bnx2.c 167 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952
  1. /* bnx2.c: Broadcom NX2 network driver.
  2. *
  3. * Copyright (c) 2004-2007 Broadcom Corporation
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation.
  8. *
  9. * Written by: Michael Chan (mchan@broadcom.com)
  10. */
  11. #include <linux/module.h>
  12. #include <linux/moduleparam.h>
  13. #include <linux/kernel.h>
  14. #include <linux/timer.h>
  15. #include <linux/errno.h>
  16. #include <linux/ioport.h>
  17. #include <linux/slab.h>
  18. #include <linux/vmalloc.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pci.h>
  21. #include <linux/init.h>
  22. #include <linux/netdevice.h>
  23. #include <linux/etherdevice.h>
  24. #include <linux/skbuff.h>
  25. #include <linux/dma-mapping.h>
  26. #include <asm/bitops.h>
  27. #include <asm/io.h>
  28. #include <asm/irq.h>
  29. #include <linux/delay.h>
  30. #include <asm/byteorder.h>
  31. #include <asm/page.h>
  32. #include <linux/time.h>
  33. #include <linux/ethtool.h>
  34. #include <linux/mii.h>
  35. #ifdef NETIF_F_HW_VLAN_TX
  36. #include <linux/if_vlan.h>
  37. #define BCM_VLAN 1
  38. #endif
  39. #include <net/ip.h>
  40. #include <net/tcp.h>
  41. #include <net/checksum.h>
  42. #include <linux/workqueue.h>
  43. #include <linux/crc32.h>
  44. #include <linux/prefetch.h>
  45. #include <linux/cache.h>
  46. #include <linux/zlib.h>
  47. #include "bnx2.h"
  48. #include "bnx2_fw.h"
  49. #include "bnx2_fw2.h"
  50. #define FW_BUF_SIZE 0x8000
  51. #define DRV_MODULE_NAME "bnx2"
  52. #define PFX DRV_MODULE_NAME ": "
  53. #define DRV_MODULE_VERSION "1.6.7"
  54. #define DRV_MODULE_RELDATE "October 10, 2007"
  55. #define RUN_AT(x) (jiffies + (x))
  56. /* Time in jiffies before concluding the transmitter is hung. */
  57. #define TX_TIMEOUT (5*HZ)
  58. static const char version[] __devinitdata =
  59. "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  60. MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
  61. MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708 Driver");
  62. MODULE_LICENSE("GPL");
  63. MODULE_VERSION(DRV_MODULE_VERSION);
  64. static int disable_msi = 0;
  65. module_param(disable_msi, int, 0);
  66. MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
  67. typedef enum {
  68. BCM5706 = 0,
  69. NC370T,
  70. NC370I,
  71. BCM5706S,
  72. NC370F,
  73. BCM5708,
  74. BCM5708S,
  75. BCM5709,
  76. BCM5709S,
  77. } board_t;
  78. /* indexed by board_t, above */
  79. static const struct {
  80. char *name;
  81. } board_info[] __devinitdata = {
  82. { "Broadcom NetXtreme II BCM5706 1000Base-T" },
  83. { "HP NC370T Multifunction Gigabit Server Adapter" },
  84. { "HP NC370i Multifunction Gigabit Server Adapter" },
  85. { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
  86. { "HP NC370F Multifunction Gigabit Server Adapter" },
  87. { "Broadcom NetXtreme II BCM5708 1000Base-T" },
  88. { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
  89. { "Broadcom NetXtreme II BCM5709 1000Base-T" },
  90. { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
  91. };
  92. static struct pci_device_id bnx2_pci_tbl[] = {
  93. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  94. PCI_VENDOR_ID_HP, 0x3101, 0, 0, NC370T },
  95. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  96. PCI_VENDOR_ID_HP, 0x3106, 0, 0, NC370I },
  97. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  98. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706 },
  99. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708,
  100. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708 },
  101. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
  102. PCI_VENDOR_ID_HP, 0x3102, 0, 0, NC370F },
  103. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
  104. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706S },
  105. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708S,
  106. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708S },
  107. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709,
  108. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709 },
  109. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709S,
  110. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709S },
  111. { 0, }
  112. };
  113. static struct flash_spec flash_table[] =
  114. {
  115. #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
  116. #define NONBUFFERED_FLAGS (BNX2_NV_WREN)
  117. /* Slow EEPROM */
  118. {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
  119. BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  120. SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  121. "EEPROM - slow"},
  122. /* Expansion entry 0001 */
  123. {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
  124. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  125. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  126. "Entry 0001"},
  127. /* Saifun SA25F010 (non-buffered flash) */
  128. /* strap, cfg1, & write1 need updates */
  129. {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
  130. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  131. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
  132. "Non-buffered flash (128kB)"},
  133. /* Saifun SA25F020 (non-buffered flash) */
  134. /* strap, cfg1, & write1 need updates */
  135. {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
  136. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  137. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
  138. "Non-buffered flash (256kB)"},
  139. /* Expansion entry 0100 */
  140. {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
  141. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  142. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  143. "Entry 0100"},
  144. /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
  145. {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
  146. NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  147. ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
  148. "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
  149. /* Entry 0110: ST M45PE20 (non-buffered flash)*/
  150. {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
  151. NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  152. ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
  153. "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
  154. /* Saifun SA25F005 (non-buffered flash) */
  155. /* strap, cfg1, & write1 need updates */
  156. {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
  157. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  158. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
  159. "Non-buffered flash (64kB)"},
  160. /* Fast EEPROM */
  161. {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
  162. BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  163. SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  164. "EEPROM - fast"},
  165. /* Expansion entry 1001 */
  166. {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
  167. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  168. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  169. "Entry 1001"},
  170. /* Expansion entry 1010 */
  171. {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
  172. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  173. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  174. "Entry 1010"},
  175. /* ATMEL AT45DB011B (buffered flash) */
  176. {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
  177. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  178. BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
  179. "Buffered flash (128kB)"},
  180. /* Expansion entry 1100 */
  181. {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
  182. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  183. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  184. "Entry 1100"},
  185. /* Expansion entry 1101 */
  186. {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
  187. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  188. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  189. "Entry 1101"},
  190. /* Ateml Expansion entry 1110 */
  191. {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
  192. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  193. BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
  194. "Entry 1110 (Atmel)"},
  195. /* ATMEL AT45DB021B (buffered flash) */
  196. {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
  197. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  198. BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
  199. "Buffered flash (256kB)"},
  200. };
  201. static struct flash_spec flash_5709 = {
  202. .flags = BNX2_NV_BUFFERED,
  203. .page_bits = BCM5709_FLASH_PAGE_BITS,
  204. .page_size = BCM5709_FLASH_PAGE_SIZE,
  205. .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
  206. .total_size = BUFFERED_FLASH_TOTAL_SIZE*2,
  207. .name = "5709 Buffered flash (256kB)",
  208. };
  209. MODULE_DEVICE_TABLE(pci, bnx2_pci_tbl);
  210. static inline u32 bnx2_tx_avail(struct bnx2 *bp)
  211. {
  212. u32 diff;
  213. smp_mb();
  214. /* The ring uses 256 indices for 255 entries, one of them
  215. * needs to be skipped.
  216. */
  217. diff = bp->tx_prod - bp->tx_cons;
  218. if (unlikely(diff >= TX_DESC_CNT)) {
  219. diff &= 0xffff;
  220. if (diff == TX_DESC_CNT)
  221. diff = MAX_TX_DESC_CNT;
  222. }
  223. return (bp->tx_ring_size - diff);
  224. }
  225. static u32
  226. bnx2_reg_rd_ind(struct bnx2 *bp, u32 offset)
  227. {
  228. u32 val;
  229. spin_lock_bh(&bp->indirect_lock);
  230. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
  231. val = REG_RD(bp, BNX2_PCICFG_REG_WINDOW);
  232. spin_unlock_bh(&bp->indirect_lock);
  233. return val;
  234. }
  235. static void
  236. bnx2_reg_wr_ind(struct bnx2 *bp, u32 offset, u32 val)
  237. {
  238. spin_lock_bh(&bp->indirect_lock);
  239. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
  240. REG_WR(bp, BNX2_PCICFG_REG_WINDOW, val);
  241. spin_unlock_bh(&bp->indirect_lock);
  242. }
  243. static void
  244. bnx2_ctx_wr(struct bnx2 *bp, u32 cid_addr, u32 offset, u32 val)
  245. {
  246. offset += cid_addr;
  247. spin_lock_bh(&bp->indirect_lock);
  248. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  249. int i;
  250. REG_WR(bp, BNX2_CTX_CTX_DATA, val);
  251. REG_WR(bp, BNX2_CTX_CTX_CTRL,
  252. offset | BNX2_CTX_CTX_CTRL_WRITE_REQ);
  253. for (i = 0; i < 5; i++) {
  254. u32 val;
  255. val = REG_RD(bp, BNX2_CTX_CTX_CTRL);
  256. if ((val & BNX2_CTX_CTX_CTRL_WRITE_REQ) == 0)
  257. break;
  258. udelay(5);
  259. }
  260. } else {
  261. REG_WR(bp, BNX2_CTX_DATA_ADR, offset);
  262. REG_WR(bp, BNX2_CTX_DATA, val);
  263. }
  264. spin_unlock_bh(&bp->indirect_lock);
  265. }
  266. static int
  267. bnx2_read_phy(struct bnx2 *bp, u32 reg, u32 *val)
  268. {
  269. u32 val1;
  270. int i, ret;
  271. if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) {
  272. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  273. val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  274. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  275. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  276. udelay(40);
  277. }
  278. val1 = (bp->phy_addr << 21) | (reg << 16) |
  279. BNX2_EMAC_MDIO_COMM_COMMAND_READ | BNX2_EMAC_MDIO_COMM_DISEXT |
  280. BNX2_EMAC_MDIO_COMM_START_BUSY;
  281. REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
  282. for (i = 0; i < 50; i++) {
  283. udelay(10);
  284. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  285. if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
  286. udelay(5);
  287. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  288. val1 &= BNX2_EMAC_MDIO_COMM_DATA;
  289. break;
  290. }
  291. }
  292. if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) {
  293. *val = 0x0;
  294. ret = -EBUSY;
  295. }
  296. else {
  297. *val = val1;
  298. ret = 0;
  299. }
  300. if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) {
  301. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  302. val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  303. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  304. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  305. udelay(40);
  306. }
  307. return ret;
  308. }
  309. static int
  310. bnx2_write_phy(struct bnx2 *bp, u32 reg, u32 val)
  311. {
  312. u32 val1;
  313. int i, ret;
  314. if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) {
  315. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  316. val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  317. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  318. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  319. udelay(40);
  320. }
  321. val1 = (bp->phy_addr << 21) | (reg << 16) | val |
  322. BNX2_EMAC_MDIO_COMM_COMMAND_WRITE |
  323. BNX2_EMAC_MDIO_COMM_START_BUSY | BNX2_EMAC_MDIO_COMM_DISEXT;
  324. REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
  325. for (i = 0; i < 50; i++) {
  326. udelay(10);
  327. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  328. if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
  329. udelay(5);
  330. break;
  331. }
  332. }
  333. if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)
  334. ret = -EBUSY;
  335. else
  336. ret = 0;
  337. if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) {
  338. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  339. val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  340. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  341. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  342. udelay(40);
  343. }
  344. return ret;
  345. }
  346. static void
  347. bnx2_disable_int(struct bnx2 *bp)
  348. {
  349. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  350. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  351. REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
  352. }
  353. static void
  354. bnx2_enable_int(struct bnx2 *bp)
  355. {
  356. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  357. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  358. BNX2_PCICFG_INT_ACK_CMD_MASK_INT | bp->last_status_idx);
  359. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  360. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID | bp->last_status_idx);
  361. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
  362. }
  363. static void
  364. bnx2_disable_int_sync(struct bnx2 *bp)
  365. {
  366. atomic_inc(&bp->intr_sem);
  367. bnx2_disable_int(bp);
  368. synchronize_irq(bp->pdev->irq);
  369. }
  370. static void
  371. bnx2_netif_stop(struct bnx2 *bp)
  372. {
  373. bnx2_disable_int_sync(bp);
  374. if (netif_running(bp->dev)) {
  375. napi_disable(&bp->napi);
  376. netif_tx_disable(bp->dev);
  377. bp->dev->trans_start = jiffies; /* prevent tx timeout */
  378. }
  379. }
  380. static void
  381. bnx2_netif_start(struct bnx2 *bp)
  382. {
  383. if (atomic_dec_and_test(&bp->intr_sem)) {
  384. if (netif_running(bp->dev)) {
  385. netif_wake_queue(bp->dev);
  386. napi_enable(&bp->napi);
  387. bnx2_enable_int(bp);
  388. }
  389. }
  390. }
  391. static void
  392. bnx2_free_mem(struct bnx2 *bp)
  393. {
  394. int i;
  395. for (i = 0; i < bp->ctx_pages; i++) {
  396. if (bp->ctx_blk[i]) {
  397. pci_free_consistent(bp->pdev, BCM_PAGE_SIZE,
  398. bp->ctx_blk[i],
  399. bp->ctx_blk_mapping[i]);
  400. bp->ctx_blk[i] = NULL;
  401. }
  402. }
  403. if (bp->status_blk) {
  404. pci_free_consistent(bp->pdev, bp->status_stats_size,
  405. bp->status_blk, bp->status_blk_mapping);
  406. bp->status_blk = NULL;
  407. bp->stats_blk = NULL;
  408. }
  409. if (bp->tx_desc_ring) {
  410. pci_free_consistent(bp->pdev,
  411. sizeof(struct tx_bd) * TX_DESC_CNT,
  412. bp->tx_desc_ring, bp->tx_desc_mapping);
  413. bp->tx_desc_ring = NULL;
  414. }
  415. kfree(bp->tx_buf_ring);
  416. bp->tx_buf_ring = NULL;
  417. for (i = 0; i < bp->rx_max_ring; i++) {
  418. if (bp->rx_desc_ring[i])
  419. pci_free_consistent(bp->pdev,
  420. sizeof(struct rx_bd) * RX_DESC_CNT,
  421. bp->rx_desc_ring[i],
  422. bp->rx_desc_mapping[i]);
  423. bp->rx_desc_ring[i] = NULL;
  424. }
  425. vfree(bp->rx_buf_ring);
  426. bp->rx_buf_ring = NULL;
  427. }
  428. static int
  429. bnx2_alloc_mem(struct bnx2 *bp)
  430. {
  431. int i, status_blk_size;
  432. bp->tx_buf_ring = kzalloc(sizeof(struct sw_bd) * TX_DESC_CNT,
  433. GFP_KERNEL);
  434. if (bp->tx_buf_ring == NULL)
  435. return -ENOMEM;
  436. bp->tx_desc_ring = pci_alloc_consistent(bp->pdev,
  437. sizeof(struct tx_bd) *
  438. TX_DESC_CNT,
  439. &bp->tx_desc_mapping);
  440. if (bp->tx_desc_ring == NULL)
  441. goto alloc_mem_err;
  442. bp->rx_buf_ring = vmalloc(sizeof(struct sw_bd) * RX_DESC_CNT *
  443. bp->rx_max_ring);
  444. if (bp->rx_buf_ring == NULL)
  445. goto alloc_mem_err;
  446. memset(bp->rx_buf_ring, 0, sizeof(struct sw_bd) * RX_DESC_CNT *
  447. bp->rx_max_ring);
  448. for (i = 0; i < bp->rx_max_ring; i++) {
  449. bp->rx_desc_ring[i] =
  450. pci_alloc_consistent(bp->pdev,
  451. sizeof(struct rx_bd) * RX_DESC_CNT,
  452. &bp->rx_desc_mapping[i]);
  453. if (bp->rx_desc_ring[i] == NULL)
  454. goto alloc_mem_err;
  455. }
  456. /* Combine status and statistics blocks into one allocation. */
  457. status_blk_size = L1_CACHE_ALIGN(sizeof(struct status_block));
  458. bp->status_stats_size = status_blk_size +
  459. sizeof(struct statistics_block);
  460. bp->status_blk = pci_alloc_consistent(bp->pdev, bp->status_stats_size,
  461. &bp->status_blk_mapping);
  462. if (bp->status_blk == NULL)
  463. goto alloc_mem_err;
  464. memset(bp->status_blk, 0, bp->status_stats_size);
  465. bp->stats_blk = (void *) ((unsigned long) bp->status_blk +
  466. status_blk_size);
  467. bp->stats_blk_mapping = bp->status_blk_mapping + status_blk_size;
  468. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  469. bp->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
  470. if (bp->ctx_pages == 0)
  471. bp->ctx_pages = 1;
  472. for (i = 0; i < bp->ctx_pages; i++) {
  473. bp->ctx_blk[i] = pci_alloc_consistent(bp->pdev,
  474. BCM_PAGE_SIZE,
  475. &bp->ctx_blk_mapping[i]);
  476. if (bp->ctx_blk[i] == NULL)
  477. goto alloc_mem_err;
  478. }
  479. }
  480. return 0;
  481. alloc_mem_err:
  482. bnx2_free_mem(bp);
  483. return -ENOMEM;
  484. }
  485. static void
  486. bnx2_report_fw_link(struct bnx2 *bp)
  487. {
  488. u32 fw_link_status = 0;
  489. if (bp->phy_flags & REMOTE_PHY_CAP_FLAG)
  490. return;
  491. if (bp->link_up) {
  492. u32 bmsr;
  493. switch (bp->line_speed) {
  494. case SPEED_10:
  495. if (bp->duplex == DUPLEX_HALF)
  496. fw_link_status = BNX2_LINK_STATUS_10HALF;
  497. else
  498. fw_link_status = BNX2_LINK_STATUS_10FULL;
  499. break;
  500. case SPEED_100:
  501. if (bp->duplex == DUPLEX_HALF)
  502. fw_link_status = BNX2_LINK_STATUS_100HALF;
  503. else
  504. fw_link_status = BNX2_LINK_STATUS_100FULL;
  505. break;
  506. case SPEED_1000:
  507. if (bp->duplex == DUPLEX_HALF)
  508. fw_link_status = BNX2_LINK_STATUS_1000HALF;
  509. else
  510. fw_link_status = BNX2_LINK_STATUS_1000FULL;
  511. break;
  512. case SPEED_2500:
  513. if (bp->duplex == DUPLEX_HALF)
  514. fw_link_status = BNX2_LINK_STATUS_2500HALF;
  515. else
  516. fw_link_status = BNX2_LINK_STATUS_2500FULL;
  517. break;
  518. }
  519. fw_link_status |= BNX2_LINK_STATUS_LINK_UP;
  520. if (bp->autoneg) {
  521. fw_link_status |= BNX2_LINK_STATUS_AN_ENABLED;
  522. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  523. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  524. if (!(bmsr & BMSR_ANEGCOMPLETE) ||
  525. bp->phy_flags & PHY_PARALLEL_DETECT_FLAG)
  526. fw_link_status |= BNX2_LINK_STATUS_PARALLEL_DET;
  527. else
  528. fw_link_status |= BNX2_LINK_STATUS_AN_COMPLETE;
  529. }
  530. }
  531. else
  532. fw_link_status = BNX2_LINK_STATUS_LINK_DOWN;
  533. REG_WR_IND(bp, bp->shmem_base + BNX2_LINK_STATUS, fw_link_status);
  534. }
  535. static char *
  536. bnx2_xceiver_str(struct bnx2 *bp)
  537. {
  538. return ((bp->phy_port == PORT_FIBRE) ? "SerDes" :
  539. ((bp->phy_flags & PHY_SERDES_FLAG) ? "Remote Copper" :
  540. "Copper"));
  541. }
  542. static void
  543. bnx2_report_link(struct bnx2 *bp)
  544. {
  545. if (bp->link_up) {
  546. netif_carrier_on(bp->dev);
  547. printk(KERN_INFO PFX "%s NIC %s Link is Up, ", bp->dev->name,
  548. bnx2_xceiver_str(bp));
  549. printk("%d Mbps ", bp->line_speed);
  550. if (bp->duplex == DUPLEX_FULL)
  551. printk("full duplex");
  552. else
  553. printk("half duplex");
  554. if (bp->flow_ctrl) {
  555. if (bp->flow_ctrl & FLOW_CTRL_RX) {
  556. printk(", receive ");
  557. if (bp->flow_ctrl & FLOW_CTRL_TX)
  558. printk("& transmit ");
  559. }
  560. else {
  561. printk(", transmit ");
  562. }
  563. printk("flow control ON");
  564. }
  565. printk("\n");
  566. }
  567. else {
  568. netif_carrier_off(bp->dev);
  569. printk(KERN_ERR PFX "%s NIC %s Link is Down\n", bp->dev->name,
  570. bnx2_xceiver_str(bp));
  571. }
  572. bnx2_report_fw_link(bp);
  573. }
  574. static void
  575. bnx2_resolve_flow_ctrl(struct bnx2 *bp)
  576. {
  577. u32 local_adv, remote_adv;
  578. bp->flow_ctrl = 0;
  579. if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
  580. (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
  581. if (bp->duplex == DUPLEX_FULL) {
  582. bp->flow_ctrl = bp->req_flow_ctrl;
  583. }
  584. return;
  585. }
  586. if (bp->duplex != DUPLEX_FULL) {
  587. return;
  588. }
  589. if ((bp->phy_flags & PHY_SERDES_FLAG) &&
  590. (CHIP_NUM(bp) == CHIP_NUM_5708)) {
  591. u32 val;
  592. bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
  593. if (val & BCM5708S_1000X_STAT1_TX_PAUSE)
  594. bp->flow_ctrl |= FLOW_CTRL_TX;
  595. if (val & BCM5708S_1000X_STAT1_RX_PAUSE)
  596. bp->flow_ctrl |= FLOW_CTRL_RX;
  597. return;
  598. }
  599. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  600. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  601. if (bp->phy_flags & PHY_SERDES_FLAG) {
  602. u32 new_local_adv = 0;
  603. u32 new_remote_adv = 0;
  604. if (local_adv & ADVERTISE_1000XPAUSE)
  605. new_local_adv |= ADVERTISE_PAUSE_CAP;
  606. if (local_adv & ADVERTISE_1000XPSE_ASYM)
  607. new_local_adv |= ADVERTISE_PAUSE_ASYM;
  608. if (remote_adv & ADVERTISE_1000XPAUSE)
  609. new_remote_adv |= ADVERTISE_PAUSE_CAP;
  610. if (remote_adv & ADVERTISE_1000XPSE_ASYM)
  611. new_remote_adv |= ADVERTISE_PAUSE_ASYM;
  612. local_adv = new_local_adv;
  613. remote_adv = new_remote_adv;
  614. }
  615. /* See Table 28B-3 of 802.3ab-1999 spec. */
  616. if (local_adv & ADVERTISE_PAUSE_CAP) {
  617. if(local_adv & ADVERTISE_PAUSE_ASYM) {
  618. if (remote_adv & ADVERTISE_PAUSE_CAP) {
  619. bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
  620. }
  621. else if (remote_adv & ADVERTISE_PAUSE_ASYM) {
  622. bp->flow_ctrl = FLOW_CTRL_RX;
  623. }
  624. }
  625. else {
  626. if (remote_adv & ADVERTISE_PAUSE_CAP) {
  627. bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
  628. }
  629. }
  630. }
  631. else if (local_adv & ADVERTISE_PAUSE_ASYM) {
  632. if ((remote_adv & ADVERTISE_PAUSE_CAP) &&
  633. (remote_adv & ADVERTISE_PAUSE_ASYM)) {
  634. bp->flow_ctrl = FLOW_CTRL_TX;
  635. }
  636. }
  637. }
  638. static int
  639. bnx2_5709s_linkup(struct bnx2 *bp)
  640. {
  641. u32 val, speed;
  642. bp->link_up = 1;
  643. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_GP_STATUS);
  644. bnx2_read_phy(bp, MII_BNX2_GP_TOP_AN_STATUS1, &val);
  645. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  646. if ((bp->autoneg & AUTONEG_SPEED) == 0) {
  647. bp->line_speed = bp->req_line_speed;
  648. bp->duplex = bp->req_duplex;
  649. return 0;
  650. }
  651. speed = val & MII_BNX2_GP_TOP_AN_SPEED_MSK;
  652. switch (speed) {
  653. case MII_BNX2_GP_TOP_AN_SPEED_10:
  654. bp->line_speed = SPEED_10;
  655. break;
  656. case MII_BNX2_GP_TOP_AN_SPEED_100:
  657. bp->line_speed = SPEED_100;
  658. break;
  659. case MII_BNX2_GP_TOP_AN_SPEED_1G:
  660. case MII_BNX2_GP_TOP_AN_SPEED_1GKV:
  661. bp->line_speed = SPEED_1000;
  662. break;
  663. case MII_BNX2_GP_TOP_AN_SPEED_2_5G:
  664. bp->line_speed = SPEED_2500;
  665. break;
  666. }
  667. if (val & MII_BNX2_GP_TOP_AN_FD)
  668. bp->duplex = DUPLEX_FULL;
  669. else
  670. bp->duplex = DUPLEX_HALF;
  671. return 0;
  672. }
  673. static int
  674. bnx2_5708s_linkup(struct bnx2 *bp)
  675. {
  676. u32 val;
  677. bp->link_up = 1;
  678. bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
  679. switch (val & BCM5708S_1000X_STAT1_SPEED_MASK) {
  680. case BCM5708S_1000X_STAT1_SPEED_10:
  681. bp->line_speed = SPEED_10;
  682. break;
  683. case BCM5708S_1000X_STAT1_SPEED_100:
  684. bp->line_speed = SPEED_100;
  685. break;
  686. case BCM5708S_1000X_STAT1_SPEED_1G:
  687. bp->line_speed = SPEED_1000;
  688. break;
  689. case BCM5708S_1000X_STAT1_SPEED_2G5:
  690. bp->line_speed = SPEED_2500;
  691. break;
  692. }
  693. if (val & BCM5708S_1000X_STAT1_FD)
  694. bp->duplex = DUPLEX_FULL;
  695. else
  696. bp->duplex = DUPLEX_HALF;
  697. return 0;
  698. }
  699. static int
  700. bnx2_5706s_linkup(struct bnx2 *bp)
  701. {
  702. u32 bmcr, local_adv, remote_adv, common;
  703. bp->link_up = 1;
  704. bp->line_speed = SPEED_1000;
  705. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  706. if (bmcr & BMCR_FULLDPLX) {
  707. bp->duplex = DUPLEX_FULL;
  708. }
  709. else {
  710. bp->duplex = DUPLEX_HALF;
  711. }
  712. if (!(bmcr & BMCR_ANENABLE)) {
  713. return 0;
  714. }
  715. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  716. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  717. common = local_adv & remote_adv;
  718. if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) {
  719. if (common & ADVERTISE_1000XFULL) {
  720. bp->duplex = DUPLEX_FULL;
  721. }
  722. else {
  723. bp->duplex = DUPLEX_HALF;
  724. }
  725. }
  726. return 0;
  727. }
  728. static int
  729. bnx2_copper_linkup(struct bnx2 *bp)
  730. {
  731. u32 bmcr;
  732. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  733. if (bmcr & BMCR_ANENABLE) {
  734. u32 local_adv, remote_adv, common;
  735. bnx2_read_phy(bp, MII_CTRL1000, &local_adv);
  736. bnx2_read_phy(bp, MII_STAT1000, &remote_adv);
  737. common = local_adv & (remote_adv >> 2);
  738. if (common & ADVERTISE_1000FULL) {
  739. bp->line_speed = SPEED_1000;
  740. bp->duplex = DUPLEX_FULL;
  741. }
  742. else if (common & ADVERTISE_1000HALF) {
  743. bp->line_speed = SPEED_1000;
  744. bp->duplex = DUPLEX_HALF;
  745. }
  746. else {
  747. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  748. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  749. common = local_adv & remote_adv;
  750. if (common & ADVERTISE_100FULL) {
  751. bp->line_speed = SPEED_100;
  752. bp->duplex = DUPLEX_FULL;
  753. }
  754. else if (common & ADVERTISE_100HALF) {
  755. bp->line_speed = SPEED_100;
  756. bp->duplex = DUPLEX_HALF;
  757. }
  758. else if (common & ADVERTISE_10FULL) {
  759. bp->line_speed = SPEED_10;
  760. bp->duplex = DUPLEX_FULL;
  761. }
  762. else if (common & ADVERTISE_10HALF) {
  763. bp->line_speed = SPEED_10;
  764. bp->duplex = DUPLEX_HALF;
  765. }
  766. else {
  767. bp->line_speed = 0;
  768. bp->link_up = 0;
  769. }
  770. }
  771. }
  772. else {
  773. if (bmcr & BMCR_SPEED100) {
  774. bp->line_speed = SPEED_100;
  775. }
  776. else {
  777. bp->line_speed = SPEED_10;
  778. }
  779. if (bmcr & BMCR_FULLDPLX) {
  780. bp->duplex = DUPLEX_FULL;
  781. }
  782. else {
  783. bp->duplex = DUPLEX_HALF;
  784. }
  785. }
  786. return 0;
  787. }
  788. static int
  789. bnx2_set_mac_link(struct bnx2 *bp)
  790. {
  791. u32 val;
  792. REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x2620);
  793. if (bp->link_up && (bp->line_speed == SPEED_1000) &&
  794. (bp->duplex == DUPLEX_HALF)) {
  795. REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x26ff);
  796. }
  797. /* Configure the EMAC mode register. */
  798. val = REG_RD(bp, BNX2_EMAC_MODE);
  799. val &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
  800. BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
  801. BNX2_EMAC_MODE_25G_MODE);
  802. if (bp->link_up) {
  803. switch (bp->line_speed) {
  804. case SPEED_10:
  805. if (CHIP_NUM(bp) != CHIP_NUM_5706) {
  806. val |= BNX2_EMAC_MODE_PORT_MII_10M;
  807. break;
  808. }
  809. /* fall through */
  810. case SPEED_100:
  811. val |= BNX2_EMAC_MODE_PORT_MII;
  812. break;
  813. case SPEED_2500:
  814. val |= BNX2_EMAC_MODE_25G_MODE;
  815. /* fall through */
  816. case SPEED_1000:
  817. val |= BNX2_EMAC_MODE_PORT_GMII;
  818. break;
  819. }
  820. }
  821. else {
  822. val |= BNX2_EMAC_MODE_PORT_GMII;
  823. }
  824. /* Set the MAC to operate in the appropriate duplex mode. */
  825. if (bp->duplex == DUPLEX_HALF)
  826. val |= BNX2_EMAC_MODE_HALF_DUPLEX;
  827. REG_WR(bp, BNX2_EMAC_MODE, val);
  828. /* Enable/disable rx PAUSE. */
  829. bp->rx_mode &= ~BNX2_EMAC_RX_MODE_FLOW_EN;
  830. if (bp->flow_ctrl & FLOW_CTRL_RX)
  831. bp->rx_mode |= BNX2_EMAC_RX_MODE_FLOW_EN;
  832. REG_WR(bp, BNX2_EMAC_RX_MODE, bp->rx_mode);
  833. /* Enable/disable tx PAUSE. */
  834. val = REG_RD(bp, BNX2_EMAC_TX_MODE);
  835. val &= ~BNX2_EMAC_TX_MODE_FLOW_EN;
  836. if (bp->flow_ctrl & FLOW_CTRL_TX)
  837. val |= BNX2_EMAC_TX_MODE_FLOW_EN;
  838. REG_WR(bp, BNX2_EMAC_TX_MODE, val);
  839. /* Acknowledge the interrupt. */
  840. REG_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE);
  841. return 0;
  842. }
  843. static void
  844. bnx2_enable_bmsr1(struct bnx2 *bp)
  845. {
  846. if ((bp->phy_flags & PHY_SERDES_FLAG) &&
  847. (CHIP_NUM(bp) == CHIP_NUM_5709))
  848. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  849. MII_BNX2_BLK_ADDR_GP_STATUS);
  850. }
  851. static void
  852. bnx2_disable_bmsr1(struct bnx2 *bp)
  853. {
  854. if ((bp->phy_flags & PHY_SERDES_FLAG) &&
  855. (CHIP_NUM(bp) == CHIP_NUM_5709))
  856. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  857. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  858. }
  859. static int
  860. bnx2_test_and_enable_2g5(struct bnx2 *bp)
  861. {
  862. u32 up1;
  863. int ret = 1;
  864. if (!(bp->phy_flags & PHY_2_5G_CAPABLE_FLAG))
  865. return 0;
  866. if (bp->autoneg & AUTONEG_SPEED)
  867. bp->advertising |= ADVERTISED_2500baseX_Full;
  868. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  869. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  870. bnx2_read_phy(bp, bp->mii_up1, &up1);
  871. if (!(up1 & BCM5708S_UP1_2G5)) {
  872. up1 |= BCM5708S_UP1_2G5;
  873. bnx2_write_phy(bp, bp->mii_up1, up1);
  874. ret = 0;
  875. }
  876. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  877. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  878. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  879. return ret;
  880. }
  881. static int
  882. bnx2_test_and_disable_2g5(struct bnx2 *bp)
  883. {
  884. u32 up1;
  885. int ret = 0;
  886. if (!(bp->phy_flags & PHY_2_5G_CAPABLE_FLAG))
  887. return 0;
  888. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  889. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  890. bnx2_read_phy(bp, bp->mii_up1, &up1);
  891. if (up1 & BCM5708S_UP1_2G5) {
  892. up1 &= ~BCM5708S_UP1_2G5;
  893. bnx2_write_phy(bp, bp->mii_up1, up1);
  894. ret = 1;
  895. }
  896. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  897. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  898. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  899. return ret;
  900. }
  901. static void
  902. bnx2_enable_forced_2g5(struct bnx2 *bp)
  903. {
  904. u32 bmcr;
  905. if (!(bp->phy_flags & PHY_2_5G_CAPABLE_FLAG))
  906. return;
  907. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  908. u32 val;
  909. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  910. MII_BNX2_BLK_ADDR_SERDES_DIG);
  911. bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
  912. val &= ~MII_BNX2_SD_MISC1_FORCE_MSK;
  913. val |= MII_BNX2_SD_MISC1_FORCE | MII_BNX2_SD_MISC1_FORCE_2_5G;
  914. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
  915. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  916. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  917. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  918. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  919. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  920. bmcr |= BCM5708S_BMCR_FORCE_2500;
  921. }
  922. if (bp->autoneg & AUTONEG_SPEED) {
  923. bmcr &= ~BMCR_ANENABLE;
  924. if (bp->req_duplex == DUPLEX_FULL)
  925. bmcr |= BMCR_FULLDPLX;
  926. }
  927. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  928. }
  929. static void
  930. bnx2_disable_forced_2g5(struct bnx2 *bp)
  931. {
  932. u32 bmcr;
  933. if (!(bp->phy_flags & PHY_2_5G_CAPABLE_FLAG))
  934. return;
  935. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  936. u32 val;
  937. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  938. MII_BNX2_BLK_ADDR_SERDES_DIG);
  939. bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
  940. val &= ~MII_BNX2_SD_MISC1_FORCE;
  941. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
  942. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  943. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  944. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  945. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  946. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  947. bmcr &= ~BCM5708S_BMCR_FORCE_2500;
  948. }
  949. if (bp->autoneg & AUTONEG_SPEED)
  950. bmcr |= BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_ANRESTART;
  951. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  952. }
  953. static int
  954. bnx2_set_link(struct bnx2 *bp)
  955. {
  956. u32 bmsr;
  957. u8 link_up;
  958. if (bp->loopback == MAC_LOOPBACK || bp->loopback == PHY_LOOPBACK) {
  959. bp->link_up = 1;
  960. return 0;
  961. }
  962. if (bp->phy_flags & REMOTE_PHY_CAP_FLAG)
  963. return 0;
  964. link_up = bp->link_up;
  965. bnx2_enable_bmsr1(bp);
  966. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  967. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  968. bnx2_disable_bmsr1(bp);
  969. if ((bp->phy_flags & PHY_SERDES_FLAG) &&
  970. (CHIP_NUM(bp) == CHIP_NUM_5706)) {
  971. u32 val;
  972. val = REG_RD(bp, BNX2_EMAC_STATUS);
  973. if (val & BNX2_EMAC_STATUS_LINK)
  974. bmsr |= BMSR_LSTATUS;
  975. else
  976. bmsr &= ~BMSR_LSTATUS;
  977. }
  978. if (bmsr & BMSR_LSTATUS) {
  979. bp->link_up = 1;
  980. if (bp->phy_flags & PHY_SERDES_FLAG) {
  981. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  982. bnx2_5706s_linkup(bp);
  983. else if (CHIP_NUM(bp) == CHIP_NUM_5708)
  984. bnx2_5708s_linkup(bp);
  985. else if (CHIP_NUM(bp) == CHIP_NUM_5709)
  986. bnx2_5709s_linkup(bp);
  987. }
  988. else {
  989. bnx2_copper_linkup(bp);
  990. }
  991. bnx2_resolve_flow_ctrl(bp);
  992. }
  993. else {
  994. if ((bp->phy_flags & PHY_SERDES_FLAG) &&
  995. (bp->autoneg & AUTONEG_SPEED))
  996. bnx2_disable_forced_2g5(bp);
  997. bp->phy_flags &= ~PHY_PARALLEL_DETECT_FLAG;
  998. bp->link_up = 0;
  999. }
  1000. if (bp->link_up != link_up) {
  1001. bnx2_report_link(bp);
  1002. }
  1003. bnx2_set_mac_link(bp);
  1004. return 0;
  1005. }
  1006. static int
  1007. bnx2_reset_phy(struct bnx2 *bp)
  1008. {
  1009. int i;
  1010. u32 reg;
  1011. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_RESET);
  1012. #define PHY_RESET_MAX_WAIT 100
  1013. for (i = 0; i < PHY_RESET_MAX_WAIT; i++) {
  1014. udelay(10);
  1015. bnx2_read_phy(bp, bp->mii_bmcr, &reg);
  1016. if (!(reg & BMCR_RESET)) {
  1017. udelay(20);
  1018. break;
  1019. }
  1020. }
  1021. if (i == PHY_RESET_MAX_WAIT) {
  1022. return -EBUSY;
  1023. }
  1024. return 0;
  1025. }
  1026. static u32
  1027. bnx2_phy_get_pause_adv(struct bnx2 *bp)
  1028. {
  1029. u32 adv = 0;
  1030. if ((bp->req_flow_ctrl & (FLOW_CTRL_RX | FLOW_CTRL_TX)) ==
  1031. (FLOW_CTRL_RX | FLOW_CTRL_TX)) {
  1032. if (bp->phy_flags & PHY_SERDES_FLAG) {
  1033. adv = ADVERTISE_1000XPAUSE;
  1034. }
  1035. else {
  1036. adv = ADVERTISE_PAUSE_CAP;
  1037. }
  1038. }
  1039. else if (bp->req_flow_ctrl & FLOW_CTRL_TX) {
  1040. if (bp->phy_flags & PHY_SERDES_FLAG) {
  1041. adv = ADVERTISE_1000XPSE_ASYM;
  1042. }
  1043. else {
  1044. adv = ADVERTISE_PAUSE_ASYM;
  1045. }
  1046. }
  1047. else if (bp->req_flow_ctrl & FLOW_CTRL_RX) {
  1048. if (bp->phy_flags & PHY_SERDES_FLAG) {
  1049. adv = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
  1050. }
  1051. else {
  1052. adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  1053. }
  1054. }
  1055. return adv;
  1056. }
  1057. static int bnx2_fw_sync(struct bnx2 *, u32, int);
  1058. static int
  1059. bnx2_setup_remote_phy(struct bnx2 *bp, u8 port)
  1060. {
  1061. u32 speed_arg = 0, pause_adv;
  1062. pause_adv = bnx2_phy_get_pause_adv(bp);
  1063. if (bp->autoneg & AUTONEG_SPEED) {
  1064. speed_arg |= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG;
  1065. if (bp->advertising & ADVERTISED_10baseT_Half)
  1066. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10HALF;
  1067. if (bp->advertising & ADVERTISED_10baseT_Full)
  1068. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10FULL;
  1069. if (bp->advertising & ADVERTISED_100baseT_Half)
  1070. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100HALF;
  1071. if (bp->advertising & ADVERTISED_100baseT_Full)
  1072. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100FULL;
  1073. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1074. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
  1075. if (bp->advertising & ADVERTISED_2500baseX_Full)
  1076. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
  1077. } else {
  1078. if (bp->req_line_speed == SPEED_2500)
  1079. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
  1080. else if (bp->req_line_speed == SPEED_1000)
  1081. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
  1082. else if (bp->req_line_speed == SPEED_100) {
  1083. if (bp->req_duplex == DUPLEX_FULL)
  1084. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100FULL;
  1085. else
  1086. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100HALF;
  1087. } else if (bp->req_line_speed == SPEED_10) {
  1088. if (bp->req_duplex == DUPLEX_FULL)
  1089. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10FULL;
  1090. else
  1091. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10HALF;
  1092. }
  1093. }
  1094. if (pause_adv & (ADVERTISE_1000XPAUSE | ADVERTISE_PAUSE_CAP))
  1095. speed_arg |= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE;
  1096. if (pause_adv & (ADVERTISE_1000XPSE_ASYM | ADVERTISE_1000XPSE_ASYM))
  1097. speed_arg |= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE;
  1098. if (port == PORT_TP)
  1099. speed_arg |= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE |
  1100. BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED;
  1101. REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_MB_ARG0, speed_arg);
  1102. spin_unlock_bh(&bp->phy_lock);
  1103. bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_CMD_SET_LINK, 0);
  1104. spin_lock_bh(&bp->phy_lock);
  1105. return 0;
  1106. }
  1107. static int
  1108. bnx2_setup_serdes_phy(struct bnx2 *bp, u8 port)
  1109. {
  1110. u32 adv, bmcr;
  1111. u32 new_adv = 0;
  1112. if (bp->phy_flags & REMOTE_PHY_CAP_FLAG)
  1113. return (bnx2_setup_remote_phy(bp, port));
  1114. if (!(bp->autoneg & AUTONEG_SPEED)) {
  1115. u32 new_bmcr;
  1116. int force_link_down = 0;
  1117. if (bp->req_line_speed == SPEED_2500) {
  1118. if (!bnx2_test_and_enable_2g5(bp))
  1119. force_link_down = 1;
  1120. } else if (bp->req_line_speed == SPEED_1000) {
  1121. if (bnx2_test_and_disable_2g5(bp))
  1122. force_link_down = 1;
  1123. }
  1124. bnx2_read_phy(bp, bp->mii_adv, &adv);
  1125. adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF);
  1126. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1127. new_bmcr = bmcr & ~BMCR_ANENABLE;
  1128. new_bmcr |= BMCR_SPEED1000;
  1129. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1130. if (bp->req_line_speed == SPEED_2500)
  1131. bnx2_enable_forced_2g5(bp);
  1132. else if (bp->req_line_speed == SPEED_1000) {
  1133. bnx2_disable_forced_2g5(bp);
  1134. new_bmcr &= ~0x2000;
  1135. }
  1136. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  1137. if (bp->req_line_speed == SPEED_2500)
  1138. new_bmcr |= BCM5708S_BMCR_FORCE_2500;
  1139. else
  1140. new_bmcr = bmcr & ~BCM5708S_BMCR_FORCE_2500;
  1141. }
  1142. if (bp->req_duplex == DUPLEX_FULL) {
  1143. adv |= ADVERTISE_1000XFULL;
  1144. new_bmcr |= BMCR_FULLDPLX;
  1145. }
  1146. else {
  1147. adv |= ADVERTISE_1000XHALF;
  1148. new_bmcr &= ~BMCR_FULLDPLX;
  1149. }
  1150. if ((new_bmcr != bmcr) || (force_link_down)) {
  1151. /* Force a link down visible on the other side */
  1152. if (bp->link_up) {
  1153. bnx2_write_phy(bp, bp->mii_adv, adv &
  1154. ~(ADVERTISE_1000XFULL |
  1155. ADVERTISE_1000XHALF));
  1156. bnx2_write_phy(bp, bp->mii_bmcr, bmcr |
  1157. BMCR_ANRESTART | BMCR_ANENABLE);
  1158. bp->link_up = 0;
  1159. netif_carrier_off(bp->dev);
  1160. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1161. bnx2_report_link(bp);
  1162. }
  1163. bnx2_write_phy(bp, bp->mii_adv, adv);
  1164. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1165. } else {
  1166. bnx2_resolve_flow_ctrl(bp);
  1167. bnx2_set_mac_link(bp);
  1168. }
  1169. return 0;
  1170. }
  1171. bnx2_test_and_enable_2g5(bp);
  1172. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1173. new_adv |= ADVERTISE_1000XFULL;
  1174. new_adv |= bnx2_phy_get_pause_adv(bp);
  1175. bnx2_read_phy(bp, bp->mii_adv, &adv);
  1176. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1177. bp->serdes_an_pending = 0;
  1178. if ((adv != new_adv) || ((bmcr & BMCR_ANENABLE) == 0)) {
  1179. /* Force a link down visible on the other side */
  1180. if (bp->link_up) {
  1181. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  1182. spin_unlock_bh(&bp->phy_lock);
  1183. msleep(20);
  1184. spin_lock_bh(&bp->phy_lock);
  1185. }
  1186. bnx2_write_phy(bp, bp->mii_adv, new_adv);
  1187. bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART |
  1188. BMCR_ANENABLE);
  1189. /* Speed up link-up time when the link partner
  1190. * does not autonegotiate which is very common
  1191. * in blade servers. Some blade servers use
  1192. * IPMI for kerboard input and it's important
  1193. * to minimize link disruptions. Autoneg. involves
  1194. * exchanging base pages plus 3 next pages and
  1195. * normally completes in about 120 msec.
  1196. */
  1197. bp->current_interval = SERDES_AN_TIMEOUT;
  1198. bp->serdes_an_pending = 1;
  1199. mod_timer(&bp->timer, jiffies + bp->current_interval);
  1200. } else {
  1201. bnx2_resolve_flow_ctrl(bp);
  1202. bnx2_set_mac_link(bp);
  1203. }
  1204. return 0;
  1205. }
  1206. #define ETHTOOL_ALL_FIBRE_SPEED \
  1207. (bp->phy_flags & PHY_2_5G_CAPABLE_FLAG) ? \
  1208. (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
  1209. (ADVERTISED_1000baseT_Full)
  1210. #define ETHTOOL_ALL_COPPER_SPEED \
  1211. (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
  1212. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
  1213. ADVERTISED_1000baseT_Full)
  1214. #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
  1215. ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
  1216. #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
  1217. static void
  1218. bnx2_set_default_remote_link(struct bnx2 *bp)
  1219. {
  1220. u32 link;
  1221. if (bp->phy_port == PORT_TP)
  1222. link = REG_RD_IND(bp, bp->shmem_base + BNX2_RPHY_COPPER_LINK);
  1223. else
  1224. link = REG_RD_IND(bp, bp->shmem_base + BNX2_RPHY_SERDES_LINK);
  1225. if (link & BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG) {
  1226. bp->req_line_speed = 0;
  1227. bp->autoneg |= AUTONEG_SPEED;
  1228. bp->advertising = ADVERTISED_Autoneg;
  1229. if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
  1230. bp->advertising |= ADVERTISED_10baseT_Half;
  1231. if (link & BNX2_NETLINK_SET_LINK_SPEED_10FULL)
  1232. bp->advertising |= ADVERTISED_10baseT_Full;
  1233. if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
  1234. bp->advertising |= ADVERTISED_100baseT_Half;
  1235. if (link & BNX2_NETLINK_SET_LINK_SPEED_100FULL)
  1236. bp->advertising |= ADVERTISED_100baseT_Full;
  1237. if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
  1238. bp->advertising |= ADVERTISED_1000baseT_Full;
  1239. if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
  1240. bp->advertising |= ADVERTISED_2500baseX_Full;
  1241. } else {
  1242. bp->autoneg = 0;
  1243. bp->advertising = 0;
  1244. bp->req_duplex = DUPLEX_FULL;
  1245. if (link & BNX2_NETLINK_SET_LINK_SPEED_10) {
  1246. bp->req_line_speed = SPEED_10;
  1247. if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
  1248. bp->req_duplex = DUPLEX_HALF;
  1249. }
  1250. if (link & BNX2_NETLINK_SET_LINK_SPEED_100) {
  1251. bp->req_line_speed = SPEED_100;
  1252. if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
  1253. bp->req_duplex = DUPLEX_HALF;
  1254. }
  1255. if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
  1256. bp->req_line_speed = SPEED_1000;
  1257. if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
  1258. bp->req_line_speed = SPEED_2500;
  1259. }
  1260. }
  1261. static void
  1262. bnx2_set_default_link(struct bnx2 *bp)
  1263. {
  1264. if (bp->phy_flags & REMOTE_PHY_CAP_FLAG)
  1265. return bnx2_set_default_remote_link(bp);
  1266. bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL;
  1267. bp->req_line_speed = 0;
  1268. if (bp->phy_flags & PHY_SERDES_FLAG) {
  1269. u32 reg;
  1270. bp->advertising = ETHTOOL_ALL_FIBRE_SPEED | ADVERTISED_Autoneg;
  1271. reg = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_CONFIG);
  1272. reg &= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK;
  1273. if (reg == BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G) {
  1274. bp->autoneg = 0;
  1275. bp->req_line_speed = bp->line_speed = SPEED_1000;
  1276. bp->req_duplex = DUPLEX_FULL;
  1277. }
  1278. } else
  1279. bp->advertising = ETHTOOL_ALL_COPPER_SPEED | ADVERTISED_Autoneg;
  1280. }
  1281. static void
  1282. bnx2_send_heart_beat(struct bnx2 *bp)
  1283. {
  1284. u32 msg;
  1285. u32 addr;
  1286. spin_lock(&bp->indirect_lock);
  1287. msg = (u32) (++bp->fw_drv_pulse_wr_seq & BNX2_DRV_PULSE_SEQ_MASK);
  1288. addr = bp->shmem_base + BNX2_DRV_PULSE_MB;
  1289. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, addr);
  1290. REG_WR(bp, BNX2_PCICFG_REG_WINDOW, msg);
  1291. spin_unlock(&bp->indirect_lock);
  1292. }
  1293. static void
  1294. bnx2_remote_phy_event(struct bnx2 *bp)
  1295. {
  1296. u32 msg;
  1297. u8 link_up = bp->link_up;
  1298. u8 old_port;
  1299. msg = REG_RD_IND(bp, bp->shmem_base + BNX2_LINK_STATUS);
  1300. if (msg & BNX2_LINK_STATUS_HEART_BEAT_EXPIRED)
  1301. bnx2_send_heart_beat(bp);
  1302. msg &= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED;
  1303. if ((msg & BNX2_LINK_STATUS_LINK_UP) == BNX2_LINK_STATUS_LINK_DOWN)
  1304. bp->link_up = 0;
  1305. else {
  1306. u32 speed;
  1307. bp->link_up = 1;
  1308. speed = msg & BNX2_LINK_STATUS_SPEED_MASK;
  1309. bp->duplex = DUPLEX_FULL;
  1310. switch (speed) {
  1311. case BNX2_LINK_STATUS_10HALF:
  1312. bp->duplex = DUPLEX_HALF;
  1313. case BNX2_LINK_STATUS_10FULL:
  1314. bp->line_speed = SPEED_10;
  1315. break;
  1316. case BNX2_LINK_STATUS_100HALF:
  1317. bp->duplex = DUPLEX_HALF;
  1318. case BNX2_LINK_STATUS_100BASE_T4:
  1319. case BNX2_LINK_STATUS_100FULL:
  1320. bp->line_speed = SPEED_100;
  1321. break;
  1322. case BNX2_LINK_STATUS_1000HALF:
  1323. bp->duplex = DUPLEX_HALF;
  1324. case BNX2_LINK_STATUS_1000FULL:
  1325. bp->line_speed = SPEED_1000;
  1326. break;
  1327. case BNX2_LINK_STATUS_2500HALF:
  1328. bp->duplex = DUPLEX_HALF;
  1329. case BNX2_LINK_STATUS_2500FULL:
  1330. bp->line_speed = SPEED_2500;
  1331. break;
  1332. default:
  1333. bp->line_speed = 0;
  1334. break;
  1335. }
  1336. spin_lock(&bp->phy_lock);
  1337. bp->flow_ctrl = 0;
  1338. if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
  1339. (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
  1340. if (bp->duplex == DUPLEX_FULL)
  1341. bp->flow_ctrl = bp->req_flow_ctrl;
  1342. } else {
  1343. if (msg & BNX2_LINK_STATUS_TX_FC_ENABLED)
  1344. bp->flow_ctrl |= FLOW_CTRL_TX;
  1345. if (msg & BNX2_LINK_STATUS_RX_FC_ENABLED)
  1346. bp->flow_ctrl |= FLOW_CTRL_RX;
  1347. }
  1348. old_port = bp->phy_port;
  1349. if (msg & BNX2_LINK_STATUS_SERDES_LINK)
  1350. bp->phy_port = PORT_FIBRE;
  1351. else
  1352. bp->phy_port = PORT_TP;
  1353. if (old_port != bp->phy_port)
  1354. bnx2_set_default_link(bp);
  1355. spin_unlock(&bp->phy_lock);
  1356. }
  1357. if (bp->link_up != link_up)
  1358. bnx2_report_link(bp);
  1359. bnx2_set_mac_link(bp);
  1360. }
  1361. static int
  1362. bnx2_set_remote_link(struct bnx2 *bp)
  1363. {
  1364. u32 evt_code;
  1365. evt_code = REG_RD_IND(bp, bp->shmem_base + BNX2_FW_EVT_CODE_MB);
  1366. switch (evt_code) {
  1367. case BNX2_FW_EVT_CODE_LINK_EVENT:
  1368. bnx2_remote_phy_event(bp);
  1369. break;
  1370. case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT:
  1371. default:
  1372. bnx2_send_heart_beat(bp);
  1373. break;
  1374. }
  1375. return 0;
  1376. }
  1377. static int
  1378. bnx2_setup_copper_phy(struct bnx2 *bp)
  1379. {
  1380. u32 bmcr;
  1381. u32 new_bmcr;
  1382. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1383. if (bp->autoneg & AUTONEG_SPEED) {
  1384. u32 adv_reg, adv1000_reg;
  1385. u32 new_adv_reg = 0;
  1386. u32 new_adv1000_reg = 0;
  1387. bnx2_read_phy(bp, bp->mii_adv, &adv_reg);
  1388. adv_reg &= (PHY_ALL_10_100_SPEED | ADVERTISE_PAUSE_CAP |
  1389. ADVERTISE_PAUSE_ASYM);
  1390. bnx2_read_phy(bp, MII_CTRL1000, &adv1000_reg);
  1391. adv1000_reg &= PHY_ALL_1000_SPEED;
  1392. if (bp->advertising & ADVERTISED_10baseT_Half)
  1393. new_adv_reg |= ADVERTISE_10HALF;
  1394. if (bp->advertising & ADVERTISED_10baseT_Full)
  1395. new_adv_reg |= ADVERTISE_10FULL;
  1396. if (bp->advertising & ADVERTISED_100baseT_Half)
  1397. new_adv_reg |= ADVERTISE_100HALF;
  1398. if (bp->advertising & ADVERTISED_100baseT_Full)
  1399. new_adv_reg |= ADVERTISE_100FULL;
  1400. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1401. new_adv1000_reg |= ADVERTISE_1000FULL;
  1402. new_adv_reg |= ADVERTISE_CSMA;
  1403. new_adv_reg |= bnx2_phy_get_pause_adv(bp);
  1404. if ((adv1000_reg != new_adv1000_reg) ||
  1405. (adv_reg != new_adv_reg) ||
  1406. ((bmcr & BMCR_ANENABLE) == 0)) {
  1407. bnx2_write_phy(bp, bp->mii_adv, new_adv_reg);
  1408. bnx2_write_phy(bp, MII_CTRL1000, new_adv1000_reg);
  1409. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_ANRESTART |
  1410. BMCR_ANENABLE);
  1411. }
  1412. else if (bp->link_up) {
  1413. /* Flow ctrl may have changed from auto to forced */
  1414. /* or vice-versa. */
  1415. bnx2_resolve_flow_ctrl(bp);
  1416. bnx2_set_mac_link(bp);
  1417. }
  1418. return 0;
  1419. }
  1420. new_bmcr = 0;
  1421. if (bp->req_line_speed == SPEED_100) {
  1422. new_bmcr |= BMCR_SPEED100;
  1423. }
  1424. if (bp->req_duplex == DUPLEX_FULL) {
  1425. new_bmcr |= BMCR_FULLDPLX;
  1426. }
  1427. if (new_bmcr != bmcr) {
  1428. u32 bmsr;
  1429. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1430. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1431. if (bmsr & BMSR_LSTATUS) {
  1432. /* Force link down */
  1433. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  1434. spin_unlock_bh(&bp->phy_lock);
  1435. msleep(50);
  1436. spin_lock_bh(&bp->phy_lock);
  1437. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1438. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1439. }
  1440. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1441. /* Normally, the new speed is setup after the link has
  1442. * gone down and up again. In some cases, link will not go
  1443. * down so we need to set up the new speed here.
  1444. */
  1445. if (bmsr & BMSR_LSTATUS) {
  1446. bp->line_speed = bp->req_line_speed;
  1447. bp->duplex = bp->req_duplex;
  1448. bnx2_resolve_flow_ctrl(bp);
  1449. bnx2_set_mac_link(bp);
  1450. }
  1451. } else {
  1452. bnx2_resolve_flow_ctrl(bp);
  1453. bnx2_set_mac_link(bp);
  1454. }
  1455. return 0;
  1456. }
  1457. static int
  1458. bnx2_setup_phy(struct bnx2 *bp, u8 port)
  1459. {
  1460. if (bp->loopback == MAC_LOOPBACK)
  1461. return 0;
  1462. if (bp->phy_flags & PHY_SERDES_FLAG) {
  1463. return (bnx2_setup_serdes_phy(bp, port));
  1464. }
  1465. else {
  1466. return (bnx2_setup_copper_phy(bp));
  1467. }
  1468. }
  1469. static int
  1470. bnx2_init_5709s_phy(struct bnx2 *bp)
  1471. {
  1472. u32 val;
  1473. bp->mii_bmcr = MII_BMCR + 0x10;
  1474. bp->mii_bmsr = MII_BMSR + 0x10;
  1475. bp->mii_bmsr1 = MII_BNX2_GP_TOP_AN_STATUS1;
  1476. bp->mii_adv = MII_ADVERTISE + 0x10;
  1477. bp->mii_lpa = MII_LPA + 0x10;
  1478. bp->mii_up1 = MII_BNX2_OVER1G_UP1;
  1479. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_AER);
  1480. bnx2_write_phy(bp, MII_BNX2_AER_AER, MII_BNX2_AER_AER_AN_MMD);
  1481. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1482. bnx2_reset_phy(bp);
  1483. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_SERDES_DIG);
  1484. bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, &val);
  1485. val &= ~MII_BNX2_SD_1000XCTL1_AUTODET;
  1486. val |= MII_BNX2_SD_1000XCTL1_FIBER;
  1487. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, val);
  1488. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1489. bnx2_read_phy(bp, MII_BNX2_OVER1G_UP1, &val);
  1490. if (bp->phy_flags & PHY_2_5G_CAPABLE_FLAG)
  1491. val |= BCM5708S_UP1_2G5;
  1492. else
  1493. val &= ~BCM5708S_UP1_2G5;
  1494. bnx2_write_phy(bp, MII_BNX2_OVER1G_UP1, val);
  1495. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_BAM_NXTPG);
  1496. bnx2_read_phy(bp, MII_BNX2_BAM_NXTPG_CTL, &val);
  1497. val |= MII_BNX2_NXTPG_CTL_T2 | MII_BNX2_NXTPG_CTL_BAM;
  1498. bnx2_write_phy(bp, MII_BNX2_BAM_NXTPG_CTL, val);
  1499. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_CL73_USERB0);
  1500. val = MII_BNX2_CL73_BAM_EN | MII_BNX2_CL73_BAM_STA_MGR_EN |
  1501. MII_BNX2_CL73_BAM_NP_AFT_BP_EN;
  1502. bnx2_write_phy(bp, MII_BNX2_CL73_BAM_CTL1, val);
  1503. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1504. return 0;
  1505. }
  1506. static int
  1507. bnx2_init_5708s_phy(struct bnx2 *bp)
  1508. {
  1509. u32 val;
  1510. bnx2_reset_phy(bp);
  1511. bp->mii_up1 = BCM5708S_UP1;
  1512. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG3);
  1513. bnx2_write_phy(bp, BCM5708S_DIG_3_0, BCM5708S_DIG_3_0_USE_IEEE);
  1514. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
  1515. bnx2_read_phy(bp, BCM5708S_1000X_CTL1, &val);
  1516. val |= BCM5708S_1000X_CTL1_FIBER_MODE | BCM5708S_1000X_CTL1_AUTODET_EN;
  1517. bnx2_write_phy(bp, BCM5708S_1000X_CTL1, val);
  1518. bnx2_read_phy(bp, BCM5708S_1000X_CTL2, &val);
  1519. val |= BCM5708S_1000X_CTL2_PLLEL_DET_EN;
  1520. bnx2_write_phy(bp, BCM5708S_1000X_CTL2, val);
  1521. if (bp->phy_flags & PHY_2_5G_CAPABLE_FLAG) {
  1522. bnx2_read_phy(bp, BCM5708S_UP1, &val);
  1523. val |= BCM5708S_UP1_2G5;
  1524. bnx2_write_phy(bp, BCM5708S_UP1, val);
  1525. }
  1526. if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
  1527. (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
  1528. (CHIP_ID(bp) == CHIP_ID_5708_B1)) {
  1529. /* increase tx signal amplitude */
  1530. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1531. BCM5708S_BLK_ADDR_TX_MISC);
  1532. bnx2_read_phy(bp, BCM5708S_TX_ACTL1, &val);
  1533. val &= ~BCM5708S_TX_ACTL1_DRIVER_VCM;
  1534. bnx2_write_phy(bp, BCM5708S_TX_ACTL1, val);
  1535. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
  1536. }
  1537. val = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_CONFIG) &
  1538. BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK;
  1539. if (val) {
  1540. u32 is_backplane;
  1541. is_backplane = REG_RD_IND(bp, bp->shmem_base +
  1542. BNX2_SHARED_HW_CFG_CONFIG);
  1543. if (is_backplane & BNX2_SHARED_HW_CFG_PHY_BACKPLANE) {
  1544. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1545. BCM5708S_BLK_ADDR_TX_MISC);
  1546. bnx2_write_phy(bp, BCM5708S_TX_ACTL3, val);
  1547. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1548. BCM5708S_BLK_ADDR_DIG);
  1549. }
  1550. }
  1551. return 0;
  1552. }
  1553. static int
  1554. bnx2_init_5706s_phy(struct bnx2 *bp)
  1555. {
  1556. bnx2_reset_phy(bp);
  1557. bp->phy_flags &= ~PHY_PARALLEL_DETECT_FLAG;
  1558. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  1559. REG_WR(bp, BNX2_MISC_GP_HW_CTL0, 0x300);
  1560. if (bp->dev->mtu > 1500) {
  1561. u32 val;
  1562. /* Set extended packet length bit */
  1563. bnx2_write_phy(bp, 0x18, 0x7);
  1564. bnx2_read_phy(bp, 0x18, &val);
  1565. bnx2_write_phy(bp, 0x18, (val & 0xfff8) | 0x4000);
  1566. bnx2_write_phy(bp, 0x1c, 0x6c00);
  1567. bnx2_read_phy(bp, 0x1c, &val);
  1568. bnx2_write_phy(bp, 0x1c, (val & 0x3ff) | 0xec02);
  1569. }
  1570. else {
  1571. u32 val;
  1572. bnx2_write_phy(bp, 0x18, 0x7);
  1573. bnx2_read_phy(bp, 0x18, &val);
  1574. bnx2_write_phy(bp, 0x18, val & ~0x4007);
  1575. bnx2_write_phy(bp, 0x1c, 0x6c00);
  1576. bnx2_read_phy(bp, 0x1c, &val);
  1577. bnx2_write_phy(bp, 0x1c, (val & 0x3fd) | 0xec00);
  1578. }
  1579. return 0;
  1580. }
  1581. static int
  1582. bnx2_init_copper_phy(struct bnx2 *bp)
  1583. {
  1584. u32 val;
  1585. bnx2_reset_phy(bp);
  1586. if (bp->phy_flags & PHY_CRC_FIX_FLAG) {
  1587. bnx2_write_phy(bp, 0x18, 0x0c00);
  1588. bnx2_write_phy(bp, 0x17, 0x000a);
  1589. bnx2_write_phy(bp, 0x15, 0x310b);
  1590. bnx2_write_phy(bp, 0x17, 0x201f);
  1591. bnx2_write_phy(bp, 0x15, 0x9506);
  1592. bnx2_write_phy(bp, 0x17, 0x401f);
  1593. bnx2_write_phy(bp, 0x15, 0x14e2);
  1594. bnx2_write_phy(bp, 0x18, 0x0400);
  1595. }
  1596. if (bp->phy_flags & PHY_DIS_EARLY_DAC_FLAG) {
  1597. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS,
  1598. MII_BNX2_DSP_EXPAND_REG | 0x8);
  1599. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
  1600. val &= ~(1 << 8);
  1601. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val);
  1602. }
  1603. if (bp->dev->mtu > 1500) {
  1604. /* Set extended packet length bit */
  1605. bnx2_write_phy(bp, 0x18, 0x7);
  1606. bnx2_read_phy(bp, 0x18, &val);
  1607. bnx2_write_phy(bp, 0x18, val | 0x4000);
  1608. bnx2_read_phy(bp, 0x10, &val);
  1609. bnx2_write_phy(bp, 0x10, val | 0x1);
  1610. }
  1611. else {
  1612. bnx2_write_phy(bp, 0x18, 0x7);
  1613. bnx2_read_phy(bp, 0x18, &val);
  1614. bnx2_write_phy(bp, 0x18, val & ~0x4007);
  1615. bnx2_read_phy(bp, 0x10, &val);
  1616. bnx2_write_phy(bp, 0x10, val & ~0x1);
  1617. }
  1618. /* ethernet@wirespeed */
  1619. bnx2_write_phy(bp, 0x18, 0x7007);
  1620. bnx2_read_phy(bp, 0x18, &val);
  1621. bnx2_write_phy(bp, 0x18, val | (1 << 15) | (1 << 4));
  1622. return 0;
  1623. }
  1624. static int
  1625. bnx2_init_phy(struct bnx2 *bp)
  1626. {
  1627. u32 val;
  1628. int rc = 0;
  1629. bp->phy_flags &= ~PHY_INT_MODE_MASK_FLAG;
  1630. bp->phy_flags |= PHY_INT_MODE_LINK_READY_FLAG;
  1631. bp->mii_bmcr = MII_BMCR;
  1632. bp->mii_bmsr = MII_BMSR;
  1633. bp->mii_bmsr1 = MII_BMSR;
  1634. bp->mii_adv = MII_ADVERTISE;
  1635. bp->mii_lpa = MII_LPA;
  1636. REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
  1637. if (bp->phy_flags & REMOTE_PHY_CAP_FLAG)
  1638. goto setup_phy;
  1639. bnx2_read_phy(bp, MII_PHYSID1, &val);
  1640. bp->phy_id = val << 16;
  1641. bnx2_read_phy(bp, MII_PHYSID2, &val);
  1642. bp->phy_id |= val & 0xffff;
  1643. if (bp->phy_flags & PHY_SERDES_FLAG) {
  1644. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  1645. rc = bnx2_init_5706s_phy(bp);
  1646. else if (CHIP_NUM(bp) == CHIP_NUM_5708)
  1647. rc = bnx2_init_5708s_phy(bp);
  1648. else if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1649. rc = bnx2_init_5709s_phy(bp);
  1650. }
  1651. else {
  1652. rc = bnx2_init_copper_phy(bp);
  1653. }
  1654. setup_phy:
  1655. if (!rc)
  1656. rc = bnx2_setup_phy(bp, bp->phy_port);
  1657. return rc;
  1658. }
  1659. static int
  1660. bnx2_set_mac_loopback(struct bnx2 *bp)
  1661. {
  1662. u32 mac_mode;
  1663. mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
  1664. mac_mode &= ~BNX2_EMAC_MODE_PORT;
  1665. mac_mode |= BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK;
  1666. REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
  1667. bp->link_up = 1;
  1668. return 0;
  1669. }
  1670. static int bnx2_test_link(struct bnx2 *);
  1671. static int
  1672. bnx2_set_phy_loopback(struct bnx2 *bp)
  1673. {
  1674. u32 mac_mode;
  1675. int rc, i;
  1676. spin_lock_bh(&bp->phy_lock);
  1677. rc = bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK | BMCR_FULLDPLX |
  1678. BMCR_SPEED1000);
  1679. spin_unlock_bh(&bp->phy_lock);
  1680. if (rc)
  1681. return rc;
  1682. for (i = 0; i < 10; i++) {
  1683. if (bnx2_test_link(bp) == 0)
  1684. break;
  1685. msleep(100);
  1686. }
  1687. mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
  1688. mac_mode &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
  1689. BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
  1690. BNX2_EMAC_MODE_25G_MODE);
  1691. mac_mode |= BNX2_EMAC_MODE_PORT_GMII;
  1692. REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
  1693. bp->link_up = 1;
  1694. return 0;
  1695. }
  1696. static int
  1697. bnx2_fw_sync(struct bnx2 *bp, u32 msg_data, int silent)
  1698. {
  1699. int i;
  1700. u32 val;
  1701. bp->fw_wr_seq++;
  1702. msg_data |= bp->fw_wr_seq;
  1703. REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_MB, msg_data);
  1704. /* wait for an acknowledgement. */
  1705. for (i = 0; i < (FW_ACK_TIME_OUT_MS / 10); i++) {
  1706. msleep(10);
  1707. val = REG_RD_IND(bp, bp->shmem_base + BNX2_FW_MB);
  1708. if ((val & BNX2_FW_MSG_ACK) == (msg_data & BNX2_DRV_MSG_SEQ))
  1709. break;
  1710. }
  1711. if ((msg_data & BNX2_DRV_MSG_DATA) == BNX2_DRV_MSG_DATA_WAIT0)
  1712. return 0;
  1713. /* If we timed out, inform the firmware that this is the case. */
  1714. if ((val & BNX2_FW_MSG_ACK) != (msg_data & BNX2_DRV_MSG_SEQ)) {
  1715. if (!silent)
  1716. printk(KERN_ERR PFX "fw sync timeout, reset code = "
  1717. "%x\n", msg_data);
  1718. msg_data &= ~BNX2_DRV_MSG_CODE;
  1719. msg_data |= BNX2_DRV_MSG_CODE_FW_TIMEOUT;
  1720. REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_MB, msg_data);
  1721. return -EBUSY;
  1722. }
  1723. if ((val & BNX2_FW_MSG_STATUS_MASK) != BNX2_FW_MSG_STATUS_OK)
  1724. return -EIO;
  1725. return 0;
  1726. }
  1727. static int
  1728. bnx2_init_5709_context(struct bnx2 *bp)
  1729. {
  1730. int i, ret = 0;
  1731. u32 val;
  1732. val = BNX2_CTX_COMMAND_ENABLED | BNX2_CTX_COMMAND_MEM_INIT | (1 << 12);
  1733. val |= (BCM_PAGE_BITS - 8) << 16;
  1734. REG_WR(bp, BNX2_CTX_COMMAND, val);
  1735. for (i = 0; i < 10; i++) {
  1736. val = REG_RD(bp, BNX2_CTX_COMMAND);
  1737. if (!(val & BNX2_CTX_COMMAND_MEM_INIT))
  1738. break;
  1739. udelay(2);
  1740. }
  1741. if (val & BNX2_CTX_COMMAND_MEM_INIT)
  1742. return -EBUSY;
  1743. for (i = 0; i < bp->ctx_pages; i++) {
  1744. int j;
  1745. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA0,
  1746. (bp->ctx_blk_mapping[i] & 0xffffffff) |
  1747. BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID);
  1748. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA1,
  1749. (u64) bp->ctx_blk_mapping[i] >> 32);
  1750. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL, i |
  1751. BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
  1752. for (j = 0; j < 10; j++) {
  1753. val = REG_RD(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL);
  1754. if (!(val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ))
  1755. break;
  1756. udelay(5);
  1757. }
  1758. if (val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) {
  1759. ret = -EBUSY;
  1760. break;
  1761. }
  1762. }
  1763. return ret;
  1764. }
  1765. static void
  1766. bnx2_init_context(struct bnx2 *bp)
  1767. {
  1768. u32 vcid;
  1769. vcid = 96;
  1770. while (vcid) {
  1771. u32 vcid_addr, pcid_addr, offset;
  1772. int i;
  1773. vcid--;
  1774. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  1775. u32 new_vcid;
  1776. vcid_addr = GET_PCID_ADDR(vcid);
  1777. if (vcid & 0x8) {
  1778. new_vcid = 0x60 + (vcid & 0xf0) + (vcid & 0x7);
  1779. }
  1780. else {
  1781. new_vcid = vcid;
  1782. }
  1783. pcid_addr = GET_PCID_ADDR(new_vcid);
  1784. }
  1785. else {
  1786. vcid_addr = GET_CID_ADDR(vcid);
  1787. pcid_addr = vcid_addr;
  1788. }
  1789. for (i = 0; i < (CTX_SIZE / PHY_CTX_SIZE); i++) {
  1790. vcid_addr += (i << PHY_CTX_SHIFT);
  1791. pcid_addr += (i << PHY_CTX_SHIFT);
  1792. REG_WR(bp, BNX2_CTX_VIRT_ADDR, 0x00);
  1793. REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
  1794. /* Zero out the context. */
  1795. for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
  1796. CTX_WR(bp, 0x00, offset, 0);
  1797. REG_WR(bp, BNX2_CTX_VIRT_ADDR, vcid_addr);
  1798. REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
  1799. }
  1800. }
  1801. }
  1802. static int
  1803. bnx2_alloc_bad_rbuf(struct bnx2 *bp)
  1804. {
  1805. u16 *good_mbuf;
  1806. u32 good_mbuf_cnt;
  1807. u32 val;
  1808. good_mbuf = kmalloc(512 * sizeof(u16), GFP_KERNEL);
  1809. if (good_mbuf == NULL) {
  1810. printk(KERN_ERR PFX "Failed to allocate memory in "
  1811. "bnx2_alloc_bad_rbuf\n");
  1812. return -ENOMEM;
  1813. }
  1814. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  1815. BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE);
  1816. good_mbuf_cnt = 0;
  1817. /* Allocate a bunch of mbufs and save the good ones in an array. */
  1818. val = REG_RD_IND(bp, BNX2_RBUF_STATUS1);
  1819. while (val & BNX2_RBUF_STATUS1_FREE_COUNT) {
  1820. REG_WR_IND(bp, BNX2_RBUF_COMMAND, BNX2_RBUF_COMMAND_ALLOC_REQ);
  1821. val = REG_RD_IND(bp, BNX2_RBUF_FW_BUF_ALLOC);
  1822. val &= BNX2_RBUF_FW_BUF_ALLOC_VALUE;
  1823. /* The addresses with Bit 9 set are bad memory blocks. */
  1824. if (!(val & (1 << 9))) {
  1825. good_mbuf[good_mbuf_cnt] = (u16) val;
  1826. good_mbuf_cnt++;
  1827. }
  1828. val = REG_RD_IND(bp, BNX2_RBUF_STATUS1);
  1829. }
  1830. /* Free the good ones back to the mbuf pool thus discarding
  1831. * all the bad ones. */
  1832. while (good_mbuf_cnt) {
  1833. good_mbuf_cnt--;
  1834. val = good_mbuf[good_mbuf_cnt];
  1835. val = (val << 9) | val | 1;
  1836. REG_WR_IND(bp, BNX2_RBUF_FW_BUF_FREE, val);
  1837. }
  1838. kfree(good_mbuf);
  1839. return 0;
  1840. }
  1841. static void
  1842. bnx2_set_mac_addr(struct bnx2 *bp)
  1843. {
  1844. u32 val;
  1845. u8 *mac_addr = bp->dev->dev_addr;
  1846. val = (mac_addr[0] << 8) | mac_addr[1];
  1847. REG_WR(bp, BNX2_EMAC_MAC_MATCH0, val);
  1848. val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
  1849. (mac_addr[4] << 8) | mac_addr[5];
  1850. REG_WR(bp, BNX2_EMAC_MAC_MATCH1, val);
  1851. }
  1852. static inline int
  1853. bnx2_alloc_rx_skb(struct bnx2 *bp, u16 index)
  1854. {
  1855. struct sk_buff *skb;
  1856. struct sw_bd *rx_buf = &bp->rx_buf_ring[index];
  1857. dma_addr_t mapping;
  1858. struct rx_bd *rxbd = &bp->rx_desc_ring[RX_RING(index)][RX_IDX(index)];
  1859. unsigned long align;
  1860. skb = netdev_alloc_skb(bp->dev, bp->rx_buf_size);
  1861. if (skb == NULL) {
  1862. return -ENOMEM;
  1863. }
  1864. if (unlikely((align = (unsigned long) skb->data & (BNX2_RX_ALIGN - 1))))
  1865. skb_reserve(skb, BNX2_RX_ALIGN - align);
  1866. mapping = pci_map_single(bp->pdev, skb->data, bp->rx_buf_use_size,
  1867. PCI_DMA_FROMDEVICE);
  1868. rx_buf->skb = skb;
  1869. pci_unmap_addr_set(rx_buf, mapping, mapping);
  1870. rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
  1871. rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  1872. bp->rx_prod_bseq += bp->rx_buf_use_size;
  1873. return 0;
  1874. }
  1875. static int
  1876. bnx2_phy_event_is_set(struct bnx2 *bp, u32 event)
  1877. {
  1878. struct status_block *sblk = bp->status_blk;
  1879. u32 new_link_state, old_link_state;
  1880. int is_set = 1;
  1881. new_link_state = sblk->status_attn_bits & event;
  1882. old_link_state = sblk->status_attn_bits_ack & event;
  1883. if (new_link_state != old_link_state) {
  1884. if (new_link_state)
  1885. REG_WR(bp, BNX2_PCICFG_STATUS_BIT_SET_CMD, event);
  1886. else
  1887. REG_WR(bp, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD, event);
  1888. } else
  1889. is_set = 0;
  1890. return is_set;
  1891. }
  1892. static void
  1893. bnx2_phy_int(struct bnx2 *bp)
  1894. {
  1895. if (bnx2_phy_event_is_set(bp, STATUS_ATTN_BITS_LINK_STATE)) {
  1896. spin_lock(&bp->phy_lock);
  1897. bnx2_set_link(bp);
  1898. spin_unlock(&bp->phy_lock);
  1899. }
  1900. if (bnx2_phy_event_is_set(bp, STATUS_ATTN_BITS_TIMER_ABORT))
  1901. bnx2_set_remote_link(bp);
  1902. }
  1903. static void
  1904. bnx2_tx_int(struct bnx2 *bp)
  1905. {
  1906. struct status_block *sblk = bp->status_blk;
  1907. u16 hw_cons, sw_cons, sw_ring_cons;
  1908. int tx_free_bd = 0;
  1909. hw_cons = bp->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
  1910. if ((hw_cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT) {
  1911. hw_cons++;
  1912. }
  1913. sw_cons = bp->tx_cons;
  1914. while (sw_cons != hw_cons) {
  1915. struct sw_bd *tx_buf;
  1916. struct sk_buff *skb;
  1917. int i, last;
  1918. sw_ring_cons = TX_RING_IDX(sw_cons);
  1919. tx_buf = &bp->tx_buf_ring[sw_ring_cons];
  1920. skb = tx_buf->skb;
  1921. /* partial BD completions possible with TSO packets */
  1922. if (skb_is_gso(skb)) {
  1923. u16 last_idx, last_ring_idx;
  1924. last_idx = sw_cons +
  1925. skb_shinfo(skb)->nr_frags + 1;
  1926. last_ring_idx = sw_ring_cons +
  1927. skb_shinfo(skb)->nr_frags + 1;
  1928. if (unlikely(last_ring_idx >= MAX_TX_DESC_CNT)) {
  1929. last_idx++;
  1930. }
  1931. if (((s16) ((s16) last_idx - (s16) hw_cons)) > 0) {
  1932. break;
  1933. }
  1934. }
  1935. pci_unmap_single(bp->pdev, pci_unmap_addr(tx_buf, mapping),
  1936. skb_headlen(skb), PCI_DMA_TODEVICE);
  1937. tx_buf->skb = NULL;
  1938. last = skb_shinfo(skb)->nr_frags;
  1939. for (i = 0; i < last; i++) {
  1940. sw_cons = NEXT_TX_BD(sw_cons);
  1941. pci_unmap_page(bp->pdev,
  1942. pci_unmap_addr(
  1943. &bp->tx_buf_ring[TX_RING_IDX(sw_cons)],
  1944. mapping),
  1945. skb_shinfo(skb)->frags[i].size,
  1946. PCI_DMA_TODEVICE);
  1947. }
  1948. sw_cons = NEXT_TX_BD(sw_cons);
  1949. tx_free_bd += last + 1;
  1950. dev_kfree_skb(skb);
  1951. hw_cons = bp->hw_tx_cons =
  1952. sblk->status_tx_quick_consumer_index0;
  1953. if ((hw_cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT) {
  1954. hw_cons++;
  1955. }
  1956. }
  1957. bp->tx_cons = sw_cons;
  1958. /* Need to make the tx_cons update visible to bnx2_start_xmit()
  1959. * before checking for netif_queue_stopped(). Without the
  1960. * memory barrier, there is a small possibility that bnx2_start_xmit()
  1961. * will miss it and cause the queue to be stopped forever.
  1962. */
  1963. smp_mb();
  1964. if (unlikely(netif_queue_stopped(bp->dev)) &&
  1965. (bnx2_tx_avail(bp) > bp->tx_wake_thresh)) {
  1966. netif_tx_lock(bp->dev);
  1967. if ((netif_queue_stopped(bp->dev)) &&
  1968. (bnx2_tx_avail(bp) > bp->tx_wake_thresh))
  1969. netif_wake_queue(bp->dev);
  1970. netif_tx_unlock(bp->dev);
  1971. }
  1972. }
  1973. static inline void
  1974. bnx2_reuse_rx_skb(struct bnx2 *bp, struct sk_buff *skb,
  1975. u16 cons, u16 prod)
  1976. {
  1977. struct sw_bd *cons_rx_buf, *prod_rx_buf;
  1978. struct rx_bd *cons_bd, *prod_bd;
  1979. cons_rx_buf = &bp->rx_buf_ring[cons];
  1980. prod_rx_buf = &bp->rx_buf_ring[prod];
  1981. pci_dma_sync_single_for_device(bp->pdev,
  1982. pci_unmap_addr(cons_rx_buf, mapping),
  1983. bp->rx_offset + RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
  1984. bp->rx_prod_bseq += bp->rx_buf_use_size;
  1985. prod_rx_buf->skb = skb;
  1986. if (cons == prod)
  1987. return;
  1988. pci_unmap_addr_set(prod_rx_buf, mapping,
  1989. pci_unmap_addr(cons_rx_buf, mapping));
  1990. cons_bd = &bp->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
  1991. prod_bd = &bp->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
  1992. prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
  1993. prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
  1994. }
  1995. static int
  1996. bnx2_rx_int(struct bnx2 *bp, int budget)
  1997. {
  1998. struct status_block *sblk = bp->status_blk;
  1999. u16 hw_cons, sw_cons, sw_ring_cons, sw_prod, sw_ring_prod;
  2000. struct l2_fhdr *rx_hdr;
  2001. int rx_pkt = 0;
  2002. hw_cons = bp->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
  2003. if ((hw_cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT) {
  2004. hw_cons++;
  2005. }
  2006. sw_cons = bp->rx_cons;
  2007. sw_prod = bp->rx_prod;
  2008. /* Memory barrier necessary as speculative reads of the rx
  2009. * buffer can be ahead of the index in the status block
  2010. */
  2011. rmb();
  2012. while (sw_cons != hw_cons) {
  2013. unsigned int len;
  2014. u32 status;
  2015. struct sw_bd *rx_buf;
  2016. struct sk_buff *skb;
  2017. dma_addr_t dma_addr;
  2018. sw_ring_cons = RX_RING_IDX(sw_cons);
  2019. sw_ring_prod = RX_RING_IDX(sw_prod);
  2020. rx_buf = &bp->rx_buf_ring[sw_ring_cons];
  2021. skb = rx_buf->skb;
  2022. rx_buf->skb = NULL;
  2023. dma_addr = pci_unmap_addr(rx_buf, mapping);
  2024. pci_dma_sync_single_for_cpu(bp->pdev, dma_addr,
  2025. bp->rx_offset + RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
  2026. rx_hdr = (struct l2_fhdr *) skb->data;
  2027. len = rx_hdr->l2_fhdr_pkt_len - 4;
  2028. if ((status = rx_hdr->l2_fhdr_status) &
  2029. (L2_FHDR_ERRORS_BAD_CRC |
  2030. L2_FHDR_ERRORS_PHY_DECODE |
  2031. L2_FHDR_ERRORS_ALIGNMENT |
  2032. L2_FHDR_ERRORS_TOO_SHORT |
  2033. L2_FHDR_ERRORS_GIANT_FRAME)) {
  2034. goto reuse_rx;
  2035. }
  2036. /* Since we don't have a jumbo ring, copy small packets
  2037. * if mtu > 1500
  2038. */
  2039. if ((bp->dev->mtu > 1500) && (len <= RX_COPY_THRESH)) {
  2040. struct sk_buff *new_skb;
  2041. new_skb = netdev_alloc_skb(bp->dev, len + 2);
  2042. if (new_skb == NULL)
  2043. goto reuse_rx;
  2044. /* aligned copy */
  2045. skb_copy_from_linear_data_offset(skb, bp->rx_offset - 2,
  2046. new_skb->data, len + 2);
  2047. skb_reserve(new_skb, 2);
  2048. skb_put(new_skb, len);
  2049. bnx2_reuse_rx_skb(bp, skb,
  2050. sw_ring_cons, sw_ring_prod);
  2051. skb = new_skb;
  2052. }
  2053. else if (bnx2_alloc_rx_skb(bp, sw_ring_prod) == 0) {
  2054. pci_unmap_single(bp->pdev, dma_addr,
  2055. bp->rx_buf_use_size, PCI_DMA_FROMDEVICE);
  2056. skb_reserve(skb, bp->rx_offset);
  2057. skb_put(skb, len);
  2058. }
  2059. else {
  2060. reuse_rx:
  2061. bnx2_reuse_rx_skb(bp, skb,
  2062. sw_ring_cons, sw_ring_prod);
  2063. goto next_rx;
  2064. }
  2065. skb->protocol = eth_type_trans(skb, bp->dev);
  2066. if ((len > (bp->dev->mtu + ETH_HLEN)) &&
  2067. (ntohs(skb->protocol) != 0x8100)) {
  2068. dev_kfree_skb(skb);
  2069. goto next_rx;
  2070. }
  2071. skb->ip_summed = CHECKSUM_NONE;
  2072. if (bp->rx_csum &&
  2073. (status & (L2_FHDR_STATUS_TCP_SEGMENT |
  2074. L2_FHDR_STATUS_UDP_DATAGRAM))) {
  2075. if (likely((status & (L2_FHDR_ERRORS_TCP_XSUM |
  2076. L2_FHDR_ERRORS_UDP_XSUM)) == 0))
  2077. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2078. }
  2079. #ifdef BCM_VLAN
  2080. if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) && (bp->vlgrp != 0)) {
  2081. vlan_hwaccel_receive_skb(skb, bp->vlgrp,
  2082. rx_hdr->l2_fhdr_vlan_tag);
  2083. }
  2084. else
  2085. #endif
  2086. netif_receive_skb(skb);
  2087. bp->dev->last_rx = jiffies;
  2088. rx_pkt++;
  2089. next_rx:
  2090. sw_cons = NEXT_RX_BD(sw_cons);
  2091. sw_prod = NEXT_RX_BD(sw_prod);
  2092. if ((rx_pkt == budget))
  2093. break;
  2094. /* Refresh hw_cons to see if there is new work */
  2095. if (sw_cons == hw_cons) {
  2096. hw_cons = bp->hw_rx_cons =
  2097. sblk->status_rx_quick_consumer_index0;
  2098. if ((hw_cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT)
  2099. hw_cons++;
  2100. rmb();
  2101. }
  2102. }
  2103. bp->rx_cons = sw_cons;
  2104. bp->rx_prod = sw_prod;
  2105. REG_WR16(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BDIDX, sw_prod);
  2106. REG_WR(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BSEQ, bp->rx_prod_bseq);
  2107. mmiowb();
  2108. return rx_pkt;
  2109. }
  2110. /* MSI ISR - The only difference between this and the INTx ISR
  2111. * is that the MSI interrupt is always serviced.
  2112. */
  2113. static irqreturn_t
  2114. bnx2_msi(int irq, void *dev_instance)
  2115. {
  2116. struct net_device *dev = dev_instance;
  2117. struct bnx2 *bp = netdev_priv(dev);
  2118. prefetch(bp->status_blk);
  2119. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2120. BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
  2121. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  2122. /* Return here if interrupt is disabled. */
  2123. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2124. return IRQ_HANDLED;
  2125. netif_rx_schedule(dev, &bp->napi);
  2126. return IRQ_HANDLED;
  2127. }
  2128. static irqreturn_t
  2129. bnx2_msi_1shot(int irq, void *dev_instance)
  2130. {
  2131. struct net_device *dev = dev_instance;
  2132. struct bnx2 *bp = netdev_priv(dev);
  2133. prefetch(bp->status_blk);
  2134. /* Return here if interrupt is disabled. */
  2135. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2136. return IRQ_HANDLED;
  2137. netif_rx_schedule(dev, &bp->napi);
  2138. return IRQ_HANDLED;
  2139. }
  2140. static irqreturn_t
  2141. bnx2_interrupt(int irq, void *dev_instance)
  2142. {
  2143. struct net_device *dev = dev_instance;
  2144. struct bnx2 *bp = netdev_priv(dev);
  2145. struct status_block *sblk = bp->status_blk;
  2146. /* When using INTx, it is possible for the interrupt to arrive
  2147. * at the CPU before the status block posted prior to the
  2148. * interrupt. Reading a register will flush the status block.
  2149. * When using MSI, the MSI message will always complete after
  2150. * the status block write.
  2151. */
  2152. if ((sblk->status_idx == bp->last_status_idx) &&
  2153. (REG_RD(bp, BNX2_PCICFG_MISC_STATUS) &
  2154. BNX2_PCICFG_MISC_STATUS_INTA_VALUE))
  2155. return IRQ_NONE;
  2156. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2157. BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
  2158. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  2159. /* Read back to deassert IRQ immediately to avoid too many
  2160. * spurious interrupts.
  2161. */
  2162. REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
  2163. /* Return here if interrupt is shared and is disabled. */
  2164. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2165. return IRQ_HANDLED;
  2166. if (netif_rx_schedule_prep(dev, &bp->napi)) {
  2167. bp->last_status_idx = sblk->status_idx;
  2168. __netif_rx_schedule(dev, &bp->napi);
  2169. }
  2170. return IRQ_HANDLED;
  2171. }
  2172. #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
  2173. STATUS_ATTN_BITS_TIMER_ABORT)
  2174. static inline int
  2175. bnx2_has_work(struct bnx2 *bp)
  2176. {
  2177. struct status_block *sblk = bp->status_blk;
  2178. if ((sblk->status_rx_quick_consumer_index0 != bp->hw_rx_cons) ||
  2179. (sblk->status_tx_quick_consumer_index0 != bp->hw_tx_cons))
  2180. return 1;
  2181. if ((sblk->status_attn_bits & STATUS_ATTN_EVENTS) !=
  2182. (sblk->status_attn_bits_ack & STATUS_ATTN_EVENTS))
  2183. return 1;
  2184. return 0;
  2185. }
  2186. static int bnx2_poll_work(struct bnx2 *bp, int work_done, int budget)
  2187. {
  2188. struct status_block *sblk = bp->status_blk;
  2189. u32 status_attn_bits = sblk->status_attn_bits;
  2190. u32 status_attn_bits_ack = sblk->status_attn_bits_ack;
  2191. if ((status_attn_bits & STATUS_ATTN_EVENTS) !=
  2192. (status_attn_bits_ack & STATUS_ATTN_EVENTS)) {
  2193. bnx2_phy_int(bp);
  2194. /* This is needed to take care of transient status
  2195. * during link changes.
  2196. */
  2197. REG_WR(bp, BNX2_HC_COMMAND,
  2198. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  2199. REG_RD(bp, BNX2_HC_COMMAND);
  2200. }
  2201. if (sblk->status_tx_quick_consumer_index0 != bp->hw_tx_cons)
  2202. bnx2_tx_int(bp);
  2203. if (sblk->status_rx_quick_consumer_index0 != bp->hw_rx_cons)
  2204. work_done += bnx2_rx_int(bp, budget - work_done);
  2205. return work_done;
  2206. }
  2207. static int bnx2_poll(struct napi_struct *napi, int budget)
  2208. {
  2209. struct bnx2 *bp = container_of(napi, struct bnx2, napi);
  2210. int work_done = 0;
  2211. struct status_block *sblk = bp->status_blk;
  2212. while (1) {
  2213. work_done = bnx2_poll_work(bp, work_done, budget);
  2214. if (unlikely(work_done >= budget))
  2215. break;
  2216. /* bp->last_status_idx is used below to tell the hw how
  2217. * much work has been processed, so we must read it before
  2218. * checking for more work.
  2219. */
  2220. bp->last_status_idx = sblk->status_idx;
  2221. rmb();
  2222. if (likely(!bnx2_has_work(bp))) {
  2223. netif_rx_complete(bp->dev, napi);
  2224. if (likely(bp->flags & USING_MSI_FLAG)) {
  2225. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2226. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2227. bp->last_status_idx);
  2228. break;
  2229. }
  2230. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2231. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2232. BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
  2233. bp->last_status_idx);
  2234. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2235. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2236. bp->last_status_idx);
  2237. break;
  2238. }
  2239. }
  2240. return work_done;
  2241. }
  2242. /* Called with rtnl_lock from vlan functions and also netif_tx_lock
  2243. * from set_multicast.
  2244. */
  2245. static void
  2246. bnx2_set_rx_mode(struct net_device *dev)
  2247. {
  2248. struct bnx2 *bp = netdev_priv(dev);
  2249. u32 rx_mode, sort_mode;
  2250. int i;
  2251. spin_lock_bh(&bp->phy_lock);
  2252. rx_mode = bp->rx_mode & ~(BNX2_EMAC_RX_MODE_PROMISCUOUS |
  2253. BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG);
  2254. sort_mode = 1 | BNX2_RPM_SORT_USER0_BC_EN;
  2255. #ifdef BCM_VLAN
  2256. if (!bp->vlgrp && !(bp->flags & ASF_ENABLE_FLAG))
  2257. rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
  2258. #else
  2259. if (!(bp->flags & ASF_ENABLE_FLAG))
  2260. rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
  2261. #endif
  2262. if (dev->flags & IFF_PROMISC) {
  2263. /* Promiscuous mode. */
  2264. rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
  2265. sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
  2266. BNX2_RPM_SORT_USER0_PROM_VLAN;
  2267. }
  2268. else if (dev->flags & IFF_ALLMULTI) {
  2269. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  2270. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  2271. 0xffffffff);
  2272. }
  2273. sort_mode |= BNX2_RPM_SORT_USER0_MC_EN;
  2274. }
  2275. else {
  2276. /* Accept one or more multicast(s). */
  2277. struct dev_mc_list *mclist;
  2278. u32 mc_filter[NUM_MC_HASH_REGISTERS];
  2279. u32 regidx;
  2280. u32 bit;
  2281. u32 crc;
  2282. memset(mc_filter, 0, 4 * NUM_MC_HASH_REGISTERS);
  2283. for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
  2284. i++, mclist = mclist->next) {
  2285. crc = ether_crc_le(ETH_ALEN, mclist->dmi_addr);
  2286. bit = crc & 0xff;
  2287. regidx = (bit & 0xe0) >> 5;
  2288. bit &= 0x1f;
  2289. mc_filter[regidx] |= (1 << bit);
  2290. }
  2291. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  2292. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  2293. mc_filter[i]);
  2294. }
  2295. sort_mode |= BNX2_RPM_SORT_USER0_MC_HSH_EN;
  2296. }
  2297. if (rx_mode != bp->rx_mode) {
  2298. bp->rx_mode = rx_mode;
  2299. REG_WR(bp, BNX2_EMAC_RX_MODE, rx_mode);
  2300. }
  2301. REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
  2302. REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode);
  2303. REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode | BNX2_RPM_SORT_USER0_ENA);
  2304. spin_unlock_bh(&bp->phy_lock);
  2305. }
  2306. static void
  2307. load_rv2p_fw(struct bnx2 *bp, u32 *rv2p_code, u32 rv2p_code_len,
  2308. u32 rv2p_proc)
  2309. {
  2310. int i;
  2311. u32 val;
  2312. for (i = 0; i < rv2p_code_len; i += 8) {
  2313. REG_WR(bp, BNX2_RV2P_INSTR_HIGH, cpu_to_le32(*rv2p_code));
  2314. rv2p_code++;
  2315. REG_WR(bp, BNX2_RV2P_INSTR_LOW, cpu_to_le32(*rv2p_code));
  2316. rv2p_code++;
  2317. if (rv2p_proc == RV2P_PROC1) {
  2318. val = (i / 8) | BNX2_RV2P_PROC1_ADDR_CMD_RDWR;
  2319. REG_WR(bp, BNX2_RV2P_PROC1_ADDR_CMD, val);
  2320. }
  2321. else {
  2322. val = (i / 8) | BNX2_RV2P_PROC2_ADDR_CMD_RDWR;
  2323. REG_WR(bp, BNX2_RV2P_PROC2_ADDR_CMD, val);
  2324. }
  2325. }
  2326. /* Reset the processor, un-stall is done later. */
  2327. if (rv2p_proc == RV2P_PROC1) {
  2328. REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC1_RESET);
  2329. }
  2330. else {
  2331. REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC2_RESET);
  2332. }
  2333. }
  2334. static int
  2335. load_cpu_fw(struct bnx2 *bp, struct cpu_reg *cpu_reg, struct fw_info *fw)
  2336. {
  2337. u32 offset;
  2338. u32 val;
  2339. int rc;
  2340. /* Halt the CPU. */
  2341. val = REG_RD_IND(bp, cpu_reg->mode);
  2342. val |= cpu_reg->mode_value_halt;
  2343. REG_WR_IND(bp, cpu_reg->mode, val);
  2344. REG_WR_IND(bp, cpu_reg->state, cpu_reg->state_value_clear);
  2345. /* Load the Text area. */
  2346. offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
  2347. if (fw->gz_text) {
  2348. int j;
  2349. rc = zlib_inflate_blob(fw->text, FW_BUF_SIZE, fw->gz_text,
  2350. fw->gz_text_len);
  2351. if (rc < 0)
  2352. return rc;
  2353. for (j = 0; j < (fw->text_len / 4); j++, offset += 4) {
  2354. REG_WR_IND(bp, offset, cpu_to_le32(fw->text[j]));
  2355. }
  2356. }
  2357. /* Load the Data area. */
  2358. offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
  2359. if (fw->data) {
  2360. int j;
  2361. for (j = 0; j < (fw->data_len / 4); j++, offset += 4) {
  2362. REG_WR_IND(bp, offset, fw->data[j]);
  2363. }
  2364. }
  2365. /* Load the SBSS area. */
  2366. offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
  2367. if (fw->sbss_len) {
  2368. int j;
  2369. for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) {
  2370. REG_WR_IND(bp, offset, 0);
  2371. }
  2372. }
  2373. /* Load the BSS area. */
  2374. offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
  2375. if (fw->bss_len) {
  2376. int j;
  2377. for (j = 0; j < (fw->bss_len/4); j++, offset += 4) {
  2378. REG_WR_IND(bp, offset, 0);
  2379. }
  2380. }
  2381. /* Load the Read-Only area. */
  2382. offset = cpu_reg->spad_base +
  2383. (fw->rodata_addr - cpu_reg->mips_view_base);
  2384. if (fw->rodata) {
  2385. int j;
  2386. for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) {
  2387. REG_WR_IND(bp, offset, fw->rodata[j]);
  2388. }
  2389. }
  2390. /* Clear the pre-fetch instruction. */
  2391. REG_WR_IND(bp, cpu_reg->inst, 0);
  2392. REG_WR_IND(bp, cpu_reg->pc, fw->start_addr);
  2393. /* Start the CPU. */
  2394. val = REG_RD_IND(bp, cpu_reg->mode);
  2395. val &= ~cpu_reg->mode_value_halt;
  2396. REG_WR_IND(bp, cpu_reg->state, cpu_reg->state_value_clear);
  2397. REG_WR_IND(bp, cpu_reg->mode, val);
  2398. return 0;
  2399. }
  2400. static int
  2401. bnx2_init_cpus(struct bnx2 *bp)
  2402. {
  2403. struct cpu_reg cpu_reg;
  2404. struct fw_info *fw;
  2405. int rc;
  2406. void *text;
  2407. /* Initialize the RV2P processor. */
  2408. text = vmalloc(FW_BUF_SIZE);
  2409. if (!text)
  2410. return -ENOMEM;
  2411. rc = zlib_inflate_blob(text, FW_BUF_SIZE, bnx2_rv2p_proc1, sizeof(bnx2_rv2p_proc1));
  2412. if (rc < 0)
  2413. goto init_cpu_err;
  2414. load_rv2p_fw(bp, text, rc /* == len */, RV2P_PROC1);
  2415. rc = zlib_inflate_blob(text, FW_BUF_SIZE, bnx2_rv2p_proc2, sizeof(bnx2_rv2p_proc2));
  2416. if (rc < 0)
  2417. goto init_cpu_err;
  2418. load_rv2p_fw(bp, text, rc /* == len */, RV2P_PROC2);
  2419. /* Initialize the RX Processor. */
  2420. cpu_reg.mode = BNX2_RXP_CPU_MODE;
  2421. cpu_reg.mode_value_halt = BNX2_RXP_CPU_MODE_SOFT_HALT;
  2422. cpu_reg.mode_value_sstep = BNX2_RXP_CPU_MODE_STEP_ENA;
  2423. cpu_reg.state = BNX2_RXP_CPU_STATE;
  2424. cpu_reg.state_value_clear = 0xffffff;
  2425. cpu_reg.gpr0 = BNX2_RXP_CPU_REG_FILE;
  2426. cpu_reg.evmask = BNX2_RXP_CPU_EVENT_MASK;
  2427. cpu_reg.pc = BNX2_RXP_CPU_PROGRAM_COUNTER;
  2428. cpu_reg.inst = BNX2_RXP_CPU_INSTRUCTION;
  2429. cpu_reg.bp = BNX2_RXP_CPU_HW_BREAKPOINT;
  2430. cpu_reg.spad_base = BNX2_RXP_SCRATCH;
  2431. cpu_reg.mips_view_base = 0x8000000;
  2432. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  2433. fw = &bnx2_rxp_fw_09;
  2434. else
  2435. fw = &bnx2_rxp_fw_06;
  2436. fw->text = text;
  2437. rc = load_cpu_fw(bp, &cpu_reg, fw);
  2438. if (rc)
  2439. goto init_cpu_err;
  2440. /* Initialize the TX Processor. */
  2441. cpu_reg.mode = BNX2_TXP_CPU_MODE;
  2442. cpu_reg.mode_value_halt = BNX2_TXP_CPU_MODE_SOFT_HALT;
  2443. cpu_reg.mode_value_sstep = BNX2_TXP_CPU_MODE_STEP_ENA;
  2444. cpu_reg.state = BNX2_TXP_CPU_STATE;
  2445. cpu_reg.state_value_clear = 0xffffff;
  2446. cpu_reg.gpr0 = BNX2_TXP_CPU_REG_FILE;
  2447. cpu_reg.evmask = BNX2_TXP_CPU_EVENT_MASK;
  2448. cpu_reg.pc = BNX2_TXP_CPU_PROGRAM_COUNTER;
  2449. cpu_reg.inst = BNX2_TXP_CPU_INSTRUCTION;
  2450. cpu_reg.bp = BNX2_TXP_CPU_HW_BREAKPOINT;
  2451. cpu_reg.spad_base = BNX2_TXP_SCRATCH;
  2452. cpu_reg.mips_view_base = 0x8000000;
  2453. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  2454. fw = &bnx2_txp_fw_09;
  2455. else
  2456. fw = &bnx2_txp_fw_06;
  2457. fw->text = text;
  2458. rc = load_cpu_fw(bp, &cpu_reg, fw);
  2459. if (rc)
  2460. goto init_cpu_err;
  2461. /* Initialize the TX Patch-up Processor. */
  2462. cpu_reg.mode = BNX2_TPAT_CPU_MODE;
  2463. cpu_reg.mode_value_halt = BNX2_TPAT_CPU_MODE_SOFT_HALT;
  2464. cpu_reg.mode_value_sstep = BNX2_TPAT_CPU_MODE_STEP_ENA;
  2465. cpu_reg.state = BNX2_TPAT_CPU_STATE;
  2466. cpu_reg.state_value_clear = 0xffffff;
  2467. cpu_reg.gpr0 = BNX2_TPAT_CPU_REG_FILE;
  2468. cpu_reg.evmask = BNX2_TPAT_CPU_EVENT_MASK;
  2469. cpu_reg.pc = BNX2_TPAT_CPU_PROGRAM_COUNTER;
  2470. cpu_reg.inst = BNX2_TPAT_CPU_INSTRUCTION;
  2471. cpu_reg.bp = BNX2_TPAT_CPU_HW_BREAKPOINT;
  2472. cpu_reg.spad_base = BNX2_TPAT_SCRATCH;
  2473. cpu_reg.mips_view_base = 0x8000000;
  2474. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  2475. fw = &bnx2_tpat_fw_09;
  2476. else
  2477. fw = &bnx2_tpat_fw_06;
  2478. fw->text = text;
  2479. rc = load_cpu_fw(bp, &cpu_reg, fw);
  2480. if (rc)
  2481. goto init_cpu_err;
  2482. /* Initialize the Completion Processor. */
  2483. cpu_reg.mode = BNX2_COM_CPU_MODE;
  2484. cpu_reg.mode_value_halt = BNX2_COM_CPU_MODE_SOFT_HALT;
  2485. cpu_reg.mode_value_sstep = BNX2_COM_CPU_MODE_STEP_ENA;
  2486. cpu_reg.state = BNX2_COM_CPU_STATE;
  2487. cpu_reg.state_value_clear = 0xffffff;
  2488. cpu_reg.gpr0 = BNX2_COM_CPU_REG_FILE;
  2489. cpu_reg.evmask = BNX2_COM_CPU_EVENT_MASK;
  2490. cpu_reg.pc = BNX2_COM_CPU_PROGRAM_COUNTER;
  2491. cpu_reg.inst = BNX2_COM_CPU_INSTRUCTION;
  2492. cpu_reg.bp = BNX2_COM_CPU_HW_BREAKPOINT;
  2493. cpu_reg.spad_base = BNX2_COM_SCRATCH;
  2494. cpu_reg.mips_view_base = 0x8000000;
  2495. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  2496. fw = &bnx2_com_fw_09;
  2497. else
  2498. fw = &bnx2_com_fw_06;
  2499. fw->text = text;
  2500. rc = load_cpu_fw(bp, &cpu_reg, fw);
  2501. if (rc)
  2502. goto init_cpu_err;
  2503. /* Initialize the Command Processor. */
  2504. cpu_reg.mode = BNX2_CP_CPU_MODE;
  2505. cpu_reg.mode_value_halt = BNX2_CP_CPU_MODE_SOFT_HALT;
  2506. cpu_reg.mode_value_sstep = BNX2_CP_CPU_MODE_STEP_ENA;
  2507. cpu_reg.state = BNX2_CP_CPU_STATE;
  2508. cpu_reg.state_value_clear = 0xffffff;
  2509. cpu_reg.gpr0 = BNX2_CP_CPU_REG_FILE;
  2510. cpu_reg.evmask = BNX2_CP_CPU_EVENT_MASK;
  2511. cpu_reg.pc = BNX2_CP_CPU_PROGRAM_COUNTER;
  2512. cpu_reg.inst = BNX2_CP_CPU_INSTRUCTION;
  2513. cpu_reg.bp = BNX2_CP_CPU_HW_BREAKPOINT;
  2514. cpu_reg.spad_base = BNX2_CP_SCRATCH;
  2515. cpu_reg.mips_view_base = 0x8000000;
  2516. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  2517. fw = &bnx2_cp_fw_09;
  2518. fw->text = text;
  2519. rc = load_cpu_fw(bp, &cpu_reg, fw);
  2520. if (rc)
  2521. goto init_cpu_err;
  2522. }
  2523. init_cpu_err:
  2524. vfree(text);
  2525. return rc;
  2526. }
  2527. static int
  2528. bnx2_set_power_state(struct bnx2 *bp, pci_power_t state)
  2529. {
  2530. u16 pmcsr;
  2531. pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr);
  2532. switch (state) {
  2533. case PCI_D0: {
  2534. u32 val;
  2535. pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
  2536. (pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
  2537. PCI_PM_CTRL_PME_STATUS);
  2538. if (pmcsr & PCI_PM_CTRL_STATE_MASK)
  2539. /* delay required during transition out of D3hot */
  2540. msleep(20);
  2541. val = REG_RD(bp, BNX2_EMAC_MODE);
  2542. val |= BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD;
  2543. val &= ~BNX2_EMAC_MODE_MPKT;
  2544. REG_WR(bp, BNX2_EMAC_MODE, val);
  2545. val = REG_RD(bp, BNX2_RPM_CONFIG);
  2546. val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
  2547. REG_WR(bp, BNX2_RPM_CONFIG, val);
  2548. break;
  2549. }
  2550. case PCI_D3hot: {
  2551. int i;
  2552. u32 val, wol_msg;
  2553. if (bp->wol) {
  2554. u32 advertising;
  2555. u8 autoneg;
  2556. autoneg = bp->autoneg;
  2557. advertising = bp->advertising;
  2558. bp->autoneg = AUTONEG_SPEED;
  2559. bp->advertising = ADVERTISED_10baseT_Half |
  2560. ADVERTISED_10baseT_Full |
  2561. ADVERTISED_100baseT_Half |
  2562. ADVERTISED_100baseT_Full |
  2563. ADVERTISED_Autoneg;
  2564. bnx2_setup_copper_phy(bp);
  2565. bp->autoneg = autoneg;
  2566. bp->advertising = advertising;
  2567. bnx2_set_mac_addr(bp);
  2568. val = REG_RD(bp, BNX2_EMAC_MODE);
  2569. /* Enable port mode. */
  2570. val &= ~BNX2_EMAC_MODE_PORT;
  2571. val |= BNX2_EMAC_MODE_PORT_MII |
  2572. BNX2_EMAC_MODE_MPKT_RCVD |
  2573. BNX2_EMAC_MODE_ACPI_RCVD |
  2574. BNX2_EMAC_MODE_MPKT;
  2575. REG_WR(bp, BNX2_EMAC_MODE, val);
  2576. /* receive all multicast */
  2577. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  2578. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  2579. 0xffffffff);
  2580. }
  2581. REG_WR(bp, BNX2_EMAC_RX_MODE,
  2582. BNX2_EMAC_RX_MODE_SORT_MODE);
  2583. val = 1 | BNX2_RPM_SORT_USER0_BC_EN |
  2584. BNX2_RPM_SORT_USER0_MC_EN;
  2585. REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
  2586. REG_WR(bp, BNX2_RPM_SORT_USER0, val);
  2587. REG_WR(bp, BNX2_RPM_SORT_USER0, val |
  2588. BNX2_RPM_SORT_USER0_ENA);
  2589. /* Need to enable EMAC and RPM for WOL. */
  2590. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  2591. BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE |
  2592. BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE |
  2593. BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE);
  2594. val = REG_RD(bp, BNX2_RPM_CONFIG);
  2595. val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
  2596. REG_WR(bp, BNX2_RPM_CONFIG, val);
  2597. wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  2598. }
  2599. else {
  2600. wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  2601. }
  2602. if (!(bp->flags & NO_WOL_FLAG))
  2603. bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT3 | wol_msg, 0);
  2604. pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
  2605. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  2606. (CHIP_ID(bp) == CHIP_ID_5706_A1)) {
  2607. if (bp->wol)
  2608. pmcsr |= 3;
  2609. }
  2610. else {
  2611. pmcsr |= 3;
  2612. }
  2613. if (bp->wol) {
  2614. pmcsr |= PCI_PM_CTRL_PME_ENABLE;
  2615. }
  2616. pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
  2617. pmcsr);
  2618. /* No more memory access after this point until
  2619. * device is brought back to D0.
  2620. */
  2621. udelay(50);
  2622. break;
  2623. }
  2624. default:
  2625. return -EINVAL;
  2626. }
  2627. return 0;
  2628. }
  2629. static int
  2630. bnx2_acquire_nvram_lock(struct bnx2 *bp)
  2631. {
  2632. u32 val;
  2633. int j;
  2634. /* Request access to the flash interface. */
  2635. REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_SET2);
  2636. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  2637. val = REG_RD(bp, BNX2_NVM_SW_ARB);
  2638. if (val & BNX2_NVM_SW_ARB_ARB_ARB2)
  2639. break;
  2640. udelay(5);
  2641. }
  2642. if (j >= NVRAM_TIMEOUT_COUNT)
  2643. return -EBUSY;
  2644. return 0;
  2645. }
  2646. static int
  2647. bnx2_release_nvram_lock(struct bnx2 *bp)
  2648. {
  2649. int j;
  2650. u32 val;
  2651. /* Relinquish nvram interface. */
  2652. REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_CLR2);
  2653. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  2654. val = REG_RD(bp, BNX2_NVM_SW_ARB);
  2655. if (!(val & BNX2_NVM_SW_ARB_ARB_ARB2))
  2656. break;
  2657. udelay(5);
  2658. }
  2659. if (j >= NVRAM_TIMEOUT_COUNT)
  2660. return -EBUSY;
  2661. return 0;
  2662. }
  2663. static int
  2664. bnx2_enable_nvram_write(struct bnx2 *bp)
  2665. {
  2666. u32 val;
  2667. val = REG_RD(bp, BNX2_MISC_CFG);
  2668. REG_WR(bp, BNX2_MISC_CFG, val | BNX2_MISC_CFG_NVM_WR_EN_PCI);
  2669. if (bp->flash_info->flags & BNX2_NV_WREN) {
  2670. int j;
  2671. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  2672. REG_WR(bp, BNX2_NVM_COMMAND,
  2673. BNX2_NVM_COMMAND_WREN | BNX2_NVM_COMMAND_DOIT);
  2674. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  2675. udelay(5);
  2676. val = REG_RD(bp, BNX2_NVM_COMMAND);
  2677. if (val & BNX2_NVM_COMMAND_DONE)
  2678. break;
  2679. }
  2680. if (j >= NVRAM_TIMEOUT_COUNT)
  2681. return -EBUSY;
  2682. }
  2683. return 0;
  2684. }
  2685. static void
  2686. bnx2_disable_nvram_write(struct bnx2 *bp)
  2687. {
  2688. u32 val;
  2689. val = REG_RD(bp, BNX2_MISC_CFG);
  2690. REG_WR(bp, BNX2_MISC_CFG, val & ~BNX2_MISC_CFG_NVM_WR_EN);
  2691. }
  2692. static void
  2693. bnx2_enable_nvram_access(struct bnx2 *bp)
  2694. {
  2695. u32 val;
  2696. val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
  2697. /* Enable both bits, even on read. */
  2698. REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
  2699. val | BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN);
  2700. }
  2701. static void
  2702. bnx2_disable_nvram_access(struct bnx2 *bp)
  2703. {
  2704. u32 val;
  2705. val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
  2706. /* Disable both bits, even after read. */
  2707. REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
  2708. val & ~(BNX2_NVM_ACCESS_ENABLE_EN |
  2709. BNX2_NVM_ACCESS_ENABLE_WR_EN));
  2710. }
  2711. static int
  2712. bnx2_nvram_erase_page(struct bnx2 *bp, u32 offset)
  2713. {
  2714. u32 cmd;
  2715. int j;
  2716. if (bp->flash_info->flags & BNX2_NV_BUFFERED)
  2717. /* Buffered flash, no erase needed */
  2718. return 0;
  2719. /* Build an erase command */
  2720. cmd = BNX2_NVM_COMMAND_ERASE | BNX2_NVM_COMMAND_WR |
  2721. BNX2_NVM_COMMAND_DOIT;
  2722. /* Need to clear DONE bit separately. */
  2723. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  2724. /* Address of the NVRAM to read from. */
  2725. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  2726. /* Issue an erase command. */
  2727. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  2728. /* Wait for completion. */
  2729. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  2730. u32 val;
  2731. udelay(5);
  2732. val = REG_RD(bp, BNX2_NVM_COMMAND);
  2733. if (val & BNX2_NVM_COMMAND_DONE)
  2734. break;
  2735. }
  2736. if (j >= NVRAM_TIMEOUT_COUNT)
  2737. return -EBUSY;
  2738. return 0;
  2739. }
  2740. static int
  2741. bnx2_nvram_read_dword(struct bnx2 *bp, u32 offset, u8 *ret_val, u32 cmd_flags)
  2742. {
  2743. u32 cmd;
  2744. int j;
  2745. /* Build the command word. */
  2746. cmd = BNX2_NVM_COMMAND_DOIT | cmd_flags;
  2747. /* Calculate an offset of a buffered flash, not needed for 5709. */
  2748. if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
  2749. offset = ((offset / bp->flash_info->page_size) <<
  2750. bp->flash_info->page_bits) +
  2751. (offset % bp->flash_info->page_size);
  2752. }
  2753. /* Need to clear DONE bit separately. */
  2754. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  2755. /* Address of the NVRAM to read from. */
  2756. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  2757. /* Issue a read command. */
  2758. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  2759. /* Wait for completion. */
  2760. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  2761. u32 val;
  2762. udelay(5);
  2763. val = REG_RD(bp, BNX2_NVM_COMMAND);
  2764. if (val & BNX2_NVM_COMMAND_DONE) {
  2765. val = REG_RD(bp, BNX2_NVM_READ);
  2766. val = be32_to_cpu(val);
  2767. memcpy(ret_val, &val, 4);
  2768. break;
  2769. }
  2770. }
  2771. if (j >= NVRAM_TIMEOUT_COUNT)
  2772. return -EBUSY;
  2773. return 0;
  2774. }
  2775. static int
  2776. bnx2_nvram_write_dword(struct bnx2 *bp, u32 offset, u8 *val, u32 cmd_flags)
  2777. {
  2778. u32 cmd, val32;
  2779. int j;
  2780. /* Build the command word. */
  2781. cmd = BNX2_NVM_COMMAND_DOIT | BNX2_NVM_COMMAND_WR | cmd_flags;
  2782. /* Calculate an offset of a buffered flash, not needed for 5709. */
  2783. if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
  2784. offset = ((offset / bp->flash_info->page_size) <<
  2785. bp->flash_info->page_bits) +
  2786. (offset % bp->flash_info->page_size);
  2787. }
  2788. /* Need to clear DONE bit separately. */
  2789. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  2790. memcpy(&val32, val, 4);
  2791. val32 = cpu_to_be32(val32);
  2792. /* Write the data. */
  2793. REG_WR(bp, BNX2_NVM_WRITE, val32);
  2794. /* Address of the NVRAM to write to. */
  2795. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  2796. /* Issue the write command. */
  2797. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  2798. /* Wait for completion. */
  2799. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  2800. udelay(5);
  2801. if (REG_RD(bp, BNX2_NVM_COMMAND) & BNX2_NVM_COMMAND_DONE)
  2802. break;
  2803. }
  2804. if (j >= NVRAM_TIMEOUT_COUNT)
  2805. return -EBUSY;
  2806. return 0;
  2807. }
  2808. static int
  2809. bnx2_init_nvram(struct bnx2 *bp)
  2810. {
  2811. u32 val;
  2812. int j, entry_count, rc = 0;
  2813. struct flash_spec *flash;
  2814. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  2815. bp->flash_info = &flash_5709;
  2816. goto get_flash_size;
  2817. }
  2818. /* Determine the selected interface. */
  2819. val = REG_RD(bp, BNX2_NVM_CFG1);
  2820. entry_count = ARRAY_SIZE(flash_table);
  2821. if (val & 0x40000000) {
  2822. /* Flash interface has been reconfigured */
  2823. for (j = 0, flash = &flash_table[0]; j < entry_count;
  2824. j++, flash++) {
  2825. if ((val & FLASH_BACKUP_STRAP_MASK) ==
  2826. (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
  2827. bp->flash_info = flash;
  2828. break;
  2829. }
  2830. }
  2831. }
  2832. else {
  2833. u32 mask;
  2834. /* Not yet been reconfigured */
  2835. if (val & (1 << 23))
  2836. mask = FLASH_BACKUP_STRAP_MASK;
  2837. else
  2838. mask = FLASH_STRAP_MASK;
  2839. for (j = 0, flash = &flash_table[0]; j < entry_count;
  2840. j++, flash++) {
  2841. if ((val & mask) == (flash->strapping & mask)) {
  2842. bp->flash_info = flash;
  2843. /* Request access to the flash interface. */
  2844. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  2845. return rc;
  2846. /* Enable access to flash interface */
  2847. bnx2_enable_nvram_access(bp);
  2848. /* Reconfigure the flash interface */
  2849. REG_WR(bp, BNX2_NVM_CFG1, flash->config1);
  2850. REG_WR(bp, BNX2_NVM_CFG2, flash->config2);
  2851. REG_WR(bp, BNX2_NVM_CFG3, flash->config3);
  2852. REG_WR(bp, BNX2_NVM_WRITE1, flash->write1);
  2853. /* Disable access to flash interface */
  2854. bnx2_disable_nvram_access(bp);
  2855. bnx2_release_nvram_lock(bp);
  2856. break;
  2857. }
  2858. }
  2859. } /* if (val & 0x40000000) */
  2860. if (j == entry_count) {
  2861. bp->flash_info = NULL;
  2862. printk(KERN_ALERT PFX "Unknown flash/EEPROM type.\n");
  2863. return -ENODEV;
  2864. }
  2865. get_flash_size:
  2866. val = REG_RD_IND(bp, bp->shmem_base + BNX2_SHARED_HW_CFG_CONFIG2);
  2867. val &= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK;
  2868. if (val)
  2869. bp->flash_size = val;
  2870. else
  2871. bp->flash_size = bp->flash_info->total_size;
  2872. return rc;
  2873. }
  2874. static int
  2875. bnx2_nvram_read(struct bnx2 *bp, u32 offset, u8 *ret_buf,
  2876. int buf_size)
  2877. {
  2878. int rc = 0;
  2879. u32 cmd_flags, offset32, len32, extra;
  2880. if (buf_size == 0)
  2881. return 0;
  2882. /* Request access to the flash interface. */
  2883. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  2884. return rc;
  2885. /* Enable access to flash interface */
  2886. bnx2_enable_nvram_access(bp);
  2887. len32 = buf_size;
  2888. offset32 = offset;
  2889. extra = 0;
  2890. cmd_flags = 0;
  2891. if (offset32 & 3) {
  2892. u8 buf[4];
  2893. u32 pre_len;
  2894. offset32 &= ~3;
  2895. pre_len = 4 - (offset & 3);
  2896. if (pre_len >= len32) {
  2897. pre_len = len32;
  2898. cmd_flags = BNX2_NVM_COMMAND_FIRST |
  2899. BNX2_NVM_COMMAND_LAST;
  2900. }
  2901. else {
  2902. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  2903. }
  2904. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  2905. if (rc)
  2906. return rc;
  2907. memcpy(ret_buf, buf + (offset & 3), pre_len);
  2908. offset32 += 4;
  2909. ret_buf += pre_len;
  2910. len32 -= pre_len;
  2911. }
  2912. if (len32 & 3) {
  2913. extra = 4 - (len32 & 3);
  2914. len32 = (len32 + 4) & ~3;
  2915. }
  2916. if (len32 == 4) {
  2917. u8 buf[4];
  2918. if (cmd_flags)
  2919. cmd_flags = BNX2_NVM_COMMAND_LAST;
  2920. else
  2921. cmd_flags = BNX2_NVM_COMMAND_FIRST |
  2922. BNX2_NVM_COMMAND_LAST;
  2923. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  2924. memcpy(ret_buf, buf, 4 - extra);
  2925. }
  2926. else if (len32 > 0) {
  2927. u8 buf[4];
  2928. /* Read the first word. */
  2929. if (cmd_flags)
  2930. cmd_flags = 0;
  2931. else
  2932. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  2933. rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, cmd_flags);
  2934. /* Advance to the next dword. */
  2935. offset32 += 4;
  2936. ret_buf += 4;
  2937. len32 -= 4;
  2938. while (len32 > 4 && rc == 0) {
  2939. rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, 0);
  2940. /* Advance to the next dword. */
  2941. offset32 += 4;
  2942. ret_buf += 4;
  2943. len32 -= 4;
  2944. }
  2945. if (rc)
  2946. return rc;
  2947. cmd_flags = BNX2_NVM_COMMAND_LAST;
  2948. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  2949. memcpy(ret_buf, buf, 4 - extra);
  2950. }
  2951. /* Disable access to flash interface */
  2952. bnx2_disable_nvram_access(bp);
  2953. bnx2_release_nvram_lock(bp);
  2954. return rc;
  2955. }
  2956. static int
  2957. bnx2_nvram_write(struct bnx2 *bp, u32 offset, u8 *data_buf,
  2958. int buf_size)
  2959. {
  2960. u32 written, offset32, len32;
  2961. u8 *buf, start[4], end[4], *align_buf = NULL, *flash_buffer = NULL;
  2962. int rc = 0;
  2963. int align_start, align_end;
  2964. buf = data_buf;
  2965. offset32 = offset;
  2966. len32 = buf_size;
  2967. align_start = align_end = 0;
  2968. if ((align_start = (offset32 & 3))) {
  2969. offset32 &= ~3;
  2970. len32 += align_start;
  2971. if (len32 < 4)
  2972. len32 = 4;
  2973. if ((rc = bnx2_nvram_read(bp, offset32, start, 4)))
  2974. return rc;
  2975. }
  2976. if (len32 & 3) {
  2977. align_end = 4 - (len32 & 3);
  2978. len32 += align_end;
  2979. if ((rc = bnx2_nvram_read(bp, offset32 + len32 - 4, end, 4)))
  2980. return rc;
  2981. }
  2982. if (align_start || align_end) {
  2983. align_buf = kmalloc(len32, GFP_KERNEL);
  2984. if (align_buf == NULL)
  2985. return -ENOMEM;
  2986. if (align_start) {
  2987. memcpy(align_buf, start, 4);
  2988. }
  2989. if (align_end) {
  2990. memcpy(align_buf + len32 - 4, end, 4);
  2991. }
  2992. memcpy(align_buf + align_start, data_buf, buf_size);
  2993. buf = align_buf;
  2994. }
  2995. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  2996. flash_buffer = kmalloc(264, GFP_KERNEL);
  2997. if (flash_buffer == NULL) {
  2998. rc = -ENOMEM;
  2999. goto nvram_write_end;
  3000. }
  3001. }
  3002. written = 0;
  3003. while ((written < len32) && (rc == 0)) {
  3004. u32 page_start, page_end, data_start, data_end;
  3005. u32 addr, cmd_flags;
  3006. int i;
  3007. /* Find the page_start addr */
  3008. page_start = offset32 + written;
  3009. page_start -= (page_start % bp->flash_info->page_size);
  3010. /* Find the page_end addr */
  3011. page_end = page_start + bp->flash_info->page_size;
  3012. /* Find the data_start addr */
  3013. data_start = (written == 0) ? offset32 : page_start;
  3014. /* Find the data_end addr */
  3015. data_end = (page_end > offset32 + len32) ?
  3016. (offset32 + len32) : page_end;
  3017. /* Request access to the flash interface. */
  3018. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3019. goto nvram_write_end;
  3020. /* Enable access to flash interface */
  3021. bnx2_enable_nvram_access(bp);
  3022. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3023. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3024. int j;
  3025. /* Read the whole page into the buffer
  3026. * (non-buffer flash only) */
  3027. for (j = 0; j < bp->flash_info->page_size; j += 4) {
  3028. if (j == (bp->flash_info->page_size - 4)) {
  3029. cmd_flags |= BNX2_NVM_COMMAND_LAST;
  3030. }
  3031. rc = bnx2_nvram_read_dword(bp,
  3032. page_start + j,
  3033. &flash_buffer[j],
  3034. cmd_flags);
  3035. if (rc)
  3036. goto nvram_write_end;
  3037. cmd_flags = 0;
  3038. }
  3039. }
  3040. /* Enable writes to flash interface (unlock write-protect) */
  3041. if ((rc = bnx2_enable_nvram_write(bp)) != 0)
  3042. goto nvram_write_end;
  3043. /* Loop to write back the buffer data from page_start to
  3044. * data_start */
  3045. i = 0;
  3046. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3047. /* Erase the page */
  3048. if ((rc = bnx2_nvram_erase_page(bp, page_start)) != 0)
  3049. goto nvram_write_end;
  3050. /* Re-enable the write again for the actual write */
  3051. bnx2_enable_nvram_write(bp);
  3052. for (addr = page_start; addr < data_start;
  3053. addr += 4, i += 4) {
  3054. rc = bnx2_nvram_write_dword(bp, addr,
  3055. &flash_buffer[i], cmd_flags);
  3056. if (rc != 0)
  3057. goto nvram_write_end;
  3058. cmd_flags = 0;
  3059. }
  3060. }
  3061. /* Loop to write the new data from data_start to data_end */
  3062. for (addr = data_start; addr < data_end; addr += 4, i += 4) {
  3063. if ((addr == page_end - 4) ||
  3064. ((bp->flash_info->flags & BNX2_NV_BUFFERED) &&
  3065. (addr == data_end - 4))) {
  3066. cmd_flags |= BNX2_NVM_COMMAND_LAST;
  3067. }
  3068. rc = bnx2_nvram_write_dword(bp, addr, buf,
  3069. cmd_flags);
  3070. if (rc != 0)
  3071. goto nvram_write_end;
  3072. cmd_flags = 0;
  3073. buf += 4;
  3074. }
  3075. /* Loop to write back the buffer data from data_end
  3076. * to page_end */
  3077. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3078. for (addr = data_end; addr < page_end;
  3079. addr += 4, i += 4) {
  3080. if (addr == page_end-4) {
  3081. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3082. }
  3083. rc = bnx2_nvram_write_dword(bp, addr,
  3084. &flash_buffer[i], cmd_flags);
  3085. if (rc != 0)
  3086. goto nvram_write_end;
  3087. cmd_flags = 0;
  3088. }
  3089. }
  3090. /* Disable writes to flash interface (lock write-protect) */
  3091. bnx2_disable_nvram_write(bp);
  3092. /* Disable access to flash interface */
  3093. bnx2_disable_nvram_access(bp);
  3094. bnx2_release_nvram_lock(bp);
  3095. /* Increment written */
  3096. written += data_end - data_start;
  3097. }
  3098. nvram_write_end:
  3099. kfree(flash_buffer);
  3100. kfree(align_buf);
  3101. return rc;
  3102. }
  3103. static void
  3104. bnx2_init_remote_phy(struct bnx2 *bp)
  3105. {
  3106. u32 val;
  3107. bp->phy_flags &= ~REMOTE_PHY_CAP_FLAG;
  3108. if (!(bp->phy_flags & PHY_SERDES_FLAG))
  3109. return;
  3110. val = REG_RD_IND(bp, bp->shmem_base + BNX2_FW_CAP_MB);
  3111. if ((val & BNX2_FW_CAP_SIGNATURE_MASK) != BNX2_FW_CAP_SIGNATURE)
  3112. return;
  3113. if (val & BNX2_FW_CAP_REMOTE_PHY_CAPABLE) {
  3114. bp->phy_flags |= REMOTE_PHY_CAP_FLAG;
  3115. val = REG_RD_IND(bp, bp->shmem_base + BNX2_LINK_STATUS);
  3116. if (val & BNX2_LINK_STATUS_SERDES_LINK)
  3117. bp->phy_port = PORT_FIBRE;
  3118. else
  3119. bp->phy_port = PORT_TP;
  3120. if (netif_running(bp->dev)) {
  3121. u32 sig;
  3122. if (val & BNX2_LINK_STATUS_LINK_UP) {
  3123. bp->link_up = 1;
  3124. netif_carrier_on(bp->dev);
  3125. } else {
  3126. bp->link_up = 0;
  3127. netif_carrier_off(bp->dev);
  3128. }
  3129. sig = BNX2_DRV_ACK_CAP_SIGNATURE |
  3130. BNX2_FW_CAP_REMOTE_PHY_CAPABLE;
  3131. REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_ACK_CAP_MB,
  3132. sig);
  3133. }
  3134. }
  3135. }
  3136. static int
  3137. bnx2_reset_chip(struct bnx2 *bp, u32 reset_code)
  3138. {
  3139. u32 val;
  3140. int i, rc = 0;
  3141. u8 old_port;
  3142. /* Wait for the current PCI transaction to complete before
  3143. * issuing a reset. */
  3144. REG_WR(bp, BNX2_MISC_ENABLE_CLR_BITS,
  3145. BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
  3146. BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
  3147. BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
  3148. BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
  3149. val = REG_RD(bp, BNX2_MISC_ENABLE_CLR_BITS);
  3150. udelay(5);
  3151. /* Wait for the firmware to tell us it is ok to issue a reset. */
  3152. bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT0 | reset_code, 1);
  3153. /* Deposit a driver reset signature so the firmware knows that
  3154. * this is a soft reset. */
  3155. REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_RESET_SIGNATURE,
  3156. BNX2_DRV_RESET_SIGNATURE_MAGIC);
  3157. /* Do a dummy read to force the chip to complete all current transaction
  3158. * before we issue a reset. */
  3159. val = REG_RD(bp, BNX2_MISC_ID);
  3160. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3161. REG_WR(bp, BNX2_MISC_COMMAND, BNX2_MISC_COMMAND_SW_RESET);
  3162. REG_RD(bp, BNX2_MISC_COMMAND);
  3163. udelay(5);
  3164. val = BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  3165. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
  3166. pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG, val);
  3167. } else {
  3168. val = BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3169. BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  3170. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
  3171. /* Chip reset. */
  3172. REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
  3173. /* Reading back any register after chip reset will hang the
  3174. * bus on 5706 A0 and A1. The msleep below provides plenty
  3175. * of margin for write posting.
  3176. */
  3177. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  3178. (CHIP_ID(bp) == CHIP_ID_5706_A1))
  3179. msleep(20);
  3180. /* Reset takes approximate 30 usec */
  3181. for (i = 0; i < 10; i++) {
  3182. val = REG_RD(bp, BNX2_PCICFG_MISC_CONFIG);
  3183. if ((val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3184. BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
  3185. break;
  3186. udelay(10);
  3187. }
  3188. if (val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3189. BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
  3190. printk(KERN_ERR PFX "Chip reset did not complete\n");
  3191. return -EBUSY;
  3192. }
  3193. }
  3194. /* Make sure byte swapping is properly configured. */
  3195. val = REG_RD(bp, BNX2_PCI_SWAP_DIAG0);
  3196. if (val != 0x01020304) {
  3197. printk(KERN_ERR PFX "Chip not in correct endian mode\n");
  3198. return -ENODEV;
  3199. }
  3200. /* Wait for the firmware to finish its initialization. */
  3201. rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT1 | reset_code, 0);
  3202. if (rc)
  3203. return rc;
  3204. spin_lock_bh(&bp->phy_lock);
  3205. old_port = bp->phy_port;
  3206. bnx2_init_remote_phy(bp);
  3207. if ((bp->phy_flags & REMOTE_PHY_CAP_FLAG) && old_port != bp->phy_port)
  3208. bnx2_set_default_remote_link(bp);
  3209. spin_unlock_bh(&bp->phy_lock);
  3210. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  3211. /* Adjust the voltage regular to two steps lower. The default
  3212. * of this register is 0x0000000e. */
  3213. REG_WR(bp, BNX2_MISC_VREG_CONTROL, 0x000000fa);
  3214. /* Remove bad rbuf memory from the free pool. */
  3215. rc = bnx2_alloc_bad_rbuf(bp);
  3216. }
  3217. return rc;
  3218. }
  3219. static int
  3220. bnx2_init_chip(struct bnx2 *bp)
  3221. {
  3222. u32 val;
  3223. int rc;
  3224. /* Make sure the interrupt is not active. */
  3225. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  3226. val = BNX2_DMA_CONFIG_DATA_BYTE_SWAP |
  3227. BNX2_DMA_CONFIG_DATA_WORD_SWAP |
  3228. #ifdef __BIG_ENDIAN
  3229. BNX2_DMA_CONFIG_CNTL_BYTE_SWAP |
  3230. #endif
  3231. BNX2_DMA_CONFIG_CNTL_WORD_SWAP |
  3232. DMA_READ_CHANS << 12 |
  3233. DMA_WRITE_CHANS << 16;
  3234. val |= (0x2 << 20) | (1 << 11);
  3235. if ((bp->flags & PCIX_FLAG) && (bp->bus_speed_mhz == 133))
  3236. val |= (1 << 23);
  3237. if ((CHIP_NUM(bp) == CHIP_NUM_5706) &&
  3238. (CHIP_ID(bp) != CHIP_ID_5706_A0) && !(bp->flags & PCIX_FLAG))
  3239. val |= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA;
  3240. REG_WR(bp, BNX2_DMA_CONFIG, val);
  3241. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  3242. val = REG_RD(bp, BNX2_TDMA_CONFIG);
  3243. val |= BNX2_TDMA_CONFIG_ONE_DMA;
  3244. REG_WR(bp, BNX2_TDMA_CONFIG, val);
  3245. }
  3246. if (bp->flags & PCIX_FLAG) {
  3247. u16 val16;
  3248. pci_read_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
  3249. &val16);
  3250. pci_write_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
  3251. val16 & ~PCI_X_CMD_ERO);
  3252. }
  3253. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  3254. BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
  3255. BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
  3256. BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
  3257. /* Initialize context mapping and zero out the quick contexts. The
  3258. * context block must have already been enabled. */
  3259. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3260. rc = bnx2_init_5709_context(bp);
  3261. if (rc)
  3262. return rc;
  3263. } else
  3264. bnx2_init_context(bp);
  3265. if ((rc = bnx2_init_cpus(bp)) != 0)
  3266. return rc;
  3267. bnx2_init_nvram(bp);
  3268. bnx2_set_mac_addr(bp);
  3269. val = REG_RD(bp, BNX2_MQ_CONFIG);
  3270. val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE;
  3271. val |= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
  3272. if (CHIP_ID(bp) == CHIP_ID_5709_A0 || CHIP_ID(bp) == CHIP_ID_5709_A1)
  3273. val |= BNX2_MQ_CONFIG_HALT_DIS;
  3274. REG_WR(bp, BNX2_MQ_CONFIG, val);
  3275. val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
  3276. REG_WR(bp, BNX2_MQ_KNL_BYP_WIND_START, val);
  3277. REG_WR(bp, BNX2_MQ_KNL_WIND_END, val);
  3278. val = (BCM_PAGE_BITS - 8) << 24;
  3279. REG_WR(bp, BNX2_RV2P_CONFIG, val);
  3280. /* Configure page size. */
  3281. val = REG_RD(bp, BNX2_TBDR_CONFIG);
  3282. val &= ~BNX2_TBDR_CONFIG_PAGE_SIZE;
  3283. val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
  3284. REG_WR(bp, BNX2_TBDR_CONFIG, val);
  3285. val = bp->mac_addr[0] +
  3286. (bp->mac_addr[1] << 8) +
  3287. (bp->mac_addr[2] << 16) +
  3288. bp->mac_addr[3] +
  3289. (bp->mac_addr[4] << 8) +
  3290. (bp->mac_addr[5] << 16);
  3291. REG_WR(bp, BNX2_EMAC_BACKOFF_SEED, val);
  3292. /* Program the MTU. Also include 4 bytes for CRC32. */
  3293. val = bp->dev->mtu + ETH_HLEN + 4;
  3294. if (val > (MAX_ETHERNET_PACKET_SIZE + 4))
  3295. val |= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA;
  3296. REG_WR(bp, BNX2_EMAC_RX_MTU_SIZE, val);
  3297. bp->last_status_idx = 0;
  3298. bp->rx_mode = BNX2_EMAC_RX_MODE_SORT_MODE;
  3299. /* Set up how to generate a link change interrupt. */
  3300. REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
  3301. REG_WR(bp, BNX2_HC_STATUS_ADDR_L,
  3302. (u64) bp->status_blk_mapping & 0xffffffff);
  3303. REG_WR(bp, BNX2_HC_STATUS_ADDR_H, (u64) bp->status_blk_mapping >> 32);
  3304. REG_WR(bp, BNX2_HC_STATISTICS_ADDR_L,
  3305. (u64) bp->stats_blk_mapping & 0xffffffff);
  3306. REG_WR(bp, BNX2_HC_STATISTICS_ADDR_H,
  3307. (u64) bp->stats_blk_mapping >> 32);
  3308. REG_WR(bp, BNX2_HC_TX_QUICK_CONS_TRIP,
  3309. (bp->tx_quick_cons_trip_int << 16) | bp->tx_quick_cons_trip);
  3310. REG_WR(bp, BNX2_HC_RX_QUICK_CONS_TRIP,
  3311. (bp->rx_quick_cons_trip_int << 16) | bp->rx_quick_cons_trip);
  3312. REG_WR(bp, BNX2_HC_COMP_PROD_TRIP,
  3313. (bp->comp_prod_trip_int << 16) | bp->comp_prod_trip);
  3314. REG_WR(bp, BNX2_HC_TX_TICKS, (bp->tx_ticks_int << 16) | bp->tx_ticks);
  3315. REG_WR(bp, BNX2_HC_RX_TICKS, (bp->rx_ticks_int << 16) | bp->rx_ticks);
  3316. REG_WR(bp, BNX2_HC_COM_TICKS,
  3317. (bp->com_ticks_int << 16) | bp->com_ticks);
  3318. REG_WR(bp, BNX2_HC_CMD_TICKS,
  3319. (bp->cmd_ticks_int << 16) | bp->cmd_ticks);
  3320. if (CHIP_NUM(bp) == CHIP_NUM_5708)
  3321. REG_WR(bp, BNX2_HC_STATS_TICKS, 0);
  3322. else
  3323. REG_WR(bp, BNX2_HC_STATS_TICKS, bp->stats_ticks);
  3324. REG_WR(bp, BNX2_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
  3325. if (CHIP_ID(bp) == CHIP_ID_5706_A1)
  3326. val = BNX2_HC_CONFIG_COLLECT_STATS;
  3327. else {
  3328. val = BNX2_HC_CONFIG_RX_TMR_MODE | BNX2_HC_CONFIG_TX_TMR_MODE |
  3329. BNX2_HC_CONFIG_COLLECT_STATS;
  3330. }
  3331. if (bp->flags & ONE_SHOT_MSI_FLAG)
  3332. val |= BNX2_HC_CONFIG_ONE_SHOT;
  3333. REG_WR(bp, BNX2_HC_CONFIG, val);
  3334. /* Clear internal stats counters. */
  3335. REG_WR(bp, BNX2_HC_COMMAND, BNX2_HC_COMMAND_CLR_STAT_NOW);
  3336. REG_WR(bp, BNX2_HC_ATTN_BITS_ENABLE, STATUS_ATTN_EVENTS);
  3337. /* Initialize the receive filter. */
  3338. bnx2_set_rx_mode(bp->dev);
  3339. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3340. val = REG_RD(bp, BNX2_MISC_NEW_CORE_CTL);
  3341. val |= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE;
  3342. REG_WR(bp, BNX2_MISC_NEW_CORE_CTL, val);
  3343. }
  3344. rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT2 | BNX2_DRV_MSG_CODE_RESET,
  3345. 0);
  3346. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, BNX2_MISC_ENABLE_DEFAULT);
  3347. REG_RD(bp, BNX2_MISC_ENABLE_SET_BITS);
  3348. udelay(20);
  3349. bp->hc_cmd = REG_RD(bp, BNX2_HC_COMMAND);
  3350. return rc;
  3351. }
  3352. static void
  3353. bnx2_init_tx_context(struct bnx2 *bp, u32 cid)
  3354. {
  3355. u32 val, offset0, offset1, offset2, offset3;
  3356. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3357. offset0 = BNX2_L2CTX_TYPE_XI;
  3358. offset1 = BNX2_L2CTX_CMD_TYPE_XI;
  3359. offset2 = BNX2_L2CTX_TBDR_BHADDR_HI_XI;
  3360. offset3 = BNX2_L2CTX_TBDR_BHADDR_LO_XI;
  3361. } else {
  3362. offset0 = BNX2_L2CTX_TYPE;
  3363. offset1 = BNX2_L2CTX_CMD_TYPE;
  3364. offset2 = BNX2_L2CTX_TBDR_BHADDR_HI;
  3365. offset3 = BNX2_L2CTX_TBDR_BHADDR_LO;
  3366. }
  3367. val = BNX2_L2CTX_TYPE_TYPE_L2 | BNX2_L2CTX_TYPE_SIZE_L2;
  3368. CTX_WR(bp, GET_CID_ADDR(cid), offset0, val);
  3369. val = BNX2_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
  3370. CTX_WR(bp, GET_CID_ADDR(cid), offset1, val);
  3371. val = (u64) bp->tx_desc_mapping >> 32;
  3372. CTX_WR(bp, GET_CID_ADDR(cid), offset2, val);
  3373. val = (u64) bp->tx_desc_mapping & 0xffffffff;
  3374. CTX_WR(bp, GET_CID_ADDR(cid), offset3, val);
  3375. }
  3376. static void
  3377. bnx2_init_tx_ring(struct bnx2 *bp)
  3378. {
  3379. struct tx_bd *txbd;
  3380. u32 cid;
  3381. bp->tx_wake_thresh = bp->tx_ring_size / 2;
  3382. txbd = &bp->tx_desc_ring[MAX_TX_DESC_CNT];
  3383. txbd->tx_bd_haddr_hi = (u64) bp->tx_desc_mapping >> 32;
  3384. txbd->tx_bd_haddr_lo = (u64) bp->tx_desc_mapping & 0xffffffff;
  3385. bp->tx_prod = 0;
  3386. bp->tx_cons = 0;
  3387. bp->hw_tx_cons = 0;
  3388. bp->tx_prod_bseq = 0;
  3389. cid = TX_CID;
  3390. bp->tx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BIDX;
  3391. bp->tx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BSEQ;
  3392. bnx2_init_tx_context(bp, cid);
  3393. }
  3394. static void
  3395. bnx2_init_rx_ring(struct bnx2 *bp)
  3396. {
  3397. struct rx_bd *rxbd;
  3398. int i;
  3399. u16 prod, ring_prod;
  3400. u32 val;
  3401. /* 8 for CRC and VLAN */
  3402. bp->rx_buf_use_size = bp->dev->mtu + ETH_HLEN + bp->rx_offset + 8;
  3403. /* hw alignment */
  3404. bp->rx_buf_size = bp->rx_buf_use_size + BNX2_RX_ALIGN;
  3405. ring_prod = prod = bp->rx_prod = 0;
  3406. bp->rx_cons = 0;
  3407. bp->hw_rx_cons = 0;
  3408. bp->rx_prod_bseq = 0;
  3409. for (i = 0; i < bp->rx_max_ring; i++) {
  3410. int j;
  3411. rxbd = &bp->rx_desc_ring[i][0];
  3412. for (j = 0; j < MAX_RX_DESC_CNT; j++, rxbd++) {
  3413. rxbd->rx_bd_len = bp->rx_buf_use_size;
  3414. rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END;
  3415. }
  3416. if (i == (bp->rx_max_ring - 1))
  3417. j = 0;
  3418. else
  3419. j = i + 1;
  3420. rxbd->rx_bd_haddr_hi = (u64) bp->rx_desc_mapping[j] >> 32;
  3421. rxbd->rx_bd_haddr_lo = (u64) bp->rx_desc_mapping[j] &
  3422. 0xffffffff;
  3423. }
  3424. val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
  3425. val |= BNX2_L2CTX_CTX_TYPE_SIZE_L2;
  3426. val |= 0x02 << 8;
  3427. CTX_WR(bp, GET_CID_ADDR(RX_CID), BNX2_L2CTX_CTX_TYPE, val);
  3428. val = (u64) bp->rx_desc_mapping[0] >> 32;
  3429. CTX_WR(bp, GET_CID_ADDR(RX_CID), BNX2_L2CTX_NX_BDHADDR_HI, val);
  3430. val = (u64) bp->rx_desc_mapping[0] & 0xffffffff;
  3431. CTX_WR(bp, GET_CID_ADDR(RX_CID), BNX2_L2CTX_NX_BDHADDR_LO, val);
  3432. for (i = 0; i < bp->rx_ring_size; i++) {
  3433. if (bnx2_alloc_rx_skb(bp, ring_prod) < 0) {
  3434. break;
  3435. }
  3436. prod = NEXT_RX_BD(prod);
  3437. ring_prod = RX_RING_IDX(prod);
  3438. }
  3439. bp->rx_prod = prod;
  3440. REG_WR16(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BDIDX, prod);
  3441. REG_WR(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BSEQ, bp->rx_prod_bseq);
  3442. }
  3443. static void
  3444. bnx2_set_rx_ring_size(struct bnx2 *bp, u32 size)
  3445. {
  3446. u32 num_rings, max;
  3447. bp->rx_ring_size = size;
  3448. num_rings = 1;
  3449. while (size > MAX_RX_DESC_CNT) {
  3450. size -= MAX_RX_DESC_CNT;
  3451. num_rings++;
  3452. }
  3453. /* round to next power of 2 */
  3454. max = MAX_RX_RINGS;
  3455. while ((max & num_rings) == 0)
  3456. max >>= 1;
  3457. if (num_rings != max)
  3458. max <<= 1;
  3459. bp->rx_max_ring = max;
  3460. bp->rx_max_ring_idx = (bp->rx_max_ring * RX_DESC_CNT) - 1;
  3461. }
  3462. static void
  3463. bnx2_free_tx_skbs(struct bnx2 *bp)
  3464. {
  3465. int i;
  3466. if (bp->tx_buf_ring == NULL)
  3467. return;
  3468. for (i = 0; i < TX_DESC_CNT; ) {
  3469. struct sw_bd *tx_buf = &bp->tx_buf_ring[i];
  3470. struct sk_buff *skb = tx_buf->skb;
  3471. int j, last;
  3472. if (skb == NULL) {
  3473. i++;
  3474. continue;
  3475. }
  3476. pci_unmap_single(bp->pdev, pci_unmap_addr(tx_buf, mapping),
  3477. skb_headlen(skb), PCI_DMA_TODEVICE);
  3478. tx_buf->skb = NULL;
  3479. last = skb_shinfo(skb)->nr_frags;
  3480. for (j = 0; j < last; j++) {
  3481. tx_buf = &bp->tx_buf_ring[i + j + 1];
  3482. pci_unmap_page(bp->pdev,
  3483. pci_unmap_addr(tx_buf, mapping),
  3484. skb_shinfo(skb)->frags[j].size,
  3485. PCI_DMA_TODEVICE);
  3486. }
  3487. dev_kfree_skb(skb);
  3488. i += j + 1;
  3489. }
  3490. }
  3491. static void
  3492. bnx2_free_rx_skbs(struct bnx2 *bp)
  3493. {
  3494. int i;
  3495. if (bp->rx_buf_ring == NULL)
  3496. return;
  3497. for (i = 0; i < bp->rx_max_ring_idx; i++) {
  3498. struct sw_bd *rx_buf = &bp->rx_buf_ring[i];
  3499. struct sk_buff *skb = rx_buf->skb;
  3500. if (skb == NULL)
  3501. continue;
  3502. pci_unmap_single(bp->pdev, pci_unmap_addr(rx_buf, mapping),
  3503. bp->rx_buf_use_size, PCI_DMA_FROMDEVICE);
  3504. rx_buf->skb = NULL;
  3505. dev_kfree_skb(skb);
  3506. }
  3507. }
  3508. static void
  3509. bnx2_free_skbs(struct bnx2 *bp)
  3510. {
  3511. bnx2_free_tx_skbs(bp);
  3512. bnx2_free_rx_skbs(bp);
  3513. }
  3514. static int
  3515. bnx2_reset_nic(struct bnx2 *bp, u32 reset_code)
  3516. {
  3517. int rc;
  3518. rc = bnx2_reset_chip(bp, reset_code);
  3519. bnx2_free_skbs(bp);
  3520. if (rc)
  3521. return rc;
  3522. if ((rc = bnx2_init_chip(bp)) != 0)
  3523. return rc;
  3524. bnx2_init_tx_ring(bp);
  3525. bnx2_init_rx_ring(bp);
  3526. return 0;
  3527. }
  3528. static int
  3529. bnx2_init_nic(struct bnx2 *bp)
  3530. {
  3531. int rc;
  3532. if ((rc = bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET)) != 0)
  3533. return rc;
  3534. spin_lock_bh(&bp->phy_lock);
  3535. bnx2_init_phy(bp);
  3536. bnx2_set_link(bp);
  3537. spin_unlock_bh(&bp->phy_lock);
  3538. return 0;
  3539. }
  3540. static int
  3541. bnx2_test_registers(struct bnx2 *bp)
  3542. {
  3543. int ret;
  3544. int i, is_5709;
  3545. static const struct {
  3546. u16 offset;
  3547. u16 flags;
  3548. #define BNX2_FL_NOT_5709 1
  3549. u32 rw_mask;
  3550. u32 ro_mask;
  3551. } reg_tbl[] = {
  3552. { 0x006c, 0, 0x00000000, 0x0000003f },
  3553. { 0x0090, 0, 0xffffffff, 0x00000000 },
  3554. { 0x0094, 0, 0x00000000, 0x00000000 },
  3555. { 0x0404, BNX2_FL_NOT_5709, 0x00003f00, 0x00000000 },
  3556. { 0x0418, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  3557. { 0x041c, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  3558. { 0x0420, BNX2_FL_NOT_5709, 0x00000000, 0x80ffffff },
  3559. { 0x0424, BNX2_FL_NOT_5709, 0x00000000, 0x00000000 },
  3560. { 0x0428, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
  3561. { 0x0450, BNX2_FL_NOT_5709, 0x00000000, 0x0000ffff },
  3562. { 0x0454, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  3563. { 0x0458, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  3564. { 0x0808, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  3565. { 0x0854, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  3566. { 0x0868, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  3567. { 0x086c, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  3568. { 0x0870, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  3569. { 0x0874, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  3570. { 0x0c00, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
  3571. { 0x0c04, BNX2_FL_NOT_5709, 0x00000000, 0x03ff0001 },
  3572. { 0x0c08, BNX2_FL_NOT_5709, 0x0f0ff073, 0x00000000 },
  3573. { 0x1000, 0, 0x00000000, 0x00000001 },
  3574. { 0x1004, 0, 0x00000000, 0x000f0001 },
  3575. { 0x1408, 0, 0x01c00800, 0x00000000 },
  3576. { 0x149c, 0, 0x8000ffff, 0x00000000 },
  3577. { 0x14a8, 0, 0x00000000, 0x000001ff },
  3578. { 0x14ac, 0, 0x0fffffff, 0x10000000 },
  3579. { 0x14b0, 0, 0x00000002, 0x00000001 },
  3580. { 0x14b8, 0, 0x00000000, 0x00000000 },
  3581. { 0x14c0, 0, 0x00000000, 0x00000009 },
  3582. { 0x14c4, 0, 0x00003fff, 0x00000000 },
  3583. { 0x14cc, 0, 0x00000000, 0x00000001 },
  3584. { 0x14d0, 0, 0xffffffff, 0x00000000 },
  3585. { 0x1800, 0, 0x00000000, 0x00000001 },
  3586. { 0x1804, 0, 0x00000000, 0x00000003 },
  3587. { 0x2800, 0, 0x00000000, 0x00000001 },
  3588. { 0x2804, 0, 0x00000000, 0x00003f01 },
  3589. { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
  3590. { 0x2810, 0, 0xffff0000, 0x00000000 },
  3591. { 0x2814, 0, 0xffff0000, 0x00000000 },
  3592. { 0x2818, 0, 0xffff0000, 0x00000000 },
  3593. { 0x281c, 0, 0xffff0000, 0x00000000 },
  3594. { 0x2834, 0, 0xffffffff, 0x00000000 },
  3595. { 0x2840, 0, 0x00000000, 0xffffffff },
  3596. { 0x2844, 0, 0x00000000, 0xffffffff },
  3597. { 0x2848, 0, 0xffffffff, 0x00000000 },
  3598. { 0x284c, 0, 0xf800f800, 0x07ff07ff },
  3599. { 0x2c00, 0, 0x00000000, 0x00000011 },
  3600. { 0x2c04, 0, 0x00000000, 0x00030007 },
  3601. { 0x3c00, 0, 0x00000000, 0x00000001 },
  3602. { 0x3c04, 0, 0x00000000, 0x00070000 },
  3603. { 0x3c08, 0, 0x00007f71, 0x07f00000 },
  3604. { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
  3605. { 0x3c10, 0, 0xffffffff, 0x00000000 },
  3606. { 0x3c14, 0, 0x00000000, 0xffffffff },
  3607. { 0x3c18, 0, 0x00000000, 0xffffffff },
  3608. { 0x3c1c, 0, 0xfffff000, 0x00000000 },
  3609. { 0x3c20, 0, 0xffffff00, 0x00000000 },
  3610. { 0x5004, 0, 0x00000000, 0x0000007f },
  3611. { 0x5008, 0, 0x0f0007ff, 0x00000000 },
  3612. { 0x5c00, 0, 0x00000000, 0x00000001 },
  3613. { 0x5c04, 0, 0x00000000, 0x0003000f },
  3614. { 0x5c08, 0, 0x00000003, 0x00000000 },
  3615. { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
  3616. { 0x5c10, 0, 0x00000000, 0xffffffff },
  3617. { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
  3618. { 0x5c84, 0, 0x00000000, 0x0000f333 },
  3619. { 0x5c88, 0, 0x00000000, 0x00077373 },
  3620. { 0x5c8c, 0, 0x00000000, 0x0007f737 },
  3621. { 0x6808, 0, 0x0000ff7f, 0x00000000 },
  3622. { 0x680c, 0, 0xffffffff, 0x00000000 },
  3623. { 0x6810, 0, 0xffffffff, 0x00000000 },
  3624. { 0x6814, 0, 0xffffffff, 0x00000000 },
  3625. { 0x6818, 0, 0xffffffff, 0x00000000 },
  3626. { 0x681c, 0, 0xffffffff, 0x00000000 },
  3627. { 0x6820, 0, 0x00ff00ff, 0x00000000 },
  3628. { 0x6824, 0, 0x00ff00ff, 0x00000000 },
  3629. { 0x6828, 0, 0x00ff00ff, 0x00000000 },
  3630. { 0x682c, 0, 0x03ff03ff, 0x00000000 },
  3631. { 0x6830, 0, 0x03ff03ff, 0x00000000 },
  3632. { 0x6834, 0, 0x03ff03ff, 0x00000000 },
  3633. { 0x6838, 0, 0x03ff03ff, 0x00000000 },
  3634. { 0x683c, 0, 0x0000ffff, 0x00000000 },
  3635. { 0x6840, 0, 0x00000ff0, 0x00000000 },
  3636. { 0x6844, 0, 0x00ffff00, 0x00000000 },
  3637. { 0x684c, 0, 0xffffffff, 0x00000000 },
  3638. { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
  3639. { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
  3640. { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
  3641. { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
  3642. { 0x6908, 0, 0x00000000, 0x0001ff0f },
  3643. { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
  3644. { 0xffff, 0, 0x00000000, 0x00000000 },
  3645. };
  3646. ret = 0;
  3647. is_5709 = 0;
  3648. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  3649. is_5709 = 1;
  3650. for (i = 0; reg_tbl[i].offset != 0xffff; i++) {
  3651. u32 offset, rw_mask, ro_mask, save_val, val;
  3652. u16 flags = reg_tbl[i].flags;
  3653. if (is_5709 && (flags & BNX2_FL_NOT_5709))
  3654. continue;
  3655. offset = (u32) reg_tbl[i].offset;
  3656. rw_mask = reg_tbl[i].rw_mask;
  3657. ro_mask = reg_tbl[i].ro_mask;
  3658. save_val = readl(bp->regview + offset);
  3659. writel(0, bp->regview + offset);
  3660. val = readl(bp->regview + offset);
  3661. if ((val & rw_mask) != 0) {
  3662. goto reg_test_err;
  3663. }
  3664. if ((val & ro_mask) != (save_val & ro_mask)) {
  3665. goto reg_test_err;
  3666. }
  3667. writel(0xffffffff, bp->regview + offset);
  3668. val = readl(bp->regview + offset);
  3669. if ((val & rw_mask) != rw_mask) {
  3670. goto reg_test_err;
  3671. }
  3672. if ((val & ro_mask) != (save_val & ro_mask)) {
  3673. goto reg_test_err;
  3674. }
  3675. writel(save_val, bp->regview + offset);
  3676. continue;
  3677. reg_test_err:
  3678. writel(save_val, bp->regview + offset);
  3679. ret = -ENODEV;
  3680. break;
  3681. }
  3682. return ret;
  3683. }
  3684. static int
  3685. bnx2_do_mem_test(struct bnx2 *bp, u32 start, u32 size)
  3686. {
  3687. static const u32 test_pattern[] = { 0x00000000, 0xffffffff, 0x55555555,
  3688. 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
  3689. int i;
  3690. for (i = 0; i < sizeof(test_pattern) / 4; i++) {
  3691. u32 offset;
  3692. for (offset = 0; offset < size; offset += 4) {
  3693. REG_WR_IND(bp, start + offset, test_pattern[i]);
  3694. if (REG_RD_IND(bp, start + offset) !=
  3695. test_pattern[i]) {
  3696. return -ENODEV;
  3697. }
  3698. }
  3699. }
  3700. return 0;
  3701. }
  3702. static int
  3703. bnx2_test_memory(struct bnx2 *bp)
  3704. {
  3705. int ret = 0;
  3706. int i;
  3707. static struct mem_entry {
  3708. u32 offset;
  3709. u32 len;
  3710. } mem_tbl_5706[] = {
  3711. { 0x60000, 0x4000 },
  3712. { 0xa0000, 0x3000 },
  3713. { 0xe0000, 0x4000 },
  3714. { 0x120000, 0x4000 },
  3715. { 0x1a0000, 0x4000 },
  3716. { 0x160000, 0x4000 },
  3717. { 0xffffffff, 0 },
  3718. },
  3719. mem_tbl_5709[] = {
  3720. { 0x60000, 0x4000 },
  3721. { 0xa0000, 0x3000 },
  3722. { 0xe0000, 0x4000 },
  3723. { 0x120000, 0x4000 },
  3724. { 0x1a0000, 0x4000 },
  3725. { 0xffffffff, 0 },
  3726. };
  3727. struct mem_entry *mem_tbl;
  3728. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  3729. mem_tbl = mem_tbl_5709;
  3730. else
  3731. mem_tbl = mem_tbl_5706;
  3732. for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) {
  3733. if ((ret = bnx2_do_mem_test(bp, mem_tbl[i].offset,
  3734. mem_tbl[i].len)) != 0) {
  3735. return ret;
  3736. }
  3737. }
  3738. return ret;
  3739. }
  3740. #define BNX2_MAC_LOOPBACK 0
  3741. #define BNX2_PHY_LOOPBACK 1
  3742. static int
  3743. bnx2_run_loopback(struct bnx2 *bp, int loopback_mode)
  3744. {
  3745. unsigned int pkt_size, num_pkts, i;
  3746. struct sk_buff *skb, *rx_skb;
  3747. unsigned char *packet;
  3748. u16 rx_start_idx, rx_idx;
  3749. dma_addr_t map;
  3750. struct tx_bd *txbd;
  3751. struct sw_bd *rx_buf;
  3752. struct l2_fhdr *rx_hdr;
  3753. int ret = -ENODEV;
  3754. if (loopback_mode == BNX2_MAC_LOOPBACK) {
  3755. bp->loopback = MAC_LOOPBACK;
  3756. bnx2_set_mac_loopback(bp);
  3757. }
  3758. else if (loopback_mode == BNX2_PHY_LOOPBACK) {
  3759. if (bp->phy_flags & REMOTE_PHY_CAP_FLAG)
  3760. return 0;
  3761. bp->loopback = PHY_LOOPBACK;
  3762. bnx2_set_phy_loopback(bp);
  3763. }
  3764. else
  3765. return -EINVAL;
  3766. pkt_size = 1514;
  3767. skb = netdev_alloc_skb(bp->dev, pkt_size);
  3768. if (!skb)
  3769. return -ENOMEM;
  3770. packet = skb_put(skb, pkt_size);
  3771. memcpy(packet, bp->dev->dev_addr, 6);
  3772. memset(packet + 6, 0x0, 8);
  3773. for (i = 14; i < pkt_size; i++)
  3774. packet[i] = (unsigned char) (i & 0xff);
  3775. map = pci_map_single(bp->pdev, skb->data, pkt_size,
  3776. PCI_DMA_TODEVICE);
  3777. REG_WR(bp, BNX2_HC_COMMAND,
  3778. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  3779. REG_RD(bp, BNX2_HC_COMMAND);
  3780. udelay(5);
  3781. rx_start_idx = bp->status_blk->status_rx_quick_consumer_index0;
  3782. num_pkts = 0;
  3783. txbd = &bp->tx_desc_ring[TX_RING_IDX(bp->tx_prod)];
  3784. txbd->tx_bd_haddr_hi = (u64) map >> 32;
  3785. txbd->tx_bd_haddr_lo = (u64) map & 0xffffffff;
  3786. txbd->tx_bd_mss_nbytes = pkt_size;
  3787. txbd->tx_bd_vlan_tag_flags = TX_BD_FLAGS_START | TX_BD_FLAGS_END;
  3788. num_pkts++;
  3789. bp->tx_prod = NEXT_TX_BD(bp->tx_prod);
  3790. bp->tx_prod_bseq += pkt_size;
  3791. REG_WR16(bp, bp->tx_bidx_addr, bp->tx_prod);
  3792. REG_WR(bp, bp->tx_bseq_addr, bp->tx_prod_bseq);
  3793. udelay(100);
  3794. REG_WR(bp, BNX2_HC_COMMAND,
  3795. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  3796. REG_RD(bp, BNX2_HC_COMMAND);
  3797. udelay(5);
  3798. pci_unmap_single(bp->pdev, map, pkt_size, PCI_DMA_TODEVICE);
  3799. dev_kfree_skb(skb);
  3800. if (bp->status_blk->status_tx_quick_consumer_index0 != bp->tx_prod) {
  3801. goto loopback_test_done;
  3802. }
  3803. rx_idx = bp->status_blk->status_rx_quick_consumer_index0;
  3804. if (rx_idx != rx_start_idx + num_pkts) {
  3805. goto loopback_test_done;
  3806. }
  3807. rx_buf = &bp->rx_buf_ring[rx_start_idx];
  3808. rx_skb = rx_buf->skb;
  3809. rx_hdr = (struct l2_fhdr *) rx_skb->data;
  3810. skb_reserve(rx_skb, bp->rx_offset);
  3811. pci_dma_sync_single_for_cpu(bp->pdev,
  3812. pci_unmap_addr(rx_buf, mapping),
  3813. bp->rx_buf_size, PCI_DMA_FROMDEVICE);
  3814. if (rx_hdr->l2_fhdr_status &
  3815. (L2_FHDR_ERRORS_BAD_CRC |
  3816. L2_FHDR_ERRORS_PHY_DECODE |
  3817. L2_FHDR_ERRORS_ALIGNMENT |
  3818. L2_FHDR_ERRORS_TOO_SHORT |
  3819. L2_FHDR_ERRORS_GIANT_FRAME)) {
  3820. goto loopback_test_done;
  3821. }
  3822. if ((rx_hdr->l2_fhdr_pkt_len - 4) != pkt_size) {
  3823. goto loopback_test_done;
  3824. }
  3825. for (i = 14; i < pkt_size; i++) {
  3826. if (*(rx_skb->data + i) != (unsigned char) (i & 0xff)) {
  3827. goto loopback_test_done;
  3828. }
  3829. }
  3830. ret = 0;
  3831. loopback_test_done:
  3832. bp->loopback = 0;
  3833. return ret;
  3834. }
  3835. #define BNX2_MAC_LOOPBACK_FAILED 1
  3836. #define BNX2_PHY_LOOPBACK_FAILED 2
  3837. #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
  3838. BNX2_PHY_LOOPBACK_FAILED)
  3839. static int
  3840. bnx2_test_loopback(struct bnx2 *bp)
  3841. {
  3842. int rc = 0;
  3843. if (!netif_running(bp->dev))
  3844. return BNX2_LOOPBACK_FAILED;
  3845. bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
  3846. spin_lock_bh(&bp->phy_lock);
  3847. bnx2_init_phy(bp);
  3848. spin_unlock_bh(&bp->phy_lock);
  3849. if (bnx2_run_loopback(bp, BNX2_MAC_LOOPBACK))
  3850. rc |= BNX2_MAC_LOOPBACK_FAILED;
  3851. if (bnx2_run_loopback(bp, BNX2_PHY_LOOPBACK))
  3852. rc |= BNX2_PHY_LOOPBACK_FAILED;
  3853. return rc;
  3854. }
  3855. #define NVRAM_SIZE 0x200
  3856. #define CRC32_RESIDUAL 0xdebb20e3
  3857. static int
  3858. bnx2_test_nvram(struct bnx2 *bp)
  3859. {
  3860. u32 buf[NVRAM_SIZE / 4];
  3861. u8 *data = (u8 *) buf;
  3862. int rc = 0;
  3863. u32 magic, csum;
  3864. if ((rc = bnx2_nvram_read(bp, 0, data, 4)) != 0)
  3865. goto test_nvram_done;
  3866. magic = be32_to_cpu(buf[0]);
  3867. if (magic != 0x669955aa) {
  3868. rc = -ENODEV;
  3869. goto test_nvram_done;
  3870. }
  3871. if ((rc = bnx2_nvram_read(bp, 0x100, data, NVRAM_SIZE)) != 0)
  3872. goto test_nvram_done;
  3873. csum = ether_crc_le(0x100, data);
  3874. if (csum != CRC32_RESIDUAL) {
  3875. rc = -ENODEV;
  3876. goto test_nvram_done;
  3877. }
  3878. csum = ether_crc_le(0x100, data + 0x100);
  3879. if (csum != CRC32_RESIDUAL) {
  3880. rc = -ENODEV;
  3881. }
  3882. test_nvram_done:
  3883. return rc;
  3884. }
  3885. static int
  3886. bnx2_test_link(struct bnx2 *bp)
  3887. {
  3888. u32 bmsr;
  3889. if (bp->phy_flags & REMOTE_PHY_CAP_FLAG) {
  3890. if (bp->link_up)
  3891. return 0;
  3892. return -ENODEV;
  3893. }
  3894. spin_lock_bh(&bp->phy_lock);
  3895. bnx2_enable_bmsr1(bp);
  3896. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  3897. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  3898. bnx2_disable_bmsr1(bp);
  3899. spin_unlock_bh(&bp->phy_lock);
  3900. if (bmsr & BMSR_LSTATUS) {
  3901. return 0;
  3902. }
  3903. return -ENODEV;
  3904. }
  3905. static int
  3906. bnx2_test_intr(struct bnx2 *bp)
  3907. {
  3908. int i;
  3909. u16 status_idx;
  3910. if (!netif_running(bp->dev))
  3911. return -ENODEV;
  3912. status_idx = REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff;
  3913. /* This register is not touched during run-time. */
  3914. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
  3915. REG_RD(bp, BNX2_HC_COMMAND);
  3916. for (i = 0; i < 10; i++) {
  3917. if ((REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff) !=
  3918. status_idx) {
  3919. break;
  3920. }
  3921. msleep_interruptible(10);
  3922. }
  3923. if (i < 10)
  3924. return 0;
  3925. return -ENODEV;
  3926. }
  3927. static void
  3928. bnx2_5706_serdes_timer(struct bnx2 *bp)
  3929. {
  3930. spin_lock(&bp->phy_lock);
  3931. if (bp->serdes_an_pending)
  3932. bp->serdes_an_pending--;
  3933. else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
  3934. u32 bmcr;
  3935. bp->current_interval = bp->timer_interval;
  3936. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  3937. if (bmcr & BMCR_ANENABLE) {
  3938. u32 phy1, phy2;
  3939. bnx2_write_phy(bp, 0x1c, 0x7c00);
  3940. bnx2_read_phy(bp, 0x1c, &phy1);
  3941. bnx2_write_phy(bp, 0x17, 0x0f01);
  3942. bnx2_read_phy(bp, 0x15, &phy2);
  3943. bnx2_write_phy(bp, 0x17, 0x0f01);
  3944. bnx2_read_phy(bp, 0x15, &phy2);
  3945. if ((phy1 & 0x10) && /* SIGNAL DETECT */
  3946. !(phy2 & 0x20)) { /* no CONFIG */
  3947. bmcr &= ~BMCR_ANENABLE;
  3948. bmcr |= BMCR_SPEED1000 | BMCR_FULLDPLX;
  3949. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  3950. bp->phy_flags |= PHY_PARALLEL_DETECT_FLAG;
  3951. }
  3952. }
  3953. }
  3954. else if ((bp->link_up) && (bp->autoneg & AUTONEG_SPEED) &&
  3955. (bp->phy_flags & PHY_PARALLEL_DETECT_FLAG)) {
  3956. u32 phy2;
  3957. bnx2_write_phy(bp, 0x17, 0x0f01);
  3958. bnx2_read_phy(bp, 0x15, &phy2);
  3959. if (phy2 & 0x20) {
  3960. u32 bmcr;
  3961. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  3962. bmcr |= BMCR_ANENABLE;
  3963. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  3964. bp->phy_flags &= ~PHY_PARALLEL_DETECT_FLAG;
  3965. }
  3966. } else
  3967. bp->current_interval = bp->timer_interval;
  3968. spin_unlock(&bp->phy_lock);
  3969. }
  3970. static void
  3971. bnx2_5708_serdes_timer(struct bnx2 *bp)
  3972. {
  3973. if (bp->phy_flags & REMOTE_PHY_CAP_FLAG)
  3974. return;
  3975. if ((bp->phy_flags & PHY_2_5G_CAPABLE_FLAG) == 0) {
  3976. bp->serdes_an_pending = 0;
  3977. return;
  3978. }
  3979. spin_lock(&bp->phy_lock);
  3980. if (bp->serdes_an_pending)
  3981. bp->serdes_an_pending--;
  3982. else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
  3983. u32 bmcr;
  3984. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  3985. if (bmcr & BMCR_ANENABLE) {
  3986. bnx2_enable_forced_2g5(bp);
  3987. bp->current_interval = SERDES_FORCED_TIMEOUT;
  3988. } else {
  3989. bnx2_disable_forced_2g5(bp);
  3990. bp->serdes_an_pending = 2;
  3991. bp->current_interval = bp->timer_interval;
  3992. }
  3993. } else
  3994. bp->current_interval = bp->timer_interval;
  3995. spin_unlock(&bp->phy_lock);
  3996. }
  3997. static void
  3998. bnx2_timer(unsigned long data)
  3999. {
  4000. struct bnx2 *bp = (struct bnx2 *) data;
  4001. if (!netif_running(bp->dev))
  4002. return;
  4003. if (atomic_read(&bp->intr_sem) != 0)
  4004. goto bnx2_restart_timer;
  4005. bnx2_send_heart_beat(bp);
  4006. bp->stats_blk->stat_FwRxDrop = REG_RD_IND(bp, BNX2_FW_RX_DROP_COUNT);
  4007. /* workaround occasional corrupted counters */
  4008. if (CHIP_NUM(bp) == CHIP_NUM_5708 && bp->stats_ticks)
  4009. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd |
  4010. BNX2_HC_COMMAND_STATS_NOW);
  4011. if (bp->phy_flags & PHY_SERDES_FLAG) {
  4012. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  4013. bnx2_5706_serdes_timer(bp);
  4014. else
  4015. bnx2_5708_serdes_timer(bp);
  4016. }
  4017. bnx2_restart_timer:
  4018. mod_timer(&bp->timer, jiffies + bp->current_interval);
  4019. }
  4020. static int
  4021. bnx2_request_irq(struct bnx2 *bp)
  4022. {
  4023. struct net_device *dev = bp->dev;
  4024. int rc = 0;
  4025. if (bp->flags & USING_MSI_FLAG) {
  4026. irq_handler_t fn = bnx2_msi;
  4027. if (bp->flags & ONE_SHOT_MSI_FLAG)
  4028. fn = bnx2_msi_1shot;
  4029. rc = request_irq(bp->pdev->irq, fn, 0, dev->name, dev);
  4030. } else
  4031. rc = request_irq(bp->pdev->irq, bnx2_interrupt,
  4032. IRQF_SHARED, dev->name, dev);
  4033. return rc;
  4034. }
  4035. static void
  4036. bnx2_free_irq(struct bnx2 *bp)
  4037. {
  4038. struct net_device *dev = bp->dev;
  4039. if (bp->flags & USING_MSI_FLAG) {
  4040. free_irq(bp->pdev->irq, dev);
  4041. pci_disable_msi(bp->pdev);
  4042. bp->flags &= ~(USING_MSI_FLAG | ONE_SHOT_MSI_FLAG);
  4043. } else
  4044. free_irq(bp->pdev->irq, dev);
  4045. }
  4046. /* Called with rtnl_lock */
  4047. static int
  4048. bnx2_open(struct net_device *dev)
  4049. {
  4050. struct bnx2 *bp = netdev_priv(dev);
  4051. int rc;
  4052. netif_carrier_off(dev);
  4053. bnx2_set_power_state(bp, PCI_D0);
  4054. bnx2_disable_int(bp);
  4055. rc = bnx2_alloc_mem(bp);
  4056. if (rc)
  4057. return rc;
  4058. napi_enable(&bp->napi);
  4059. if ((bp->flags & MSI_CAP_FLAG) && !disable_msi) {
  4060. if (pci_enable_msi(bp->pdev) == 0) {
  4061. bp->flags |= USING_MSI_FLAG;
  4062. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  4063. bp->flags |= ONE_SHOT_MSI_FLAG;
  4064. }
  4065. }
  4066. rc = bnx2_request_irq(bp);
  4067. if (rc) {
  4068. napi_disable(&bp->napi);
  4069. bnx2_free_mem(bp);
  4070. return rc;
  4071. }
  4072. rc = bnx2_init_nic(bp);
  4073. if (rc) {
  4074. napi_disable(&bp->napi);
  4075. bnx2_free_irq(bp);
  4076. bnx2_free_skbs(bp);
  4077. bnx2_free_mem(bp);
  4078. return rc;
  4079. }
  4080. mod_timer(&bp->timer, jiffies + bp->current_interval);
  4081. atomic_set(&bp->intr_sem, 0);
  4082. bnx2_enable_int(bp);
  4083. if (bp->flags & USING_MSI_FLAG) {
  4084. /* Test MSI to make sure it is working
  4085. * If MSI test fails, go back to INTx mode
  4086. */
  4087. if (bnx2_test_intr(bp) != 0) {
  4088. printk(KERN_WARNING PFX "%s: No interrupt was generated"
  4089. " using MSI, switching to INTx mode. Please"
  4090. " report this failure to the PCI maintainer"
  4091. " and include system chipset information.\n",
  4092. bp->dev->name);
  4093. bnx2_disable_int(bp);
  4094. bnx2_free_irq(bp);
  4095. rc = bnx2_init_nic(bp);
  4096. if (!rc)
  4097. rc = bnx2_request_irq(bp);
  4098. if (rc) {
  4099. napi_disable(&bp->napi);
  4100. bnx2_free_skbs(bp);
  4101. bnx2_free_mem(bp);
  4102. del_timer_sync(&bp->timer);
  4103. return rc;
  4104. }
  4105. bnx2_enable_int(bp);
  4106. }
  4107. }
  4108. if (bp->flags & USING_MSI_FLAG) {
  4109. printk(KERN_INFO PFX "%s: using MSI\n", dev->name);
  4110. }
  4111. netif_start_queue(dev);
  4112. return 0;
  4113. }
  4114. static void
  4115. bnx2_reset_task(struct work_struct *work)
  4116. {
  4117. struct bnx2 *bp = container_of(work, struct bnx2, reset_task);
  4118. if (!netif_running(bp->dev))
  4119. return;
  4120. bp->in_reset_task = 1;
  4121. bnx2_netif_stop(bp);
  4122. bnx2_init_nic(bp);
  4123. atomic_set(&bp->intr_sem, 1);
  4124. bnx2_netif_start(bp);
  4125. bp->in_reset_task = 0;
  4126. }
  4127. static void
  4128. bnx2_tx_timeout(struct net_device *dev)
  4129. {
  4130. struct bnx2 *bp = netdev_priv(dev);
  4131. /* This allows the netif to be shutdown gracefully before resetting */
  4132. schedule_work(&bp->reset_task);
  4133. }
  4134. #ifdef BCM_VLAN
  4135. /* Called with rtnl_lock */
  4136. static void
  4137. bnx2_vlan_rx_register(struct net_device *dev, struct vlan_group *vlgrp)
  4138. {
  4139. struct bnx2 *bp = netdev_priv(dev);
  4140. bnx2_netif_stop(bp);
  4141. bp->vlgrp = vlgrp;
  4142. bnx2_set_rx_mode(dev);
  4143. bnx2_netif_start(bp);
  4144. }
  4145. #endif
  4146. /* Called with netif_tx_lock.
  4147. * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
  4148. * netif_wake_queue().
  4149. */
  4150. static int
  4151. bnx2_start_xmit(struct sk_buff *skb, struct net_device *dev)
  4152. {
  4153. struct bnx2 *bp = netdev_priv(dev);
  4154. dma_addr_t mapping;
  4155. struct tx_bd *txbd;
  4156. struct sw_bd *tx_buf;
  4157. u32 len, vlan_tag_flags, last_frag, mss;
  4158. u16 prod, ring_prod;
  4159. int i;
  4160. if (unlikely(bnx2_tx_avail(bp) < (skb_shinfo(skb)->nr_frags + 1))) {
  4161. netif_stop_queue(dev);
  4162. printk(KERN_ERR PFX "%s: BUG! Tx ring full when queue awake!\n",
  4163. dev->name);
  4164. return NETDEV_TX_BUSY;
  4165. }
  4166. len = skb_headlen(skb);
  4167. prod = bp->tx_prod;
  4168. ring_prod = TX_RING_IDX(prod);
  4169. vlan_tag_flags = 0;
  4170. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  4171. vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
  4172. }
  4173. if (bp->vlgrp != 0 && vlan_tx_tag_present(skb)) {
  4174. vlan_tag_flags |=
  4175. (TX_BD_FLAGS_VLAN_TAG | (vlan_tx_tag_get(skb) << 16));
  4176. }
  4177. if ((mss = skb_shinfo(skb)->gso_size)) {
  4178. u32 tcp_opt_len, ip_tcp_len;
  4179. struct iphdr *iph;
  4180. vlan_tag_flags |= TX_BD_FLAGS_SW_LSO;
  4181. tcp_opt_len = tcp_optlen(skb);
  4182. if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
  4183. u32 tcp_off = skb_transport_offset(skb) -
  4184. sizeof(struct ipv6hdr) - ETH_HLEN;
  4185. vlan_tag_flags |= ((tcp_opt_len >> 2) << 8) |
  4186. TX_BD_FLAGS_SW_FLAGS;
  4187. if (likely(tcp_off == 0))
  4188. vlan_tag_flags &= ~TX_BD_FLAGS_TCP6_OFF0_MSK;
  4189. else {
  4190. tcp_off >>= 3;
  4191. vlan_tag_flags |= ((tcp_off & 0x3) <<
  4192. TX_BD_FLAGS_TCP6_OFF0_SHL) |
  4193. ((tcp_off & 0x10) <<
  4194. TX_BD_FLAGS_TCP6_OFF4_SHL);
  4195. mss |= (tcp_off & 0xc) << TX_BD_TCP6_OFF2_SHL;
  4196. }
  4197. } else {
  4198. if (skb_header_cloned(skb) &&
  4199. pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) {
  4200. dev_kfree_skb(skb);
  4201. return NETDEV_TX_OK;
  4202. }
  4203. ip_tcp_len = ip_hdrlen(skb) + sizeof(struct tcphdr);
  4204. iph = ip_hdr(skb);
  4205. iph->check = 0;
  4206. iph->tot_len = htons(mss + ip_tcp_len + tcp_opt_len);
  4207. tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
  4208. iph->daddr, 0,
  4209. IPPROTO_TCP,
  4210. 0);
  4211. if (tcp_opt_len || (iph->ihl > 5)) {
  4212. vlan_tag_flags |= ((iph->ihl - 5) +
  4213. (tcp_opt_len >> 2)) << 8;
  4214. }
  4215. }
  4216. } else
  4217. mss = 0;
  4218. mapping = pci_map_single(bp->pdev, skb->data, len, PCI_DMA_TODEVICE);
  4219. tx_buf = &bp->tx_buf_ring[ring_prod];
  4220. tx_buf->skb = skb;
  4221. pci_unmap_addr_set(tx_buf, mapping, mapping);
  4222. txbd = &bp->tx_desc_ring[ring_prod];
  4223. txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
  4224. txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  4225. txbd->tx_bd_mss_nbytes = len | (mss << 16);
  4226. txbd->tx_bd_vlan_tag_flags = vlan_tag_flags | TX_BD_FLAGS_START;
  4227. last_frag = skb_shinfo(skb)->nr_frags;
  4228. for (i = 0; i < last_frag; i++) {
  4229. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  4230. prod = NEXT_TX_BD(prod);
  4231. ring_prod = TX_RING_IDX(prod);
  4232. txbd = &bp->tx_desc_ring[ring_prod];
  4233. len = frag->size;
  4234. mapping = pci_map_page(bp->pdev, frag->page, frag->page_offset,
  4235. len, PCI_DMA_TODEVICE);
  4236. pci_unmap_addr_set(&bp->tx_buf_ring[ring_prod],
  4237. mapping, mapping);
  4238. txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
  4239. txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  4240. txbd->tx_bd_mss_nbytes = len | (mss << 16);
  4241. txbd->tx_bd_vlan_tag_flags = vlan_tag_flags;
  4242. }
  4243. txbd->tx_bd_vlan_tag_flags |= TX_BD_FLAGS_END;
  4244. prod = NEXT_TX_BD(prod);
  4245. bp->tx_prod_bseq += skb->len;
  4246. REG_WR16(bp, bp->tx_bidx_addr, prod);
  4247. REG_WR(bp, bp->tx_bseq_addr, bp->tx_prod_bseq);
  4248. mmiowb();
  4249. bp->tx_prod = prod;
  4250. dev->trans_start = jiffies;
  4251. if (unlikely(bnx2_tx_avail(bp) <= MAX_SKB_FRAGS)) {
  4252. netif_stop_queue(dev);
  4253. if (bnx2_tx_avail(bp) > bp->tx_wake_thresh)
  4254. netif_wake_queue(dev);
  4255. }
  4256. return NETDEV_TX_OK;
  4257. }
  4258. /* Called with rtnl_lock */
  4259. static int
  4260. bnx2_close(struct net_device *dev)
  4261. {
  4262. struct bnx2 *bp = netdev_priv(dev);
  4263. u32 reset_code;
  4264. /* Calling flush_scheduled_work() may deadlock because
  4265. * linkwatch_event() may be on the workqueue and it will try to get
  4266. * the rtnl_lock which we are holding.
  4267. */
  4268. while (bp->in_reset_task)
  4269. msleep(1);
  4270. bnx2_disable_int_sync(bp);
  4271. napi_disable(&bp->napi);
  4272. del_timer_sync(&bp->timer);
  4273. if (bp->flags & NO_WOL_FLAG)
  4274. reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
  4275. else if (bp->wol)
  4276. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  4277. else
  4278. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  4279. bnx2_reset_chip(bp, reset_code);
  4280. bnx2_free_irq(bp);
  4281. bnx2_free_skbs(bp);
  4282. bnx2_free_mem(bp);
  4283. bp->link_up = 0;
  4284. netif_carrier_off(bp->dev);
  4285. bnx2_set_power_state(bp, PCI_D3hot);
  4286. return 0;
  4287. }
  4288. #define GET_NET_STATS64(ctr) \
  4289. (unsigned long) ((unsigned long) (ctr##_hi) << 32) + \
  4290. (unsigned long) (ctr##_lo)
  4291. #define GET_NET_STATS32(ctr) \
  4292. (ctr##_lo)
  4293. #if (BITS_PER_LONG == 64)
  4294. #define GET_NET_STATS GET_NET_STATS64
  4295. #else
  4296. #define GET_NET_STATS GET_NET_STATS32
  4297. #endif
  4298. static struct net_device_stats *
  4299. bnx2_get_stats(struct net_device *dev)
  4300. {
  4301. struct bnx2 *bp = netdev_priv(dev);
  4302. struct statistics_block *stats_blk = bp->stats_blk;
  4303. struct net_device_stats *net_stats = &bp->net_stats;
  4304. if (bp->stats_blk == NULL) {
  4305. return net_stats;
  4306. }
  4307. net_stats->rx_packets =
  4308. GET_NET_STATS(stats_blk->stat_IfHCInUcastPkts) +
  4309. GET_NET_STATS(stats_blk->stat_IfHCInMulticastPkts) +
  4310. GET_NET_STATS(stats_blk->stat_IfHCInBroadcastPkts);
  4311. net_stats->tx_packets =
  4312. GET_NET_STATS(stats_blk->stat_IfHCOutUcastPkts) +
  4313. GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts) +
  4314. GET_NET_STATS(stats_blk->stat_IfHCOutBroadcastPkts);
  4315. net_stats->rx_bytes =
  4316. GET_NET_STATS(stats_blk->stat_IfHCInOctets);
  4317. net_stats->tx_bytes =
  4318. GET_NET_STATS(stats_blk->stat_IfHCOutOctets);
  4319. net_stats->multicast =
  4320. GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts);
  4321. net_stats->collisions =
  4322. (unsigned long) stats_blk->stat_EtherStatsCollisions;
  4323. net_stats->rx_length_errors =
  4324. (unsigned long) (stats_blk->stat_EtherStatsUndersizePkts +
  4325. stats_blk->stat_EtherStatsOverrsizePkts);
  4326. net_stats->rx_over_errors =
  4327. (unsigned long) stats_blk->stat_IfInMBUFDiscards;
  4328. net_stats->rx_frame_errors =
  4329. (unsigned long) stats_blk->stat_Dot3StatsAlignmentErrors;
  4330. net_stats->rx_crc_errors =
  4331. (unsigned long) stats_blk->stat_Dot3StatsFCSErrors;
  4332. net_stats->rx_errors = net_stats->rx_length_errors +
  4333. net_stats->rx_over_errors + net_stats->rx_frame_errors +
  4334. net_stats->rx_crc_errors;
  4335. net_stats->tx_aborted_errors =
  4336. (unsigned long) (stats_blk->stat_Dot3StatsExcessiveCollisions +
  4337. stats_blk->stat_Dot3StatsLateCollisions);
  4338. if ((CHIP_NUM(bp) == CHIP_NUM_5706) ||
  4339. (CHIP_ID(bp) == CHIP_ID_5708_A0))
  4340. net_stats->tx_carrier_errors = 0;
  4341. else {
  4342. net_stats->tx_carrier_errors =
  4343. (unsigned long)
  4344. stats_blk->stat_Dot3StatsCarrierSenseErrors;
  4345. }
  4346. net_stats->tx_errors =
  4347. (unsigned long)
  4348. stats_blk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors
  4349. +
  4350. net_stats->tx_aborted_errors +
  4351. net_stats->tx_carrier_errors;
  4352. net_stats->rx_missed_errors =
  4353. (unsigned long) (stats_blk->stat_IfInMBUFDiscards +
  4354. stats_blk->stat_FwRxDrop);
  4355. return net_stats;
  4356. }
  4357. /* All ethtool functions called with rtnl_lock */
  4358. static int
  4359. bnx2_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  4360. {
  4361. struct bnx2 *bp = netdev_priv(dev);
  4362. int support_serdes = 0, support_copper = 0;
  4363. cmd->supported = SUPPORTED_Autoneg;
  4364. if (bp->phy_flags & REMOTE_PHY_CAP_FLAG) {
  4365. support_serdes = 1;
  4366. support_copper = 1;
  4367. } else if (bp->phy_port == PORT_FIBRE)
  4368. support_serdes = 1;
  4369. else
  4370. support_copper = 1;
  4371. if (support_serdes) {
  4372. cmd->supported |= SUPPORTED_1000baseT_Full |
  4373. SUPPORTED_FIBRE;
  4374. if (bp->phy_flags & PHY_2_5G_CAPABLE_FLAG)
  4375. cmd->supported |= SUPPORTED_2500baseX_Full;
  4376. }
  4377. if (support_copper) {
  4378. cmd->supported |= SUPPORTED_10baseT_Half |
  4379. SUPPORTED_10baseT_Full |
  4380. SUPPORTED_100baseT_Half |
  4381. SUPPORTED_100baseT_Full |
  4382. SUPPORTED_1000baseT_Full |
  4383. SUPPORTED_TP;
  4384. }
  4385. spin_lock_bh(&bp->phy_lock);
  4386. cmd->port = bp->phy_port;
  4387. cmd->advertising = bp->advertising;
  4388. if (bp->autoneg & AUTONEG_SPEED) {
  4389. cmd->autoneg = AUTONEG_ENABLE;
  4390. }
  4391. else {
  4392. cmd->autoneg = AUTONEG_DISABLE;
  4393. }
  4394. if (netif_carrier_ok(dev)) {
  4395. cmd->speed = bp->line_speed;
  4396. cmd->duplex = bp->duplex;
  4397. }
  4398. else {
  4399. cmd->speed = -1;
  4400. cmd->duplex = -1;
  4401. }
  4402. spin_unlock_bh(&bp->phy_lock);
  4403. cmd->transceiver = XCVR_INTERNAL;
  4404. cmd->phy_address = bp->phy_addr;
  4405. return 0;
  4406. }
  4407. static int
  4408. bnx2_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  4409. {
  4410. struct bnx2 *bp = netdev_priv(dev);
  4411. u8 autoneg = bp->autoneg;
  4412. u8 req_duplex = bp->req_duplex;
  4413. u16 req_line_speed = bp->req_line_speed;
  4414. u32 advertising = bp->advertising;
  4415. int err = -EINVAL;
  4416. spin_lock_bh(&bp->phy_lock);
  4417. if (cmd->port != PORT_TP && cmd->port != PORT_FIBRE)
  4418. goto err_out_unlock;
  4419. if (cmd->port != bp->phy_port && !(bp->phy_flags & REMOTE_PHY_CAP_FLAG))
  4420. goto err_out_unlock;
  4421. if (cmd->autoneg == AUTONEG_ENABLE) {
  4422. autoneg |= AUTONEG_SPEED;
  4423. cmd->advertising &= ETHTOOL_ALL_COPPER_SPEED;
  4424. /* allow advertising 1 speed */
  4425. if ((cmd->advertising == ADVERTISED_10baseT_Half) ||
  4426. (cmd->advertising == ADVERTISED_10baseT_Full) ||
  4427. (cmd->advertising == ADVERTISED_100baseT_Half) ||
  4428. (cmd->advertising == ADVERTISED_100baseT_Full)) {
  4429. if (cmd->port == PORT_FIBRE)
  4430. goto err_out_unlock;
  4431. advertising = cmd->advertising;
  4432. } else if (cmd->advertising == ADVERTISED_2500baseX_Full) {
  4433. if (!(bp->phy_flags & PHY_2_5G_CAPABLE_FLAG) ||
  4434. (cmd->port == PORT_TP))
  4435. goto err_out_unlock;
  4436. } else if (cmd->advertising == ADVERTISED_1000baseT_Full)
  4437. advertising = cmd->advertising;
  4438. else if (cmd->advertising == ADVERTISED_1000baseT_Half)
  4439. goto err_out_unlock;
  4440. else {
  4441. if (cmd->port == PORT_FIBRE)
  4442. advertising = ETHTOOL_ALL_FIBRE_SPEED;
  4443. else
  4444. advertising = ETHTOOL_ALL_COPPER_SPEED;
  4445. }
  4446. advertising |= ADVERTISED_Autoneg;
  4447. }
  4448. else {
  4449. if (cmd->port == PORT_FIBRE) {
  4450. if ((cmd->speed != SPEED_1000 &&
  4451. cmd->speed != SPEED_2500) ||
  4452. (cmd->duplex != DUPLEX_FULL))
  4453. goto err_out_unlock;
  4454. if (cmd->speed == SPEED_2500 &&
  4455. !(bp->phy_flags & PHY_2_5G_CAPABLE_FLAG))
  4456. goto err_out_unlock;
  4457. }
  4458. else if (cmd->speed == SPEED_1000 || cmd->speed == SPEED_2500)
  4459. goto err_out_unlock;
  4460. autoneg &= ~AUTONEG_SPEED;
  4461. req_line_speed = cmd->speed;
  4462. req_duplex = cmd->duplex;
  4463. advertising = 0;
  4464. }
  4465. bp->autoneg = autoneg;
  4466. bp->advertising = advertising;
  4467. bp->req_line_speed = req_line_speed;
  4468. bp->req_duplex = req_duplex;
  4469. err = bnx2_setup_phy(bp, cmd->port);
  4470. err_out_unlock:
  4471. spin_unlock_bh(&bp->phy_lock);
  4472. return err;
  4473. }
  4474. static void
  4475. bnx2_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  4476. {
  4477. struct bnx2 *bp = netdev_priv(dev);
  4478. strcpy(info->driver, DRV_MODULE_NAME);
  4479. strcpy(info->version, DRV_MODULE_VERSION);
  4480. strcpy(info->bus_info, pci_name(bp->pdev));
  4481. strcpy(info->fw_version, bp->fw_version);
  4482. }
  4483. #define BNX2_REGDUMP_LEN (32 * 1024)
  4484. static int
  4485. bnx2_get_regs_len(struct net_device *dev)
  4486. {
  4487. return BNX2_REGDUMP_LEN;
  4488. }
  4489. static void
  4490. bnx2_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *_p)
  4491. {
  4492. u32 *p = _p, i, offset;
  4493. u8 *orig_p = _p;
  4494. struct bnx2 *bp = netdev_priv(dev);
  4495. u32 reg_boundaries[] = { 0x0000, 0x0098, 0x0400, 0x045c,
  4496. 0x0800, 0x0880, 0x0c00, 0x0c10,
  4497. 0x0c30, 0x0d08, 0x1000, 0x101c,
  4498. 0x1040, 0x1048, 0x1080, 0x10a4,
  4499. 0x1400, 0x1490, 0x1498, 0x14f0,
  4500. 0x1500, 0x155c, 0x1580, 0x15dc,
  4501. 0x1600, 0x1658, 0x1680, 0x16d8,
  4502. 0x1800, 0x1820, 0x1840, 0x1854,
  4503. 0x1880, 0x1894, 0x1900, 0x1984,
  4504. 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
  4505. 0x1c80, 0x1c94, 0x1d00, 0x1d84,
  4506. 0x2000, 0x2030, 0x23c0, 0x2400,
  4507. 0x2800, 0x2820, 0x2830, 0x2850,
  4508. 0x2b40, 0x2c10, 0x2fc0, 0x3058,
  4509. 0x3c00, 0x3c94, 0x4000, 0x4010,
  4510. 0x4080, 0x4090, 0x43c0, 0x4458,
  4511. 0x4c00, 0x4c18, 0x4c40, 0x4c54,
  4512. 0x4fc0, 0x5010, 0x53c0, 0x5444,
  4513. 0x5c00, 0x5c18, 0x5c80, 0x5c90,
  4514. 0x5fc0, 0x6000, 0x6400, 0x6428,
  4515. 0x6800, 0x6848, 0x684c, 0x6860,
  4516. 0x6888, 0x6910, 0x8000 };
  4517. regs->version = 0;
  4518. memset(p, 0, BNX2_REGDUMP_LEN);
  4519. if (!netif_running(bp->dev))
  4520. return;
  4521. i = 0;
  4522. offset = reg_boundaries[0];
  4523. p += offset;
  4524. while (offset < BNX2_REGDUMP_LEN) {
  4525. *p++ = REG_RD(bp, offset);
  4526. offset += 4;
  4527. if (offset == reg_boundaries[i + 1]) {
  4528. offset = reg_boundaries[i + 2];
  4529. p = (u32 *) (orig_p + offset);
  4530. i += 2;
  4531. }
  4532. }
  4533. }
  4534. static void
  4535. bnx2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  4536. {
  4537. struct bnx2 *bp = netdev_priv(dev);
  4538. if (bp->flags & NO_WOL_FLAG) {
  4539. wol->supported = 0;
  4540. wol->wolopts = 0;
  4541. }
  4542. else {
  4543. wol->supported = WAKE_MAGIC;
  4544. if (bp->wol)
  4545. wol->wolopts = WAKE_MAGIC;
  4546. else
  4547. wol->wolopts = 0;
  4548. }
  4549. memset(&wol->sopass, 0, sizeof(wol->sopass));
  4550. }
  4551. static int
  4552. bnx2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  4553. {
  4554. struct bnx2 *bp = netdev_priv(dev);
  4555. if (wol->wolopts & ~WAKE_MAGIC)
  4556. return -EINVAL;
  4557. if (wol->wolopts & WAKE_MAGIC) {
  4558. if (bp->flags & NO_WOL_FLAG)
  4559. return -EINVAL;
  4560. bp->wol = 1;
  4561. }
  4562. else {
  4563. bp->wol = 0;
  4564. }
  4565. return 0;
  4566. }
  4567. static int
  4568. bnx2_nway_reset(struct net_device *dev)
  4569. {
  4570. struct bnx2 *bp = netdev_priv(dev);
  4571. u32 bmcr;
  4572. if (!(bp->autoneg & AUTONEG_SPEED)) {
  4573. return -EINVAL;
  4574. }
  4575. spin_lock_bh(&bp->phy_lock);
  4576. if (bp->phy_flags & REMOTE_PHY_CAP_FLAG) {
  4577. int rc;
  4578. rc = bnx2_setup_remote_phy(bp, bp->phy_port);
  4579. spin_unlock_bh(&bp->phy_lock);
  4580. return rc;
  4581. }
  4582. /* Force a link down visible on the other side */
  4583. if (bp->phy_flags & PHY_SERDES_FLAG) {
  4584. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  4585. spin_unlock_bh(&bp->phy_lock);
  4586. msleep(20);
  4587. spin_lock_bh(&bp->phy_lock);
  4588. bp->current_interval = SERDES_AN_TIMEOUT;
  4589. bp->serdes_an_pending = 1;
  4590. mod_timer(&bp->timer, jiffies + bp->current_interval);
  4591. }
  4592. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4593. bmcr &= ~BMCR_LOOPBACK;
  4594. bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART | BMCR_ANENABLE);
  4595. spin_unlock_bh(&bp->phy_lock);
  4596. return 0;
  4597. }
  4598. static int
  4599. bnx2_get_eeprom_len(struct net_device *dev)
  4600. {
  4601. struct bnx2 *bp = netdev_priv(dev);
  4602. if (bp->flash_info == NULL)
  4603. return 0;
  4604. return (int) bp->flash_size;
  4605. }
  4606. static int
  4607. bnx2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  4608. u8 *eebuf)
  4609. {
  4610. struct bnx2 *bp = netdev_priv(dev);
  4611. int rc;
  4612. /* parameters already validated in ethtool_get_eeprom */
  4613. rc = bnx2_nvram_read(bp, eeprom->offset, eebuf, eeprom->len);
  4614. return rc;
  4615. }
  4616. static int
  4617. bnx2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  4618. u8 *eebuf)
  4619. {
  4620. struct bnx2 *bp = netdev_priv(dev);
  4621. int rc;
  4622. /* parameters already validated in ethtool_set_eeprom */
  4623. rc = bnx2_nvram_write(bp, eeprom->offset, eebuf, eeprom->len);
  4624. return rc;
  4625. }
  4626. static int
  4627. bnx2_get_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
  4628. {
  4629. struct bnx2 *bp = netdev_priv(dev);
  4630. memset(coal, 0, sizeof(struct ethtool_coalesce));
  4631. coal->rx_coalesce_usecs = bp->rx_ticks;
  4632. coal->rx_max_coalesced_frames = bp->rx_quick_cons_trip;
  4633. coal->rx_coalesce_usecs_irq = bp->rx_ticks_int;
  4634. coal->rx_max_coalesced_frames_irq = bp->rx_quick_cons_trip_int;
  4635. coal->tx_coalesce_usecs = bp->tx_ticks;
  4636. coal->tx_max_coalesced_frames = bp->tx_quick_cons_trip;
  4637. coal->tx_coalesce_usecs_irq = bp->tx_ticks_int;
  4638. coal->tx_max_coalesced_frames_irq = bp->tx_quick_cons_trip_int;
  4639. coal->stats_block_coalesce_usecs = bp->stats_ticks;
  4640. return 0;
  4641. }
  4642. static int
  4643. bnx2_set_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
  4644. {
  4645. struct bnx2 *bp = netdev_priv(dev);
  4646. bp->rx_ticks = (u16) coal->rx_coalesce_usecs;
  4647. if (bp->rx_ticks > 0x3ff) bp->rx_ticks = 0x3ff;
  4648. bp->rx_quick_cons_trip = (u16) coal->rx_max_coalesced_frames;
  4649. if (bp->rx_quick_cons_trip > 0xff) bp->rx_quick_cons_trip = 0xff;
  4650. bp->rx_ticks_int = (u16) coal->rx_coalesce_usecs_irq;
  4651. if (bp->rx_ticks_int > 0x3ff) bp->rx_ticks_int = 0x3ff;
  4652. bp->rx_quick_cons_trip_int = (u16) coal->rx_max_coalesced_frames_irq;
  4653. if (bp->rx_quick_cons_trip_int > 0xff)
  4654. bp->rx_quick_cons_trip_int = 0xff;
  4655. bp->tx_ticks = (u16) coal->tx_coalesce_usecs;
  4656. if (bp->tx_ticks > 0x3ff) bp->tx_ticks = 0x3ff;
  4657. bp->tx_quick_cons_trip = (u16) coal->tx_max_coalesced_frames;
  4658. if (bp->tx_quick_cons_trip > 0xff) bp->tx_quick_cons_trip = 0xff;
  4659. bp->tx_ticks_int = (u16) coal->tx_coalesce_usecs_irq;
  4660. if (bp->tx_ticks_int > 0x3ff) bp->tx_ticks_int = 0x3ff;
  4661. bp->tx_quick_cons_trip_int = (u16) coal->tx_max_coalesced_frames_irq;
  4662. if (bp->tx_quick_cons_trip_int > 0xff) bp->tx_quick_cons_trip_int =
  4663. 0xff;
  4664. bp->stats_ticks = coal->stats_block_coalesce_usecs;
  4665. if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  4666. if (bp->stats_ticks != 0 && bp->stats_ticks != USEC_PER_SEC)
  4667. bp->stats_ticks = USEC_PER_SEC;
  4668. }
  4669. if (bp->stats_ticks > BNX2_HC_STATS_TICKS_HC_STAT_TICKS)
  4670. bp->stats_ticks = BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  4671. bp->stats_ticks &= BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  4672. if (netif_running(bp->dev)) {
  4673. bnx2_netif_stop(bp);
  4674. bnx2_init_nic(bp);
  4675. bnx2_netif_start(bp);
  4676. }
  4677. return 0;
  4678. }
  4679. static void
  4680. bnx2_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
  4681. {
  4682. struct bnx2 *bp = netdev_priv(dev);
  4683. ering->rx_max_pending = MAX_TOTAL_RX_DESC_CNT;
  4684. ering->rx_mini_max_pending = 0;
  4685. ering->rx_jumbo_max_pending = 0;
  4686. ering->rx_pending = bp->rx_ring_size;
  4687. ering->rx_mini_pending = 0;
  4688. ering->rx_jumbo_pending = 0;
  4689. ering->tx_max_pending = MAX_TX_DESC_CNT;
  4690. ering->tx_pending = bp->tx_ring_size;
  4691. }
  4692. static int
  4693. bnx2_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
  4694. {
  4695. struct bnx2 *bp = netdev_priv(dev);
  4696. if ((ering->rx_pending > MAX_TOTAL_RX_DESC_CNT) ||
  4697. (ering->tx_pending > MAX_TX_DESC_CNT) ||
  4698. (ering->tx_pending <= MAX_SKB_FRAGS)) {
  4699. return -EINVAL;
  4700. }
  4701. if (netif_running(bp->dev)) {
  4702. bnx2_netif_stop(bp);
  4703. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
  4704. bnx2_free_skbs(bp);
  4705. bnx2_free_mem(bp);
  4706. }
  4707. bnx2_set_rx_ring_size(bp, ering->rx_pending);
  4708. bp->tx_ring_size = ering->tx_pending;
  4709. if (netif_running(bp->dev)) {
  4710. int rc;
  4711. rc = bnx2_alloc_mem(bp);
  4712. if (rc)
  4713. return rc;
  4714. bnx2_init_nic(bp);
  4715. bnx2_netif_start(bp);
  4716. }
  4717. return 0;
  4718. }
  4719. static void
  4720. bnx2_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
  4721. {
  4722. struct bnx2 *bp = netdev_priv(dev);
  4723. epause->autoneg = ((bp->autoneg & AUTONEG_FLOW_CTRL) != 0);
  4724. epause->rx_pause = ((bp->flow_ctrl & FLOW_CTRL_RX) != 0);
  4725. epause->tx_pause = ((bp->flow_ctrl & FLOW_CTRL_TX) != 0);
  4726. }
  4727. static int
  4728. bnx2_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
  4729. {
  4730. struct bnx2 *bp = netdev_priv(dev);
  4731. bp->req_flow_ctrl = 0;
  4732. if (epause->rx_pause)
  4733. bp->req_flow_ctrl |= FLOW_CTRL_RX;
  4734. if (epause->tx_pause)
  4735. bp->req_flow_ctrl |= FLOW_CTRL_TX;
  4736. if (epause->autoneg) {
  4737. bp->autoneg |= AUTONEG_FLOW_CTRL;
  4738. }
  4739. else {
  4740. bp->autoneg &= ~AUTONEG_FLOW_CTRL;
  4741. }
  4742. spin_lock_bh(&bp->phy_lock);
  4743. bnx2_setup_phy(bp, bp->phy_port);
  4744. spin_unlock_bh(&bp->phy_lock);
  4745. return 0;
  4746. }
  4747. static u32
  4748. bnx2_get_rx_csum(struct net_device *dev)
  4749. {
  4750. struct bnx2 *bp = netdev_priv(dev);
  4751. return bp->rx_csum;
  4752. }
  4753. static int
  4754. bnx2_set_rx_csum(struct net_device *dev, u32 data)
  4755. {
  4756. struct bnx2 *bp = netdev_priv(dev);
  4757. bp->rx_csum = data;
  4758. return 0;
  4759. }
  4760. static int
  4761. bnx2_set_tso(struct net_device *dev, u32 data)
  4762. {
  4763. struct bnx2 *bp = netdev_priv(dev);
  4764. if (data) {
  4765. dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
  4766. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  4767. dev->features |= NETIF_F_TSO6;
  4768. } else
  4769. dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
  4770. NETIF_F_TSO_ECN);
  4771. return 0;
  4772. }
  4773. #define BNX2_NUM_STATS 46
  4774. static struct {
  4775. char string[ETH_GSTRING_LEN];
  4776. } bnx2_stats_str_arr[BNX2_NUM_STATS] = {
  4777. { "rx_bytes" },
  4778. { "rx_error_bytes" },
  4779. { "tx_bytes" },
  4780. { "tx_error_bytes" },
  4781. { "rx_ucast_packets" },
  4782. { "rx_mcast_packets" },
  4783. { "rx_bcast_packets" },
  4784. { "tx_ucast_packets" },
  4785. { "tx_mcast_packets" },
  4786. { "tx_bcast_packets" },
  4787. { "tx_mac_errors" },
  4788. { "tx_carrier_errors" },
  4789. { "rx_crc_errors" },
  4790. { "rx_align_errors" },
  4791. { "tx_single_collisions" },
  4792. { "tx_multi_collisions" },
  4793. { "tx_deferred" },
  4794. { "tx_excess_collisions" },
  4795. { "tx_late_collisions" },
  4796. { "tx_total_collisions" },
  4797. { "rx_fragments" },
  4798. { "rx_jabbers" },
  4799. { "rx_undersize_packets" },
  4800. { "rx_oversize_packets" },
  4801. { "rx_64_byte_packets" },
  4802. { "rx_65_to_127_byte_packets" },
  4803. { "rx_128_to_255_byte_packets" },
  4804. { "rx_256_to_511_byte_packets" },
  4805. { "rx_512_to_1023_byte_packets" },
  4806. { "rx_1024_to_1522_byte_packets" },
  4807. { "rx_1523_to_9022_byte_packets" },
  4808. { "tx_64_byte_packets" },
  4809. { "tx_65_to_127_byte_packets" },
  4810. { "tx_128_to_255_byte_packets" },
  4811. { "tx_256_to_511_byte_packets" },
  4812. { "tx_512_to_1023_byte_packets" },
  4813. { "tx_1024_to_1522_byte_packets" },
  4814. { "tx_1523_to_9022_byte_packets" },
  4815. { "rx_xon_frames" },
  4816. { "rx_xoff_frames" },
  4817. { "tx_xon_frames" },
  4818. { "tx_xoff_frames" },
  4819. { "rx_mac_ctrl_frames" },
  4820. { "rx_filtered_packets" },
  4821. { "rx_discards" },
  4822. { "rx_fw_discards" },
  4823. };
  4824. #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
  4825. static const unsigned long bnx2_stats_offset_arr[BNX2_NUM_STATS] = {
  4826. STATS_OFFSET32(stat_IfHCInOctets_hi),
  4827. STATS_OFFSET32(stat_IfHCInBadOctets_hi),
  4828. STATS_OFFSET32(stat_IfHCOutOctets_hi),
  4829. STATS_OFFSET32(stat_IfHCOutBadOctets_hi),
  4830. STATS_OFFSET32(stat_IfHCInUcastPkts_hi),
  4831. STATS_OFFSET32(stat_IfHCInMulticastPkts_hi),
  4832. STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi),
  4833. STATS_OFFSET32(stat_IfHCOutUcastPkts_hi),
  4834. STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi),
  4835. STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi),
  4836. STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors),
  4837. STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors),
  4838. STATS_OFFSET32(stat_Dot3StatsFCSErrors),
  4839. STATS_OFFSET32(stat_Dot3StatsAlignmentErrors),
  4840. STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames),
  4841. STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames),
  4842. STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions),
  4843. STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions),
  4844. STATS_OFFSET32(stat_Dot3StatsLateCollisions),
  4845. STATS_OFFSET32(stat_EtherStatsCollisions),
  4846. STATS_OFFSET32(stat_EtherStatsFragments),
  4847. STATS_OFFSET32(stat_EtherStatsJabbers),
  4848. STATS_OFFSET32(stat_EtherStatsUndersizePkts),
  4849. STATS_OFFSET32(stat_EtherStatsOverrsizePkts),
  4850. STATS_OFFSET32(stat_EtherStatsPktsRx64Octets),
  4851. STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets),
  4852. STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets),
  4853. STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets),
  4854. STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets),
  4855. STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets),
  4856. STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets),
  4857. STATS_OFFSET32(stat_EtherStatsPktsTx64Octets),
  4858. STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets),
  4859. STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets),
  4860. STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets),
  4861. STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets),
  4862. STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets),
  4863. STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets),
  4864. STATS_OFFSET32(stat_XonPauseFramesReceived),
  4865. STATS_OFFSET32(stat_XoffPauseFramesReceived),
  4866. STATS_OFFSET32(stat_OutXonSent),
  4867. STATS_OFFSET32(stat_OutXoffSent),
  4868. STATS_OFFSET32(stat_MacControlFramesReceived),
  4869. STATS_OFFSET32(stat_IfInFramesL2FilterDiscards),
  4870. STATS_OFFSET32(stat_IfInMBUFDiscards),
  4871. STATS_OFFSET32(stat_FwRxDrop),
  4872. };
  4873. /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
  4874. * skipped because of errata.
  4875. */
  4876. static u8 bnx2_5706_stats_len_arr[BNX2_NUM_STATS] = {
  4877. 8,0,8,8,8,8,8,8,8,8,
  4878. 4,0,4,4,4,4,4,4,4,4,
  4879. 4,4,4,4,4,4,4,4,4,4,
  4880. 4,4,4,4,4,4,4,4,4,4,
  4881. 4,4,4,4,4,4,
  4882. };
  4883. static u8 bnx2_5708_stats_len_arr[BNX2_NUM_STATS] = {
  4884. 8,0,8,8,8,8,8,8,8,8,
  4885. 4,4,4,4,4,4,4,4,4,4,
  4886. 4,4,4,4,4,4,4,4,4,4,
  4887. 4,4,4,4,4,4,4,4,4,4,
  4888. 4,4,4,4,4,4,
  4889. };
  4890. #define BNX2_NUM_TESTS 6
  4891. static struct {
  4892. char string[ETH_GSTRING_LEN];
  4893. } bnx2_tests_str_arr[BNX2_NUM_TESTS] = {
  4894. { "register_test (offline)" },
  4895. { "memory_test (offline)" },
  4896. { "loopback_test (offline)" },
  4897. { "nvram_test (online)" },
  4898. { "interrupt_test (online)" },
  4899. { "link_test (online)" },
  4900. };
  4901. static int
  4902. bnx2_get_sset_count(struct net_device *dev, int sset)
  4903. {
  4904. switch (sset) {
  4905. case ETH_SS_TEST:
  4906. return BNX2_NUM_TESTS;
  4907. case ETH_SS_STATS:
  4908. return BNX2_NUM_STATS;
  4909. default:
  4910. return -EOPNOTSUPP;
  4911. }
  4912. }
  4913. static void
  4914. bnx2_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *buf)
  4915. {
  4916. struct bnx2 *bp = netdev_priv(dev);
  4917. memset(buf, 0, sizeof(u64) * BNX2_NUM_TESTS);
  4918. if (etest->flags & ETH_TEST_FL_OFFLINE) {
  4919. int i;
  4920. bnx2_netif_stop(bp);
  4921. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_DIAG);
  4922. bnx2_free_skbs(bp);
  4923. if (bnx2_test_registers(bp) != 0) {
  4924. buf[0] = 1;
  4925. etest->flags |= ETH_TEST_FL_FAILED;
  4926. }
  4927. if (bnx2_test_memory(bp) != 0) {
  4928. buf[1] = 1;
  4929. etest->flags |= ETH_TEST_FL_FAILED;
  4930. }
  4931. if ((buf[2] = bnx2_test_loopback(bp)) != 0)
  4932. etest->flags |= ETH_TEST_FL_FAILED;
  4933. if (!netif_running(bp->dev)) {
  4934. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
  4935. }
  4936. else {
  4937. bnx2_init_nic(bp);
  4938. bnx2_netif_start(bp);
  4939. }
  4940. /* wait for link up */
  4941. for (i = 0; i < 7; i++) {
  4942. if (bp->link_up)
  4943. break;
  4944. msleep_interruptible(1000);
  4945. }
  4946. }
  4947. if (bnx2_test_nvram(bp) != 0) {
  4948. buf[3] = 1;
  4949. etest->flags |= ETH_TEST_FL_FAILED;
  4950. }
  4951. if (bnx2_test_intr(bp) != 0) {
  4952. buf[4] = 1;
  4953. etest->flags |= ETH_TEST_FL_FAILED;
  4954. }
  4955. if (bnx2_test_link(bp) != 0) {
  4956. buf[5] = 1;
  4957. etest->flags |= ETH_TEST_FL_FAILED;
  4958. }
  4959. }
  4960. static void
  4961. bnx2_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
  4962. {
  4963. switch (stringset) {
  4964. case ETH_SS_STATS:
  4965. memcpy(buf, bnx2_stats_str_arr,
  4966. sizeof(bnx2_stats_str_arr));
  4967. break;
  4968. case ETH_SS_TEST:
  4969. memcpy(buf, bnx2_tests_str_arr,
  4970. sizeof(bnx2_tests_str_arr));
  4971. break;
  4972. }
  4973. }
  4974. static void
  4975. bnx2_get_ethtool_stats(struct net_device *dev,
  4976. struct ethtool_stats *stats, u64 *buf)
  4977. {
  4978. struct bnx2 *bp = netdev_priv(dev);
  4979. int i;
  4980. u32 *hw_stats = (u32 *) bp->stats_blk;
  4981. u8 *stats_len_arr = NULL;
  4982. if (hw_stats == NULL) {
  4983. memset(buf, 0, sizeof(u64) * BNX2_NUM_STATS);
  4984. return;
  4985. }
  4986. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  4987. (CHIP_ID(bp) == CHIP_ID_5706_A1) ||
  4988. (CHIP_ID(bp) == CHIP_ID_5706_A2) ||
  4989. (CHIP_ID(bp) == CHIP_ID_5708_A0))
  4990. stats_len_arr = bnx2_5706_stats_len_arr;
  4991. else
  4992. stats_len_arr = bnx2_5708_stats_len_arr;
  4993. for (i = 0; i < BNX2_NUM_STATS; i++) {
  4994. if (stats_len_arr[i] == 0) {
  4995. /* skip this counter */
  4996. buf[i] = 0;
  4997. continue;
  4998. }
  4999. if (stats_len_arr[i] == 4) {
  5000. /* 4-byte counter */
  5001. buf[i] = (u64)
  5002. *(hw_stats + bnx2_stats_offset_arr[i]);
  5003. continue;
  5004. }
  5005. /* 8-byte counter */
  5006. buf[i] = (((u64) *(hw_stats +
  5007. bnx2_stats_offset_arr[i])) << 32) +
  5008. *(hw_stats + bnx2_stats_offset_arr[i] + 1);
  5009. }
  5010. }
  5011. static int
  5012. bnx2_phys_id(struct net_device *dev, u32 data)
  5013. {
  5014. struct bnx2 *bp = netdev_priv(dev);
  5015. int i;
  5016. u32 save;
  5017. if (data == 0)
  5018. data = 2;
  5019. save = REG_RD(bp, BNX2_MISC_CFG);
  5020. REG_WR(bp, BNX2_MISC_CFG, BNX2_MISC_CFG_LEDMODE_MAC);
  5021. for (i = 0; i < (data * 2); i++) {
  5022. if ((i % 2) == 0) {
  5023. REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE);
  5024. }
  5025. else {
  5026. REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE |
  5027. BNX2_EMAC_LED_1000MB_OVERRIDE |
  5028. BNX2_EMAC_LED_100MB_OVERRIDE |
  5029. BNX2_EMAC_LED_10MB_OVERRIDE |
  5030. BNX2_EMAC_LED_TRAFFIC_OVERRIDE |
  5031. BNX2_EMAC_LED_TRAFFIC);
  5032. }
  5033. msleep_interruptible(500);
  5034. if (signal_pending(current))
  5035. break;
  5036. }
  5037. REG_WR(bp, BNX2_EMAC_LED, 0);
  5038. REG_WR(bp, BNX2_MISC_CFG, save);
  5039. return 0;
  5040. }
  5041. static int
  5042. bnx2_set_tx_csum(struct net_device *dev, u32 data)
  5043. {
  5044. struct bnx2 *bp = netdev_priv(dev);
  5045. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  5046. return (ethtool_op_set_tx_ipv6_csum(dev, data));
  5047. else
  5048. return (ethtool_op_set_tx_csum(dev, data));
  5049. }
  5050. static const struct ethtool_ops bnx2_ethtool_ops = {
  5051. .get_settings = bnx2_get_settings,
  5052. .set_settings = bnx2_set_settings,
  5053. .get_drvinfo = bnx2_get_drvinfo,
  5054. .get_regs_len = bnx2_get_regs_len,
  5055. .get_regs = bnx2_get_regs,
  5056. .get_wol = bnx2_get_wol,
  5057. .set_wol = bnx2_set_wol,
  5058. .nway_reset = bnx2_nway_reset,
  5059. .get_link = ethtool_op_get_link,
  5060. .get_eeprom_len = bnx2_get_eeprom_len,
  5061. .get_eeprom = bnx2_get_eeprom,
  5062. .set_eeprom = bnx2_set_eeprom,
  5063. .get_coalesce = bnx2_get_coalesce,
  5064. .set_coalesce = bnx2_set_coalesce,
  5065. .get_ringparam = bnx2_get_ringparam,
  5066. .set_ringparam = bnx2_set_ringparam,
  5067. .get_pauseparam = bnx2_get_pauseparam,
  5068. .set_pauseparam = bnx2_set_pauseparam,
  5069. .get_rx_csum = bnx2_get_rx_csum,
  5070. .set_rx_csum = bnx2_set_rx_csum,
  5071. .set_tx_csum = bnx2_set_tx_csum,
  5072. .set_sg = ethtool_op_set_sg,
  5073. .set_tso = bnx2_set_tso,
  5074. .self_test = bnx2_self_test,
  5075. .get_strings = bnx2_get_strings,
  5076. .phys_id = bnx2_phys_id,
  5077. .get_ethtool_stats = bnx2_get_ethtool_stats,
  5078. .get_sset_count = bnx2_get_sset_count,
  5079. };
  5080. /* Called with rtnl_lock */
  5081. static int
  5082. bnx2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  5083. {
  5084. struct mii_ioctl_data *data = if_mii(ifr);
  5085. struct bnx2 *bp = netdev_priv(dev);
  5086. int err;
  5087. switch(cmd) {
  5088. case SIOCGMIIPHY:
  5089. data->phy_id = bp->phy_addr;
  5090. /* fallthru */
  5091. case SIOCGMIIREG: {
  5092. u32 mii_regval;
  5093. if (bp->phy_flags & REMOTE_PHY_CAP_FLAG)
  5094. return -EOPNOTSUPP;
  5095. if (!netif_running(dev))
  5096. return -EAGAIN;
  5097. spin_lock_bh(&bp->phy_lock);
  5098. err = bnx2_read_phy(bp, data->reg_num & 0x1f, &mii_regval);
  5099. spin_unlock_bh(&bp->phy_lock);
  5100. data->val_out = mii_regval;
  5101. return err;
  5102. }
  5103. case SIOCSMIIREG:
  5104. if (!capable(CAP_NET_ADMIN))
  5105. return -EPERM;
  5106. if (bp->phy_flags & REMOTE_PHY_CAP_FLAG)
  5107. return -EOPNOTSUPP;
  5108. if (!netif_running(dev))
  5109. return -EAGAIN;
  5110. spin_lock_bh(&bp->phy_lock);
  5111. err = bnx2_write_phy(bp, data->reg_num & 0x1f, data->val_in);
  5112. spin_unlock_bh(&bp->phy_lock);
  5113. return err;
  5114. default:
  5115. /* do nothing */
  5116. break;
  5117. }
  5118. return -EOPNOTSUPP;
  5119. }
  5120. /* Called with rtnl_lock */
  5121. static int
  5122. bnx2_change_mac_addr(struct net_device *dev, void *p)
  5123. {
  5124. struct sockaddr *addr = p;
  5125. struct bnx2 *bp = netdev_priv(dev);
  5126. if (!is_valid_ether_addr(addr->sa_data))
  5127. return -EINVAL;
  5128. memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
  5129. if (netif_running(dev))
  5130. bnx2_set_mac_addr(bp);
  5131. return 0;
  5132. }
  5133. /* Called with rtnl_lock */
  5134. static int
  5135. bnx2_change_mtu(struct net_device *dev, int new_mtu)
  5136. {
  5137. struct bnx2 *bp = netdev_priv(dev);
  5138. if (((new_mtu + ETH_HLEN) > MAX_ETHERNET_JUMBO_PACKET_SIZE) ||
  5139. ((new_mtu + ETH_HLEN) < MIN_ETHERNET_PACKET_SIZE))
  5140. return -EINVAL;
  5141. dev->mtu = new_mtu;
  5142. if (netif_running(dev)) {
  5143. bnx2_netif_stop(bp);
  5144. bnx2_init_nic(bp);
  5145. bnx2_netif_start(bp);
  5146. }
  5147. return 0;
  5148. }
  5149. #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
  5150. static void
  5151. poll_bnx2(struct net_device *dev)
  5152. {
  5153. struct bnx2 *bp = netdev_priv(dev);
  5154. disable_irq(bp->pdev->irq);
  5155. bnx2_interrupt(bp->pdev->irq, dev);
  5156. enable_irq(bp->pdev->irq);
  5157. }
  5158. #endif
  5159. static void __devinit
  5160. bnx2_get_5709_media(struct bnx2 *bp)
  5161. {
  5162. u32 val = REG_RD(bp, BNX2_MISC_DUAL_MEDIA_CTRL);
  5163. u32 bond_id = val & BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID;
  5164. u32 strap;
  5165. if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C)
  5166. return;
  5167. else if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
  5168. bp->phy_flags |= PHY_SERDES_FLAG;
  5169. return;
  5170. }
  5171. if (val & BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
  5172. strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
  5173. else
  5174. strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
  5175. if (PCI_FUNC(bp->pdev->devfn) == 0) {
  5176. switch (strap) {
  5177. case 0x4:
  5178. case 0x5:
  5179. case 0x6:
  5180. bp->phy_flags |= PHY_SERDES_FLAG;
  5181. return;
  5182. }
  5183. } else {
  5184. switch (strap) {
  5185. case 0x1:
  5186. case 0x2:
  5187. case 0x4:
  5188. bp->phy_flags |= PHY_SERDES_FLAG;
  5189. return;
  5190. }
  5191. }
  5192. }
  5193. static void __devinit
  5194. bnx2_get_pci_speed(struct bnx2 *bp)
  5195. {
  5196. u32 reg;
  5197. reg = REG_RD(bp, BNX2_PCICFG_MISC_STATUS);
  5198. if (reg & BNX2_PCICFG_MISC_STATUS_PCIX_DET) {
  5199. u32 clkreg;
  5200. bp->flags |= PCIX_FLAG;
  5201. clkreg = REG_RD(bp, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS);
  5202. clkreg &= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
  5203. switch (clkreg) {
  5204. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
  5205. bp->bus_speed_mhz = 133;
  5206. break;
  5207. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
  5208. bp->bus_speed_mhz = 100;
  5209. break;
  5210. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
  5211. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
  5212. bp->bus_speed_mhz = 66;
  5213. break;
  5214. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
  5215. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
  5216. bp->bus_speed_mhz = 50;
  5217. break;
  5218. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
  5219. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
  5220. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
  5221. bp->bus_speed_mhz = 33;
  5222. break;
  5223. }
  5224. }
  5225. else {
  5226. if (reg & BNX2_PCICFG_MISC_STATUS_M66EN)
  5227. bp->bus_speed_mhz = 66;
  5228. else
  5229. bp->bus_speed_mhz = 33;
  5230. }
  5231. if (reg & BNX2_PCICFG_MISC_STATUS_32BIT_DET)
  5232. bp->flags |= PCI_32BIT_FLAG;
  5233. }
  5234. static int __devinit
  5235. bnx2_init_board(struct pci_dev *pdev, struct net_device *dev)
  5236. {
  5237. struct bnx2 *bp;
  5238. unsigned long mem_len;
  5239. int rc, i, j;
  5240. u32 reg;
  5241. u64 dma_mask, persist_dma_mask;
  5242. SET_NETDEV_DEV(dev, &pdev->dev);
  5243. bp = netdev_priv(dev);
  5244. bp->flags = 0;
  5245. bp->phy_flags = 0;
  5246. /* enable device (incl. PCI PM wakeup), and bus-mastering */
  5247. rc = pci_enable_device(pdev);
  5248. if (rc) {
  5249. dev_err(&pdev->dev, "Cannot enable PCI device, aborting.");
  5250. goto err_out;
  5251. }
  5252. if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
  5253. dev_err(&pdev->dev,
  5254. "Cannot find PCI device base address, aborting.\n");
  5255. rc = -ENODEV;
  5256. goto err_out_disable;
  5257. }
  5258. rc = pci_request_regions(pdev, DRV_MODULE_NAME);
  5259. if (rc) {
  5260. dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting.\n");
  5261. goto err_out_disable;
  5262. }
  5263. pci_set_master(pdev);
  5264. bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
  5265. if (bp->pm_cap == 0) {
  5266. dev_err(&pdev->dev,
  5267. "Cannot find power management capability, aborting.\n");
  5268. rc = -EIO;
  5269. goto err_out_release;
  5270. }
  5271. bp->dev = dev;
  5272. bp->pdev = pdev;
  5273. spin_lock_init(&bp->phy_lock);
  5274. spin_lock_init(&bp->indirect_lock);
  5275. INIT_WORK(&bp->reset_task, bnx2_reset_task);
  5276. dev->base_addr = dev->mem_start = pci_resource_start(pdev, 0);
  5277. mem_len = MB_GET_CID_ADDR(TX_TSS_CID + 1);
  5278. dev->mem_end = dev->mem_start + mem_len;
  5279. dev->irq = pdev->irq;
  5280. bp->regview = ioremap_nocache(dev->base_addr, mem_len);
  5281. if (!bp->regview) {
  5282. dev_err(&pdev->dev, "Cannot map register space, aborting.\n");
  5283. rc = -ENOMEM;
  5284. goto err_out_release;
  5285. }
  5286. /* Configure byte swap and enable write to the reg_window registers.
  5287. * Rely on CPU to do target byte swapping on big endian systems
  5288. * The chip's target access swapping will not swap all accesses
  5289. */
  5290. pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG,
  5291. BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  5292. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
  5293. bnx2_set_power_state(bp, PCI_D0);
  5294. bp->chip_id = REG_RD(bp, BNX2_MISC_ID);
  5295. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  5296. if (pci_find_capability(pdev, PCI_CAP_ID_EXP) == 0) {
  5297. dev_err(&pdev->dev,
  5298. "Cannot find PCIE capability, aborting.\n");
  5299. rc = -EIO;
  5300. goto err_out_unmap;
  5301. }
  5302. bp->flags |= PCIE_FLAG;
  5303. } else {
  5304. bp->pcix_cap = pci_find_capability(pdev, PCI_CAP_ID_PCIX);
  5305. if (bp->pcix_cap == 0) {
  5306. dev_err(&pdev->dev,
  5307. "Cannot find PCIX capability, aborting.\n");
  5308. rc = -EIO;
  5309. goto err_out_unmap;
  5310. }
  5311. }
  5312. if (CHIP_ID(bp) != CHIP_ID_5706_A0 && CHIP_ID(bp) != CHIP_ID_5706_A1) {
  5313. if (pci_find_capability(pdev, PCI_CAP_ID_MSI))
  5314. bp->flags |= MSI_CAP_FLAG;
  5315. }
  5316. /* 5708 cannot support DMA addresses > 40-bit. */
  5317. if (CHIP_NUM(bp) == CHIP_NUM_5708)
  5318. persist_dma_mask = dma_mask = DMA_40BIT_MASK;
  5319. else
  5320. persist_dma_mask = dma_mask = DMA_64BIT_MASK;
  5321. /* Configure DMA attributes. */
  5322. if (pci_set_dma_mask(pdev, dma_mask) == 0) {
  5323. dev->features |= NETIF_F_HIGHDMA;
  5324. rc = pci_set_consistent_dma_mask(pdev, persist_dma_mask);
  5325. if (rc) {
  5326. dev_err(&pdev->dev,
  5327. "pci_set_consistent_dma_mask failed, aborting.\n");
  5328. goto err_out_unmap;
  5329. }
  5330. } else if ((rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) != 0) {
  5331. dev_err(&pdev->dev, "System does not support DMA, aborting.\n");
  5332. goto err_out_unmap;
  5333. }
  5334. if (!(bp->flags & PCIE_FLAG))
  5335. bnx2_get_pci_speed(bp);
  5336. /* 5706A0 may falsely detect SERR and PERR. */
  5337. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  5338. reg = REG_RD(bp, PCI_COMMAND);
  5339. reg &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
  5340. REG_WR(bp, PCI_COMMAND, reg);
  5341. }
  5342. else if ((CHIP_ID(bp) == CHIP_ID_5706_A1) &&
  5343. !(bp->flags & PCIX_FLAG)) {
  5344. dev_err(&pdev->dev,
  5345. "5706 A1 can only be used in a PCIX bus, aborting.\n");
  5346. goto err_out_unmap;
  5347. }
  5348. bnx2_init_nvram(bp);
  5349. reg = REG_RD_IND(bp, BNX2_SHM_HDR_SIGNATURE);
  5350. if ((reg & BNX2_SHM_HDR_SIGNATURE_SIG_MASK) ==
  5351. BNX2_SHM_HDR_SIGNATURE_SIG) {
  5352. u32 off = PCI_FUNC(pdev->devfn) << 2;
  5353. bp->shmem_base = REG_RD_IND(bp, BNX2_SHM_HDR_ADDR_0 + off);
  5354. } else
  5355. bp->shmem_base = HOST_VIEW_SHMEM_BASE;
  5356. /* Get the permanent MAC address. First we need to make sure the
  5357. * firmware is actually running.
  5358. */
  5359. reg = REG_RD_IND(bp, bp->shmem_base + BNX2_DEV_INFO_SIGNATURE);
  5360. if ((reg & BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
  5361. BNX2_DEV_INFO_SIGNATURE_MAGIC) {
  5362. dev_err(&pdev->dev, "Firmware not running, aborting.\n");
  5363. rc = -ENODEV;
  5364. goto err_out_unmap;
  5365. }
  5366. reg = REG_RD_IND(bp, bp->shmem_base + BNX2_DEV_INFO_BC_REV);
  5367. for (i = 0, j = 0; i < 3; i++) {
  5368. u8 num, k, skip0;
  5369. num = (u8) (reg >> (24 - (i * 8)));
  5370. for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
  5371. if (num >= k || !skip0 || k == 1) {
  5372. bp->fw_version[j++] = (num / k) + '0';
  5373. skip0 = 0;
  5374. }
  5375. }
  5376. if (i != 2)
  5377. bp->fw_version[j++] = '.';
  5378. }
  5379. reg = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_FEATURE);
  5380. if (reg & BNX2_PORT_FEATURE_WOL_ENABLED)
  5381. bp->wol = 1;
  5382. if (reg & BNX2_PORT_FEATURE_ASF_ENABLED) {
  5383. bp->flags |= ASF_ENABLE_FLAG;
  5384. for (i = 0; i < 30; i++) {
  5385. reg = REG_RD_IND(bp, bp->shmem_base +
  5386. BNX2_BC_STATE_CONDITION);
  5387. if (reg & BNX2_CONDITION_MFW_RUN_MASK)
  5388. break;
  5389. msleep(10);
  5390. }
  5391. }
  5392. reg = REG_RD_IND(bp, bp->shmem_base + BNX2_BC_STATE_CONDITION);
  5393. reg &= BNX2_CONDITION_MFW_RUN_MASK;
  5394. if (reg != BNX2_CONDITION_MFW_RUN_UNKNOWN &&
  5395. reg != BNX2_CONDITION_MFW_RUN_NONE) {
  5396. int i;
  5397. u32 addr = REG_RD_IND(bp, bp->shmem_base + BNX2_MFW_VER_PTR);
  5398. bp->fw_version[j++] = ' ';
  5399. for (i = 0; i < 3; i++) {
  5400. reg = REG_RD_IND(bp, addr + i * 4);
  5401. reg = swab32(reg);
  5402. memcpy(&bp->fw_version[j], &reg, 4);
  5403. j += 4;
  5404. }
  5405. }
  5406. reg = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_MAC_UPPER);
  5407. bp->mac_addr[0] = (u8) (reg >> 8);
  5408. bp->mac_addr[1] = (u8) reg;
  5409. reg = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_MAC_LOWER);
  5410. bp->mac_addr[2] = (u8) (reg >> 24);
  5411. bp->mac_addr[3] = (u8) (reg >> 16);
  5412. bp->mac_addr[4] = (u8) (reg >> 8);
  5413. bp->mac_addr[5] = (u8) reg;
  5414. bp->tx_ring_size = MAX_TX_DESC_CNT;
  5415. bnx2_set_rx_ring_size(bp, 255);
  5416. bp->rx_csum = 1;
  5417. bp->rx_offset = sizeof(struct l2_fhdr) + 2;
  5418. bp->tx_quick_cons_trip_int = 20;
  5419. bp->tx_quick_cons_trip = 20;
  5420. bp->tx_ticks_int = 80;
  5421. bp->tx_ticks = 80;
  5422. bp->rx_quick_cons_trip_int = 6;
  5423. bp->rx_quick_cons_trip = 6;
  5424. bp->rx_ticks_int = 18;
  5425. bp->rx_ticks = 18;
  5426. bp->stats_ticks = USEC_PER_SEC & BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  5427. bp->timer_interval = HZ;
  5428. bp->current_interval = HZ;
  5429. bp->phy_addr = 1;
  5430. /* Disable WOL support if we are running on a SERDES chip. */
  5431. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  5432. bnx2_get_5709_media(bp);
  5433. else if (CHIP_BOND_ID(bp) & CHIP_BOND_ID_SERDES_BIT)
  5434. bp->phy_flags |= PHY_SERDES_FLAG;
  5435. bp->phy_port = PORT_TP;
  5436. if (bp->phy_flags & PHY_SERDES_FLAG) {
  5437. bp->phy_port = PORT_FIBRE;
  5438. reg = REG_RD_IND(bp, bp->shmem_base +
  5439. BNX2_SHARED_HW_CFG_CONFIG);
  5440. if (!(reg & BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX)) {
  5441. bp->flags |= NO_WOL_FLAG;
  5442. bp->wol = 0;
  5443. }
  5444. if (CHIP_NUM(bp) != CHIP_NUM_5706) {
  5445. bp->phy_addr = 2;
  5446. if (reg & BNX2_SHARED_HW_CFG_PHY_2_5G)
  5447. bp->phy_flags |= PHY_2_5G_CAPABLE_FLAG;
  5448. }
  5449. bnx2_init_remote_phy(bp);
  5450. } else if (CHIP_NUM(bp) == CHIP_NUM_5706 ||
  5451. CHIP_NUM(bp) == CHIP_NUM_5708)
  5452. bp->phy_flags |= PHY_CRC_FIX_FLAG;
  5453. else if (CHIP_ID(bp) == CHIP_ID_5709_A0 ||
  5454. CHIP_ID(bp) == CHIP_ID_5709_A1)
  5455. bp->phy_flags |= PHY_DIS_EARLY_DAC_FLAG;
  5456. if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
  5457. (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
  5458. (CHIP_ID(bp) == CHIP_ID_5708_B1)) {
  5459. bp->flags |= NO_WOL_FLAG;
  5460. bp->wol = 0;
  5461. }
  5462. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  5463. bp->tx_quick_cons_trip_int =
  5464. bp->tx_quick_cons_trip;
  5465. bp->tx_ticks_int = bp->tx_ticks;
  5466. bp->rx_quick_cons_trip_int =
  5467. bp->rx_quick_cons_trip;
  5468. bp->rx_ticks_int = bp->rx_ticks;
  5469. bp->comp_prod_trip_int = bp->comp_prod_trip;
  5470. bp->com_ticks_int = bp->com_ticks;
  5471. bp->cmd_ticks_int = bp->cmd_ticks;
  5472. }
  5473. /* Disable MSI on 5706 if AMD 8132 bridge is found.
  5474. *
  5475. * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
  5476. * with byte enables disabled on the unused 32-bit word. This is legal
  5477. * but causes problems on the AMD 8132 which will eventually stop
  5478. * responding after a while.
  5479. *
  5480. * AMD believes this incompatibility is unique to the 5706, and
  5481. * prefers to locally disable MSI rather than globally disabling it.
  5482. */
  5483. if (CHIP_NUM(bp) == CHIP_NUM_5706 && disable_msi == 0) {
  5484. struct pci_dev *amd_8132 = NULL;
  5485. while ((amd_8132 = pci_get_device(PCI_VENDOR_ID_AMD,
  5486. PCI_DEVICE_ID_AMD_8132_BRIDGE,
  5487. amd_8132))) {
  5488. if (amd_8132->revision >= 0x10 &&
  5489. amd_8132->revision <= 0x13) {
  5490. disable_msi = 1;
  5491. pci_dev_put(amd_8132);
  5492. break;
  5493. }
  5494. }
  5495. }
  5496. bnx2_set_default_link(bp);
  5497. bp->req_flow_ctrl = FLOW_CTRL_RX | FLOW_CTRL_TX;
  5498. init_timer(&bp->timer);
  5499. bp->timer.expires = RUN_AT(bp->timer_interval);
  5500. bp->timer.data = (unsigned long) bp;
  5501. bp->timer.function = bnx2_timer;
  5502. return 0;
  5503. err_out_unmap:
  5504. if (bp->regview) {
  5505. iounmap(bp->regview);
  5506. bp->regview = NULL;
  5507. }
  5508. err_out_release:
  5509. pci_release_regions(pdev);
  5510. err_out_disable:
  5511. pci_disable_device(pdev);
  5512. pci_set_drvdata(pdev, NULL);
  5513. err_out:
  5514. return rc;
  5515. }
  5516. static char * __devinit
  5517. bnx2_bus_string(struct bnx2 *bp, char *str)
  5518. {
  5519. char *s = str;
  5520. if (bp->flags & PCIE_FLAG) {
  5521. s += sprintf(s, "PCI Express");
  5522. } else {
  5523. s += sprintf(s, "PCI");
  5524. if (bp->flags & PCIX_FLAG)
  5525. s += sprintf(s, "-X");
  5526. if (bp->flags & PCI_32BIT_FLAG)
  5527. s += sprintf(s, " 32-bit");
  5528. else
  5529. s += sprintf(s, " 64-bit");
  5530. s += sprintf(s, " %dMHz", bp->bus_speed_mhz);
  5531. }
  5532. return str;
  5533. }
  5534. static int __devinit
  5535. bnx2_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
  5536. {
  5537. static int version_printed = 0;
  5538. struct net_device *dev = NULL;
  5539. struct bnx2 *bp;
  5540. int rc;
  5541. char str[40];
  5542. DECLARE_MAC_BUF(mac);
  5543. if (version_printed++ == 0)
  5544. printk(KERN_INFO "%s", version);
  5545. /* dev zeroed in init_etherdev */
  5546. dev = alloc_etherdev(sizeof(*bp));
  5547. if (!dev)
  5548. return -ENOMEM;
  5549. rc = bnx2_init_board(pdev, dev);
  5550. if (rc < 0) {
  5551. free_netdev(dev);
  5552. return rc;
  5553. }
  5554. dev->open = bnx2_open;
  5555. dev->hard_start_xmit = bnx2_start_xmit;
  5556. dev->stop = bnx2_close;
  5557. dev->get_stats = bnx2_get_stats;
  5558. dev->set_multicast_list = bnx2_set_rx_mode;
  5559. dev->do_ioctl = bnx2_ioctl;
  5560. dev->set_mac_address = bnx2_change_mac_addr;
  5561. dev->change_mtu = bnx2_change_mtu;
  5562. dev->tx_timeout = bnx2_tx_timeout;
  5563. dev->watchdog_timeo = TX_TIMEOUT;
  5564. #ifdef BCM_VLAN
  5565. dev->vlan_rx_register = bnx2_vlan_rx_register;
  5566. #endif
  5567. dev->ethtool_ops = &bnx2_ethtool_ops;
  5568. bp = netdev_priv(dev);
  5569. netif_napi_add(dev, &bp->napi, bnx2_poll, 64);
  5570. #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
  5571. dev->poll_controller = poll_bnx2;
  5572. #endif
  5573. pci_set_drvdata(pdev, dev);
  5574. memcpy(dev->dev_addr, bp->mac_addr, 6);
  5575. memcpy(dev->perm_addr, bp->mac_addr, 6);
  5576. bp->name = board_info[ent->driver_data].name;
  5577. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  5578. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  5579. dev->features |= NETIF_F_IPV6_CSUM;
  5580. #ifdef BCM_VLAN
  5581. dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
  5582. #endif
  5583. dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
  5584. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  5585. dev->features |= NETIF_F_TSO6;
  5586. if ((rc = register_netdev(dev))) {
  5587. dev_err(&pdev->dev, "Cannot register net device\n");
  5588. if (bp->regview)
  5589. iounmap(bp->regview);
  5590. pci_release_regions(pdev);
  5591. pci_disable_device(pdev);
  5592. pci_set_drvdata(pdev, NULL);
  5593. free_netdev(dev);
  5594. return rc;
  5595. }
  5596. printk(KERN_INFO "%s: %s (%c%d) %s found at mem %lx, "
  5597. "IRQ %d, node addr %s\n",
  5598. dev->name,
  5599. bp->name,
  5600. ((CHIP_ID(bp) & 0xf000) >> 12) + 'A',
  5601. ((CHIP_ID(bp) & 0x0ff0) >> 4),
  5602. bnx2_bus_string(bp, str),
  5603. dev->base_addr,
  5604. bp->pdev->irq, print_mac(mac, dev->dev_addr));
  5605. return 0;
  5606. }
  5607. static void __devexit
  5608. bnx2_remove_one(struct pci_dev *pdev)
  5609. {
  5610. struct net_device *dev = pci_get_drvdata(pdev);
  5611. struct bnx2 *bp = netdev_priv(dev);
  5612. flush_scheduled_work();
  5613. unregister_netdev(dev);
  5614. if (bp->regview)
  5615. iounmap(bp->regview);
  5616. free_netdev(dev);
  5617. pci_release_regions(pdev);
  5618. pci_disable_device(pdev);
  5619. pci_set_drvdata(pdev, NULL);
  5620. }
  5621. static int
  5622. bnx2_suspend(struct pci_dev *pdev, pm_message_t state)
  5623. {
  5624. struct net_device *dev = pci_get_drvdata(pdev);
  5625. struct bnx2 *bp = netdev_priv(dev);
  5626. u32 reset_code;
  5627. /* PCI register 4 needs to be saved whether netif_running() or not.
  5628. * MSI address and data need to be saved if using MSI and
  5629. * netif_running().
  5630. */
  5631. pci_save_state(pdev);
  5632. if (!netif_running(dev))
  5633. return 0;
  5634. flush_scheduled_work();
  5635. bnx2_netif_stop(bp);
  5636. netif_device_detach(dev);
  5637. del_timer_sync(&bp->timer);
  5638. if (bp->flags & NO_WOL_FLAG)
  5639. reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
  5640. else if (bp->wol)
  5641. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  5642. else
  5643. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  5644. bnx2_reset_chip(bp, reset_code);
  5645. bnx2_free_skbs(bp);
  5646. bnx2_set_power_state(bp, pci_choose_state(pdev, state));
  5647. return 0;
  5648. }
  5649. static int
  5650. bnx2_resume(struct pci_dev *pdev)
  5651. {
  5652. struct net_device *dev = pci_get_drvdata(pdev);
  5653. struct bnx2 *bp = netdev_priv(dev);
  5654. pci_restore_state(pdev);
  5655. if (!netif_running(dev))
  5656. return 0;
  5657. bnx2_set_power_state(bp, PCI_D0);
  5658. netif_device_attach(dev);
  5659. bnx2_init_nic(bp);
  5660. bnx2_netif_start(bp);
  5661. return 0;
  5662. }
  5663. static struct pci_driver bnx2_pci_driver = {
  5664. .name = DRV_MODULE_NAME,
  5665. .id_table = bnx2_pci_tbl,
  5666. .probe = bnx2_init_one,
  5667. .remove = __devexit_p(bnx2_remove_one),
  5668. .suspend = bnx2_suspend,
  5669. .resume = bnx2_resume,
  5670. };
  5671. static int __init bnx2_init(void)
  5672. {
  5673. return pci_register_driver(&bnx2_pci_driver);
  5674. }
  5675. static void __exit bnx2_cleanup(void)
  5676. {
  5677. pci_unregister_driver(&bnx2_pci_driver);
  5678. }
  5679. module_init(bnx2_init);
  5680. module_exit(bnx2_cleanup);