fs_enet-main.c 33 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519
  1. /*
  2. * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
  3. *
  4. * Copyright (c) 2003 Intracom S.A.
  5. * by Pantelis Antoniou <panto@intracom.gr>
  6. *
  7. * 2005 (c) MontaVista Software, Inc.
  8. * Vitaly Bordug <vbordug@ru.mvista.com>
  9. *
  10. * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
  11. * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
  12. *
  13. * This file is licensed under the terms of the GNU General Public License
  14. * version 2. This program is licensed "as is" without any warranty of any
  15. * kind, whether express or implied.
  16. */
  17. #include <linux/module.h>
  18. #include <linux/kernel.h>
  19. #include <linux/types.h>
  20. #include <linux/string.h>
  21. #include <linux/ptrace.h>
  22. #include <linux/errno.h>
  23. #include <linux/ioport.h>
  24. #include <linux/slab.h>
  25. #include <linux/interrupt.h>
  26. #include <linux/init.h>
  27. #include <linux/delay.h>
  28. #include <linux/netdevice.h>
  29. #include <linux/etherdevice.h>
  30. #include <linux/skbuff.h>
  31. #include <linux/spinlock.h>
  32. #include <linux/mii.h>
  33. #include <linux/ethtool.h>
  34. #include <linux/bitops.h>
  35. #include <linux/fs.h>
  36. #include <linux/platform_device.h>
  37. #include <linux/phy.h>
  38. #include <linux/vmalloc.h>
  39. #include <asm/pgtable.h>
  40. #include <asm/irq.h>
  41. #include <asm/uaccess.h>
  42. #ifdef CONFIG_PPC_CPM_NEW_BINDING
  43. #include <asm/of_platform.h>
  44. #endif
  45. #include "fs_enet.h"
  46. /*************************************************/
  47. #ifndef CONFIG_PPC_CPM_NEW_BINDING
  48. static char version[] __devinitdata =
  49. DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")" "\n";
  50. #endif
  51. MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
  52. MODULE_DESCRIPTION("Freescale Ethernet Driver");
  53. MODULE_LICENSE("GPL");
  54. MODULE_VERSION(DRV_MODULE_VERSION);
  55. static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
  56. module_param(fs_enet_debug, int, 0);
  57. MODULE_PARM_DESC(fs_enet_debug,
  58. "Freescale bitmapped debugging message enable value");
  59. #ifdef CONFIG_NET_POLL_CONTROLLER
  60. static void fs_enet_netpoll(struct net_device *dev);
  61. #endif
  62. static void fs_set_multicast_list(struct net_device *dev)
  63. {
  64. struct fs_enet_private *fep = netdev_priv(dev);
  65. (*fep->ops->set_multicast_list)(dev);
  66. }
  67. static void skb_align(struct sk_buff *skb, int align)
  68. {
  69. int off = ((unsigned long)skb->data) & (align - 1);
  70. if (off)
  71. skb_reserve(skb, align - off);
  72. }
  73. /* NAPI receive function */
  74. static int fs_enet_rx_napi(struct napi_struct *napi, int budget)
  75. {
  76. struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi);
  77. struct net_device *dev = to_net_dev(fep->dev);
  78. const struct fs_platform_info *fpi = fep->fpi;
  79. cbd_t __iomem *bdp;
  80. struct sk_buff *skb, *skbn, *skbt;
  81. int received = 0;
  82. u16 pkt_len, sc;
  83. int curidx;
  84. if (!netif_running(dev))
  85. return 0;
  86. /*
  87. * First, grab all of the stats for the incoming packet.
  88. * These get messed up if we get called due to a busy condition.
  89. */
  90. bdp = fep->cur_rx;
  91. /* clear RX status bits for napi*/
  92. (*fep->ops->napi_clear_rx_event)(dev);
  93. while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
  94. curidx = bdp - fep->rx_bd_base;
  95. /*
  96. * Since we have allocated space to hold a complete frame,
  97. * the last indicator should be set.
  98. */
  99. if ((sc & BD_ENET_RX_LAST) == 0)
  100. printk(KERN_WARNING DRV_MODULE_NAME
  101. ": %s rcv is not +last\n",
  102. dev->name);
  103. /*
  104. * Check for errors.
  105. */
  106. if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
  107. BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
  108. fep->stats.rx_errors++;
  109. /* Frame too long or too short. */
  110. if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
  111. fep->stats.rx_length_errors++;
  112. /* Frame alignment */
  113. if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
  114. fep->stats.rx_frame_errors++;
  115. /* CRC Error */
  116. if (sc & BD_ENET_RX_CR)
  117. fep->stats.rx_crc_errors++;
  118. /* FIFO overrun */
  119. if (sc & BD_ENET_RX_OV)
  120. fep->stats.rx_crc_errors++;
  121. skb = fep->rx_skbuff[curidx];
  122. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  123. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  124. DMA_FROM_DEVICE);
  125. skbn = skb;
  126. } else {
  127. skb = fep->rx_skbuff[curidx];
  128. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  129. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  130. DMA_FROM_DEVICE);
  131. /*
  132. * Process the incoming frame.
  133. */
  134. fep->stats.rx_packets++;
  135. pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
  136. fep->stats.rx_bytes += pkt_len + 4;
  137. if (pkt_len <= fpi->rx_copybreak) {
  138. /* +2 to make IP header L1 cache aligned */
  139. skbn = dev_alloc_skb(pkt_len + 2);
  140. if (skbn != NULL) {
  141. skb_reserve(skbn, 2); /* align IP header */
  142. skb_copy_from_linear_data(skb,
  143. skbn->data, pkt_len);
  144. /* swap */
  145. skbt = skb;
  146. skb = skbn;
  147. skbn = skbt;
  148. }
  149. } else {
  150. skbn = dev_alloc_skb(ENET_RX_FRSIZE);
  151. if (skbn)
  152. skb_align(skbn, ENET_RX_ALIGN);
  153. }
  154. if (skbn != NULL) {
  155. skb_put(skb, pkt_len); /* Make room */
  156. skb->protocol = eth_type_trans(skb, dev);
  157. received++;
  158. netif_receive_skb(skb);
  159. } else {
  160. printk(KERN_WARNING DRV_MODULE_NAME
  161. ": %s Memory squeeze, dropping packet.\n",
  162. dev->name);
  163. fep->stats.rx_dropped++;
  164. skbn = skb;
  165. }
  166. }
  167. fep->rx_skbuff[curidx] = skbn;
  168. CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
  169. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  170. DMA_FROM_DEVICE));
  171. CBDW_DATLEN(bdp, 0);
  172. CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
  173. /*
  174. * Update BD pointer to next entry.
  175. */
  176. if ((sc & BD_ENET_RX_WRAP) == 0)
  177. bdp++;
  178. else
  179. bdp = fep->rx_bd_base;
  180. (*fep->ops->rx_bd_done)(dev);
  181. if (received >= budget)
  182. break;
  183. }
  184. fep->cur_rx = bdp;
  185. if (received >= budget) {
  186. /* done */
  187. netif_rx_complete(dev, napi);
  188. (*fep->ops->napi_enable_rx)(dev);
  189. }
  190. return received;
  191. }
  192. /* non NAPI receive function */
  193. static int fs_enet_rx_non_napi(struct net_device *dev)
  194. {
  195. struct fs_enet_private *fep = netdev_priv(dev);
  196. const struct fs_platform_info *fpi = fep->fpi;
  197. cbd_t __iomem *bdp;
  198. struct sk_buff *skb, *skbn, *skbt;
  199. int received = 0;
  200. u16 pkt_len, sc;
  201. int curidx;
  202. /*
  203. * First, grab all of the stats for the incoming packet.
  204. * These get messed up if we get called due to a busy condition.
  205. */
  206. bdp = fep->cur_rx;
  207. while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
  208. curidx = bdp - fep->rx_bd_base;
  209. /*
  210. * Since we have allocated space to hold a complete frame,
  211. * the last indicator should be set.
  212. */
  213. if ((sc & BD_ENET_RX_LAST) == 0)
  214. printk(KERN_WARNING DRV_MODULE_NAME
  215. ": %s rcv is not +last\n",
  216. dev->name);
  217. /*
  218. * Check for errors.
  219. */
  220. if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
  221. BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
  222. fep->stats.rx_errors++;
  223. /* Frame too long or too short. */
  224. if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
  225. fep->stats.rx_length_errors++;
  226. /* Frame alignment */
  227. if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
  228. fep->stats.rx_frame_errors++;
  229. /* CRC Error */
  230. if (sc & BD_ENET_RX_CR)
  231. fep->stats.rx_crc_errors++;
  232. /* FIFO overrun */
  233. if (sc & BD_ENET_RX_OV)
  234. fep->stats.rx_crc_errors++;
  235. skb = fep->rx_skbuff[curidx];
  236. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  237. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  238. DMA_FROM_DEVICE);
  239. skbn = skb;
  240. } else {
  241. skb = fep->rx_skbuff[curidx];
  242. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  243. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  244. DMA_FROM_DEVICE);
  245. /*
  246. * Process the incoming frame.
  247. */
  248. fep->stats.rx_packets++;
  249. pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
  250. fep->stats.rx_bytes += pkt_len + 4;
  251. if (pkt_len <= fpi->rx_copybreak) {
  252. /* +2 to make IP header L1 cache aligned */
  253. skbn = dev_alloc_skb(pkt_len + 2);
  254. if (skbn != NULL) {
  255. skb_reserve(skbn, 2); /* align IP header */
  256. skb_copy_from_linear_data(skb,
  257. skbn->data, pkt_len);
  258. /* swap */
  259. skbt = skb;
  260. skb = skbn;
  261. skbn = skbt;
  262. }
  263. } else {
  264. skbn = dev_alloc_skb(ENET_RX_FRSIZE);
  265. if (skbn)
  266. skb_align(skbn, ENET_RX_ALIGN);
  267. }
  268. if (skbn != NULL) {
  269. skb_put(skb, pkt_len); /* Make room */
  270. skb->protocol = eth_type_trans(skb, dev);
  271. received++;
  272. netif_rx(skb);
  273. } else {
  274. printk(KERN_WARNING DRV_MODULE_NAME
  275. ": %s Memory squeeze, dropping packet.\n",
  276. dev->name);
  277. fep->stats.rx_dropped++;
  278. skbn = skb;
  279. }
  280. }
  281. fep->rx_skbuff[curidx] = skbn;
  282. CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
  283. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  284. DMA_FROM_DEVICE));
  285. CBDW_DATLEN(bdp, 0);
  286. CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
  287. /*
  288. * Update BD pointer to next entry.
  289. */
  290. if ((sc & BD_ENET_RX_WRAP) == 0)
  291. bdp++;
  292. else
  293. bdp = fep->rx_bd_base;
  294. (*fep->ops->rx_bd_done)(dev);
  295. }
  296. fep->cur_rx = bdp;
  297. return 0;
  298. }
  299. static void fs_enet_tx(struct net_device *dev)
  300. {
  301. struct fs_enet_private *fep = netdev_priv(dev);
  302. cbd_t __iomem *bdp;
  303. struct sk_buff *skb;
  304. int dirtyidx, do_wake, do_restart;
  305. u16 sc;
  306. spin_lock(&fep->tx_lock);
  307. bdp = fep->dirty_tx;
  308. do_wake = do_restart = 0;
  309. while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0) {
  310. dirtyidx = bdp - fep->tx_bd_base;
  311. if (fep->tx_free == fep->tx_ring)
  312. break;
  313. skb = fep->tx_skbuff[dirtyidx];
  314. /*
  315. * Check for errors.
  316. */
  317. if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
  318. BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
  319. if (sc & BD_ENET_TX_HB) /* No heartbeat */
  320. fep->stats.tx_heartbeat_errors++;
  321. if (sc & BD_ENET_TX_LC) /* Late collision */
  322. fep->stats.tx_window_errors++;
  323. if (sc & BD_ENET_TX_RL) /* Retrans limit */
  324. fep->stats.tx_aborted_errors++;
  325. if (sc & BD_ENET_TX_UN) /* Underrun */
  326. fep->stats.tx_fifo_errors++;
  327. if (sc & BD_ENET_TX_CSL) /* Carrier lost */
  328. fep->stats.tx_carrier_errors++;
  329. if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
  330. fep->stats.tx_errors++;
  331. do_restart = 1;
  332. }
  333. } else
  334. fep->stats.tx_packets++;
  335. if (sc & BD_ENET_TX_READY)
  336. printk(KERN_WARNING DRV_MODULE_NAME
  337. ": %s HEY! Enet xmit interrupt and TX_READY.\n",
  338. dev->name);
  339. /*
  340. * Deferred means some collisions occurred during transmit,
  341. * but we eventually sent the packet OK.
  342. */
  343. if (sc & BD_ENET_TX_DEF)
  344. fep->stats.collisions++;
  345. /* unmap */
  346. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  347. skb->len, DMA_TO_DEVICE);
  348. /*
  349. * Free the sk buffer associated with this last transmit.
  350. */
  351. dev_kfree_skb_irq(skb);
  352. fep->tx_skbuff[dirtyidx] = NULL;
  353. /*
  354. * Update pointer to next buffer descriptor to be transmitted.
  355. */
  356. if ((sc & BD_ENET_TX_WRAP) == 0)
  357. bdp++;
  358. else
  359. bdp = fep->tx_bd_base;
  360. /*
  361. * Since we have freed up a buffer, the ring is no longer
  362. * full.
  363. */
  364. if (!fep->tx_free++)
  365. do_wake = 1;
  366. }
  367. fep->dirty_tx = bdp;
  368. if (do_restart)
  369. (*fep->ops->tx_restart)(dev);
  370. spin_unlock(&fep->tx_lock);
  371. if (do_wake)
  372. netif_wake_queue(dev);
  373. }
  374. /*
  375. * The interrupt handler.
  376. * This is called from the MPC core interrupt.
  377. */
  378. static irqreturn_t
  379. fs_enet_interrupt(int irq, void *dev_id)
  380. {
  381. struct net_device *dev = dev_id;
  382. struct fs_enet_private *fep;
  383. const struct fs_platform_info *fpi;
  384. u32 int_events;
  385. u32 int_clr_events;
  386. int nr, napi_ok;
  387. int handled;
  388. fep = netdev_priv(dev);
  389. fpi = fep->fpi;
  390. nr = 0;
  391. while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
  392. nr++;
  393. int_clr_events = int_events;
  394. if (fpi->use_napi)
  395. int_clr_events &= ~fep->ev_napi_rx;
  396. (*fep->ops->clear_int_events)(dev, int_clr_events);
  397. if (int_events & fep->ev_err)
  398. (*fep->ops->ev_error)(dev, int_events);
  399. if (int_events & fep->ev_rx) {
  400. if (!fpi->use_napi)
  401. fs_enet_rx_non_napi(dev);
  402. else {
  403. napi_ok = napi_schedule_prep(&fep->napi);
  404. (*fep->ops->napi_disable_rx)(dev);
  405. (*fep->ops->clear_int_events)(dev, fep->ev_napi_rx);
  406. /* NOTE: it is possible for FCCs in NAPI mode */
  407. /* to submit a spurious interrupt while in poll */
  408. if (napi_ok)
  409. __netif_rx_schedule(dev, &fep->napi);
  410. }
  411. }
  412. if (int_events & fep->ev_tx)
  413. fs_enet_tx(dev);
  414. }
  415. handled = nr > 0;
  416. return IRQ_RETVAL(handled);
  417. }
  418. void fs_init_bds(struct net_device *dev)
  419. {
  420. struct fs_enet_private *fep = netdev_priv(dev);
  421. cbd_t __iomem *bdp;
  422. struct sk_buff *skb;
  423. int i;
  424. fs_cleanup_bds(dev);
  425. fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
  426. fep->tx_free = fep->tx_ring;
  427. fep->cur_rx = fep->rx_bd_base;
  428. /*
  429. * Initialize the receive buffer descriptors.
  430. */
  431. for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
  432. skb = dev_alloc_skb(ENET_RX_FRSIZE);
  433. if (skb == NULL) {
  434. printk(KERN_WARNING DRV_MODULE_NAME
  435. ": %s Memory squeeze, unable to allocate skb\n",
  436. dev->name);
  437. break;
  438. }
  439. skb_align(skb, ENET_RX_ALIGN);
  440. fep->rx_skbuff[i] = skb;
  441. CBDW_BUFADDR(bdp,
  442. dma_map_single(fep->dev, skb->data,
  443. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  444. DMA_FROM_DEVICE));
  445. CBDW_DATLEN(bdp, 0); /* zero */
  446. CBDW_SC(bdp, BD_ENET_RX_EMPTY |
  447. ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
  448. }
  449. /*
  450. * if we failed, fillup remainder
  451. */
  452. for (; i < fep->rx_ring; i++, bdp++) {
  453. fep->rx_skbuff[i] = NULL;
  454. CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
  455. }
  456. /*
  457. * ...and the same for transmit.
  458. */
  459. for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
  460. fep->tx_skbuff[i] = NULL;
  461. CBDW_BUFADDR(bdp, 0);
  462. CBDW_DATLEN(bdp, 0);
  463. CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
  464. }
  465. }
  466. void fs_cleanup_bds(struct net_device *dev)
  467. {
  468. struct fs_enet_private *fep = netdev_priv(dev);
  469. struct sk_buff *skb;
  470. cbd_t __iomem *bdp;
  471. int i;
  472. /*
  473. * Reset SKB transmit buffers.
  474. */
  475. for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
  476. if ((skb = fep->tx_skbuff[i]) == NULL)
  477. continue;
  478. /* unmap */
  479. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  480. skb->len, DMA_TO_DEVICE);
  481. fep->tx_skbuff[i] = NULL;
  482. dev_kfree_skb(skb);
  483. }
  484. /*
  485. * Reset SKB receive buffers
  486. */
  487. for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
  488. if ((skb = fep->rx_skbuff[i]) == NULL)
  489. continue;
  490. /* unmap */
  491. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  492. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  493. DMA_FROM_DEVICE);
  494. fep->rx_skbuff[i] = NULL;
  495. dev_kfree_skb(skb);
  496. }
  497. }
  498. /**********************************************************************************/
  499. static int fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
  500. {
  501. struct fs_enet_private *fep = netdev_priv(dev);
  502. cbd_t __iomem *bdp;
  503. int curidx;
  504. u16 sc;
  505. unsigned long flags;
  506. spin_lock_irqsave(&fep->tx_lock, flags);
  507. /*
  508. * Fill in a Tx ring entry
  509. */
  510. bdp = fep->cur_tx;
  511. if (!fep->tx_free || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
  512. netif_stop_queue(dev);
  513. spin_unlock_irqrestore(&fep->tx_lock, flags);
  514. /*
  515. * Ooops. All transmit buffers are full. Bail out.
  516. * This should not happen, since the tx queue should be stopped.
  517. */
  518. printk(KERN_WARNING DRV_MODULE_NAME
  519. ": %s tx queue full!.\n", dev->name);
  520. return NETDEV_TX_BUSY;
  521. }
  522. curidx = bdp - fep->tx_bd_base;
  523. /*
  524. * Clear all of the status flags.
  525. */
  526. CBDC_SC(bdp, BD_ENET_TX_STATS);
  527. /*
  528. * Save skb pointer.
  529. */
  530. fep->tx_skbuff[curidx] = skb;
  531. fep->stats.tx_bytes += skb->len;
  532. /*
  533. * Push the data cache so the CPM does not get stale memory data.
  534. */
  535. CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
  536. skb->data, skb->len, DMA_TO_DEVICE));
  537. CBDW_DATLEN(bdp, skb->len);
  538. dev->trans_start = jiffies;
  539. /*
  540. * If this was the last BD in the ring, start at the beginning again.
  541. */
  542. if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
  543. fep->cur_tx++;
  544. else
  545. fep->cur_tx = fep->tx_bd_base;
  546. if (!--fep->tx_free)
  547. netif_stop_queue(dev);
  548. /* Trigger transmission start */
  549. sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
  550. BD_ENET_TX_LAST | BD_ENET_TX_TC;
  551. /* note that while FEC does not have this bit
  552. * it marks it as available for software use
  553. * yay for hw reuse :) */
  554. if (skb->len <= 60)
  555. sc |= BD_ENET_TX_PAD;
  556. CBDS_SC(bdp, sc);
  557. (*fep->ops->tx_kickstart)(dev);
  558. spin_unlock_irqrestore(&fep->tx_lock, flags);
  559. return NETDEV_TX_OK;
  560. }
  561. static int fs_request_irq(struct net_device *dev, int irq, const char *name,
  562. irq_handler_t irqf)
  563. {
  564. struct fs_enet_private *fep = netdev_priv(dev);
  565. (*fep->ops->pre_request_irq)(dev, irq);
  566. return request_irq(irq, irqf, IRQF_SHARED, name, dev);
  567. }
  568. static void fs_free_irq(struct net_device *dev, int irq)
  569. {
  570. struct fs_enet_private *fep = netdev_priv(dev);
  571. free_irq(irq, dev);
  572. (*fep->ops->post_free_irq)(dev, irq);
  573. }
  574. static void fs_timeout(struct net_device *dev)
  575. {
  576. struct fs_enet_private *fep = netdev_priv(dev);
  577. unsigned long flags;
  578. int wake = 0;
  579. fep->stats.tx_errors++;
  580. spin_lock_irqsave(&fep->lock, flags);
  581. if (dev->flags & IFF_UP) {
  582. phy_stop(fep->phydev);
  583. (*fep->ops->stop)(dev);
  584. (*fep->ops->restart)(dev);
  585. phy_start(fep->phydev);
  586. }
  587. phy_start(fep->phydev);
  588. wake = fep->tx_free && !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
  589. spin_unlock_irqrestore(&fep->lock, flags);
  590. if (wake)
  591. netif_wake_queue(dev);
  592. }
  593. /*-----------------------------------------------------------------------------
  594. * generic link-change handler - should be sufficient for most cases
  595. *-----------------------------------------------------------------------------*/
  596. static void generic_adjust_link(struct net_device *dev)
  597. {
  598. struct fs_enet_private *fep = netdev_priv(dev);
  599. struct phy_device *phydev = fep->phydev;
  600. int new_state = 0;
  601. if (phydev->link) {
  602. /* adjust to duplex mode */
  603. if (phydev->duplex != fep->oldduplex) {
  604. new_state = 1;
  605. fep->oldduplex = phydev->duplex;
  606. }
  607. if (phydev->speed != fep->oldspeed) {
  608. new_state = 1;
  609. fep->oldspeed = phydev->speed;
  610. }
  611. if (!fep->oldlink) {
  612. new_state = 1;
  613. fep->oldlink = 1;
  614. netif_schedule(dev);
  615. netif_carrier_on(dev);
  616. netif_start_queue(dev);
  617. }
  618. if (new_state)
  619. fep->ops->restart(dev);
  620. } else if (fep->oldlink) {
  621. new_state = 1;
  622. fep->oldlink = 0;
  623. fep->oldspeed = 0;
  624. fep->oldduplex = -1;
  625. netif_carrier_off(dev);
  626. netif_stop_queue(dev);
  627. }
  628. if (new_state && netif_msg_link(fep))
  629. phy_print_status(phydev);
  630. }
  631. static void fs_adjust_link(struct net_device *dev)
  632. {
  633. struct fs_enet_private *fep = netdev_priv(dev);
  634. unsigned long flags;
  635. spin_lock_irqsave(&fep->lock, flags);
  636. if(fep->ops->adjust_link)
  637. fep->ops->adjust_link(dev);
  638. else
  639. generic_adjust_link(dev);
  640. spin_unlock_irqrestore(&fep->lock, flags);
  641. }
  642. static int fs_init_phy(struct net_device *dev)
  643. {
  644. struct fs_enet_private *fep = netdev_priv(dev);
  645. struct phy_device *phydev;
  646. fep->oldlink = 0;
  647. fep->oldspeed = 0;
  648. fep->oldduplex = -1;
  649. if(fep->fpi->bus_id)
  650. phydev = phy_connect(dev, fep->fpi->bus_id, &fs_adjust_link, 0,
  651. PHY_INTERFACE_MODE_MII);
  652. else {
  653. printk("No phy bus ID specified in BSP code\n");
  654. return -EINVAL;
  655. }
  656. if (IS_ERR(phydev)) {
  657. printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
  658. return PTR_ERR(phydev);
  659. }
  660. fep->phydev = phydev;
  661. return 0;
  662. }
  663. static int fs_enet_open(struct net_device *dev)
  664. {
  665. struct fs_enet_private *fep = netdev_priv(dev);
  666. int r;
  667. int err;
  668. napi_enable(&fep->napi);
  669. /* Install our interrupt handler. */
  670. r = fs_request_irq(dev, fep->interrupt, "fs_enet-mac", fs_enet_interrupt);
  671. if (r != 0) {
  672. printk(KERN_ERR DRV_MODULE_NAME
  673. ": %s Could not allocate FS_ENET IRQ!", dev->name);
  674. napi_disable(&fep->napi);
  675. return -EINVAL;
  676. }
  677. err = fs_init_phy(dev);
  678. if(err) {
  679. napi_disable(&fep->napi);
  680. return err;
  681. }
  682. phy_start(fep->phydev);
  683. return 0;
  684. }
  685. static int fs_enet_close(struct net_device *dev)
  686. {
  687. struct fs_enet_private *fep = netdev_priv(dev);
  688. unsigned long flags;
  689. netif_stop_queue(dev);
  690. netif_carrier_off(dev);
  691. napi_disable(&fep->napi);
  692. phy_stop(fep->phydev);
  693. spin_lock_irqsave(&fep->lock, flags);
  694. spin_lock(&fep->tx_lock);
  695. (*fep->ops->stop)(dev);
  696. spin_unlock(&fep->tx_lock);
  697. spin_unlock_irqrestore(&fep->lock, flags);
  698. /* release any irqs */
  699. phy_disconnect(fep->phydev);
  700. fep->phydev = NULL;
  701. fs_free_irq(dev, fep->interrupt);
  702. return 0;
  703. }
  704. static struct net_device_stats *fs_enet_get_stats(struct net_device *dev)
  705. {
  706. struct fs_enet_private *fep = netdev_priv(dev);
  707. return &fep->stats;
  708. }
  709. /*************************************************************************/
  710. static void fs_get_drvinfo(struct net_device *dev,
  711. struct ethtool_drvinfo *info)
  712. {
  713. strcpy(info->driver, DRV_MODULE_NAME);
  714. strcpy(info->version, DRV_MODULE_VERSION);
  715. }
  716. static int fs_get_regs_len(struct net_device *dev)
  717. {
  718. struct fs_enet_private *fep = netdev_priv(dev);
  719. return (*fep->ops->get_regs_len)(dev);
  720. }
  721. static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
  722. void *p)
  723. {
  724. struct fs_enet_private *fep = netdev_priv(dev);
  725. unsigned long flags;
  726. int r, len;
  727. len = regs->len;
  728. spin_lock_irqsave(&fep->lock, flags);
  729. r = (*fep->ops->get_regs)(dev, p, &len);
  730. spin_unlock_irqrestore(&fep->lock, flags);
  731. if (r == 0)
  732. regs->version = 0;
  733. }
  734. static int fs_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  735. {
  736. struct fs_enet_private *fep = netdev_priv(dev);
  737. return phy_ethtool_gset(fep->phydev, cmd);
  738. }
  739. static int fs_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  740. {
  741. struct fs_enet_private *fep = netdev_priv(dev);
  742. phy_ethtool_sset(fep->phydev, cmd);
  743. return 0;
  744. }
  745. static int fs_nway_reset(struct net_device *dev)
  746. {
  747. return 0;
  748. }
  749. static u32 fs_get_msglevel(struct net_device *dev)
  750. {
  751. struct fs_enet_private *fep = netdev_priv(dev);
  752. return fep->msg_enable;
  753. }
  754. static void fs_set_msglevel(struct net_device *dev, u32 value)
  755. {
  756. struct fs_enet_private *fep = netdev_priv(dev);
  757. fep->msg_enable = value;
  758. }
  759. static const struct ethtool_ops fs_ethtool_ops = {
  760. .get_drvinfo = fs_get_drvinfo,
  761. .get_regs_len = fs_get_regs_len,
  762. .get_settings = fs_get_settings,
  763. .set_settings = fs_set_settings,
  764. .nway_reset = fs_nway_reset,
  765. .get_link = ethtool_op_get_link,
  766. .get_msglevel = fs_get_msglevel,
  767. .set_msglevel = fs_set_msglevel,
  768. .set_tx_csum = ethtool_op_set_tx_csum, /* local! */
  769. .set_sg = ethtool_op_set_sg,
  770. .get_regs = fs_get_regs,
  771. };
  772. static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
  773. {
  774. struct fs_enet_private *fep = netdev_priv(dev);
  775. struct mii_ioctl_data *mii = (struct mii_ioctl_data *)&rq->ifr_data;
  776. unsigned long flags;
  777. int rc;
  778. if (!netif_running(dev))
  779. return -EINVAL;
  780. spin_lock_irqsave(&fep->lock, flags);
  781. rc = phy_mii_ioctl(fep->phydev, mii, cmd);
  782. spin_unlock_irqrestore(&fep->lock, flags);
  783. return rc;
  784. }
  785. extern int fs_mii_connect(struct net_device *dev);
  786. extern void fs_mii_disconnect(struct net_device *dev);
  787. #ifndef CONFIG_PPC_CPM_NEW_BINDING
  788. static struct net_device *fs_init_instance(struct device *dev,
  789. struct fs_platform_info *fpi)
  790. {
  791. struct net_device *ndev = NULL;
  792. struct fs_enet_private *fep = NULL;
  793. int privsize, i, r, err = 0, registered = 0;
  794. fpi->fs_no = fs_get_id(fpi);
  795. /* guard */
  796. if ((unsigned int)fpi->fs_no >= FS_MAX_INDEX)
  797. return ERR_PTR(-EINVAL);
  798. privsize = sizeof(*fep) + (sizeof(struct sk_buff **) *
  799. (fpi->rx_ring + fpi->tx_ring));
  800. ndev = alloc_etherdev(privsize);
  801. if (!ndev) {
  802. err = -ENOMEM;
  803. goto err;
  804. }
  805. fep = netdev_priv(ndev);
  806. fep->dev = dev;
  807. dev_set_drvdata(dev, ndev);
  808. fep->fpi = fpi;
  809. if (fpi->init_ioports)
  810. fpi->init_ioports((struct fs_platform_info *)fpi);
  811. #ifdef CONFIG_FS_ENET_HAS_FEC
  812. if (fs_get_fec_index(fpi->fs_no) >= 0)
  813. fep->ops = &fs_fec_ops;
  814. #endif
  815. #ifdef CONFIG_FS_ENET_HAS_SCC
  816. if (fs_get_scc_index(fpi->fs_no) >=0)
  817. fep->ops = &fs_scc_ops;
  818. #endif
  819. #ifdef CONFIG_FS_ENET_HAS_FCC
  820. if (fs_get_fcc_index(fpi->fs_no) >= 0)
  821. fep->ops = &fs_fcc_ops;
  822. #endif
  823. if (fep->ops == NULL) {
  824. printk(KERN_ERR DRV_MODULE_NAME
  825. ": %s No matching ops found (%d).\n",
  826. ndev->name, fpi->fs_no);
  827. err = -EINVAL;
  828. goto err;
  829. }
  830. r = (*fep->ops->setup_data)(ndev);
  831. if (r != 0) {
  832. printk(KERN_ERR DRV_MODULE_NAME
  833. ": %s setup_data failed\n",
  834. ndev->name);
  835. err = r;
  836. goto err;
  837. }
  838. /* point rx_skbuff, tx_skbuff */
  839. fep->rx_skbuff = (struct sk_buff **)&fep[1];
  840. fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
  841. /* init locks */
  842. spin_lock_init(&fep->lock);
  843. spin_lock_init(&fep->tx_lock);
  844. /*
  845. * Set the Ethernet address.
  846. */
  847. for (i = 0; i < 6; i++)
  848. ndev->dev_addr[i] = fpi->macaddr[i];
  849. r = (*fep->ops->allocate_bd)(ndev);
  850. if (fep->ring_base == NULL) {
  851. printk(KERN_ERR DRV_MODULE_NAME
  852. ": %s buffer descriptor alloc failed (%d).\n", ndev->name, r);
  853. err = r;
  854. goto err;
  855. }
  856. /*
  857. * Set receive and transmit descriptor base.
  858. */
  859. fep->rx_bd_base = fep->ring_base;
  860. fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
  861. /* initialize ring size variables */
  862. fep->tx_ring = fpi->tx_ring;
  863. fep->rx_ring = fpi->rx_ring;
  864. /*
  865. * The FEC Ethernet specific entries in the device structure.
  866. */
  867. ndev->open = fs_enet_open;
  868. ndev->hard_start_xmit = fs_enet_start_xmit;
  869. ndev->tx_timeout = fs_timeout;
  870. ndev->watchdog_timeo = 2 * HZ;
  871. ndev->stop = fs_enet_close;
  872. ndev->get_stats = fs_enet_get_stats;
  873. ndev->set_multicast_list = fs_set_multicast_list;
  874. #ifdef CONFIG_NET_POLL_CONTROLLER
  875. ndev->poll_controller = fs_enet_netpoll;
  876. #endif
  877. netif_napi_add(ndev, &fep->napi,
  878. fs_enet_rx_napi, fpi->napi_weight);
  879. ndev->ethtool_ops = &fs_ethtool_ops;
  880. ndev->do_ioctl = fs_ioctl;
  881. init_timer(&fep->phy_timer_list);
  882. netif_carrier_off(ndev);
  883. err = register_netdev(ndev);
  884. if (err != 0) {
  885. printk(KERN_ERR DRV_MODULE_NAME
  886. ": %s register_netdev failed.\n", ndev->name);
  887. goto err;
  888. }
  889. registered = 1;
  890. return ndev;
  891. err:
  892. if (ndev != NULL) {
  893. if (registered)
  894. unregister_netdev(ndev);
  895. if (fep != NULL) {
  896. (*fep->ops->free_bd)(ndev);
  897. (*fep->ops->cleanup_data)(ndev);
  898. }
  899. free_netdev(ndev);
  900. }
  901. dev_set_drvdata(dev, NULL);
  902. return ERR_PTR(err);
  903. }
  904. static int fs_cleanup_instance(struct net_device *ndev)
  905. {
  906. struct fs_enet_private *fep;
  907. const struct fs_platform_info *fpi;
  908. struct device *dev;
  909. if (ndev == NULL)
  910. return -EINVAL;
  911. fep = netdev_priv(ndev);
  912. if (fep == NULL)
  913. return -EINVAL;
  914. fpi = fep->fpi;
  915. unregister_netdev(ndev);
  916. dma_free_coherent(fep->dev, (fpi->tx_ring + fpi->rx_ring) * sizeof(cbd_t),
  917. (void __force *)fep->ring_base, fep->ring_mem_addr);
  918. /* reset it */
  919. (*fep->ops->cleanup_data)(ndev);
  920. dev = fep->dev;
  921. if (dev != NULL) {
  922. dev_set_drvdata(dev, NULL);
  923. fep->dev = NULL;
  924. }
  925. free_netdev(ndev);
  926. return 0;
  927. }
  928. #endif
  929. /**************************************************************************************/
  930. /* handy pointer to the immap */
  931. void __iomem *fs_enet_immap = NULL;
  932. static int setup_immap(void)
  933. {
  934. #ifdef CONFIG_CPM1
  935. fs_enet_immap = ioremap(IMAP_ADDR, 0x4000);
  936. WARN_ON(!fs_enet_immap);
  937. #elif defined(CONFIG_CPM2)
  938. fs_enet_immap = cpm2_immr;
  939. #endif
  940. return 0;
  941. }
  942. static void cleanup_immap(void)
  943. {
  944. #if defined(CONFIG_CPM1)
  945. iounmap(fs_enet_immap);
  946. #endif
  947. }
  948. /**************************************************************************************/
  949. #ifdef CONFIG_PPC_CPM_NEW_BINDING
  950. static int __devinit find_phy(struct device_node *np,
  951. struct fs_platform_info *fpi)
  952. {
  953. struct device_node *phynode, *mdionode;
  954. struct resource res;
  955. int ret = 0, len;
  956. const u32 *data = of_get_property(np, "phy-handle", &len);
  957. if (!data || len != 4)
  958. return -EINVAL;
  959. phynode = of_find_node_by_phandle(*data);
  960. if (!phynode)
  961. return -EINVAL;
  962. mdionode = of_get_parent(phynode);
  963. if (!mdionode)
  964. goto out_put_phy;
  965. ret = of_address_to_resource(mdionode, 0, &res);
  966. if (ret)
  967. goto out_put_mdio;
  968. data = of_get_property(phynode, "reg", &len);
  969. if (!data || len != 4)
  970. goto out_put_mdio;
  971. snprintf(fpi->bus_id, 16, PHY_ID_FMT, res.start, *data);
  972. out_put_mdio:
  973. of_node_put(mdionode);
  974. out_put_phy:
  975. of_node_put(phynode);
  976. return ret;
  977. }
  978. #ifdef CONFIG_FS_ENET_HAS_FEC
  979. #define IS_FEC(match) ((match)->data == &fs_fec_ops)
  980. #else
  981. #define IS_FEC(match) 0
  982. #endif
  983. static int __devinit fs_enet_probe(struct of_device *ofdev,
  984. const struct of_device_id *match)
  985. {
  986. struct net_device *ndev;
  987. struct fs_enet_private *fep;
  988. struct fs_platform_info *fpi;
  989. const u32 *data;
  990. const u8 *mac_addr;
  991. int privsize, len, ret = -ENODEV;
  992. fpi = kzalloc(sizeof(*fpi), GFP_KERNEL);
  993. if (!fpi)
  994. return -ENOMEM;
  995. if (!IS_FEC(match)) {
  996. data = of_get_property(ofdev->node, "fsl,cpm-command", &len);
  997. if (!data || len != 4)
  998. goto out_free_fpi;
  999. fpi->cp_command = *data;
  1000. }
  1001. fpi->rx_ring = 32;
  1002. fpi->tx_ring = 32;
  1003. fpi->rx_copybreak = 240;
  1004. fpi->use_napi = 0;
  1005. fpi->napi_weight = 17;
  1006. ret = find_phy(ofdev->node, fpi);
  1007. if (ret)
  1008. goto out_free_fpi;
  1009. privsize = sizeof(*fep) +
  1010. sizeof(struct sk_buff **) *
  1011. (fpi->rx_ring + fpi->tx_ring);
  1012. ndev = alloc_etherdev(privsize);
  1013. if (!ndev) {
  1014. ret = -ENOMEM;
  1015. goto out_free_fpi;
  1016. }
  1017. SET_MODULE_OWNER(ndev);
  1018. dev_set_drvdata(&ofdev->dev, ndev);
  1019. fep = netdev_priv(ndev);
  1020. fep->dev = &ofdev->dev;
  1021. fep->fpi = fpi;
  1022. fep->ops = match->data;
  1023. ret = fep->ops->setup_data(ndev);
  1024. if (ret)
  1025. goto out_free_dev;
  1026. fep->rx_skbuff = (struct sk_buff **)&fep[1];
  1027. fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
  1028. spin_lock_init(&fep->lock);
  1029. spin_lock_init(&fep->tx_lock);
  1030. mac_addr = of_get_mac_address(ofdev->node);
  1031. if (mac_addr)
  1032. memcpy(ndev->dev_addr, mac_addr, 6);
  1033. ret = fep->ops->allocate_bd(ndev);
  1034. if (ret)
  1035. goto out_cleanup_data;
  1036. fep->rx_bd_base = fep->ring_base;
  1037. fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
  1038. fep->tx_ring = fpi->tx_ring;
  1039. fep->rx_ring = fpi->rx_ring;
  1040. ndev->open = fs_enet_open;
  1041. ndev->hard_start_xmit = fs_enet_start_xmit;
  1042. ndev->tx_timeout = fs_timeout;
  1043. ndev->watchdog_timeo = 2 * HZ;
  1044. ndev->stop = fs_enet_close;
  1045. ndev->get_stats = fs_enet_get_stats;
  1046. ndev->set_multicast_list = fs_set_multicast_list;
  1047. if (fpi->use_napi) {
  1048. ndev->poll = fs_enet_rx_napi;
  1049. ndev->weight = fpi->napi_weight;
  1050. }
  1051. ndev->ethtool_ops = &fs_ethtool_ops;
  1052. ndev->do_ioctl = fs_ioctl;
  1053. init_timer(&fep->phy_timer_list);
  1054. netif_carrier_off(ndev);
  1055. ret = register_netdev(ndev);
  1056. if (ret)
  1057. goto out_free_bd;
  1058. printk(KERN_INFO "%s: fs_enet: %02x:%02x:%02x:%02x:%02x:%02x\n",
  1059. ndev->name,
  1060. ndev->dev_addr[0], ndev->dev_addr[1], ndev->dev_addr[2],
  1061. ndev->dev_addr[3], ndev->dev_addr[4], ndev->dev_addr[5]);
  1062. return 0;
  1063. out_free_bd:
  1064. fep->ops->free_bd(ndev);
  1065. out_cleanup_data:
  1066. fep->ops->cleanup_data(ndev);
  1067. out_free_dev:
  1068. free_netdev(ndev);
  1069. dev_set_drvdata(&ofdev->dev, NULL);
  1070. out_free_fpi:
  1071. kfree(fpi);
  1072. return ret;
  1073. }
  1074. static int fs_enet_remove(struct of_device *ofdev)
  1075. {
  1076. struct net_device *ndev = dev_get_drvdata(&ofdev->dev);
  1077. struct fs_enet_private *fep = netdev_priv(ndev);
  1078. unregister_netdev(ndev);
  1079. fep->ops->free_bd(ndev);
  1080. fep->ops->cleanup_data(ndev);
  1081. dev_set_drvdata(fep->dev, NULL);
  1082. free_netdev(ndev);
  1083. return 0;
  1084. }
  1085. static struct of_device_id fs_enet_match[] = {
  1086. #ifdef CONFIG_FS_ENET_HAS_SCC
  1087. {
  1088. .compatible = "fsl,cpm1-scc-enet",
  1089. .data = (void *)&fs_scc_ops,
  1090. },
  1091. #endif
  1092. #ifdef CONFIG_FS_ENET_HAS_FCC
  1093. {
  1094. .compatible = "fsl,cpm2-fcc-enet",
  1095. .data = (void *)&fs_fcc_ops,
  1096. },
  1097. #endif
  1098. #ifdef CONFIG_FS_ENET_HAS_FEC
  1099. {
  1100. .compatible = "fsl,pq1-fec-enet",
  1101. .data = (void *)&fs_fec_ops,
  1102. },
  1103. #endif
  1104. {}
  1105. };
  1106. static struct of_platform_driver fs_enet_driver = {
  1107. .name = "fs_enet",
  1108. .match_table = fs_enet_match,
  1109. .probe = fs_enet_probe,
  1110. .remove = fs_enet_remove,
  1111. };
  1112. static int __init fs_init(void)
  1113. {
  1114. int r = setup_immap();
  1115. if (r != 0)
  1116. return r;
  1117. r = of_register_platform_driver(&fs_enet_driver);
  1118. if (r != 0)
  1119. goto out;
  1120. return 0;
  1121. out:
  1122. cleanup_immap();
  1123. return r;
  1124. }
  1125. static void __exit fs_cleanup(void)
  1126. {
  1127. of_unregister_platform_driver(&fs_enet_driver);
  1128. cleanup_immap();
  1129. }
  1130. #else
  1131. static int __devinit fs_enet_probe(struct device *dev)
  1132. {
  1133. struct net_device *ndev;
  1134. /* no fixup - no device */
  1135. if (dev->platform_data == NULL) {
  1136. printk(KERN_INFO "fs_enet: "
  1137. "probe called with no platform data; "
  1138. "remove unused devices\n");
  1139. return -ENODEV;
  1140. }
  1141. ndev = fs_init_instance(dev, dev->platform_data);
  1142. if (IS_ERR(ndev))
  1143. return PTR_ERR(ndev);
  1144. return 0;
  1145. }
  1146. static int fs_enet_remove(struct device *dev)
  1147. {
  1148. return fs_cleanup_instance(dev_get_drvdata(dev));
  1149. }
  1150. static struct device_driver fs_enet_fec_driver = {
  1151. .name = "fsl-cpm-fec",
  1152. .bus = &platform_bus_type,
  1153. .probe = fs_enet_probe,
  1154. .remove = fs_enet_remove,
  1155. #ifdef CONFIG_PM
  1156. /* .suspend = fs_enet_suspend, TODO */
  1157. /* .resume = fs_enet_resume, TODO */
  1158. #endif
  1159. };
  1160. static struct device_driver fs_enet_scc_driver = {
  1161. .name = "fsl-cpm-scc",
  1162. .bus = &platform_bus_type,
  1163. .probe = fs_enet_probe,
  1164. .remove = fs_enet_remove,
  1165. #ifdef CONFIG_PM
  1166. /* .suspend = fs_enet_suspend, TODO */
  1167. /* .resume = fs_enet_resume, TODO */
  1168. #endif
  1169. };
  1170. static struct device_driver fs_enet_fcc_driver = {
  1171. .name = "fsl-cpm-fcc",
  1172. .bus = &platform_bus_type,
  1173. .probe = fs_enet_probe,
  1174. .remove = fs_enet_remove,
  1175. #ifdef CONFIG_PM
  1176. /* .suspend = fs_enet_suspend, TODO */
  1177. /* .resume = fs_enet_resume, TODO */
  1178. #endif
  1179. };
  1180. static int __init fs_init(void)
  1181. {
  1182. int r;
  1183. printk(KERN_INFO
  1184. "%s", version);
  1185. r = setup_immap();
  1186. if (r != 0)
  1187. return r;
  1188. #ifdef CONFIG_FS_ENET_HAS_FCC
  1189. /* let's insert mii stuff */
  1190. r = fs_enet_mdio_bb_init();
  1191. if (r != 0) {
  1192. printk(KERN_ERR DRV_MODULE_NAME
  1193. "BB PHY init failed.\n");
  1194. return r;
  1195. }
  1196. r = driver_register(&fs_enet_fcc_driver);
  1197. if (r != 0)
  1198. goto err;
  1199. #endif
  1200. #ifdef CONFIG_FS_ENET_HAS_FEC
  1201. r = fs_enet_mdio_fec_init();
  1202. if (r != 0) {
  1203. printk(KERN_ERR DRV_MODULE_NAME
  1204. "FEC PHY init failed.\n");
  1205. return r;
  1206. }
  1207. r = driver_register(&fs_enet_fec_driver);
  1208. if (r != 0)
  1209. goto err;
  1210. #endif
  1211. #ifdef CONFIG_FS_ENET_HAS_SCC
  1212. r = driver_register(&fs_enet_scc_driver);
  1213. if (r != 0)
  1214. goto err;
  1215. #endif
  1216. return 0;
  1217. err:
  1218. cleanup_immap();
  1219. return r;
  1220. }
  1221. static void __exit fs_cleanup(void)
  1222. {
  1223. driver_unregister(&fs_enet_fec_driver);
  1224. driver_unregister(&fs_enet_fcc_driver);
  1225. driver_unregister(&fs_enet_scc_driver);
  1226. cleanup_immap();
  1227. }
  1228. #endif
  1229. #ifdef CONFIG_NET_POLL_CONTROLLER
  1230. static void fs_enet_netpoll(struct net_device *dev)
  1231. {
  1232. disable_irq(dev->irq);
  1233. fs_enet_interrupt(dev->irq, dev, NULL);
  1234. enable_irq(dev->irq);
  1235. }
  1236. #endif
  1237. /**************************************************************************************/
  1238. module_init(fs_init);
  1239. module_exit(fs_cleanup);