ENODEV;
  3405. }
  3406. return 0;
  3407. }
  3408. static int niu_reset_tx_mac(struct niu *np)
  3409. {
  3410. if (np->flags & NIU_FLAGS_XMAC)
  3411. return niu_reset_tx_xmac(np);
  3412. else
  3413. return niu_reset_tx_bmac(np);
  3414. }
  3415. static void niu_init_tx_xmac(struct niu *np, u64 min, u64 max)
  3416. {
  3417. u64 val;
  3418. val = nr64_mac(XMAC_MIN);
  3419. val &= ~(XMAC_MIN_TX_MIN_PKT_SIZE |
  3420. XMAC_MIN_RX_MIN_PKT_SIZE);
  3421. val |= (min << XMAC_MIN_RX_MIN_PKT_SIZE_SHFT);
  3422. val |= (min << XMAC_MIN_TX_MIN_PKT_SIZE_SHFT);
  3423. nw64_mac(XMAC_MIN, val);
  3424. nw64_mac(XMAC_MAX, max);
  3425. nw64_mac(XTXMAC_STAT_MSK, ~(u64)0);
  3426. val = nr64_mac(XMAC_IPG);
  3427. if (np->flags & NIU_FLAGS_10G) {
  3428. val &= ~XMAC_IPG_IPG_XGMII;
  3429. val |= (IPG_12_15_XGMII << XMAC_IPG_IPG_XGMII_SHIFT);
  3430. } else {
  3431. val &= ~XMAC_IPG_IPG_MII_GMII;
  3432. val |= (IPG_12_MII_GMII << XMAC_IPG_IPG_MII_GMII_SHIFT);
  3433. }
  3434. nw64_mac(XMAC_IPG, val);
  3435. val = nr64_mac(XMAC_CONFIG);
  3436. val &= ~(XMAC_CONFIG_ALWAYS_NO_CRC |
  3437. XMAC_CONFIG_STRETCH_MODE |
  3438. XMAC_CONFIG_VAR_MIN_IPG_EN |
  3439. XMAC_CONFIG_TX_ENABLE);
  3440. nw64_mac(XMAC_CONFIG, val);
  3441. nw64_mac(TXMAC_FRM_CNT, 0);
  3442. nw64_mac(TXMAC_BYTE_CNT, 0);
  3443. }
  3444. static void niu_init_tx_bmac(struct niu *np, u64 min, u64 max)
  3445. {
  3446. u64 val;
  3447. nw64_mac(BMAC_MIN_FRAME, min);
  3448. nw64_mac(BMAC_MAX_FRAME, max);
  3449. nw64_mac(BTXMAC_STATUS_MASK, ~(u64)0);
  3450. nw64_mac(BMAC_CTRL_TYPE, 0x8808);
  3451. nw64_mac(BMAC_PREAMBLE_SIZE, 7);
  3452. val = nr64_mac(BTXMAC_CONFIG);
  3453. val &= ~(BTXMAC_CONFIG_FCS_DISABLE |
  3454. BTXMAC_CONFIG_ENABLE);
  3455. nw64_mac(BTXMAC_CONFIG, val);
  3456. }
  3457. static void niu_init_tx_mac(struct niu *np)
  3458. {
  3459. u64 min, max;
  3460. min = 64;
  3461. if (np->dev->mtu > ETH_DATA_LEN)
  3462. max = 9216;
  3463. else
  3464. max = 1522;
  3465. /* The XMAC_MIN register only accepts values for TX min which
  3466. * have the low 3 bits cleared.
  3467. */
  3468. BUILD_BUG_ON(min & 0x7);
  3469. if (np->flags & NIU_FLAGS_XMAC)
  3470. niu_init_tx_xmac(np, min, max);
  3471. else
  3472. niu_init_tx_bmac(np, min, max);
  3473. }
  3474. static int niu_reset_rx_xmac(struct niu *np)
  3475. {
  3476. int limit;
  3477. nw64_mac(XRXMAC_SW_RST,
  3478. XRXMAC_SW_RST_REG_RS | XRXMAC_SW_RST_SOFT_RST);
  3479. limit = 1000;
  3480. while (--limit >= 0) {
  3481. if (!(nr64_mac(XRXMAC_SW_RST) & (XRXMAC_SW_RST_REG_RS |
  3482. XRXMAC_SW_RST_SOFT_RST)))
  3483. break;
  3484. udelay(100);
  3485. }
  3486. if (limit < 0) {
  3487. dev_err(np->device, PFX "Port %u RX XMAC would not reset, "
  3488. "XRXMAC_SW_RST[%llx]\n",
  3489. np->port,
  3490. (unsigned long long) nr64_mac(XRXMAC_SW_RST));
  3491. return -ENODEV;
  3492. }
  3493. return 0;
  3494. }
  3495. static int niu_reset_rx_bmac(struct niu *np)
  3496. {
  3497. int limit;
  3498. nw64_mac(BRXMAC_SW_RST, BRXMAC_SW_RST_RESET);
  3499. limit = 1000;
  3500. while (--limit >= 0) {
  3501. if (!(nr64_mac(BRXMAC_SW_RST) & BRXMAC_SW_RST_RESET))
  3502. break;
  3503. udelay(100);
  3504. }
  3505. if (limit < 0) {
  3506. dev_err(np->device, PFX "Port %u RX BMAC would not reset, "
  3507. "BRXMAC_SW_RST[%llx]\n",
  3508. np->port,
  3509. (unsigned long long) nr64_mac(BRXMAC_SW_RST));
  3510. return -ENODEV;
  3511. }
  3512. return 0;
  3513. }
  3514. static int niu_reset_rx_mac(struct niu *np)
  3515. {
  3516. if (np->flags & NIU_FLAGS_XMAC)
  3517. return niu_reset_rx_xmac(np);
  3518. else
  3519. return niu_reset_rx_bmac(np);
  3520. }
  3521. static void niu_init_rx_xmac(struct niu *np)
  3522. {
  3523. struct niu_parent *parent = np->parent;
  3524. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
  3525. int first_rdc_table = tp->first_table_num;
  3526. unsigned long i;
  3527. u64 val;
  3528. nw64_mac(XMAC_ADD_FILT0, 0);
  3529. nw64_mac(XMAC_ADD_FILT1, 0);
  3530. nw64_mac(XMAC_ADD_FILT2, 0);
  3531. nw64_mac(XMAC_ADD_FILT12_MASK, 0);
  3532. nw64_mac(XMAC_ADD_FILT00_MASK, 0);
  3533. for (i = 0; i < MAC_NUM_HASH; i++)
  3534. nw64_mac(XMAC_HASH_TBL(i), 0);
  3535. nw64_mac(XRXMAC_STAT_MSK, ~(u64)0);
  3536. niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
  3537. niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
  3538. val = nr64_mac(XMAC_CONFIG);
  3539. val &= ~(XMAC_CONFIG_RX_MAC_ENABLE |
  3540. XMAC_CONFIG_PROMISCUOUS |
  3541. XMAC_CONFIG_PROMISC_GROUP |
  3542. XMAC_CONFIG_ERR_CHK_DIS |
  3543. XMAC_CONFIG_RX_CRC_CHK_DIS |
  3544. XMAC_CONFIG_RESERVED_MULTICAST |
  3545. XMAC_CONFIG_RX_CODEV_CHK_DIS |
  3546. XMAC_CONFIG_ADDR_FILTER_EN |
  3547. XMAC_CONFIG_RCV_PAUSE_ENABLE |
  3548. XMAC_CONFIG_STRIP_CRC |
  3549. XMAC_CONFIG_PASS_FLOW_CTRL |
  3550. XMAC_CONFIG_MAC2IPP_PKT_CNT_EN);
  3551. val |= (XMAC_CONFIG_HASH_FILTER_EN);
  3552. nw64_mac(XMAC_CONFIG, val);
  3553. nw64_mac(RXMAC_BT_CNT, 0);
  3554. nw64_mac(RXMAC_BC_FRM_CNT, 0);
  3555. nw64_mac(RXMAC_MC_FRM_CNT, 0);
  3556. nw64_mac(RXMAC_FRAG_CNT, 0);
  3557. nw64_mac(RXMAC_HIST_CNT1, 0);
  3558. nw64_mac(RXMAC_HIST_CNT2, 0);
  3559. nw64_mac(RXMAC_HIST_CNT3, 0);
  3560. nw64_mac(RXMAC_HIST_CNT4, 0);
  3561. nw64_mac(RXMAC_HIST_CNT5, 0);
  3562. nw64_mac(RXMAC_HIST_CNT6, 0);
  3563. nw64_mac(RXMAC_HIST_CNT7, 0);
  3564. nw64_mac(RXMAC_MPSZER_CNT, 0);
  3565. nw64_mac(RXMAC_CRC_ER_CNT, 0);
  3566. nw64_mac(RXMAC_CD_VIO_CNT, 0);
  3567. nw64_mac(LINK_FAULT_CNT, 0);
  3568. }
  3569. static void niu_init_rx_bmac(struct niu *np)
  3570. {
  3571. struct niu_parent *parent = np->parent;
  3572. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
  3573. int first_rdc_table = tp->first_table_num;
  3574. unsigned long i;
  3575. u64 val;
  3576. nw64_mac(BMAC_ADD_FILT0, 0);
  3577. nw64_mac(BMAC_ADD_FILT1, 0);
  3578. nw64_mac(BMAC_ADD_FILT2, 0);
  3579. nw64_mac(BMAC_ADD_FILT12_MASK, 0);
  3580. nw64_mac(BMAC_ADD_FILT00_MASK, 0);
  3581. for (i = 0; i < MAC_NUM_HASH; i++)
  3582. nw64_mac(BMAC_HASH_TBL(i), 0);
  3583. niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
  3584. niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
  3585. nw64_mac(BRXMAC_STATUS_MASK, ~(u64)0);
  3586. val = nr64_mac(BRXMAC_CONFIG);
  3587. val &= ~(BRXMAC_CONFIG_ENABLE |
  3588. BRXMAC_CONFIG_STRIP_PAD |
  3589. BRXMAC_CONFIG_STRIP_FCS |
  3590. BRXMAC_CONFIG_PROMISC |
  3591. BRXMAC_CONFIG_PROMISC_GRP |
  3592. BRXMAC_CONFIG_ADDR_FILT_EN |
  3593. BRXMAC_CONFIG_DISCARD_DIS);
  3594. val |= (BRXMAC_CONFIG_HASH_FILT_EN);
  3595. nw64_mac(BRXMAC_CONFIG, val);
  3596. val = nr64_mac(BMAC_ADDR_CMPEN);
  3597. val |= BMAC_ADDR_CMPEN_EN0;
  3598. nw64_mac(BMAC_ADDR_CMPEN, val);
  3599. }
  3600. static void niu_init_rx_mac(struct niu *np)
  3601. {
  3602. niu_set_primary_mac(np, np->dev->dev_addr);
  3603. if (np->flags & NIU_FLAGS_XMAC)
  3604. niu_init_rx_xmac(np);
  3605. else
  3606. niu_init_rx_bmac(np);
  3607. }
  3608. static void niu_enable_tx_xmac(struct niu *np, int on)
  3609. {
  3610. u64 val = nr64_mac(XMAC_CONFIG);
  3611. if (on)
  3612. val |= XMAC_CONFIG_TX_ENABLE;
  3613. else
  3614. val &= ~XMAC_CONFIG_TX_ENABLE;
  3615. nw64_mac(XMAC_CONFIG, val);
  3616. }
  3617. static void niu_enable_tx_bmac(struct niu *np, int on)
  3618. {
  3619. u64 val = nr64_mac(BTXMAC_CONFIG);
  3620. if (on)
  3621. val |= BTXMAC_CONFIG_ENABLE;
  3622. else
  3623. val &= ~BTXMAC_CONFIG_ENABLE;
  3624. nw64_mac(BTXMAC_CONFIG, val);
  3625. }
  3626. static void niu_enable_tx_mac(struct niu *np, int on)
  3627. {
  3628. if (np->flags & NIU_FLAGS_XMAC)
  3629. niu_enable_tx_xmac(np, on);
  3630. else
  3631. niu_enable_tx_bmac(np, on);
  3632. }
  3633. static void niu_enable_rx_xmac(struct niu *np, int on)
  3634. {
  3635. u64 val = nr64_mac(XMAC_CONFIG);
  3636. val &= ~(XMAC_CONFIG_HASH_FILTER_EN |
  3637. XMAC_CONFIG_PROMISCUOUS);
  3638. if (np->flags & NIU_FLAGS_MCAST)
  3639. val |= XMAC_CONFIG_HASH_FILTER_EN;
  3640. if (np->flags & NIU_FLAGS_PROMISC)
  3641. val |= XMAC_CONFIG_PROMISCUOUS;
  3642. if (on)
  3643. val |= XMAC_CONFIG_RX_MAC_ENABLE;
  3644. else
  3645. val &= ~XMAC_CONFIG_RX_MAC_ENABLE;
  3646. nw64_mac(XMAC_CONFIG, val);
  3647. }
  3648. static void niu_enable_rx_bmac(struct niu *np, int on)
  3649. {
  3650. u64 val = nr64_mac(BRXMAC_CONFIG);
  3651. val &= ~(BRXMAC_CONFIG_HASH_FILT_EN |
  3652. BRXMAC_CONFIG_PROMISC);
  3653. if (np->flags & NIU_FLAGS_MCAST)
  3654. val |= BRXMAC_CONFIG_HASH_FILT_EN;
  3655. if (np->flags & NIU_FLAGS_PROMISC)
  3656. val |= BRXMAC_CONFIG_PROMISC;
  3657. if (on)
  3658. val |= BRXMAC_CONFIG_ENABLE;
  3659. else
  3660. val &= ~BRXMAC_CONFIG_ENABLE;
  3661. nw64_mac(BRXMAC_CONFIG, val);
  3662. }
  3663. static void niu_enable_rx_mac(struct niu *np, int on)
  3664. {
  3665. if (np->flags & NIU_FLAGS_XMAC)
  3666. niu_enable_rx_xmac(np, on);
  3667. else
  3668. niu_enable_rx_bmac(np, on);
  3669. }
  3670. static int niu_init_mac(struct niu *np)
  3671. {
  3672. int err;
  3673. niu_init_xif(np);
  3674. err = niu_init_pcs(np);
  3675. if (err)
  3676. return err;
  3677. err = niu_reset_tx_mac(np);
  3678. if (err)
  3679. return err;
  3680. niu_init_tx_mac(np);
  3681. err = niu_reset_rx_mac(np);
  3682. if (err)
  3683. return err;
  3684. niu_init_rx_mac(np);
  3685. /* This looks hookey but the RX MAC reset we just did will
  3686. * undo some of the state we setup in niu_init_tx_mac() so we
  3687. * have to call it again. In particular, the RX MAC reset will
  3688. * set the XMAC_MAX register back to it's default value.
  3689. */
  3690. niu_init_tx_mac(np);
  3691. niu_enable_tx_mac(np, 1);
  3692. niu_enable_rx_mac(np, 1);
  3693. return 0;
  3694. }
  3695. static void niu_stop_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
  3696. {
  3697. (void) niu_tx_channel_stop(np, rp->tx_channel);
  3698. }
  3699. static void niu_stop_tx_channels(struct niu *np)
  3700. {
  3701. int i;
  3702. for (i = 0; i < np->num_tx_rings; i++) {
  3703. struct tx_ring_info *rp = &np->tx_rings[i];
  3704. niu_stop_one_tx_channel(np, rp);
  3705. }
  3706. }
  3707. static void niu_reset_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
  3708. {
  3709. (void) niu_tx_channel_reset(np, rp->tx_channel);
  3710. }
  3711. static void niu_reset_tx_channels(struct niu *np)
  3712. {
  3713. int i;
  3714. for (i = 0; i < np->num_tx_rings; i++) {
  3715. struct tx_ring_info *rp = &np->tx_rings[i];
  3716. niu_reset_one_tx_channel(np, rp);
  3717. }
  3718. }
  3719. static void niu_stop_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
  3720. {
  3721. (void) niu_enable_rx_channel(np, rp->rx_channel, 0);
  3722. }
  3723. static void niu_stop_rx_channels(struct niu *np)
  3724. {
  3725. int i;
  3726. for (i = 0; i < np->num_rx_rings; i++) {
  3727. struct rx_ring_info *rp = &np->rx_rings[i];
  3728. niu_stop_one_rx_channel(np, rp);
  3729. }
  3730. }
  3731. static void niu_reset_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
  3732. {
  3733. int channel = rp->rx_channel;
  3734. (void) niu_rx_channel_reset(np, channel);
  3735. nw64(RX_DMA_ENT_MSK(channel), RX_DMA_ENT_MSK_ALL);
  3736. nw64(RX_DMA_CTL_STAT(channel), 0);
  3737. (void) niu_enable_rx_channel(np, channel, 0);
  3738. }
  3739. static void niu_reset_rx_channels(struct niu *np)
  3740. {
  3741. int i;
  3742. for (i = 0; i < np->num_rx_rings; i++) {
  3743. struct rx_ring_info *rp = &np->rx_rings[i];
  3744. niu_reset_one_rx_channel(np, rp);
  3745. }
  3746. }
  3747. static void niu_disable_ipp(struct niu *np)
  3748. {
  3749. u64 rd, wr, val;
  3750. int limit;
  3751. rd = nr64_ipp(IPP_DFIFO_RD_PTR);
  3752. wr = nr64_ipp(IPP_DFIFO_WR_PTR);
  3753. limit = 100;
  3754. while (--limit >= 0 && (rd != wr)) {
  3755. rd = nr64_ipp(IPP_DFIFO_RD_PTR);
  3756. wr = nr64_ipp(IPP_DFIFO_WR_PTR);
  3757. }
  3758. if (limit < 0 &&
  3759. (rd != 0 && wr != 1)) {
  3760. dev_err(np->device, PFX "%s: IPP would not quiesce, "
  3761. "rd_ptr[%llx] wr_ptr[%llx]\n",
  3762. np->dev->name,
  3763. (unsigned long long) nr64_ipp(IPP_DFIFO_RD_PTR),
  3764. (unsigned long long) nr64_ipp(IPP_DFIFO_WR_PTR));
  3765. }
  3766. val = nr64_ipp(IPP_CFIG);
  3767. val &= ~(IPP_CFIG_IPP_ENABLE |
  3768. IPP_CFIG_DFIFO_ECC_EN |
  3769. IPP_CFIG_DROP_BAD_CRC |
  3770. IPP_CFIG_CKSUM_EN);
  3771. nw64_ipp(IPP_CFIG, val);
  3772. (void) niu_ipp_reset(np);
  3773. }
  3774. static int niu_init_hw(struct niu *np)
  3775. {
  3776. int i, err;
  3777. niudbg(IFUP, "%s: Initialize TXC\n", np->dev->name);
  3778. niu_txc_enable_port(np, 1);
  3779. niu_txc_port_dma_enable(np, 1);
  3780. niu_txc_set_imask(np, 0);
  3781. niudbg(IFUP, "%s: Initialize TX channels\n", np->dev->name);
  3782. for (i = 0; i < np->num_tx_rings; i++) {
  3783. struct tx_ring_info *rp = &np->tx_rings[i];
  3784. err = niu_init_one_tx_channel(np, rp);
  3785. if (err)
  3786. return err;
  3787. }
  3788. niudbg(IFUP, "%s: Initialize RX channels\n", np->dev->name);
  3789. err = niu_init_rx_channels(np);
  3790. if (err)
  3791. goto out_uninit_tx_channels;
  3792. niudbg(IFUP, "%s: Initialize classifier\n", np->dev->name);
  3793. err = niu_init_classifier_hw(np);
  3794. if (err)
  3795. goto out_uninit_rx_channels;
  3796. niudbg(IFUP, "%s: Initialize ZCP\n", np->dev->name);
  3797. err = niu_init_zcp(np);
  3798. if (err)
  3799. goto out_uninit_rx_channels;
  3800. niudbg(IFUP, "%s: Initialize IPP\n", np->dev->name);
  3801. err = niu_init_ipp(np);
  3802. if (err)
  3803. goto out_uninit_rx_channels;
  3804. niudbg(IFUP, "%s: Initialize MAC\n", np->dev->name);
  3805. err = niu_init_mac(np);
  3806. if (err)
  3807. goto out_uninit_ipp;
  3808. return 0;
  3809. out_uninit_ipp:
  3810. niudbg(IFUP, "%s: Uninit IPP\n", np->dev->name);
  3811. niu_disable_ipp(np);
  3812. out_uninit_rx_channels:
  3813. niudbg(IFUP, "%s: Uninit RX channels\n", np->dev->name);
  3814. niu_stop_rx_channels(np);
  3815. niu_reset_rx_channels(np);
  3816. out_uninit_tx_channels:
  3817. niudbg(IFUP, "%s: Uninit TX channels\n", np->dev->name);
  3818. niu_stop_tx_channels(np);
  3819. niu_reset_tx_channels(np);
  3820. return err;
  3821. }
  3822. static void niu_stop_hw(struct niu *np)
  3823. {
  3824. niudbg(IFDOWN, "%s: Disable interrupts\n", np->dev->name);
  3825. niu_enable_interrupts(np, 0);
  3826. niudbg(IFDOWN, "%s: Disable RX MAC\n", np->dev->name);
  3827. niu_enable_rx_mac(np, 0);
  3828. niudbg(IFDOWN, "%s: Disable IPP\n", np->dev->name);
  3829. niu_disable_ipp(np);
  3830. niudbg(IFDOWN, "%s: Stop TX channels\n", np->dev->name);
  3831. niu_stop_tx_channels(np);
  3832. niudbg(IFDOWN, "%s: Stop RX channels\n", np->dev->name);
  3833. niu_stop_rx_channels(np);
  3834. niudbg(IFDOWN, "%s: Reset TX channels\n", np->dev->name);
  3835. niu_reset_tx_channels(np);
  3836. niudbg(IFDOWN, "%s: Reset RX channels\n", np->dev->name);
  3837. niu_reset_rx_channels(np);
  3838. }
  3839. static int niu_request_irq(struct niu *np)
  3840. {
  3841. int i, j, err;
  3842. err = 0;
  3843. for (i = 0; i < np->num_ldg; i++) {
  3844. struct niu_ldg *lp = &np->ldg[i];
  3845. err = request_irq(lp->irq, niu_interrupt,
  3846. IRQF_SHARED | IRQF_SAMPLE_RANDOM,
  3847. np->dev->name, lp);
  3848. if (err)
  3849. goto out_free_irqs;
  3850. }
  3851. return 0;
  3852. out_free_irqs:
  3853. for (j = 0; j < i; j++) {
  3854. struct niu_ldg *lp = &np->ldg[j];
  3855. free_irq(lp->irq, lp);
  3856. }
  3857. return err;
  3858. }
  3859. static void niu_free_irq(struct niu *np)
  3860. {
  3861. int i;
  3862. for (i = 0; i < np->num_ldg; i++) {
  3863. struct niu_ldg *lp = &np->ldg[i];
  3864. free_irq(lp->irq, lp);
  3865. }
  3866. }
  3867. static void niu_enable_napi(struct niu *np)
  3868. {
  3869. int i;
  3870. for (i = 0; i < np->num_ldg; i++)
  3871. napi_enable(&np->ldg[i].napi);
  3872. }
  3873. static void niu_disable_napi(struct niu *np)
  3874. {
  3875. int i;
  3876. for (i = 0; i < np->num_ldg; i++)
  3877. napi_disable(&np->ldg[i].napi);
  3878. }
  3879. static int niu_open(struct net_device *dev)
  3880. {
  3881. struct niu *np = netdev_priv(dev);
  3882. int err;
  3883. netif_carrier_off(dev);
  3884. err = niu_alloc_channels(np);
  3885. if (err)
  3886. goto out_err;
  3887. err = niu_enable_interrupts(np, 0);
  3888. if (err)
  3889. goto out_free_channels;
  3890. err = niu_request_irq(np);
  3891. if (err)
  3892. goto out_free_channels;
  3893. niu_enable_napi(np);
  3894. spin_lock_irq(&np->lock);
  3895. err = niu_init_hw(np);
  3896. if (!err) {
  3897. init_timer(&np->timer);
  3898. np->timer.expires = jiffies + HZ;
  3899. np->timer.data = (unsigned long) np;
  3900. np->timer.function = niu_timer;
  3901. err = niu_enable_interrupts(np, 1);
  3902. if (err)
  3903. niu_stop_hw(np);
  3904. }
  3905. spin_unlock_irq(&np->lock);
  3906. if (err) {
  3907. niu_disable_napi(np);
  3908. goto out_free_irq;
  3909. }
  3910. netif_start_queue(dev);
  3911. if (np->link_config.loopback_mode != LOOPBACK_DISABLED)
  3912. netif_carrier_on(dev);
  3913. add_timer(&np->timer);
  3914. return 0;
  3915. out_free_irq:
  3916. niu_free_irq(np);
  3917. out_free_channels:
  3918. niu_free_channels(np);
  3919. out_err:
  3920. return err;
  3921. }
  3922. static void niu_full_shutdown(struct niu *np, struct net_device *dev)
  3923. {
  3924. cancel_work_sync(&np->reset_task);
  3925. niu_disable_napi(np);
  3926. netif_stop_queue(dev);
  3927. del_timer_sync(&np->timer);
  3928. spin_lock_irq(&np->lock);
  3929. niu_stop_hw(np);
  3930. spin_unlock_irq(&np->lock);
  3931. }
  3932. static int niu_close(struct net_device *dev)
  3933. {
  3934. struct niu *np = netdev_priv(dev);
  3935. niu_full_shutdown(np, dev);
  3936. niu_free_irq(np);
  3937. niu_free_channels(np);
  3938. return 0;
  3939. }
  3940. static void niu_sync_xmac_stats(struct niu *np)
  3941. {
  3942. struct niu_xmac_stats *mp = &np->mac_stats.xmac;
  3943. mp->tx_frames += nr64_mac(TXMAC_FRM_CNT);
  3944. mp->tx_bytes += nr64_mac(TXMAC_BYTE_CNT);
  3945. mp->rx_link_faults += nr64_mac(LINK_FAULT_CNT);
  3946. mp->rx_align_errors += nr64_mac(RXMAC_ALIGN_ERR_CNT);
  3947. mp->rx_frags += nr64_mac(RXMAC_FRAG_CNT);
  3948. mp->rx_mcasts += nr64_mac(RXMAC_MC_FRM_CNT);
  3949. mp->rx_bcasts += nr64_mac(RXMAC_BC_FRM_CNT);
  3950. mp->rx_hist_cnt1 += nr64_mac(RXMAC_HIST_CNT1);
  3951. mp->rx_hist_cnt2 += nr64_mac(RXMAC_HIST_CNT2);
  3952. mp->rx_hist_cnt3 += nr64_mac(RXMAC_HIST_CNT3);
  3953. mp->rx_hist_cnt4 += nr64_mac(RXMAC_HIST_CNT4);
  3954. mp->rx_hist_cnt5 += nr64_mac(RXMAC_HIST_CNT5);
  3955. mp->rx_hist_cnt6 += nr64_mac(RXMAC_HIST_CNT6);
  3956. mp->rx_hist_cnt7 += nr64_mac(RXMAC_HIST_CNT7);
  3957. mp->rx_octets += nr64_mac(RXMAC_BT_CNT);
  3958. mp->rx_code_violations += nr64_mac(RXMAC_CD_VIO_CNT);
  3959. mp->rx_len_errors += nr64_mac(RXMAC_MPSZER_CNT);
  3960. mp->rx_crc_errors += nr64_mac(RXMAC_CRC_ER_CNT);
  3961. }
  3962. static void niu_sync_bmac_stats(struct niu *np)
  3963. {
  3964. struct niu_bmac_stats *mp = &np->mac_stats.bmac;
  3965. mp->tx_bytes += nr64_mac(BTXMAC_BYTE_CNT);
  3966. mp->tx_frames += nr64_mac(BTXMAC_FRM_CNT);
  3967. mp->rx_frames += nr64_mac(BRXMAC_FRAME_CNT);
  3968. mp->rx_align_errors += nr64_mac(BRXMAC_ALIGN_ERR_CNT);
  3969. mp->rx_crc_errors += nr64_mac(BRXMAC_ALIGN_ERR_CNT);
  3970. mp->rx_len_errors += nr64_mac(BRXMAC_CODE_VIOL_ERR_CNT);
  3971. }
  3972. static void niu_sync_mac_stats(struct niu *np)
  3973. {
  3974. if (np->flags & NIU_FLAGS_XMAC)
  3975. niu_sync_xmac_stats(np);
  3976. else
  3977. niu_sync_bmac_stats(np);
  3978. }
  3979. static void niu_get_rx_stats(struct niu *np)
  3980. {
  3981. unsigned long pkts, dropped, errors, bytes;
  3982. int i;
  3983. pkts = dropped = errors = bytes = 0;
  3984. for (i = 0; i < np->num_rx_rings; i++) {
  3985. struct rx_ring_info *rp = &np->rx_rings[i];
  3986. pkts += rp->rx_packets;
  3987. bytes += rp->rx_bytes;
  3988. dropped += rp->rx_dropped;
  3989. errors += rp->rx_errors;
  3990. }
  3991. np->net_stats.rx_packets = pkts;
  3992. np->net_stats.rx_bytes = bytes;
  3993. np->net_stats.rx_dropped = dropped;
  3994. np->net_stats.rx_errors = errors;
  3995. }
  3996. static void niu_get_tx_stats(struct niu *np)
  3997. {
  3998. unsigned long pkts, errors, bytes;
  3999. int i;
  4000. pkts = errors = bytes = 0;
  4001. for (i = 0; i < np->num_tx_rings; i++) {
  4002. struct tx_ring_info *rp = &np->tx_rings[i];
  4003. pkts += rp->tx_packets;
  4004. bytes += rp->tx_bytes;
  4005. errors += rp->tx_errors;
  4006. }
  4007. np->net_stats.tx_packets = pkts;
  4008. np->net_stats.tx_bytes = bytes;
  4009. np->net_stats.tx_errors = errors;
  4010. }
  4011. static struct net_device_stats *niu_get_stats(struct net_device *dev)
  4012. {
  4013. struct niu *np = netdev_priv(dev);
  4014. niu_get_rx_stats(np);
  4015. niu_get_tx_stats(np);
  4016. return &np->net_stats;
  4017. }
  4018. static void niu_load_hash_xmac(struct niu *np, u16 *hash)
  4019. {
  4020. int i;
  4021. for (i = 0; i < 16; i++)
  4022. nw64_mac(XMAC_HASH_TBL(i), hash[i]);
  4023. }
  4024. static void niu_load_hash_bmac(struct niu *np, u16 *hash)
  4025. {
  4026. int i;
  4027. for (i = 0; i < 16; i++)
  4028. nw64_mac(BMAC_HASH_TBL(i), hash[i]);
  4029. }
  4030. static void niu_load_hash(struct niu *np, u16 *hash)
  4031. {
  4032. if (np->flags & NIU_FLAGS_XMAC)
  4033. niu_load_hash_xmac(np, hash);
  4034. else
  4035. niu_load_hash_bmac(np, hash);
  4036. }
  4037. static void niu_set_rx_mode(struct net_device *dev)
  4038. {
  4039. struct niu *np = netdev_priv(dev);
  4040. int i, alt_cnt, err;
  4041. struct dev_addr_list *addr;
  4042. unsigned long flags;
  4043. u16 hash[16] = { 0, };
  4044. spin_lock_irqsave(&np->lock, flags);
  4045. niu_enable_rx_mac(np, 0);
  4046. np->flags &= ~(NIU_FLAGS_MCAST | NIU_FLAGS_PROMISC);
  4047. if (dev->flags & IFF_PROMISC)
  4048. np->flags |= NIU_FLAGS_PROMISC;
  4049. if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 0))
  4050. np->flags |= NIU_FLAGS_MCAST;
  4051. alt_cnt = dev->uc_count;
  4052. if (alt_cnt > niu_num_alt_addr(np)) {
  4053. alt_cnt = 0;
  4054. np->flags |= NIU_FLAGS_PROMISC;
  4055. }
  4056. if (alt_cnt) {
  4057. int index = 0;
  4058. for (addr = dev->uc_list; addr; addr = addr->next) {
  4059. err = niu_set_alt_mac(np, index,
  4060. addr->da_addr);
  4061. if (err)
  4062. printk(KERN_WARNING PFX "%s: Error %d "
  4063. "adding alt mac %d\n",
  4064. dev->name, err, index);
  4065. err = niu_enable_alt_mac(np, index, 1);
  4066. if (err)
  4067. printk(KERN_WARNING PFX "%s: Error %d "
  4068. "enabling alt mac %d\n",
  4069. dev->name, err, index);
  4070. index++;
  4071. }
  4072. } else {
  4073. for (i = 0; i < niu_num_alt_addr(np); i++) {
  4074. err = niu_enable_alt_mac(np, i, 0);
  4075. if (err)
  4076. printk(KERN_WARNING PFX "%s: Error %d "
  4077. "disabling alt mac %d\n",
  4078. dev->name, err, i);
  4079. }
  4080. }
  4081. if (dev->flags & IFF_ALLMULTI) {
  4082. for (i = 0; i < 16; i++)
  4083. hash[i] = 0xffff;
  4084. } else if (dev->mc_count > 0) {
  4085. for (addr = dev->mc_list; addr; addr = addr->next) {
  4086. u32 crc = ether_crc_le(ETH_ALEN, addr->da_addr);
  4087. crc >>= 24;
  4088. hash[crc >> 4] |= (1 << (15 - (crc & 0xf)));
  4089. }
  4090. }
  4091. if (np->flags & NIU_FLAGS_MCAST)
  4092. niu_load_hash(np, hash);
  4093. niu_enable_rx_mac(np, 1);
  4094. spin_unlock_irqrestore(&np->lock, flags);
  4095. }
  4096. static int niu_set_mac_addr(struct net_device *dev, void *p)
  4097. {
  4098. struct niu *np = netdev_priv(dev);
  4099. struct sockaddr *addr = p;
  4100. unsigned long flags;
  4101. if (!is_valid_ether_addr(addr->sa_data))
  4102. return -EINVAL;
  4103. memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
  4104. if (!netif_running(dev))
  4105. return 0;
  4106. spin_lock_irqsave(&np->lock, flags);
  4107. niu_enable_rx_mac(np, 0);
  4108. niu_set_primary_mac(np, dev->dev_addr);
  4109. niu_enable_rx_mac(np, 1);
  4110. spin_unlock_irqrestore(&np->lock, flags);
  4111. return 0;
  4112. }
  4113. static int niu_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  4114. {
  4115. return -EOPNOTSUPP;
  4116. }
  4117. static void niu_netif_stop(struct niu *np)
  4118. {
  4119. np->dev->trans_start = jiffies; /* prevent tx timeout */
  4120. niu_disable_napi(np);
  4121. netif_tx_disable(np->dev);
  4122. }
  4123. static void niu_netif_start(struct niu *np)
  4124. {
  4125. /* NOTE: unconditional netif_wake_queue is only appropriate
  4126. * so long as all callers are assured to have free tx slots
  4127. * (such as after niu_init_hw).
  4128. */
  4129. netif_wake_queue(np->dev);
  4130. niu_enable_napi(np);
  4131. niu_enable_interrupts(np, 1);
  4132. }
  4133. static void niu_reset_task(struct work_struct *work)
  4134. {
  4135. struct niu *np = container_of(work, struct niu, reset_task);
  4136. unsigned long flags;
  4137. int err;
  4138. spin_lock_irqsave(&np->lock, flags);
  4139. if (!netif_running(np->dev)) {
  4140. spin_unlock_irqrestore(&np->lock, flags);
  4141. return;
  4142. }
  4143. spin_unlock_irqrestore(&np->lock, flags);
  4144. del_timer_sync(&np->timer);
  4145. niu_netif_stop(np);
  4146. spin_lock_irqsave(&np->lock, flags);
  4147. niu_stop_hw(np);
  4148. err = niu_init_hw(np);
  4149. if (!err) {
  4150. np->timer.expires = jiffies + HZ;
  4151. add_timer(&np->timer);
  4152. niu_netif_start(np);
  4153. }
  4154. spin_unlock_irqrestore(&np->lock, flags);
  4155. }
  4156. static void niu_tx_timeout(struct net_device *dev)
  4157. {
  4158. struct niu *np = netdev_priv(dev);
  4159. dev_err(np->device, PFX "%s: Transmit timed out, resetting\n",
  4160. dev->name);
  4161. schedule_work(&np->reset_task);
  4162. }
  4163. static void niu_set_txd(struct tx_ring_info *rp, int index,
  4164. u64 mapping, u64 len, u64 mark,
  4165. u64 n_frags)
  4166. {
  4167. __le64 *desc = &rp->descr[index];
  4168. *desc = cpu_to_le64(mark |
  4169. (n_frags << TX_DESC_NUM_PTR_SHIFT) |
  4170. (len << TX_DESC_TR_LEN_SHIFT) |
  4171. (mapping & TX_DESC_SAD));
  4172. }
  4173. static u64 niu_compute_tx_flags(struct sk_buff *skb, struct ethhdr *ehdr,
  4174. u64 pad_bytes, u64 len)
  4175. {
  4176. u16 eth_proto, eth_proto_inner;
  4177. u64 csum_bits, l3off, ihl, ret;
  4178. u8 ip_proto;
  4179. int ipv6;
  4180. eth_proto = be16_to_cpu(ehdr->h_proto);
  4181. eth_proto_inner = eth_proto;
  4182. if (eth_proto == ETH_P_8021Q) {
  4183. struct vlan_ethhdr *vp = (struct vlan_ethhdr *) ehdr;
  4184. __be16 val = vp->h_vlan_encapsulated_proto;
  4185. eth_proto_inner = be16_to_cpu(val);
  4186. }
  4187. ipv6 = ihl = 0;
  4188. switch (skb->protocol) {
  4189. case __constant_htons(ETH_P_IP):
  4190. ip_proto = ip_hdr(skb)->protocol;
  4191. ihl = ip_hdr(skb)->ihl;
  4192. break;
  4193. case __constant_htons(ETH_P_IPV6):
  4194. ip_proto = ipv6_hdr(skb)->nexthdr;
  4195. ihl = (40 >> 2);
  4196. ipv6 = 1;
  4197. break;
  4198. default:
  4199. ip_proto = ihl = 0;
  4200. break;
  4201. }
  4202. csum_bits = TXHDR_CSUM_NONE;
  4203. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  4204. u64 start, stuff;
  4205. csum_bits = (ip_proto == IPPROTO_TCP ?
  4206. TXHDR_CSUM_TCP :
  4207. (ip_proto == IPPROTO_UDP ?
  4208. TXHDR_CSUM_UDP : TXHDR_CSUM_SCTP));
  4209. start = skb_transport_offset(skb) -
  4210. (pad_bytes + sizeof(struct tx_pkt_hdr));
  4211. stuff = start + skb->csum_offset;
  4212. csum_bits |= (start / 2) << TXHDR_L4START_SHIFT;
  4213. csum_bits |= (stuff / 2) << TXHDR_L4STUFF_SHIFT;
  4214. }
  4215. l3off = skb_network_offset(skb) -
  4216. (pad_bytes + sizeof(struct tx_pkt_hdr));
  4217. ret = (((pad_bytes / 2) << TXHDR_PAD_SHIFT) |
  4218. (len << TXHDR_LEN_SHIFT) |
  4219. ((l3off / 2) << TXHDR_L3START_SHIFT) |
  4220. (ihl << TXHDR_IHL_SHIFT) |
  4221. ((eth_proto_inner < 1536) ? TXHDR_LLC : 0) |
  4222. ((eth_proto == ETH_P_8021Q) ? TXHDR_VLAN : 0) |
  4223. (ipv6 ? TXHDR_IP_VER : 0) |
  4224. csum_bits);
  4225. return ret;
  4226. }
  4227. static struct tx_ring_info *tx_ring_select(struct niu *np, struct sk_buff *skb)
  4228. {
  4229. return &np->tx_rings[0];
  4230. }
  4231. static int niu_start_xmit(struct sk_buff *skb, struct net_device *dev)
  4232. {
  4233. struct niu *np = netdev_priv(dev);
  4234. unsigned long align, headroom;
  4235. struct tx_ring_info *rp;
  4236. struct tx_pkt_hdr *tp;
  4237. unsigned int len, nfg;
  4238. struct ethhdr *ehdr;
  4239. int prod, i, tlen;
  4240. u64 mapping, mrk;
  4241. rp = tx_ring_select(np, skb);
  4242. if (niu_tx_avail(rp) <= (skb_shinfo(skb)->nr_frags + 1)) {
  4243. netif_stop_queue(dev);
  4244. dev_err(np->device, PFX "%s: BUG! Tx ring full when "
  4245. "queue awake!\n", dev->name);
  4246. rp->tx_errors++;
  4247. return NETDEV_TX_BUSY;
  4248. }
  4249. if (skb->len < ETH_ZLEN) {
  4250. unsigned int pad_bytes = ETH_ZLEN - skb->len;
  4251. if (skb_pad(skb, pad_bytes))
  4252. goto out;
  4253. skb_put(skb, pad_bytes);
  4254. }
  4255. len = sizeof(struct tx_pkt_hdr) + 15;
  4256. if (skb_headroom(skb) < len) {
  4257. struct sk_buff *skb_new;
  4258. skb_new = skb_realloc_headroom(skb, len);
  4259. if (!skb_new) {
  4260. rp->tx_errors++;
  4261. goto out_drop;
  4262. }
  4263. kfree_skb(skb);
  4264. skb = skb_new;
  4265. }
  4266. align = ((unsigned long) skb->data & (16 - 1));
  4267. headroom = align + sizeof(struct tx_pkt_hdr);
  4268. ehdr = (struct ethhdr *) skb->data;
  4269. tp = (struct tx_pkt_hdr *) skb_push(skb, headroom);
  4270. len = skb->len - sizeof(struct tx_pkt_hdr);
  4271. tp->flags = cpu_to_le64(niu_compute_tx_flags(skb, ehdr, align, len));
  4272. tp->resv = 0;
  4273. len = skb_headlen(skb);
  4274. mapping = np->ops->map_single(np->device, skb->data,
  4275. len, DMA_TO_DEVICE);
  4276. prod = rp->prod;
  4277. rp->tx_buffs[prod].skb = skb;
  4278. rp->tx_buffs[prod].mapping = mapping;
  4279. mrk = TX_DESC_SOP;
  4280. if (++rp->mark_counter == rp->mark_freq) {
  4281. rp->mark_counter = 0;
  4282. mrk |= TX_DESC_MARK;
  4283. rp->mark_pending++;
  4284. }
  4285. tlen = len;
  4286. nfg = skb_shinfo(skb)->nr_frags;
  4287. while (tlen > 0) {
  4288. tlen -= MAX_TX_DESC_LEN;
  4289. nfg++;
  4290. }
  4291. while (len > 0) {
  4292. unsigned int this_len = len;
  4293. if (this_len > MAX_TX_DESC_LEN)
  4294. this_len = MAX_TX_DESC_LEN;
  4295. niu_set_txd(rp, prod, mapping, this_len, mrk, nfg);
  4296. mrk = nfg = 0;
  4297. prod = NEXT_TX(rp, prod);
  4298. mapping += this_len;
  4299. len -= this_len;
  4300. }
  4301. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  4302. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  4303. len = frag->size;
  4304. mapping = np->ops->map_page(np->device, frag->page,
  4305. frag->page_offset, len,
  4306. DMA_TO_DEVICE);
  4307. rp->tx_buffs[prod].skb = NULL;
  4308. rp->tx_buffs[prod].mapping = mapping;
  4309. niu_set_txd(rp, prod, mapping, len, 0, 0);
  4310. prod = NEXT_TX(rp, prod);
  4311. }
  4312. if (prod < rp->prod)
  4313. rp->wrap_bit ^= TX_RING_KICK_WRAP;
  4314. rp->prod = prod;
  4315. nw64(TX_RING_KICK(rp->tx_channel), rp->wrap_bit | (prod << 3));
  4316. if (unlikely(niu_tx_avail(rp) <= (MAX_SKB_FRAGS + 1))) {
  4317. netif_stop_queue(dev);
  4318. if (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp))
  4319. netif_wake_queue(dev);
  4320. }
  4321. dev->trans_start = jiffies;
  4322. out:
  4323. return NETDEV_TX_OK;
  4324. out_drop:
  4325. rp->tx_errors++;
  4326. kfree_skb(skb);
  4327. goto out;
  4328. }
  4329. static int niu_change_mtu(struct net_device *dev, int new_mtu)
  4330. {
  4331. struct niu *np = netdev_priv(dev);
  4332. int err, orig_jumbo, new_jumbo;
  4333. if (new_mtu < 68 || new_mtu > NIU_MAX_MTU)
  4334. return -EINVAL;
  4335. orig_jumbo = (dev->mtu > ETH_DATA_LEN);
  4336. new_jumbo = (new_mtu > ETH_DATA_LEN);
  4337. dev->mtu = new_mtu;
  4338. if (!netif_running(dev) ||
  4339. (orig_jumbo == new_jumbo))
  4340. return 0;
  4341. niu_full_shutdown(np, dev);
  4342. niu_free_channels(np);
  4343. niu_enable_napi(np);
  4344. err = niu_alloc_channels(np);
  4345. if (err)
  4346. return err;
  4347. spin_lock_irq(&np->lock);
  4348. err = niu_init_hw(np);
  4349. if (!err) {
  4350. init_timer(&np->timer);
  4351. np->timer.expires = jiffies + HZ;
  4352. np->timer.data = (unsigned long) np;
  4353. np->timer.function = niu_timer;
  4354. err = niu_enable_interrupts(np, 1);
  4355. if (err)
  4356. niu_stop_hw(np);
  4357. }
  4358. spin_unlock_irq(&np->lock);
  4359. if (!err) {
  4360. netif_start_queue(dev);
  4361. if (np->link_config.loopback_mode != LOOPBACK_DISABLED)
  4362. netif_carrier_on(dev);
  4363. add_timer(&np->timer);
  4364. }
  4365. return err;
  4366. }
  4367. static void niu_get_drvinfo(struct net_device *dev,
  4368. struct ethtool_drvinfo *info)
  4369. {
  4370. struct niu *np = netdev_priv(dev);
  4371. struct niu_vpd *vpd = &np->vpd;
  4372. strcpy(info->driver, DRV_MODULE_NAME);
  4373. strcpy(info->version, DRV_MODULE_VERSION);
  4374. sprintf(info->fw_version, "%d.%d",
  4375. vpd->fcode_major, vpd->fcode_minor);
  4376. if (np->parent->plat_type != PLAT_TYPE_NIU)
  4377. strcpy(info->bus_info, pci_name(np->pdev));
  4378. }
  4379. static int niu_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  4380. {
  4381. struct niu *np = netdev_priv(dev);
  4382. struct niu_link_config *lp;
  4383. lp = &np->link_config;
  4384. memset(cmd, 0, sizeof(*cmd));
  4385. cmd->phy_address = np->phy_addr;
  4386. cmd->supported = lp->supported;
  4387. cmd->advertising = lp->advertising;
  4388. cmd->autoneg = lp->autoneg;
  4389. cmd->speed = lp->active_speed;
  4390. cmd->duplex = lp->active_duplex;
  4391. return 0;
  4392. }
  4393. static int niu_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  4394. {
  4395. return -EINVAL;
  4396. }
  4397. static u32 niu_get_msglevel(struct net_device *dev)
  4398. {
  4399. struct niu *np = netdev_priv(dev);
  4400. return np->msg_enable;
  4401. }
  4402. static void niu_set_msglevel(struct net_device *dev, u32 value)
  4403. {
  4404. struct niu *np = netdev_priv(dev);
  4405. np->msg_enable = value;
  4406. }
  4407. static int niu_get_eeprom_len(struct net_device *dev)
  4408. {
  4409. struct niu *np = netdev_priv(dev);
  4410. return np->eeprom_len;
  4411. }
  4412. static int niu_get_eeprom(struct net_device *dev,
  4413. struct ethtool_eeprom *eeprom, u8 *data)
  4414. {
  4415. struct niu *np = netdev_priv(dev);
  4416. u32 offset, len, val;
  4417. offset = eeprom->offset;
  4418. len = eeprom->len;
  4419. if (offset + len < offset)
  4420. return -EINVAL;
  4421. if (offset >= np->eeprom_len)
  4422. return -EINVAL;
  4423. if (offset + len > np->eeprom_len)
  4424. len = eeprom->len = np->eeprom_len - offset;
  4425. if (offset & 3) {
  4426. u32 b_offset, b_count;
  4427. b_offset = offset & 3;
  4428. b_count = 4 - b_offset;
  4429. if (b_count > len)
  4430. b_count = len;
  4431. val = nr64(ESPC_NCR((offset - b_offset) / 4));
  4432. memcpy(data, ((char *)&val) + b_offset, b_count);
  4433. data += b_count;
  4434. len -= b_count;
  4435. offset += b_count;
  4436. }
  4437. while (len >= 4) {
  4438. val = nr64(ESPC_NCR(offset / 4));
  4439. memcpy(data, &val, 4);
  4440. data += 4;
  4441. len -= 4;
  4442. offset += 4;
  4443. }
  4444. if (len) {
  4445. val = nr64(ESPC_NCR(offset / 4));
  4446. memcpy(data, &val, len);
  4447. }
  4448. return 0;
  4449. }
  4450. static const struct {
  4451. const char string[ETH_GSTRING_LEN];
  4452. } niu_xmac_stat_keys[] = {
  4453. { "tx_frames" },
  4454. { "tx_bytes" },
  4455. { "tx_fifo_errors" },
  4456. { "tx_overflow_errors" },
  4457. { "tx_max_pkt_size_errors" },
  4458. { "tx_underflow_errors" },
  4459. { "rx_local_faults" },
  4460. { "rx_remote_faults" },
  4461. { "rx_link_faults" },
  4462. { "rx_align_errors" },
  4463. { "rx_frags" },
  4464. { "rx_mcasts" },
  4465. { "rx_bcasts" },
  4466. { "rx_hist_cnt1" },
  4467. { "rx_hist_cnt2" },
  4468. { "rx_hist_cnt3" },
  4469. { "rx_hist_cnt4" },
  4470. { "rx_hist_cnt5" },
  4471. { "rx_hist_cnt6" },
  4472. { "rx_hist_cnt7" },
  4473. { "rx_octets" },
  4474. { "rx_code_violations" },
  4475. { "rx_len_errors" },
  4476. { "rx_crc_errors" },
  4477. { "rx_underflows" },
  4478. { "rx_overflows" },
  4479. { "pause_off_state" },
  4480. { "pause_on_state" },
  4481. { "pause_received" },
  4482. };
  4483. #define NUM_XMAC_STAT_KEYS ARRAY_SIZE(niu_xmac_stat_keys)
  4484. static const struct {
  4485. const char string[ETH_GSTRING_LEN];
  4486. } niu_bmac_stat_keys[] = {
  4487. { "tx_underflow_errors" },
  4488. { "tx_max_pkt_size_errors" },
  4489. { "tx_bytes" },
  4490. { "tx_frames" },
  4491. { "rx_overflows" },
  4492. { "rx_frames" },
  4493. { "rx_align_errors" },
  4494. { "rx_crc_errors" },
  4495. { "rx_len_errors" },
  4496. { "pause_off_state" },
  4497. { "pause_on_state" },
  4498. { "pause_received" },
  4499. };
  4500. #define NUM_BMAC_STAT_KEYS ARRAY_SIZE(niu_bmac_stat_keys)
  4501. static const struct {
  4502. const char string[ETH_GSTRING_LEN];
  4503. } niu_rxchan_stat_keys[] = {
  4504. { "rx_channel" },
  4505. { "rx_packets" },
  4506. { "rx_bytes" },
  4507. { "rx_dropped" },
  4508. { "rx_errors" },
  4509. };
  4510. #define NUM_RXCHAN_STAT_KEYS ARRAY_SIZE(niu_rxchan_stat_keys)
  4511. static const struct {
  4512. const char string[ETH_GSTRING_LEN];
  4513. } niu_txchan_stat_keys[] = {
  4514. { "tx_channel" },
  4515. { "tx_packets" },
  4516. { "tx_bytes" },
  4517. { "tx_errors" },
  4518. };
  4519. #define NUM_TXCHAN_STAT_KEYS ARRAY_SIZE(niu_txchan_stat_keys)
  4520. static void niu_get_strings(struct net_device *dev, u32 stringset, u8 *data)
  4521. {
  4522. struct niu *np = netdev_priv(dev);
  4523. int i;
  4524. if (stringset != ETH_SS_STATS)
  4525. return;
  4526. if (np->flags & NIU_FLAGS_XMAC) {
  4527. memcpy(data, niu_xmac_stat_keys,
  4528. sizeof(niu_xmac_stat_keys));
  4529. data += sizeof(niu_xmac_stat_keys);
  4530. } else {
  4531. memcpy(data, niu_bmac_stat_keys,
  4532. sizeof(niu_bmac_stat_keys));
  4533. data += sizeof(niu_bmac_stat_keys);
  4534. }
  4535. for (i = 0; i < np->num_rx_rings; i++) {
  4536. memcpy(data, niu_rxchan_stat_keys,
  4537. sizeof(niu_rxchan_stat_keys));
  4538. data += sizeof(niu_rxchan_stat_keys);
  4539. }
  4540. for (i = 0; i < np->num_tx_rings; i++) {
  4541. memcpy(data, niu_txchan_stat_keys,
  4542. sizeof(niu_txchan_stat_keys));
  4543. data += sizeof(niu_txchan_stat_keys);
  4544. }
  4545. }
  4546. static int niu_get_stats_count(struct net_device *dev)
  4547. {
  4548. struct niu *np = netdev_priv(dev);
  4549. return ((np->flags & NIU_FLAGS_XMAC ?
  4550. NUM_XMAC_STAT_KEYS :
  4551. NUM_BMAC_STAT_KEYS) +
  4552. (np->num_rx_rings * NUM_RXCHAN_STAT_KEYS) +
  4553. (np->num_tx_rings * NUM_TXCHAN_STAT_KEYS));
  4554. }
  4555. static void niu_get_ethtool_stats(struct net_device *dev,
  4556. struct ethtool_stats *stats, u64 *data)
  4557. {
  4558. struct niu *np = netdev_priv(dev);
  4559. int i;
  4560. niu_sync_mac_stats(np);
  4561. if (np->flags & NIU_FLAGS_XMAC) {
  4562. memcpy(data, &np->mac_stats.xmac,
  4563. sizeof(struct niu_xmac_stats));
  4564. data += (sizeof(struct niu_xmac_stats) / sizeof(u64));
  4565. } else {
  4566. memcpy(data, &np->mac_stats.bmac,
  4567. sizeof(struct niu_bmac_stats));
  4568. data += (sizeof(struct niu_bmac_stats) / sizeof(u64));
  4569. }
  4570. for (i = 0; i < np->num_rx_rings; i++) {
  4571. struct rx_ring_info *rp = &np->rx_rings[i];
  4572. data[0] = rp->rx_channel;
  4573. data[1] = rp->rx_packets;
  4574. data[2] = rp->rx_bytes;
  4575. data[3] = rp->rx_dropped;
  4576. data[4] = rp->rx_errors;
  4577. data += 5;
  4578. }
  4579. for (i = 0; i < np->num_tx_rings; i++) {
  4580. struct tx_ring_info *rp = &np->tx_rings[i];
  4581. data[0] = rp->tx_channel;
  4582. data[1] = rp->tx_packets;
  4583. data[2] = rp->tx_bytes;
  4584. data[3] = rp->tx_errors;
  4585. data += 4;
  4586. }
  4587. }
  4588. static u64 niu_led_state_save(struct niu *np)
  4589. {
  4590. if (np->flags & NIU_FLAGS_XMAC)
  4591. return nr64_mac(XMAC_CONFIG);
  4592. else
  4593. return nr64_mac(BMAC_XIF_CONFIG);
  4594. }
  4595. static void niu_led_state_restore(struct niu *np, u64 val)
  4596. {
  4597. if (np->flags & NIU_FLAGS_XMAC)
  4598. nw64_mac(XMAC_CONFIG, val);
  4599. else
  4600. nw64_mac(BMAC_XIF_CONFIG, val);
  4601. }
  4602. static void niu_force_led(struct niu *np, int on)
  4603. {
  4604. u64 val, reg, bit;
  4605. if (np->flags & NIU_FLAGS_XMAC) {
  4606. reg = XMAC_CONFIG;
  4607. bit = XMAC_CONFIG_FORCE_LED_ON;
  4608. } else {
  4609. reg = BMAC_XIF_CONFIG;
  4610. bit = BMAC_XIF_CONFIG_LINK_LED;
  4611. }
  4612. val = nr64_mac(reg);
  4613. if (on)
  4614. val |= bit;
  4615. else
  4616. val &= ~bit;
  4617. nw64_mac(reg, val);
  4618. }
  4619. static int niu_phys_id(struct net_device *dev, u32 data)
  4620. {
  4621. struct niu *np = netdev_priv(dev);
  4622. u64 orig_led_state;
  4623. int i;
  4624. if (!netif_running(dev))
  4625. return -EAGAIN;
  4626. if (data == 0)
  4627. data = 2;
  4628. orig_led_state = niu_led_state_save(np);
  4629. for (i = 0; i < (data * 2); i++) {
  4630. int on = ((i % 2) == 0);
  4631. niu_force_led(np, on);
  4632. if (msleep_interruptible(500))
  4633. break;
  4634. }
  4635. niu_led_state_restore(np, orig_led_state);
  4636. return 0;
  4637. }
  4638. static const struct ethtool_ops niu_ethtool_ops = {
  4639. .get_drvinfo = niu_get_drvinfo,
  4640. .get_link = ethtool_op_get_link,
  4641. .get_msglevel = niu_get_msglevel,
  4642. .set_msglevel = niu_set_msglevel,
  4643. .get_eeprom_len = niu_get_eeprom_len,
  4644. .get_eeprom = niu_get_eeprom,
  4645. .get_settings = niu_get_settings,
  4646. .set_settings = niu_set_settings,
  4647. .get_strings = niu_get_strings,
  4648. .get_stats_count = niu_get_stats_count,
  4649. .get_ethtool_stats = niu_get_ethtool_stats,
  4650. .phys_id = niu_phys_id,
  4651. };
  4652. static int niu_ldg_assign_ldn(struct niu *np, struct niu_parent *parent,
  4653. int ldg, int ldn)
  4654. {
  4655. if (ldg < NIU_LDG_MIN || ldg > NIU_LDG_MAX)
  4656. return -EINVAL;
  4657. if (ldn < 0 || ldn > LDN_MAX)
  4658. return -EINVAL;
  4659. parent->ldg_map[ldn] = ldg;
  4660. if (np->parent->plat_type == PLAT_TYPE_NIU) {
  4661. /* On N2 NIU, the ldn-->ldg assignments are setup and fixed by
  4662. * the firmware, and we're not supposed to change them.
  4663. * Validate the mapping, because if it's wrong we probably
  4664. * won't get any interrupts and that's painful to debug.
  4665. */
  4666. if (nr64(LDG_NUM(ldn)) != ldg) {
  4667. dev_err(np->device, PFX "Port %u, mis-matched "
  4668. "LDG assignment "
  4669. "for ldn %d, should be %d is %llu\n",
  4670. np->port, ldn, ldg,
  4671. (unsigned long long) nr64(LDG_NUM(ldn)));
  4672. return -EINVAL;
  4673. }
  4674. } else
  4675. nw64(LDG_NUM(ldn), ldg);
  4676. return 0;
  4677. }
  4678. static int niu_set_ldg_timer_res(struct niu *np, int res)
  4679. {
  4680. if (res < 0 || res > LDG_TIMER_RES_VAL)
  4681. return -EINVAL;
  4682. nw64(LDG_TIMER_RES, res);
  4683. return 0;
  4684. }
  4685. static int niu_set_ldg_sid(struct niu *np, int ldg, int func, int vector)
  4686. {
  4687. if ((ldg < NIU_LDG_MIN || ldg > NIU_LDG_MAX) ||
  4688. (func < 0 || func > 3) ||
  4689. (vector < 0 || vector > 0x1f))
  4690. return -EINVAL;
  4691. nw64(SID(ldg), (func << SID_FUNC_SHIFT) | vector);
  4692. return 0;
  4693. }
  4694. static int __devinit niu_pci_eeprom_read(struct niu *np, u32 addr)
  4695. {
  4696. u64 frame, frame_base = (ESPC_PIO_STAT_READ_START |
  4697. (addr << ESPC_PIO_STAT_ADDR_SHIFT));
  4698. int limit;
  4699. if (addr > (ESPC_PIO_STAT_ADDR >> ESPC_PIO_STAT_ADDR_SHIFT))
  4700. return -EINVAL;
  4701. frame = frame_base;
  4702. nw64(ESPC_PIO_STAT, frame);
  4703. limit = 64;
  4704. do {
  4705. udelay(5);
  4706. frame = nr64(ESPC_PIO_STAT);
  4707. if (frame & ESPC_PIO_STAT_READ_END)
  4708. break;
  4709. } while (limit--);
  4710. if (!(frame & ESPC_PIO_STAT_READ_END)) {
  4711. dev_err(np->device, PFX "EEPROM read timeout frame[%llx]\n",
  4712. (unsigned long long) frame);
  4713. return -ENODEV;
  4714. }
  4715. frame = frame_base;
  4716. nw64(ESPC_PIO_STAT, frame);
  4717. limit = 64;
  4718. do {
  4719. udelay(5);
  4720. frame = nr64(ESPC_PIO_STAT);
  4721. if (frame & ESPC_PIO_STAT_READ_END)
  4722. break;
  4723. } while (limit--);
  4724. if (!(frame & ESPC_PIO_STAT_READ_END)) {
  4725. dev_err(np->device, PFX "EEPROM read timeout frame[%llx]\n",
  4726. (unsigned long long) frame);
  4727. return -ENODEV;
  4728. }
  4729. frame = nr64(ESPC_PIO_STAT);
  4730. return (frame & ESPC_PIO_STAT_DATA) >> ESPC_PIO_STAT_DATA_SHIFT;
  4731. }
  4732. static int __devinit niu_pci_eeprom_read16(struct niu *np, u32 off)
  4733. {
  4734. int err = niu_pci_eeprom_read(np, off);
  4735. u16 val;
  4736. if (err < 0)
  4737. return err;
  4738. val = (err << 8);
  4739. err = niu_pci_eeprom_read(np, off + 1);
  4740. if (err < 0)
  4741. return err;
  4742. val |= (err & 0xff);
  4743. return val;
  4744. }
  4745. static int __devinit niu_pci_eeprom_read16_swp(struct niu *np, u32 off)
  4746. {
  4747. int err = niu_pci_eeprom_read(np, off);
  4748. u16 val;
  4749. if (err < 0)
  4750. return err;
  4751. val = (err & 0xff);
  4752. err = niu_pci_eeprom_read(np, off + 1);
  4753. if (err < 0)
  4754. return err;
  4755. val |= (err & 0xff) << 8;
  4756. return val;
  4757. }
  4758. static int __devinit niu_pci_vpd_get_propname(struct niu *np,
  4759. u32 off,
  4760. char *namebuf,
  4761. int namebuf_len)
  4762. {
  4763. int i;
  4764. for (i = 0; i < namebuf_len; i++) {
  4765. int err = niu_pci_eeprom_read(np, off + i);
  4766. if (err < 0)
  4767. return err;
  4768. *namebuf++ = err;
  4769. if (!err)
  4770. break;
  4771. }
  4772. if (i >= namebuf_len)
  4773. return -EINVAL;
  4774. return i + 1;
  4775. }
  4776. static void __devinit niu_vpd_parse_version(struct niu *np)
  4777. {
  4778. struct niu_vpd *vpd = &np->vpd;
  4779. int len = strlen(vpd->version) + 1;
  4780. const char *s = vpd->version;
  4781. int i;
  4782. for (i = 0; i < len - 5; i++) {
  4783. if (!strncmp(s + i, "FCode ", 5))
  4784. break;
  4785. }
  4786. if (i >= len - 5)
  4787. return;
  4788. s += i + 5;
  4789. sscanf(s, "%d.%d", &vpd->fcode_major, &vpd->fcode_minor);
  4790. niudbg(PROBE, "VPD_SCAN: FCODE major(%d) minor(%d)\n",
  4791. vpd->fcode_major, vpd->fcode_minor);
  4792. if (vpd->fcode_major > NIU_VPD_MIN_MAJOR ||
  4793. (vpd->fcode_major == NIU_VPD_MIN_MAJOR &&
  4794. vpd->fcode_minor >= NIU_VPD_MIN_MINOR))
  4795. np->flags |= NIU_FLAGS_VPD_VALID;
  4796. }
  4797. /* ESPC_PIO_EN_ENABLE must be set */
  4798. static int __devinit niu_pci_vpd_scan_props(struct niu *np,
  4799. u32 start, u32 end)
  4800. {
  4801. unsigned int found_mask = 0;
  4802. #define FOUND_MASK_MODEL 0x00000001
  4803. #define FOUND_MASK_BMODEL 0x00000002
  4804. #define FOUND_MASK_VERS 0x00000004
  4805. #define FOUND_MASK_MAC 0x00000008
  4806. #define FOUND_MASK_NMAC 0x00000010
  4807. #define FOUND_MASK_PHY 0x00000020
  4808. #define FOUND_MASK_ALL 0x0000003f
  4809. niudbg(PROBE, "VPD_SCAN: start[%x] end[%x]\n",
  4810. start, end);
  4811. while (start < end) {
  4812. int len, err, instance, type, prop_len;
  4813. char namebuf[64];
  4814. u8 *prop_buf;
  4815. int max_len;
  4816. if (found_mask == FOUND_MASK_ALL) {
  4817. niu_vpd_parse_version(np);
  4818. return 1;
  4819. }
  4820. err = niu_pci_eeprom_read(np, start + 2);
  4821. if (err < 0)
  4822. return err;
  4823. len = err;
  4824. start += 3;
  4825. instance = niu_pci_eeprom_read(np, start);
  4826. type = niu_pci_eeprom_read(np, start + 3);
  4827. prop_len = niu_pci_eeprom_read(np, start + 4);
  4828. err = niu_pci_vpd_get_propname(np, start + 5, namebuf, 64);
  4829. if (err < 0)
  4830. return err;
  4831. prop_buf = NULL;
  4832. max_len = 0;
  4833. if (!strcmp(namebuf, "model")) {
  4834. prop_buf = np->vpd.model;
  4835. max_len = NIU_VPD_MODEL_MAX;
  4836. found_mask |= FOUND_MASK_MODEL;
  4837. } else if (!strcmp(namebuf, "board-model")) {
  4838. prop_buf = np->vpd.board_model;
  4839. max_len = NIU_VPD_BD_MODEL_MAX;
  4840. found_mask |= FOUND_MASK_BMODEL;
  4841. } else if (!strcmp(namebuf, "version")) {
  4842. prop_buf = np->vpd.version;
  4843. max_len = NIU_VPD_VERSION_MAX;
  4844. found_mask |= FOUND_MASK_VERS;
  4845. } else if (!strcmp(namebuf, "local-mac-address")) {
  4846. prop_buf = np->vpd.local_mac;
  4847. max_len = ETH_ALEN;
  4848. found_mask |= FOUND_MASK_MAC;
  4849. } else if (!strcmp(namebuf, "num-mac-addresses")) {
  4850. prop_buf = &np->vpd.mac_num;
  4851. max_len = 1;
  4852. found_mask |= FOUND_MASK_NMAC;
  4853. } else if (!strcmp(namebuf, "phy-type")) {
  4854. prop_buf = np->vpd.phy_type;
  4855. max_len = NIU_VPD_PHY_TYPE_MAX;
  4856. found_mask |= FOUND_MASK_PHY;
  4857. }
  4858. if (max_len && prop_len > max_len) {
  4859. dev_err(np->device, PFX "Property '%s' length (%d) is "
  4860. "too long.\n", namebuf, prop_len);
  4861. return -EINVAL;
  4862. }
  4863. if (prop_buf) {
  4864. u32 off = start + 5 + err;
  4865. int i;
  4866. niudbg(PROBE, "VPD_SCAN: Reading in property [%s] "
  4867. "len[%d]\n", namebuf, prop_len);
  4868. for (i = 0; i < prop_len; i++)
  4869. *prop_buf++ = niu_pci_eeprom_read(np, off + i);
  4870. }
  4871. start += len;
  4872. }
  4873. return 0;
  4874. }
  4875. /* ESPC_PIO_EN_ENABLE must be set */
  4876. static void __devinit niu_pci_vpd_fetch(struct niu *np, u32 start)
  4877. {
  4878. u32 offset;
  4879. int err;
  4880. err = niu_pci_eeprom_read16_swp(np, start + 1);
  4881. if (err < 0)
  4882. return;
  4883. offset = err + 3;
  4884. while (start + offset < ESPC_EEPROM_SIZE) {
  4885. u32 here = start + offset;
  4886. u32 end;
  4887. err = niu_pci_eeprom_read(np, here);
  4888. if (err != 0x90)
  4889. return;
  4890. err = niu_pci_eeprom_read16_swp(np, here + 1);
  4891. if (err < 0)
  4892. return;
  4893. here = start + offset + 3;
  4894. end = start + offset + err;
  4895. offset += err;
  4896. err = niu_pci_vpd_scan_props(np, here, end);
  4897. if (err < 0 || err == 1)
  4898. return;
  4899. }
  4900. }
  4901. /* ESPC_PIO_EN_ENABLE must be set */
  4902. static u32 __devinit niu_pci_vpd_offset(struct niu *np)
  4903. {
  4904. u32 start = 0, end = ESPC_EEPROM_SIZE, ret;
  4905. int err;
  4906. while (start < end) {
  4907. ret = start;
  4908. /* ROM header signature? */
  4909. err = niu_pci_eeprom_read16(np, start + 0);
  4910. if (err != 0x55aa)
  4911. return 0;
  4912. /* Apply offset to PCI data structure. */
  4913. err = niu_pci_eeprom_read16(np, start + 23);
  4914. if (err < 0)
  4915. return 0;
  4916. start += err;
  4917. /* Check for "PCIR" signature. */
  4918. err = niu_pci_eeprom_read16(np, start + 0);
  4919. if (err != 0x5043)
  4920. return 0;
  4921. err = niu_pci_eeprom_read16(np, start + 2);
  4922. if (err != 0x4952)
  4923. return 0;
  4924. /* Check for OBP image type. */
  4925. err = niu_pci_eeprom_read(np, start + 20);
  4926. if (err < 0)
  4927. return 0;
  4928. if (err != 0x01) {
  4929. err = niu_pci_eeprom_read(np, ret + 2);
  4930. if (err < 0)
  4931. return 0;
  4932. start = ret + (err * 512);
  4933. continue;
  4934. }
  4935. err = niu_pci_eeprom_read16_swp(np, start + 8);
  4936. if (err < 0)
  4937. return err;
  4938. ret += err;
  4939. err = niu_pci_eeprom_read(np, ret + 0);
  4940. if (err != 0x82)
  4941. return 0;
  4942. return ret;
  4943. }
  4944. return 0;
  4945. }
  4946. static int __devinit niu_phy_type_prop_decode(struct niu *np,
  4947. const char *phy_prop)
  4948. {
  4949. if (!strcmp(phy_prop, "mif")) {
  4950. /* 1G copper, MII */
  4951. np->flags &= ~(NIU_FLAGS_FIBER |
  4952. NIU_FLAGS_10G);
  4953. np->mac_xcvr = MAC_XCVR_MII;
  4954. } else if (!strcmp(phy_prop, "xgf")) {
  4955. /* 10G fiber, XPCS */
  4956. np->flags |= (NIU_FLAGS_10G |
  4957. NIU_FLAGS_FIBER);
  4958. np->mac_xcvr = MAC_XCVR_XPCS;
  4959. } else if (!strcmp(phy_prop, "pcs")) {
  4960. /* 1G fiber, PCS */
  4961. np->flags &= ~NIU_FLAGS_10G;
  4962. np->flags |= NIU_FLAGS_FIBER;
  4963. np->mac_xcvr = MAC_XCVR_PCS;
  4964. } else if (!strcmp(phy_prop, "xgc")) {
  4965. /* 10G copper, XPCS */
  4966. np->flags |= NIU_FLAGS_10G;
  4967. np->flags &= ~NIU_FLAGS_FIBER;
  4968. np->mac_xcvr = MAC_XCVR_XPCS;
  4969. } else {
  4970. return -EINVAL;
  4971. }
  4972. return 0;
  4973. }
  4974. static void __devinit niu_pci_vpd_validate(struct niu *np)
  4975. {
  4976. struct net_device *dev = np->dev;
  4977. struct niu_vpd *vpd = &np->vpd;
  4978. u8 val8;
  4979. if (!is_valid_ether_addr(&vpd->local_mac[0])) {
  4980. dev_err(np->device, PFX "VPD MAC invalid, "
  4981. "falling back to SPROM.\n");
  4982. np->flags &= ~NIU_FLAGS_VPD_VALID;
  4983. return;
  4984. }
  4985. if (niu_phy_type_prop_decode(np, np->vpd.phy_type)) {
  4986. dev_err(np->device, PFX "Illegal phy string [%s].\n",
  4987. np->vpd.phy_type);
  4988. dev_err(np->device, PFX "Falling back to SPROM.\n");
  4989. np->flags &= ~NIU_FLAGS_VPD_VALID;
  4990. return;
  4991. }
  4992. memcpy(dev->perm_addr, vpd->local_mac, ETH_ALEN);
  4993. val8 = dev->perm_addr[5];
  4994. dev->perm_addr[5] += np->port;
  4995. if (dev->perm_addr[5] < val8)
  4996. dev->perm_addr[4]++;
  4997. memcpy(dev->dev_addr, dev->perm_addr, dev->addr_len);
  4998. }
  4999. static int __devinit niu_pci_probe_sprom(struct niu *np)
  5000. {
  5001. struct net_device *dev = np->dev;
  5002. int len, i;
  5003. u64 val, sum;
  5004. u8 val8;
  5005. val = (nr64(ESPC_VER_IMGSZ) & ESPC_VER_IMGSZ_IMGSZ);
  5006. val >>= ESPC_VER_IMGSZ_IMGSZ_SHIFT;
  5007. len = val / 4;
  5008. np->eeprom_len = len;
  5009. niudbg(PROBE, "SPROM: Image size %llu\n", (unsigned long long) val);
  5010. sum = 0;
  5011. for (i = 0; i < len; i++) {
  5012. val = nr64(ESPC_NCR(i));
  5013. sum += (val >> 0) & 0xff;
  5014. sum += (val >> 8) & 0xff;
  5015. sum += (val >> 16) & 0xff;
  5016. sum += (val >> 24) & 0xff;
  5017. }
  5018. niudbg(PROBE, "SPROM: Checksum %x\n", (int)(sum & 0xff));
  5019. if ((sum & 0xff) != 0xab) {
  5020. dev_err(np->device, PFX "Bad SPROM checksum "
  5021. "(%x, should be 0xab)\n", (int) (sum & 0xff));
  5022. return -EINVAL;
  5023. }
  5024. val = nr64(ESPC_PHY_TYPE);
  5025. switch (np->port) {
  5026. case 0:
  5027. val = (val & ESPC_PHY_TYPE_PORT0) >>
  5028. ESPC_PHY_TYPE_PORT0_SHIFT;
  5029. break;
  5030. case 1:
  5031. val = (val & ESPC_PHY_TYPE_PORT1) >>
  5032. ESPC_PHY_TYPE_PORT1_SHIFT;
  5033. break;
  5034. case 2:
  5035. val = (val & ESPC_PHY_TYPE_PORT2) >>
  5036. ESPC_PHY_TYPE_PORT2_SHIFT;
  5037. break;
  5038. case 3:
  5039. val = (val & ESPC_PHY_TYPE_PORT3) >>
  5040. ESPC_PHY_TYPE_PORT3_SHIFT;
  5041. break;
  5042. default:
  5043. dev_err(np->device, PFX "Bogus port number %u\n",
  5044. np->port);
  5045. return -EINVAL;
  5046. }
  5047. niudbg(PROBE, "SPROM: PHY type %llx\n", (unsigned long long) val);
  5048. switch (val) {
  5049. case ESPC_PHY_TYPE_1G_COPPER:
  5050. /* 1G copper, MII */
  5051. np->flags &= ~(NIU_FLAGS_FIBER |
  5052. NIU_FLAGS_10G);
  5053. np->mac_xcvr = MAC_XCVR_MII;
  5054. break;
  5055. case ESPC_PHY_TYPE_1G_FIBER:
  5056. /* 1G fiber, PCS */
  5057. np->flags &= ~NIU_FLAGS_10G;
  5058. np->flags |= NIU_FLAGS_FIBER;
  5059. np->mac_xcvr = MAC_XCVR_PCS;
  5060. break;
  5061. case ESPC_PHY_TYPE_10G_COPPER:
  5062. /* 10G copper, XPCS */
  5063. np->flags |= NIU_FLAGS_10G;
  5064. np->flags &= ~NIU_FLAGS_FIBER;
  5065. np->mac_xcvr = MAC_XCVR_XPCS;
  5066. break;
  5067. case ESPC_PHY_TYPE_10G_FIBER:
  5068. /* 10G fiber, XPCS */
  5069. np->flags |= (NIU_FLAGS_10G |
  5070. NIU_FLAGS_FIBER);
  5071. np->mac_xcvr = MAC_XCVR_XPCS;
  5072. break;
  5073. default:
  5074. dev_err(np->device, PFX "Bogus SPROM phy type %llu\n",
  5075. (unsigned long long) val);
  5076. return -EINVAL;
  5077. }
  5078. val = nr64(ESPC_MAC_ADDR0);
  5079. niudbg(PROBE, "SPROM: MAC_ADDR0[%08llx]\n",
  5080. (unsigned long long) val);
  5081. dev->perm_addr[0] = (val >> 0) & 0xff;
  5082. dev->perm_addr[1] = (val >> 8) & 0xff;
  5083. dev->perm_addr[2] = (val >> 16) & 0xff;
  5084. dev->perm_addr[3] = (val >> 24) & 0xff;
  5085. val = nr64(ESPC_MAC_ADDR1);
  5086. niudbg(PROBE, "SPROM: MAC_ADDR1[%08llx]\n",
  5087. (unsigned long long) val);
  5088. dev->perm_addr[4] = (val >> 0) & 0xff;
  5089. dev->perm_addr[5] = (val >> 8) & 0xff;
  5090. if (!is_valid_ether_addr(&dev->perm_addr[0])) {
  5091. dev_err(np->device, PFX "SPROM MAC address invalid\n");
  5092. dev_err(np->device, PFX "[ \n");
  5093. for (i = 0; i < 6; i++)
  5094. printk("%02x ", dev->perm_addr[i]);
  5095. printk("]\n");
  5096. return -EINVAL;
  5097. }
  5098. val8 = dev->perm_addr[5];
  5099. dev->perm_addr[5] += np->port;
  5100. if (dev->perm_addr[5] < val8)
  5101. dev->perm_addr[4]++;
  5102. memcpy(dev->dev_addr, dev->perm_addr, dev->addr_len);
  5103. val = nr64(ESPC_MOD_STR_LEN);
  5104. niudbg(PROBE, "SPROM: MOD_STR_LEN[%llu]\n",
  5105. (unsigned long long) val);
  5106. if (val > 8 * 4)
  5107. return -EINVAL;
  5108. for (i = 0; i < val; i += 4) {
  5109. u64 tmp = nr64(ESPC_NCR(5 + (i / 4)));
  5110. np->vpd.model[i + 3] = (tmp >> 0) & 0xff;
  5111. np->vpd.model[i + 2] = (tmp >> 8) & 0xff;
  5112. np->vpd.model[i + 1] = (tmp >> 16) & 0xff;
  5113. np->vpd.model[i + 0] = (tmp >> 24) & 0xff;
  5114. }
  5115. np->vpd.model[val] = '\0';
  5116. val = nr64(ESPC_BD_MOD_STR_LEN);
  5117. niudbg(PROBE, "SPROM: BD_MOD_STR_LEN[%llu]\n",
  5118. (unsigned long long) val);
  5119. if (val > 4 * 4)
  5120. return -EINVAL;
  5121. for (i = 0; i < val; i += 4) {
  5122. u64 tmp = nr64(ESPC_NCR(14 + (i / 4)));
  5123. np->vpd.board_model[i + 3] = (tmp >> 0) & 0xff;
  5124. np->vpd.board_model[i + 2] = (tmp >> 8) & 0xff;
  5125. np->vpd.board_model[i + 1] = (tmp >> 16) & 0xff;
  5126. np->vpd.board_model[i + 0] = (tmp >> 24) & 0xff;
  5127. }
  5128. np->vpd.board_model[val] = '\0';
  5129. np->vpd.mac_num =
  5130. nr64(ESPC_NUM_PORTS_MACS) & ESPC_NUM_PORTS_MACS_VAL;
  5131. niudbg(PROBE, "SPROM: NUM_PORTS_MACS[%d]\n",
  5132. np->vpd.mac_num);
  5133. return 0;
  5134. }
  5135. static int __devinit niu_get_and_validate_port(struct niu *np)
  5136. {
  5137. struct niu_parent *parent = np->parent;
  5138. if (np->port <= 1)
  5139. np->flags |= NIU_FLAGS_XMAC;
  5140. if (!parent->num_ports) {
  5141. if (parent->plat_type == PLAT_TYPE_NIU) {
  5142. parent->num_ports = 2;
  5143. } else {
  5144. parent->num_ports = nr64(ESPC_NUM_PORTS_MACS) &
  5145. ESPC_NUM_PORTS_MACS_VAL;
  5146. if (!parent->num_ports)
  5147. parent->num_ports = 4;
  5148. }
  5149. }
  5150. niudbg(PROBE, "niu_get_and_validate_port: port[%d] num_ports[%d]\n",
  5151. np->port, parent->num_ports);
  5152. if (np->port >= parent->num_ports)
  5153. return -ENODEV;
  5154. return 0;
  5155. }
  5156. static int __devinit phy_record(struct niu_parent *parent,
  5157. struct phy_probe_info *p,
  5158. int dev_id_1, int dev_id_2, u8 phy_port,
  5159. int type)
  5160. {
  5161. u32 id = (dev_id_1 << 16) | dev_id_2;
  5162. u8 idx;
  5163. if (dev_id_1 < 0 || dev_id_2 < 0)
  5164. return 0;
  5165. if (type == PHY_TYPE_PMA_PMD || type == PHY_TYPE_PCS) {
  5166. if ((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_BCM8704)
  5167. return 0;
  5168. } else {
  5169. if ((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_BCM5464R)
  5170. return 0;
  5171. }
  5172. pr_info("niu%d: Found PHY %08x type %s at phy_port %u\n",
  5173. parent->index, id,
  5174. (type == PHY_TYPE_PMA_PMD ?
  5175. "PMA/PMD" :
  5176. (type == PHY_TYPE_PCS ?
  5177. "PCS" : "MII")),
  5178. phy_port);
  5179. if (p->cur[type] >= NIU_MAX_PORTS) {
  5180. printk(KERN_ERR PFX "Too many PHY ports.\n");
  5181. return -EINVAL;
  5182. }
  5183. idx = p->cur[type];
  5184. p->phy_id[type][idx] = id;
  5185. p->phy_port[type][idx] = phy_port;
  5186. p->cur[type] = idx + 1;
  5187. return 0;
  5188. }
  5189. static int __devinit port_has_10g(struct phy_probe_info *p, int port)
  5190. {
  5191. int i;
  5192. for (i = 0; i < p->cur[PHY_TYPE_PMA_PMD]; i++) {
  5193. if (p->phy_port[PHY_TYPE_PMA_PMD][i] == port)
  5194. return 1;
  5195. }
  5196. for (i = 0; i < p->cur[PHY_TYPE_PCS]; i++) {
  5197. if (p->phy_port[PHY_TYPE_PCS][i] == port)
  5198. return 1;
  5199. }
  5200. return 0;
  5201. }
  5202. static int __devinit count_10g_ports(struct phy_probe_info *p, int *lowest)
  5203. {
  5204. int port, cnt;
  5205. cnt = 0;
  5206. *lowest = 32;
  5207. for (port = 8; port < 32; port++) {
  5208. if (port_has_10g(p, port)) {
  5209. if (!cnt)
  5210. *lowest = port;
  5211. cnt++;
  5212. }
  5213. }
  5214. return cnt;
  5215. }
  5216. static int __devinit count_1g_ports(struct phy_probe_info *p, int *lowest)
  5217. {
  5218. *lowest = 32;
  5219. if (p->cur[PHY_TYPE_MII])
  5220. *lowest = p->phy_port[PHY_TYPE_MII][0];
  5221. return p->cur[PHY_TYPE_MII];
  5222. }
  5223. static void __devinit niu_n2_divide_channels(struct niu_parent *parent)
  5224. {
  5225. int num_ports = parent->num_ports;
  5226. int i;
  5227. for (i = 0; i < num_ports; i++) {
  5228. parent->rxchan_per_port[i] = (16 / num_ports);
  5229. parent->txchan_per_port[i] = (16 / num_ports);
  5230. pr_info(PFX "niu%d: Port %u [%u RX chans] "
  5231. "[%u TX chans]\n",
  5232. parent->index, i,
  5233. parent->rxchan_per_port[i],
  5234. parent->txchan_per_port[i]);
  5235. }
  5236. }
  5237. static void __devinit niu_divide_channels(struct niu_parent *parent,
  5238. int num_10g, int num_1g)
  5239. {
  5240. int num_ports = parent->num_ports;
  5241. int rx_chans_per_10g, rx_chans_per_1g;
  5242. int tx_chans_per_10g, tx_chans_per_1g;
  5243. int i, tot_rx, tot_tx;
  5244. if (!num_10g || !num_1g) {
  5245. rx_chans_per_10g = rx_chans_per_1g =
  5246. (NIU_NUM_RXCHAN / num_ports);
  5247. tx_chans_per_10g = tx_chans_per_1g =
  5248. (NIU_NUM_TXCHAN / num_ports);
  5249. } else {
  5250. rx_chans_per_1g = NIU_NUM_RXCHAN / 8;
  5251. rx_chans_per_10g = (NIU_NUM_RXCHAN -
  5252. (rx_chans_per_1g * num_1g)) /
  5253. num_10g;
  5254. tx_chans_per_1g = NIU_NUM_TXCHAN / 6;
  5255. tx_chans_per_10g = (NIU_NUM_TXCHAN -
  5256. (tx_chans_per_1g * num_1g)) /
  5257. num_10g;
  5258. }
  5259. tot_rx = tot_tx = 0;
  5260. for (i = 0; i < num_ports; i++) {
  5261. int type = phy_decode(parent->port_phy, i);
  5262. if (type == PORT_TYPE_10G) {
  5263. parent->rxchan_per_port[i] = rx_chans_per_10g;
  5264. parent->txchan_per_port[i] = tx_chans_per_10g;
  5265. } else {
  5266. parent->rxchan_per_port[i] = rx_chans_per_1g;
  5267. parent->txchan_per_port[i] = tx_chans_per_1g;
  5268. }
  5269. pr_info(PFX "niu%d: Port %u [%u RX chans] "
  5270. "[%u TX chans]\n",
  5271. parent->index, i,
  5272. parent->rxchan_per_port[i],
  5273. parent->txchan_per_port[i]);
  5274. tot_rx += parent->rxchan_per_port[i];
  5275. tot_tx += parent->txchan_per_port[i];
  5276. }
  5277. if (tot_rx > NIU_NUM_RXCHAN) {
  5278. printk(KERN_ERR PFX "niu%d: Too many RX channels (%d), "
  5279. "resetting to one per port.\n",
  5280. parent->index, tot_rx);
  5281. for (i = 0; i < num_ports; i++)
  5282. parent->rxchan_per_port[i] = 1;
  5283. }
  5284. if (tot_tx > NIU_NUM_TXCHAN) {
  5285. printk(KERN_ERR PFX "niu%d: Too many TX channels (%d), "
  5286. "resetting to one per port.\n",
  5287. parent->index, tot_tx);
  5288. for (i = 0; i < num_ports; i++)
  5289. parent->txchan_per_port[i] = 1;
  5290. }
  5291. if (tot_rx < NIU_NUM_RXCHAN || tot_tx < NIU_NUM_TXCHAN) {
  5292. printk(KERN_WARNING PFX "niu%d: Driver bug, wasted channels, "
  5293. "RX[%d] TX[%d]\n",
  5294. parent->index, tot_rx, tot_tx);
  5295. }
  5296. }
  5297. static void __devinit niu_divide_rdc_groups(struct niu_parent *parent,
  5298. int num_10g, int num_1g)
  5299. {
  5300. int i, num_ports = parent->num_ports;
  5301. int rdc_group, rdc_groups_per_port;
  5302. int rdc_channel_base;
  5303. rdc_group = 0;
  5304. rdc_groups_per_port = NIU_NUM_RDC_TABLES / num_ports;
  5305. rdc_channel_base = 0;
  5306. for (i = 0; i < num_ports; i++) {
  5307. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[i];
  5308. int grp, num_channels = parent->rxchan_per_port[i];
  5309. int this_channel_offset;
  5310. tp->first_table_num = rdc_group;
  5311. tp->num_tables = rdc_groups_per_port;
  5312. this_channel_offset = 0;
  5313. for (grp = 0; grp < tp->num_tables; grp++) {
  5314. struct rdc_table *rt = &tp->tables[grp];
  5315. int slot;
  5316. pr_info(PFX "niu%d: Port %d RDC tbl(%d) [ ",
  5317. parent->index, i, tp->first_table_num + grp);
  5318. for (slot = 0; slot < NIU_RDC_TABLE_SLOTS; slot++) {
  5319. rt->rxdma_channel[slot] =
  5320. rdc_channel_base + this_channel_offset;
  5321. printk("%d ", rt->rxdma_channel[slot]);
  5322. if (++this_channel_offset == num_channels)
  5323. this_channel_offset = 0;
  5324. }
  5325. printk("]\n");
  5326. }
  5327. parent->rdc_default[i] = rdc_channel_base;
  5328. rdc_channel_base += num_channels;
  5329. rdc_group += rdc_groups_per_port;
  5330. }
  5331. }
  5332. static int __devinit fill_phy_probe_info(struct niu *np,
  5333. struct niu_parent *parent,
  5334. struct phy_probe_info *info)
  5335. {
  5336. unsigned long flags;
  5337. int port, err;
  5338. memset(info, 0, sizeof(*info));
  5339. /* Port 0 to 7 are reserved for onboard Serdes, probe the rest. */
  5340. niu_lock_parent(np, flags);
  5341. err = 0;
  5342. for (port = 8; port < 32; port++) {
  5343. int dev_id_1, dev_id_2;
  5344. dev_id_1 = mdio_read(np, port,
  5345. NIU_PMA_PMD_DEV_ADDR, MII_PHYSID1);
  5346. dev_id_2 = mdio_read(np, port,
  5347. NIU_PMA_PMD_DEV_ADDR, MII_PHYSID2);
  5348. err = phy_record(parent, info, dev_id_1, dev_id_2, port,
  5349. PHY_TYPE_PMA_PMD);
  5350. if (err)
  5351. break;
  5352. dev_id_1 = mdio_read(np, port,
  5353. NIU_PCS_DEV_ADDR, MII_PHYSID1);
  5354. dev_id_2 = mdio_read(np, port,
  5355. NIU_PCS_DEV_ADDR, MII_PHYSID2);
  5356. err = phy_record(parent, info, dev_id_1, dev_id_2, port,
  5357. PHY_TYPE_PCS);
  5358. if (err)
  5359. break;
  5360. dev_id_1 = mii_read(np, port, MII_PHYSID1);
  5361. dev_id_2 = mii_read(np, port, MII_PHYSID2);
  5362. err = phy_record(parent, info, dev_id_1, dev_id_2, port,
  5363. PHY_TYPE_MII);
  5364. if (err)
  5365. break;
  5366. }
  5367. niu_unlock_parent(np, flags);
  5368. return err;
  5369. }
  5370. static int __devinit walk_phys(struct niu *np, struct niu_parent *parent)
  5371. {
  5372. struct phy_probe_info *info = &parent->phy_probe_info;
  5373. int lowest_10g, lowest_1g;
  5374. int num_10g, num_1g;
  5375. u32 val;
  5376. int err;
  5377. err = fill_phy_probe_info(np, parent, info);
  5378. if (err)
  5379. return err;
  5380. num_10g = count_10g_ports(info, &lowest_10g);
  5381. num_1g = count_1g_ports(info, &lowest_1g);
  5382. switch ((num_10g << 4) | num_1g) {
  5383. case 0x24:
  5384. if (lowest_1g == 10)
  5385. parent->plat_type = PLAT_TYPE_VF_P0;
  5386. else if (lowest_1g == 26)
  5387. parent->plat_type = PLAT_TYPE_VF_P1;
  5388. else
  5389. goto unknown_vg_1g_port;
  5390. /* fallthru */
  5391. case 0x22:
  5392. val = (phy_encode(PORT_TYPE_10G, 0) |
  5393. phy_encode(PORT_TYPE_10G, 1) |
  5394. phy_encode(PORT_TYPE_1G, 2) |
  5395. phy_encode(PORT_TYPE_1G, 3));
  5396. break;
  5397. case 0x20:
  5398. val = (phy_encode(PORT_TYPE_10G, 0) |
  5399. phy_encode(PORT_TYPE_10G, 1));
  5400. break;
  5401. case 0x10:
  5402. val = phy_encode(PORT_TYPE_10G, np->port);
  5403. break;
  5404. case 0x14:
  5405. if (lowest_1g == 10)
  5406. parent->plat_type = PLAT_TYPE_VF_P0;
  5407. else if (lowest_1g == 26)
  5408. parent->plat_type = PLAT_TYPE_VF_P1;
  5409. else
  5410. goto unknown_vg_1g_port;
  5411. /* fallthru */
  5412. case 0x13:
  5413. if ((lowest_10g & 0x7) == 0)
  5414. val = (phy_encode(PORT_TYPE_10G, 0) |
  5415. phy_encode(PORT_TYPE_1G, 1) |
  5416. phy_encode(PORT_TYPE_1G, 2) |
  5417. phy_encode(PORT_TYPE_1G, 3));
  5418. else
  5419. val = (phy_encode(PORT_TYPE_1G, 0) |
  5420. phy_encode(PORT_TYPE_10G, 1) |
  5421. phy_encode(PORT_TYPE_1G, 2) |
  5422. phy_encode(PORT_TYPE_1G, 3));
  5423. break;
  5424. case 0x04:
  5425. if (lowest_1g == 10)
  5426. parent->plat_type = PLAT_TYPE_VF_P0;
  5427. else if (lowest_1g == 26)
  5428. parent->plat_type = PLAT_TYPE_VF_P1;
  5429. else
  5430. goto unknown_vg_1g_port;
  5431. val = (phy_encode(PORT_TYPE_1G, 0) |
  5432. phy_encode(PORT_TYPE_1G, 1) |
  5433. phy_encode(PORT_TYPE_1G, 2) |
  5434. phy_encode(PORT_TYPE_1G, 3));
  5435. break;
  5436. default:
  5437. printk(KERN_ERR PFX "Unsupported port config "
  5438. "10G[%d] 1G[%d]\n",
  5439. num_10g, num_1g);
  5440. return -EINVAL;
  5441. }
  5442. parent->port_phy = val;
  5443. if (parent->plat_type == PLAT_TYPE_NIU)
  5444. niu_n2_divide_channels(parent);
  5445. else
  5446. niu_divide_channels(parent, num_10g, num_1g);
  5447. niu_divide_rdc_groups(parent, num_10g, num_1g);
  5448. return 0;
  5449. unknown_vg_1g_port:
  5450. printk(KERN_ERR PFX "Cannot identify platform type, 1gport=%d\n",
  5451. lowest_1g);
  5452. return -EINVAL;
  5453. }
  5454. static int __devinit niu_probe_ports(struct niu *np)
  5455. {
  5456. struct niu_parent *parent = np->parent;
  5457. int err, i;
  5458. niudbg(PROBE, "niu_probe_ports(): port_phy[%08x]\n",
  5459. parent->port_phy);
  5460. if (parent->port_phy == PORT_PHY_UNKNOWN) {
  5461. err = walk_phys(np, parent);
  5462. if (err)
  5463. return err;
  5464. niu_set_ldg_timer_res(np, 2);
  5465. for (i = 0; i <= LDN_MAX; i++)
  5466. niu_ldn_irq_enable(np, i, 0);
  5467. }
  5468. if (parent->port_phy == PORT_PHY_INVALID)
  5469. return -EINVAL;
  5470. return 0;
  5471. }
  5472. static int __devinit niu_classifier_swstate_init(struct niu *np)
  5473. {
  5474. struct niu_classifier *cp = &np->clas;
  5475. niudbg(PROBE, "niu_classifier_swstate_init: num_tcam(%d)\n",
  5476. np->parent->tcam_num_entries);
  5477. cp->tcam_index = (u16) np->port;
  5478. cp->h1_init = 0xffffffff;
  5479. cp->h2_init = 0xffff;
  5480. return fflp_early_init(np);
  5481. }
  5482. static void __devinit niu_link_config_init(struct niu *np)
  5483. {
  5484. struct niu_link_config *lp = &np->link_config;
  5485. lp->advertising = (ADVERTISED_10baseT_Half |
  5486. ADVERTISED_10baseT_Full |
  5487. ADVERTISED_100baseT_Half |
  5488. ADVERTISED_100baseT_Full |
  5489. ADVERTISED_1000baseT_Half |
  5490. ADVERTISED_1000baseT_Full |
  5491. ADVERTISED_10000baseT_Full |
  5492. ADVERTISED_Autoneg);
  5493. lp->speed = lp->active_speed = SPEED_INVALID;
  5494. lp->duplex = lp->active_duplex = DUPLEX_INVALID;
  5495. #if 0
  5496. lp->loopback_mode = LOOPBACK_MAC;
  5497. lp->active_speed = SPEED_10000;
  5498. lp->active_duplex = DUPLEX_FULL;
  5499. #else
  5500. lp->loopback_mode = LOOPBACK_DISABLED;
  5501. #endif
  5502. }
  5503. static int __devinit niu_init_mac_ipp_pcs_base(struct niu *np)
  5504. {
  5505. switch (np->port) {
  5506. case 0:
  5507. np->mac_regs = np->regs + XMAC_PORT0_OFF;
  5508. np->ipp_off = 0x00000;
  5509. np->pcs_off = 0x04000;
  5510. np->xpcs_off = 0x02000;
  5511. break;
  5512. case 1:
  5513. np->mac_regs = np->regs + XMAC_PORT1_OFF;
  5514. np->ipp_off = 0x08000;
  5515. np->pcs_off = 0x0a000;
  5516. np->xpcs_off = 0x08000;
  5517. break;
  5518. case 2:
  5519. np->mac_regs = np->regs + BMAC_PORT2_OFF;
  5520. np->ipp_off = 0x04000;
  5521. np->pcs_off = 0x0e000;
  5522. np->xpcs_off = ~0UL;
  5523. break;
  5524. case 3:
  5525. np->mac_regs = np->regs + BMAC_PORT3_OFF;
  5526. np->ipp_off = 0x0c000;
  5527. np->pcs_off = 0x12000;
  5528. np->xpcs_off = ~0UL;
  5529. break;
  5530. default:
  5531. dev_err(np->device, PFX "Port %u is invalid, cannot "
  5532. "compute MAC block offset.\n", np->port);
  5533. return -EINVAL;
  5534. }
  5535. return 0;
  5536. }
  5537. static void __devinit niu_try_msix(struct niu *np, u8 *ldg_num_map)
  5538. {
  5539. struct msix_entry msi_vec[NIU_NUM_LDG];
  5540. struct niu_parent *parent = np->parent;
  5541. struct pci_dev *pdev = np->pdev;
  5542. int i, num_irqs, err;
  5543. u8 first_ldg;
  5544. first_ldg = (NIU_NUM_LDG / parent->num_ports) * np->port;
  5545. for (i = 0; i < (NIU_NUM_LDG / parent->num_ports); i++)
  5546. ldg_num_map[i] = first_ldg + i;
  5547. num_irqs = (parent->rxchan_per_port[np->port] +
  5548. parent->txchan_per_port[np->port] +
  5549. (np->port == 0 ? 3 : 1));
  5550. BUG_ON(num_irqs > (NIU_NUM_LDG / parent->num_ports));
  5551. retry:
  5552. for (i = 0; i < num_irqs; i++) {
  5553. msi_vec[i].vector = 0;
  5554. msi_vec[i].entry = i;
  5555. }
  5556. err = pci_enable_msix(pdev, msi_vec, num_irqs);
  5557. if (err < 0) {
  5558. np->flags &= ~NIU_FLAGS_MSIX;
  5559. return;
  5560. }
  5561. if (err > 0) {
  5562. num_irqs = err;
  5563. goto retry;
  5564. }
  5565. np->flags |= NIU_FLAGS_MSIX;
  5566. for (i = 0; i < num_irqs; i++)
  5567. np->ldg[i].irq = msi_vec[i].vector;
  5568. np->num_ldg = num_irqs;
  5569. }
  5570. static int __devinit niu_n2_irq_init(struct niu *np, u8 *ldg_num_map)
  5571. {
  5572. #ifdef CONFIG_SPARC64
  5573. struct of_device *op = np->op;
  5574. const u32 *int_prop;
  5575. int i;
  5576. int_prop = of_get_property(op->node, "interrupts", NULL);
  5577. if (!int_prop)
  5578. return -ENODEV;
  5579. for (i = 0; i < op->num_irqs; i++) {
  5580. ldg_num_map[i] = int_prop[i];
  5581. np->ldg[i].irq = op->irqs[i];
  5582. }
  5583. np->num_ldg = op->num_irqs;
  5584. return 0;
  5585. #else
  5586. return -EINVAL;
  5587. #endif
  5588. }
  5589. static int __devinit niu_ldg_init(struct niu *np)
  5590. {
  5591. struct niu_parent *parent = np->parent;
  5592. u8 ldg_num_map[NIU_NUM_LDG];
  5593. int first_chan, num_chan;
  5594. int i, err, ldg_rotor;
  5595. u8 port;
  5596. np->num_ldg = 1;
  5597. np->ldg[0].irq = np->dev->irq;
  5598. if (parent->plat_type == PLAT_TYPE_NIU) {
  5599. err = niu_n2_irq_init(np, ldg_num_map);
  5600. if (err)
  5601. return err;
  5602. } else
  5603. niu_try_msix(np, ldg_num_map);
  5604. port = np->port;
  5605. for (i = 0; i < np->num_ldg; i++) {
  5606. struct niu_ldg *lp = &np->ldg[i];
  5607. netif_napi_add(np->dev, &lp->napi, niu_poll, 64);
  5608. lp->np = np;
  5609. lp->ldg_num = ldg_num_map[i];
  5610. lp->timer = 2; /* XXX */
  5611. /* On N2 NIU the firmware has setup the SID mappings so they go
  5612. * to the correct values that will route the LDG to the proper
  5613. * interrupt in the NCU interrupt table.
  5614. */
  5615. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  5616. err = niu_set_ldg_sid(np, lp->ldg_num, port, i);
  5617. if (err)
  5618. return err;
  5619. }
  5620. }
  5621. /* We adopt the LDG assignment ordering used by the N2 NIU
  5622. * 'interrupt' properties because that simplifies a lot of
  5623. * things. This ordering is:
  5624. *
  5625. * MAC
  5626. * MIF (if port zero)
  5627. * SYSERR (if port zero)
  5628. * RX channels
  5629. * TX channels
  5630. */
  5631. ldg_rotor = 0;
  5632. err = niu_ldg_assign_ldn(np, parent, ldg_num_map[ldg_rotor],
  5633. LDN_MAC(port));
  5634. if (err)
  5635. return err;
  5636. ldg_rotor++;
  5637. if (ldg_rotor == np->num_ldg)
  5638. ldg_rotor = 0;
  5639. if (port == 0) {
  5640. err = niu_ldg_assign_ldn(np, parent,
  5641. ldg_num_map[ldg_rotor],
  5642. LDN_MIF);
  5643. if (err)
  5644. return err;
  5645. ldg_rotor++;
  5646. if (ldg_rotor == np->num_ldg)
  5647. ldg_rotor = 0;
  5648. err = niu_ldg_assign_ldn(np, parent,
  5649. ldg_num_map[ldg_rotor],
  5650. LDN_DEVICE_ERROR);
  5651. if (err)
  5652. return err;
  5653. ldg_rotor++;
  5654. if (ldg_rotor == np->num_ldg)
  5655. ldg_rotor = 0;
  5656. }
  5657. first_chan = 0;
  5658. for (i = 0; i < port; i++)
  5659. first_chan += parent->rxchan_per_port[port];
  5660. num_chan = parent->rxchan_per_port[port];
  5661. for (i = first_chan; i < (first_chan + num_chan); i++) {
  5662. err = niu_ldg_assign_ldn(np, parent,
  5663. ldg_num_map[ldg_rotor],
  5664. LDN_RXDMA(i));
  5665. if (err)
  5666. return err;
  5667. ldg_rotor++;
  5668. if (ldg_rotor == np->num_ldg)
  5669. ldg_rotor = 0;
  5670. }
  5671. first_chan = 0;
  5672. for (i = 0; i < port; i++)
  5673. first_chan += parent->txchan_per_port[port];
  5674. num_chan = parent->txchan_per_port[port];
  5675. for (i = first_chan; i < (first_chan + num_chan); i++) {
  5676. err = niu_ldg_assign_ldn(np, parent,
  5677. ldg_num_map[ldg_rotor],
  5678. LDN_TXDMA(i));
  5679. if (err)
  5680. return err;
  5681. ldg_rotor++;
  5682. if (ldg_rotor == np->num_ldg)
  5683. ldg_rotor = 0;
  5684. }
  5685. return 0;
  5686. }
  5687. static void __devexit niu_ldg_free(struct niu *np)
  5688. {
  5689. if (np->flags & NIU_FLAGS_MSIX)
  5690. pci_disable_msix(np->pdev);
  5691. }
  5692. static int __devinit niu_get_of_props(struct niu *np)
  5693. {
  5694. #ifdef CONFIG_SPARC64
  5695. struct net_device *dev = np->dev;
  5696. struct device_node *dp;
  5697. const char *phy_type;
  5698. const u8 *mac_addr;
  5699. int prop_len;
  5700. if (np->parent->plat_type == PLAT_TYPE_NIU)
  5701. dp = np->op->node;
  5702. else
  5703. dp = pci_device_to_OF_node(np->pdev);
  5704. phy_type = of_get_property(dp, "phy-type", &prop_len);
  5705. if (!phy_type) {
  5706. dev_err(np->device, PFX "%s: OF node lacks "
  5707. "phy-type property\n",
  5708. dp->full_name);
  5709. return -EINVAL;
  5710. }
  5711. if (!strcmp(phy_type, "none"))
  5712. return -ENODEV;
  5713. strcpy(np->vpd.phy_type, phy_type);
  5714. if (niu_phy_type_prop_decode(np, np->vpd.phy_type)) {
  5715. dev_err(np->device, PFX "%s: Illegal phy string [%s].\n",
  5716. dp->full_name, np->vpd.phy_type);
  5717. return -EINVAL;
  5718. }
  5719. mac_addr = of_get_property(dp, "local-mac-address", &prop_len);
  5720. if (!mac_addr) {
  5721. dev_err(np->device, PFX "%s: OF node lacks "
  5722. "local-mac-address property\n",
  5723. dp->full_name);
  5724. return -EINVAL;
  5725. }
  5726. if (prop_len != dev->addr_len) {
  5727. dev_err(np->device, PFX "%s: OF MAC address prop len (%d) "
  5728. "is wrong.\n",
  5729. dp->full_name, prop_len);
  5730. }
  5731. memcpy(dev->perm_addr, mac_addr, dev->addr_len);
  5732. if (!is_valid_ether_addr(&dev->perm_addr[0])) {
  5733. int i;
  5734. dev_err(np->device, PFX "%s: OF MAC address is invalid\n",
  5735. dp->full_name);
  5736. dev_err(np->device, PFX "%s: [ \n",
  5737. dp->full_name);
  5738. for (i = 0; i < 6; i++)
  5739. printk("%02x ", dev->perm_addr[i]);
  5740. printk("]\n");
  5741. return -EINVAL;
  5742. }
  5743. memcpy(dev->dev_addr, dev->perm_addr, dev->addr_len);
  5744. return 0;
  5745. #else
  5746. return -EINVAL;
  5747. #endif
  5748. }
  5749. static int __devinit niu_get_invariants(struct niu *np)
  5750. {
  5751. int err, have_props;
  5752. u32 offset;
  5753. err = niu_get_of_props(np);
  5754. if (err == -ENODEV)
  5755. return err;
  5756. have_props = !err;
  5757. err = niu_get_and_validate_port(np);
  5758. if (err)
  5759. return err;
  5760. err = niu_init_mac_ipp_pcs_base(np);
  5761. if (err)
  5762. return err;
  5763. if (!have_props) {
  5764. if (np->parent->plat_type == PLAT_TYPE_NIU)
  5765. return -EINVAL;
  5766. nw64(ESPC_PIO_EN, ESPC_PIO_EN_ENABLE);
  5767. offset = niu_pci_vpd_offset(np);
  5768. niudbg(PROBE, "niu_get_invariants: VPD offset [%08x]\n",
  5769. offset);
  5770. if (offset)
  5771. niu_pci_vpd_fetch(np, offset);
  5772. nw64(ESPC_PIO_EN, 0);
  5773. if (np->flags & NIU_FLAGS_VPD_VALID)
  5774. niu_pci_vpd_validate(np);
  5775. if (!(np->flags & NIU_FLAGS_VPD_VALID)) {
  5776. err = niu_pci_probe_sprom(np);
  5777. if (err)
  5778. return err;
  5779. }
  5780. }
  5781. err = niu_probe_ports(np);
  5782. if (err)
  5783. return err;
  5784. niu_ldg_init(np);
  5785. niu_classifier_swstate_init(np);
  5786. niu_link_config_init(np);
  5787. err = niu_determine_phy_disposition(np);
  5788. if (!err)
  5789. err = niu_init_link(np);
  5790. return err;
  5791. }
  5792. static LIST_HEAD(niu_parent_list);
  5793. static DEFINE_MUTEX(niu_parent_lock);
  5794. static int niu_parent_index;
  5795. static ssize_t show_port_phy(struct device *dev,
  5796. struct device_attribute *attr, char *buf)
  5797. {
  5798. struct platform_device *plat_dev = to_platform_device(dev);
  5799. struct niu_parent *p = plat_dev->dev.platform_data;
  5800. u32 port_phy = p->port_phy;
  5801. char *orig_buf = buf;
  5802. int i;
  5803. if (port_phy == PORT_PHY_UNKNOWN ||
  5804. port_phy == PORT_PHY_INVALID)
  5805. return 0;
  5806. for (i = 0; i < p->num_ports; i++) {
  5807. const char *type_str;
  5808. int type;
  5809. type = phy_decode(port_phy, i);
  5810. if (type == PORT_TYPE_10G)
  5811. type_str = "10G";
  5812. else
  5813. type_str = "1G";
  5814. buf += sprintf(buf,
  5815. (i == 0) ? "%s" : " %s",
  5816. type_str);
  5817. }
  5818. buf += sprintf(buf, "\n");
  5819. return buf - orig_buf;
  5820. }
  5821. static ssize_t show_plat_type(struct device *dev,
  5822. struct device_attribute *attr, char *buf)
  5823. {
  5824. struct platform_device *plat_dev = to_platform_device(dev);
  5825. struct niu_parent *p = plat_dev->dev.platform_data;
  5826. const char *type_str;
  5827. switch (p->plat_type) {
  5828. case PLAT_TYPE_ATLAS:
  5829. type_str = "atlas";
  5830. break;
  5831. case PLAT_TYPE_NIU:
  5832. type_str = "niu";
  5833. break;
  5834. case PLAT_TYPE_VF_P0:
  5835. type_str = "vf_p0";
  5836. break;
  5837. case PLAT_TYPE_VF_P1:
  5838. type_str = "vf_p1";
  5839. break;
  5840. default:
  5841. type_str = "unknown";
  5842. break;
  5843. }
  5844. return sprintf(buf, "%s\n", type_str);
  5845. }
  5846. static ssize_t __show_chan_per_port(struct device *dev,
  5847. struct device_attribute *attr, char *buf,
  5848. int rx)
  5849. {
  5850. struct platform_device *plat_dev = to_platform_device(dev);
  5851. struct niu_parent *p = plat_dev->dev.platform_data;
  5852. char *orig_buf = buf;
  5853. u8 *arr;
  5854. int i;
  5855. arr = (rx ? p->rxchan_per_port : p->txchan_per_port);
  5856. for (i = 0; i < p->num_ports; i++) {
  5857. buf += sprintf(buf,
  5858. (i == 0) ? "%d" : " %d",
  5859. arr[i]);
  5860. }
  5861. buf += sprintf(buf, "\n");
  5862. return buf - orig_buf;
  5863. }
  5864. static ssize_t show_rxchan_per_port(struct device *dev,
  5865. struct device_attribute *attr, char *buf)
  5866. {
  5867. return __show_chan_per_port(dev, attr, buf, 1);
  5868. }
  5869. static ssize_t show_txchan_per_port(struct device *dev,
  5870. struct device_attribute *attr, char *buf)
  5871. {
  5872. return __show_chan_per_port(dev, attr, buf, 1);
  5873. }
  5874. static ssize_t show_num_ports(struct device *dev,
  5875. struct device_attribute *attr, char *buf)
  5876. {
  5877. struct platform_device *plat_dev = to_platform_device(dev);
  5878. struct niu_parent *p = plat_dev->dev.platform_data;
  5879. return sprintf(buf, "%d\n", p->num_ports);
  5880. }
  5881. static struct device_attribute niu_parent_attributes[] = {
  5882. __ATTR(port_phy, S_IRUGO, show_port_phy, NULL),
  5883. __ATTR(plat_type, S_IRUGO, show_plat_type, NULL),
  5884. __ATTR(rxchan_per_port, S_IRUGO, show_rxchan_per_port, NULL),
  5885. __ATTR(txchan_per_port, S_IRUGO, show_txchan_per_port, NULL),
  5886. __ATTR(num_ports, S_IRUGO, show_num_ports, NULL),
  5887. {}
  5888. };
  5889. static struct niu_parent * __devinit niu_new_parent(struct niu *np,
  5890. union niu_parent_id *id,
  5891. u8 ptype)
  5892. {
  5893. struct platform_device *plat_dev;
  5894. struct niu_parent *p;
  5895. int i;
  5896. niudbg(PROBE, "niu_new_parent: Creating new parent.\n");
  5897. plat_dev = platform_device_register_simple("niu", niu_parent_index,
  5898. NULL, 0);
  5899. if (!plat_dev)
  5900. return NULL;
  5901. for (i = 0; attr_name(niu_parent_attributes[i]); i++) {
  5902. int err = device_create_file(&plat_dev->dev,
  5903. &niu_parent_attributes[i]);
  5904. if (err)
  5905. goto fail_unregister;
  5906. }
  5907. p = kzalloc(sizeof(*p), GFP_KERNEL);
  5908. if (!p)
  5909. goto fail_unregister;
  5910. p->index = niu_parent_index++;
  5911. plat_dev->dev.platform_data = p;
  5912. p->plat_dev = plat_dev;
  5913. memcpy(&p->id, id, sizeof(*id));
  5914. p->plat_type = ptype;
  5915. INIT_LIST_HEAD(&p->list);
  5916. atomic_set(&p->refcnt, 0);
  5917. list_add(&p->list, &niu_parent_list);
  5918. spin_lock_init(&p->lock);
  5919. p->rxdma_clock_divider = 7500;
  5920. p->tcam_num_entries = NIU_PCI_TCAM_ENTRIES;
  5921. if (p->plat_type == PLAT_TYPE_NIU)
  5922. p->tcam_num_entries = NIU_NONPCI_TCAM_ENTRIES;
  5923. for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_SCTP_IPV6; i++) {
  5924. int index = i - CLASS_CODE_USER_PROG1;
  5925. p->tcam_key[index] = TCAM_KEY_TSEL;
  5926. p->flow_key[index] = (FLOW_KEY_IPSA |
  5927. FLOW_KEY_IPDA |
  5928. FLOW_KEY_PROTO |
  5929. (FLOW_KEY_L4_BYTE12 <<
  5930. FLOW_KEY_L4_0_SHIFT) |
  5931. (FLOW_KEY_L4_BYTE12 <<
  5932. FLOW_KEY_L4_1_SHIFT));
  5933. }
  5934. for (i = 0; i < LDN_MAX + 1; i++)
  5935. p->ldg_map[i] = LDG_INVALID;
  5936. return p;
  5937. fail_unregister:
  5938. platform_device_unregister(plat_dev);
  5939. return NULL;
  5940. }
  5941. static struct niu_parent * __devinit niu_get_parent(struct niu *np,
  5942. union niu_parent_id *id,
  5943. u8 ptype)
  5944. {
  5945. struct niu_parent *p, *tmp;
  5946. int port = np->port;
  5947. niudbg(PROBE, "niu_get_parent: platform_type[%u] port[%u]\n",
  5948. ptype, port);
  5949. mutex_lock(&niu_parent_lock);
  5950. p = NULL;
  5951. list_for_each_entry(tmp, &niu_parent_list, list) {
  5952. if (!memcmp(id, &tmp->id, sizeof(*id))) {
  5953. p = tmp;
  5954. break;
  5955. }
  5956. }
  5957. if (!p)
  5958. p = niu_new_parent(np, id, ptype);
  5959. if (p) {
  5960. char port_name[6];
  5961. int err;
  5962. sprintf(port_name, "port%d", port);
  5963. err = sysfs_create_link(&p->plat_dev->dev.kobj,
  5964. &np->device->kobj,
  5965. port_name);
  5966. if (!err) {
  5967. p->ports[port] = np;
  5968. atomic_inc(&p->refcnt);
  5969. }
  5970. }
  5971. mutex_unlock(&niu_parent_lock);
  5972. return p;
  5973. }
  5974. static void niu_put_parent(struct niu *np)
  5975. {
  5976. struct niu_parent *p = np->parent;
  5977. u8 port = np->port;
  5978. char port_name[6];
  5979. BUG_ON(!p || p->ports[port] != np);
  5980. niudbg(PROBE, "niu_put_parent: port[%u]\n", port);
  5981. sprintf(port_name, "port%d", port);
  5982. mutex_lock(&niu_parent_lock);
  5983. sysfs_remove_link(&p->plat_dev->dev.kobj, port_name);
  5984. p->ports[port] = NULL;
  5985. np->parent = NULL;
  5986. if (atomic_dec_and_test(&p->refcnt)) {
  5987. list_del(&p->list);
  5988. platform_device_unregister(p->plat_dev);
  5989. }
  5990. mutex_unlock(&niu_parent_lock);
  5991. }
  5992. static void *niu_pci_alloc_coherent(struct device *dev, size_t size,
  5993. u64 *handle, gfp_t flag)
  5994. {
  5995. dma_addr_t dh;
  5996. void *ret;
  5997. ret = dma_alloc_coherent(dev, size, &dh, flag);
  5998. if (ret)
  5999. *handle = dh;
  6000. return ret;
  6001. }
  6002. static void niu_pci_free_coherent(struct device *dev, size_t size,
  6003. void *cpu_addr, u64 handle)
  6004. {
  6005. dma_free_coherent(dev, size, cpu_addr, handle);
  6006. }
  6007. static u64 niu_pci_map_page(struct device *dev, struct page *page,
  6008. unsigned long offset, size_t size,
  6009. enum dma_data_direction direction)
  6010. {
  6011. return dma_map_page(dev, page, offset, size, direction);
  6012. }
  6013. static void niu_pci_unmap_page(struct device *dev, u64 dma_address,
  6014. size_t size, enum dma_data_direction direction)
  6015. {
  6016. return dma_unmap_page(dev, dma_address, size, direction);
  6017. }
  6018. static u64 niu_pci_map_single(struct device *dev, void *cpu_addr,
  6019. size_t size,
  6020. enum dma_data_direction direction)
  6021. {
  6022. return dma_map_single(dev, cpu_addr, size, direction);
  6023. }
  6024. static void niu_pci_unmap_single(struct device *dev, u64 dma_address,
  6025. size_t size,
  6026. enum dma_data_direction direction)
  6027. {
  6028. dma_unmap_single(dev, dma_address, size, direction);
  6029. }
  6030. static const struct niu_ops niu_pci_ops = {
  6031. .alloc_coherent = niu_pci_alloc_coherent,
  6032. .free_coherent = niu_pci_free_coherent,
  6033. .map_page = niu_pci_map_page,
  6034. .unmap_page = niu_pci_unmap_page,
  6035. .map_single = niu_pci_map_single,
  6036. .unmap_single = niu_pci_unmap_single,
  6037. };
  6038. static void __devinit niu_driver_version(void)
  6039. {
  6040. static int niu_version_printed;
  6041. if (niu_version_printed++ == 0)
  6042. pr_info("%s", version);
  6043. }
  6044. static struct net_device * __devinit niu_alloc_and_init(
  6045. struct device *gen_dev, struct pci_dev *pdev,
  6046. struct of_device *op, const struct niu_ops *ops,
  6047. u8 port)
  6048. {
  6049. struct net_device *dev = alloc_etherdev(sizeof(struct niu));
  6050. struct niu *np;
  6051. if (!dev) {
  6052. dev_err(gen_dev, PFX "Etherdev alloc failed, aborting.\n");
  6053. return NULL;
  6054. }
  6055. SET_NETDEV_DEV(dev, gen_dev);
  6056. np = netdev_priv(dev);
  6057. np->dev = dev;
  6058. np->pdev = pdev;
  6059. np->op = op;
  6060. np->device = gen_dev;
  6061. np->ops = ops;
  6062. np->msg_enable = niu_debug;
  6063. spin_lock_init(&np->lock);
  6064. INIT_WORK(&np->reset_task, niu_reset_task);
  6065. np->port = port;
  6066. return dev;
  6067. }
  6068. static void __devinit niu_assign_netdev_ops(struct net_device *dev)
  6069. {
  6070. dev->open = niu_open;
  6071. dev->stop = niu_close;
  6072. dev->get_stats = niu_get_stats;
  6073. dev->set_multicast_list = niu_set_rx_mode;
  6074. dev->set_mac_address = niu_set_mac_addr;
  6075. dev->do_ioctl = niu_ioctl;
  6076. dev->tx_timeout = niu_tx_timeout;
  6077. dev->hard_start_xmit = niu_start_xmit;
  6078. dev->ethtool_ops = &niu_ethtool_ops;
  6079. dev->watchdog_timeo = NIU_TX_TIMEOUT;
  6080. dev->change_mtu = niu_change_mtu;
  6081. }
  6082. static void __devinit niu_device_announce(struct niu *np)
  6083. {
  6084. struct net_device *dev = np->dev;
  6085. int i;
  6086. pr_info("%s: NIU Ethernet ", dev->name);
  6087. for (i = 0; i < 6; i++)
  6088. printk("%2.2x%c", dev->dev_addr[i],
  6089. i == 5 ? '\n' : ':');
  6090. pr_info("%s: Port type[%s] mode[%s:%s] XCVR[%s] phy[%s]\n",
  6091. dev->name,
  6092. (np->flags & NIU_FLAGS_XMAC ? "XMAC" : "BMAC"),
  6093. (np->flags & NIU_FLAGS_10G ? "10G" : "1G"),
  6094. (np->flags & NIU_FLAGS_FIBER ? "FIBER" : "COPPER"),
  6095. (np->mac_xcvr == MAC_XCVR_MII ? "MII" :
  6096. (np->mac_xcvr == MAC_XCVR_PCS ? "PCS" : "XPCS")),
  6097. np->vpd.phy_type);
  6098. }
  6099. static int __devinit niu_pci_init_one(struct pci_dev *pdev,
  6100. const struct pci_device_id *ent)
  6101. {
  6102. unsigned long niureg_base, niureg_len;
  6103. union niu_parent_id parent_id;
  6104. struct net_device *dev;
  6105. struct niu *np;
  6106. int err, pos;
  6107. u64 dma_mask;
  6108. u16 val16;
  6109. niu_driver_version();
  6110. err = pci_enable_device(pdev);
  6111. if (err) {
  6112. dev_err(&pdev->dev, PFX "Cannot enable PCI device, "
  6113. "aborting.\n");
  6114. return err;
  6115. }
  6116. if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM) ||
  6117. !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
  6118. dev_err(&pdev->dev, PFX "Cannot find proper PCI device "
  6119. "base addresses, aborting.\n");
  6120. err = -ENODEV;
  6121. goto err_out_disable_pdev;
  6122. }
  6123. err = pci_request_regions(pdev, DRV_MODULE_NAME);
  6124. if (err) {
  6125. dev_err(&pdev->dev, PFX "Cannot obtain PCI resources, "
  6126. "aborting.\n");
  6127. goto err_out_disable_pdev;
  6128. }
  6129. pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
  6130. if (pos <= 0) {
  6131. dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
  6132. "aborting.\n");
  6133. goto err_out_free_res;
  6134. }
  6135. dev = niu_alloc_and_init(&pdev->dev, pdev, NULL,
  6136. &niu_pci_ops, PCI_FUNC(pdev->devfn));
  6137. if (!dev) {
  6138. err = -ENOMEM;
  6139. goto err_out_free_res;
  6140. }
  6141. np = netdev_priv(dev);
  6142. memset(&parent_id, 0, sizeof(parent_id));
  6143. parent_id.pci.domain = pci_domain_nr(pdev->bus);
  6144. parent_id.pci.bus = pdev->bus->number;
  6145. parent_id.pci.device = PCI_SLOT(pdev->devfn);
  6146. np->parent = niu_get_parent(np, &parent_id,
  6147. PLAT_TYPE_ATLAS);
  6148. if (!np->parent) {
  6149. err = -ENOMEM;
  6150. goto err_out_free_dev;
  6151. }
  6152. pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
  6153. val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
  6154. val16 |= (PCI_EXP_DEVCTL_CERE |
  6155. PCI_EXP_DEVCTL_NFERE |
  6156. PCI_EXP_DEVCTL_FERE |
  6157. PCI_EXP_DEVCTL_URRE |
  6158. PCI_EXP_DEVCTL_RELAX_EN);
  6159. pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
  6160. dma_mask = DMA_44BIT_MASK;
  6161. err = pci_set_dma_mask(pdev, dma_mask);
  6162. if (!err) {
  6163. dev->features |= NETIF_F_HIGHDMA;
  6164. err = pci_set_consistent_dma_mask(pdev, dma_mask);
  6165. if (err) {
  6166. dev_err(&pdev->dev, PFX "Unable to obtain 44 bit "
  6167. "DMA for consistent allocations, "
  6168. "aborting.\n");
  6169. goto err_out_release_parent;
  6170. }
  6171. }
  6172. if (err || dma_mask == DMA_32BIT_MASK) {
  6173. err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
  6174. if (err) {
  6175. dev_err(&pdev->dev, PFX "No usable DMA configuration, "
  6176. "aborting.\n");
  6177. goto err_out_release_parent;
  6178. }
  6179. }
  6180. dev->features |= (NETIF_F_SG | NETIF_F_HW_CSUM);
  6181. niureg_base = pci_resource_start(pdev, 0);
  6182. niureg_len = pci_resource_len(pdev, 0);
  6183. np->regs = ioremap_nocache(niureg_base, niureg_len);
  6184. if (!np->regs) {
  6185. dev_err(&pdev->dev, PFX "Cannot map device registers, "
  6186. "aborting.\n");
  6187. err = -ENOMEM;
  6188. goto err_out_release_parent;
  6189. }
  6190. pci_set_master(pdev);
  6191. pci_save_state(pdev);
  6192. dev->irq = pdev->irq;
  6193. niu_assign_netdev_ops(dev);
  6194. err = niu_get_invariants(np);
  6195. if (err) {
  6196. if (err != -ENODEV)
  6197. dev_err(&pdev->dev, PFX "Problem fetching invariants "
  6198. "of chip, aborting.\n");
  6199. goto err_out_iounmap;
  6200. }
  6201. err = register_netdev(dev);
  6202. if (err) {
  6203. dev_err(&pdev->dev, PFX "Cannot register net device, "
  6204. "aborting.\n");
  6205. goto err_out_iounmap;
  6206. }
  6207. pci_set_drvdata(pdev, dev);
  6208. niu_device_announce(np);
  6209. return 0;
  6210. err_out_iounmap:
  6211. if (np->regs) {
  6212. iounmap(np->regs);
  6213. np->regs = NULL;
  6214. }
  6215. err_out_release_parent:
  6216. niu_put_parent(np);
  6217. err_out_free_dev:
  6218. free_netdev(dev);
  6219. err_out_free_res:
  6220. pci_release_regions(pdev);
  6221. err_out_disable_pdev:
  6222. pci_disable_device(pdev);
  6223. pci_set_drvdata(pdev, NULL);
  6224. return err;
  6225. }
  6226. static void __devexit niu_pci_remove_one(struct pci_dev *pdev)
  6227. {
  6228. struct net_device *dev = pci_get_drvdata(pdev);
  6229. if (dev) {
  6230. struct niu *np = netdev_priv(dev);
  6231. unregister_netdev(dev);
  6232. if (np->regs) {
  6233. iounmap(np->regs);
  6234. np->regs = NULL;
  6235. }
  6236. niu_ldg_free(np);
  6237. niu_put_parent(np);
  6238. free_netdev(dev);
  6239. pci_release_regions(pdev);
  6240. pci_disable_device(pdev);
  6241. pci_set_drvdata(pdev, NULL);
  6242. }
  6243. }
  6244. static int niu_suspend(struct pci_dev *pdev, pm_message_t state)
  6245. {
  6246. struct net_device *dev = pci_get_drvdata(pdev);
  6247. struct niu *np = netdev_priv(dev);
  6248. unsigned long flags;
  6249. if (!netif_running(dev))
  6250. return 0;
  6251. flush_scheduled_work();
  6252. niu_netif_stop(np);
  6253. del_timer_sync(&np->timer);
  6254. spin_lock_irqsave(&np->lock, flags);
  6255. niu_enable_interrupts(np, 0);
  6256. spin_unlock_irqrestore(&np->lock, flags);
  6257. netif_device_detach(dev);
  6258. spin_lock_irqsave(&np->lock, flags);
  6259. niu_stop_hw(np);
  6260. spin_unlock_irqrestore(&np->lock, flags);
  6261. pci_save_state(pdev);
  6262. return 0;
  6263. }
  6264. static int niu_resume(struct pci_dev *pdev)
  6265. {
  6266. struct net_device *dev = pci_get_drvdata(pdev);
  6267. struct niu *np = netdev_priv(dev);
  6268. unsigned long flags;
  6269. int err;
  6270. if (!netif_running(dev))
  6271. return 0;
  6272. pci_restore_state(pdev);
  6273. netif_device_attach(dev);
  6274. spin_lock_irqsave(&np->lock, flags);
  6275. err = niu_init_hw(np);
  6276. if (!err) {
  6277. np->timer.expires = jiffies + HZ;
  6278. add_timer(&np->timer);
  6279. niu_netif_start(np);
  6280. }
  6281. spin_unlock_irqrestore(&np->lock, flags);
  6282. return err;
  6283. }
  6284. static struct pci_driver niu_pci_driver = {
  6285. .name = DRV_MODULE_NAME,
  6286. .id_table = niu_pci_tbl,
  6287. .probe = niu_pci_init_one,
  6288. .remove = __devexit_p(niu_pci_remove_one),
  6289. .suspend = niu_suspend,
  6290. .resume = niu_resume,
  6291. };
  6292. #ifdef CONFIG_SPARC64
  6293. static void *niu_phys_alloc_coherent(struct device *dev, size_t size,
  6294. u64 *dma_addr, gfp_t flag)
  6295. {
  6296. unsigned long order = get_order(size);
  6297. unsigned long page = __get_free_pages(flag, order);
  6298. if (page == 0UL)
  6299. return NULL;
  6300. memset((char *)page, 0, PAGE_SIZE << order);
  6301. *dma_addr = __pa(page);
  6302. return (void *) page;
  6303. }
  6304. static void niu_phys_free_coherent(struct device *dev, size_t size,
  6305. void *cpu_addr, u64 handle)
  6306. {
  6307. unsigned long order = get_order(size);
  6308. free_pages((unsigned long) cpu_addr, order);
  6309. }
  6310. static u64 niu_phys_map_page(struct device *dev, struct page *page,
  6311. unsigned long offset, size_t size,
  6312. enum dma_data_direction direction)
  6313. {
  6314. return page_to_phys(page) + offset;
  6315. }
  6316. static void niu_phys_unmap_page(struct device *dev, u64 dma_address,
  6317. size_t size, enum dma_data_direction direction)
  6318. {
  6319. /* Nothing to do. */
  6320. }
  6321. static u64 niu_phys_map_single(struct device *dev, void *cpu_addr,
  6322. size_t size,
  6323. enum dma_data_direction direction)
  6324. {
  6325. return __pa(cpu_addr);
  6326. }
  6327. static void niu_phys_unmap_single(struct device *dev, u64 dma_address,
  6328. size_t size,
  6329. enum dma_data_direction direction)
  6330. {
  6331. /* Nothing to do. */
  6332. }
  6333. static const struct niu_ops niu_phys_ops = {
  6334. .alloc_coherent = niu_phys_alloc_coherent,
  6335. .free_coherent = niu_phys_free_coherent,
  6336. .map_page = niu_phys_map_page,
  6337. .unmap_page = niu_phys_unmap_page,
  6338. .map_single = niu_phys_map_single,
  6339. .unmap_single = niu_phys_unmap_single,
  6340. };
  6341. static unsigned long res_size(struct resource *r)
  6342. {
  6343. return r->end - r->start + 1UL;
  6344. }
  6345. static int __devinit niu_of_probe(struct of_device *op,
  6346. const struct of_device_id *match)
  6347. {
  6348. union niu_parent_id parent_id;
  6349. struct net_device *dev;
  6350. struct niu *np;
  6351. const u32 *reg;
  6352. int err;
  6353. niu_driver_version();
  6354. reg = of_get_property(op->node, "reg", NULL);
  6355. if (!reg) {
  6356. dev_err(&op->dev, PFX "%s: No 'reg' property, aborting.\n",
  6357. op->node->full_name);
  6358. return -ENODEV;
  6359. }
  6360. dev = niu_alloc_and_init(&op->dev, NULL, op,
  6361. &niu_phys_ops, reg[0] & 0x1);
  6362. if (!dev) {
  6363. err = -ENOMEM;
  6364. goto err_out;
  6365. }
  6366. np = netdev_priv(dev);
  6367. memset(&parent_id, 0, sizeof(parent_id));
  6368. parent_id.of = of_get_parent(op->node);
  6369. np->parent = niu_get_parent(np, &parent_id,
  6370. PLAT_TYPE_NIU);
  6371. if (!np->parent) {
  6372. err = -ENOMEM;
  6373. goto err_out_free_dev;
  6374. }
  6375. dev->features |= (NETIF_F_SG | NETIF_F_HW_CSUM);
  6376. np->regs = of_ioremap(&op->resource[1], 0,
  6377. res_size(&op->resource[1]),
  6378. "niu regs");
  6379. if (!np->regs) {
  6380. dev_err(&op->dev, PFX "Cannot map device registers, "
  6381. "aborting.\n");
  6382. err = -ENOMEM;
  6383. goto err_out_release_parent;
  6384. }
  6385. np->vir_regs_1 = of_ioremap(&op->resource[2], 0,
  6386. res_size(&op->resource[2]),
  6387. "niu vregs-1");
  6388. if (!np->vir_regs_1) {
  6389. dev_err(&op->dev, PFX "Cannot map device vir registers 1, "
  6390. "aborting.\n");
  6391. err = -ENOMEM;
  6392. goto err_out_iounmap;
  6393. }
  6394. np->vir_regs_2 = of_ioremap(&op->resource[3], 0,
  6395. res_size(&op->resource[3]),
  6396. "niu vregs-2");
  6397. if (!np->vir_regs_2) {
  6398. dev_err(&op->dev, PFX "Cannot map device vir registers 2, "
  6399. "aborting.\n");
  6400. err = -ENOMEM;
  6401. goto err_out_iounmap;
  6402. }
  6403. niu_assign_netdev_ops(dev);
  6404. err = niu_get_invariants(np);
  6405. if (err) {
  6406. if (err != -ENODEV)
  6407. dev_err(&op->dev, PFX "Problem fetching invariants "
  6408. "of chip, aborting.\n");
  6409. goto err_out_iounmap;
  6410. }
  6411. err = register_netdev(dev);
  6412. if (err) {
  6413. dev_err(&op->dev, PFX "Cannot register net device, "
  6414. "aborting.\n");
  6415. goto err_out_iounmap;
  6416. }
  6417. dev_set_drvdata(&op->dev, dev);
  6418. niu_device_announce(np);
  6419. return 0;
  6420. err_out_iounmap:
  6421. if (np->vir_regs_1) {
  6422. of_iounmap(&op->resource[2], np->vir_regs_1,
  6423. res_size(&op->resource[2]));
  6424. np->vir_regs_1 = NULL;
  6425. }
  6426. if (np->vir_regs_2) {
  6427. of_iounmap(&op->resource[3], np->vir_regs_2,
  6428. res_size(&op->resource[3]));
  6429. np->vir_regs_2 = NULL;
  6430. }
  6431. if (np->regs) {
  6432. of_iounmap(&op->resource[1], np->regs,
  6433. res_size(&op->resource[1]));
  6434. np->regs = NULL;
  6435. }
  6436. err_out_release_parent:
  6437. niu_put_parent(np);
  6438. err_out_free_dev:
  6439. free_netdev(dev);
  6440. err_out:
  6441. return err;
  6442. }
  6443. static int __devexit niu_of_remove(struct of_device *op)
  6444. {
  6445. struct net_device *dev = dev_get_drvdata(&op->dev);
  6446. if (dev) {
  6447. struct niu *np = netdev_priv(dev);
  6448. unregister_netdev(dev);
  6449. if (np->vir_regs_1) {
  6450. of_iounmap(&op->resource[2], np->vir_regs_1,
  6451. res_size(&op->resource[2]));
  6452. np->vir_regs_1 = NULL;
  6453. }
  6454. if (np->vir_regs_2) {
  6455. of_iounmap(&op->resource[3], np->vir_regs_2,
  6456. res_size(&op->resource[3]));
  6457. np->vir_regs_2 = NULL;
  6458. }
  6459. if (np->regs) {
  6460. of_iounmap(&op->resource[1], np->regs,
  6461. res_size(&op->resource[1]));
  6462. np->regs = NULL;
  6463. }
  6464. niu_ldg_free(np);
  6465. niu_put_parent(np);
  6466. free_netdev(dev);
  6467. dev_set_drvdata(&op->dev, NULL);
  6468. }
  6469. return 0;
  6470. }
  6471. static struct of_device_id niu_match[] = {
  6472. {
  6473. .name = "network",
  6474. .compatible = "SUNW,niusl",
  6475. },
  6476. {},
  6477. };
  6478. MODULE_DEVICE_TABLE(of, niu_match);
  6479. static struct of_platform_driver niu_of_driver = {
  6480. .name = "niu",
  6481. .match_table = niu_match,
  6482. .probe = niu_of_probe,
  6483. .remove = __devexit_p(niu_of_remove),
  6484. };
  6485. #endif /* CONFIG_SPARC64 */
  6486. static int __init niu_init(void)
  6487. {
  6488. int err = 0;
  6489. BUILD_BUG_ON((PAGE_SIZE < 4 * 1024) ||
  6490. ((PAGE_SIZE > 32 * 1024) &&
  6491. ((PAGE_SIZE % (32 * 1024)) != 0 &&
  6492. (PAGE_SIZE % (16 * 1024)) != 0 &&
  6493. (PAGE_SIZE % (8 * 1024)) != 0 &&
  6494. (PAGE_SIZE % (4 * 1024)) != 0)));
  6495. niu_debug = netif_msg_init(debug, NIU_MSG_DEFAULT);
  6496. #ifdef CONFIG_SPARC64
  6497. err = of_register_driver(&niu_of_driver, &of_bus_type);
  6498. #endif
  6499. if (!err) {
  6500. err = pci_register_driver(&niu_pci_driver);
  6501. #ifdef CONFIG_SPARC64
  6502. if (err)
  6503. of_unregister_driver(&niu_of_driver);
  6504. #endif
  6505. }
  6506. return err;
  6507. }
  6508. static void __exit niu_exit(void)
  6509. {
  6510. pci_unregister_driver(&niu_pci_driver);
  6511. #ifdef CONFIG_SPARC64
  6512. of_unregister_driver(&niu_of_driver);
  6513. #endif
  6514. }
  6515. module_init(niu_init);
  6516. module_exit(niu_exit);